An Introduction to Spectral Graph Theory

Mackenzie Wheeler
Supervisor: Dr. Gary MacGillivray
University of Victoria
WheelerM@uvic.ca
Outline

1. How many walks are there from vertices v_i to v_j of length d?
2. How many labelled spanning trees of G exist?
Outline

1. How many walks are there from vertices v_i to v_j of length d?
Outline

1. How many walks are there from vertices v_i to v_j of length d?

2. How many labelled spanning trees of G exist?
Outline

1. **How many walks are there from vertices** v_i **to** v_j **of length** d?

2. **How many labelled spanning trees of** G **exist?**

 - Graph Theory Review
 - Define the Adjacency matrix $A(G)$
 - Answer Question 1
 - Linear Algebra Review
 - Define the Laplacian matrix $L(G)$
 - Answer Question 2
Graph Theory Review

Definition
Two vertices v_i and $v_j \in V(G)$ are said to be adjacent if
$
\{v_i, v_j\} \in E(G).
$
Graph Theory Review

Definition

Two vertices v_i and $v_j \in V(G)$ are said to be adjacent if \(\{v_i, v_j\} \in E(G) \).
Graph Theory Review

Definition
Two vertices v_i and $v_j \in V(G)$ are said to be adjacent if \{v_i, v_j\} $\in E(G)$.

Definition
A walk in a graph G is a sequence of vertices \{v_1, v_2, \ldots, v_k\} such that v_i is adjacent to v_{i+1} for all $1 \leq i \leq k - 1$. The length of the walk is $k - 1$.
The Adjacency Matrix

Definition
The adjacency matrix $A(G)$ of a graph G is defined by

$$(A(G))_{ij} = \begin{cases}
1 & v_i v_j \in E(G) \\
0 & v_i v_j \notin E(G)
\end{cases}$$
The Adjacency Matrix

Definition
The adjacency matrix $A(G)$ of a graph G is defined by

$$(A(G))_{ij} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & v_i v_j \notin E(G) \end{cases}$$

Example
Let $G = C_5$, then we have that

$$A(C_5) = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$
Counting walks

Question

Given a graph G, how many walks are there from v_i to v_j of length d?
Counting walks

Question
Given a graph G, how many walks are there from v_i to v_j of length d?

Proposition
Let G be a graph with n vertices and adjacency matrix $A(G)$, then the number of walks from v_i to v_j of length d in G is given by $(A(G))_{ij}^d$.
The Adjacency Matrix

Proof.

A_d is A.

Consider $A_{d+1} = A_d A$.

Then $a_{d+1}^{ij} = \sum_{n=1}^{N} a_d^{ik} a_{kj}$.

$a_d^{ik} a_{kj}$ is the number of walks from v_i to v_j which are walks from v_i to v_k of length d, followed by a walk of length 1 from v_k to v_j.

Therefore $a_{d+1}^{ij} = \sum_{n=1}^{N} a_d^{ik} a_{kj}$ is the total number of walks from v_i to v_j of length $d+1$.
The Adjacency Matrix

Proof.

- For \(d = 1 \), \(A^d \) is \(A \).
The Adjacency Matrix

Proof.

▶ For \(d = 1 \), \(A^d \) is \(A \).

▶ Consider \(A^{d+1} = A^d A \).
The Adjacency Matrix

Proof.

- For $d = 1$, A^d is A.
- Consider $A^{d+1} = A^d A$
- Then $a_{ij}^{d+1} = \sum_{k=1}^{n} a_{ik}^d a_{kj}$.
The Adjacency Matrix

Proof.

- For $d = 1$, A^d is A.

- Consider $A^{d+1} = A^d A$

- Then $a^{d+1}_{ij} = \sum_{k=1}^{n} a^d_{ik} a_{kj}$.

- $a^d_{ik} a_{kj}$ is the number of walks from v_i to v_j which are walks from v_i to v_k of length d, followed by a walk of length 1 from v_k to v_j.

The Adjacency Matrix

Proof.

- For \(d = 1 \), \(A^d \) is \(A \).
- Consider \(A^{d+1} = A^d A \)
- Then \(a_{ij}^{d+1} = \sum_{k=1}^{n} a_{ik}^d a_{kj} \).
- \(a_{ik}^d a_{kj} \) is the number of walks from \(v_i \) to \(v_j \) which are walks from \(v_i \) to \(v_k \) of length \(d \), followed by a walk of length 1 from \(v_k \) to \(v_j \).
- Therefore \(a_{ij}^{n+1} = \sum_{k=1}^{n} a_{ik}^d a_{kj} \) is to total number of walks from \(v_i \) to \(v_j \) of length \(d + 1 \).
The Adjacency Matrix

Corollary

Let G be a graph with e edges and t triangles, then

1. $tr(A(G)^2) = 2e$

2. $tr(A(G)^3) = 6t$
The Laplacian Matrix

Definition

The Laplacian matrix $L(G)$ of a graph G is defined by

$$(L(G))_{ij} = \begin{cases}
\deg(v_i) & i = j \\
-1 & i \neq j \text{ and } v_i v_j \in E(G) \\
0 & \text{otherwise}
\end{cases}$$
The Laplacian Matrix

Definition
The Laplacian matrix $L(G)$ of a graph G is defined by

$$(L(G))_{ij} = \begin{cases}
\text{deg}(v_i) & i = j \\
-1 & i \neq j \text{ and } v_i v_j \in E(G) \\
0 & \text{otherwise}
\end{cases}$$

Example
Let $G = C_5$, then we have that

$$L(C_5) = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2 \end{bmatrix}$$
Definition
Let $A \in M_{n\times n}(\mathbb{R})$ and let $v \in \mathbb{R}^n$ be a nonzero vector. Then v is an eigenvector of A if there exists a scalar $\lambda \in \mathbb{R}$, such that $Av = \lambda v$. We say that λ is an eigenvalue of A with corresponding eigenvector v.

Proposition
Let $A \in M_{n\times n}(\mathbb{R})$ be a symmetric matrix, then the eigenvalues of A are all real numbers.
Definition
Let $A \in M_{n \times n}(\mathbb{R})$ and let $v \in \mathbb{R}^n$ be a nonzero vector. Then v is an eigenvector of A if there exists a scalar $\lambda \in \mathbb{R}$, such that $Av = \lambda v$. We say that λ is an eigenvalue of A with corresponding eigenvector v.

Proposition
Let $A \in M_{n \times n}(\mathbb{R})$ be a symmetric matrix, then the eigenvalues of A are all real numbers.
Linear Algebra Review

Definition
Let $A \in M_{n \times n}(\mathbb{R})$, and let a_{ij} denote the entry in the i^{th} row and j^{th} column. A is diagonally dominant if

$$|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|$$

for all $1 \leq i \leq n$.

Example
$$A = \begin{bmatrix}
7 & 1 & 0 & 2 \\
-1 & -1 & 6 & -1 \\
0 & -1 & 3 & 1 & 0 \\
0 & -1 & 2 & 0 & -1
\end{bmatrix}$$
Definition
Let $A \in M_{n \times n}(\mathbb{R})$, and let a_{ij} denote the entry in the i^{th} row and j^{th} column. A is diagonally dominant if

$$|a_{ii}| \geq \sum_{j \neq i} |a_{ij}|$$

for all $1 \leq i \leq n$.

Example

$$A = \begin{bmatrix}
7 & 1 & 0 & 2 & -1 \\
-1 & 6 & -1 & 0 & 0 \\
0 & -1 & 3 & 1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
2 & 0 & 0 & -1 & 4
\end{bmatrix}$$
Proposition

Let A be a symmetric, diagonally dominant $n \times n$ matrix such that $a_{ii} > 0$ for all $a \leq i \leq n$. Then all the eigenvalues of A are non-negative.
Linear Algebra Review

Proposition

Let A be a symmetric, diagonally dominant $n \times n$ matrix such that $a_{ii} > 0$ for all $a \leq i \leq n$. Then all the eigenvalues of A are non-negative.

Corollary

Let G be a graph with Laplacian $L(G)$. The eigenvalues of $L(G)$ are all nonnegative real numbers. Therefore, we may list the eigenvalues of $L(G)$ as $0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1}$.
Proposition
Let G be a graph with Laplacian matrix $L(G)$. Then $\lambda = 0$ is an eigenvalue of $L(G)$ with $v = (1, 1, \ldots, 1)$ as a corresponding eigenvector.

Proposition
Let G be a connected graph with Laplacian $L(G)$. Then $\lambda = 0$ is an eigenvalue of $L(G)$ with multiplicity one.
The Laplacian Matrix

Proposition

Let G be a graph with Laplacian matrix $L(G)$. Then $\lambda = 0$ is an eigenvalue of $L(G)$ with $v = (1, 1, \ldots, 1)$ as a corresponding eigenvector.
The Laplacian Matrix

Proposition

Let G be a graph with Laplacian matrix $L(G)$. Then $\lambda = 0$ is an eigenvalue of $L(G)$ with $v = (1, 1, \ldots, 1)$ as a corresponding eigenvector.

Proposition

Let G be a connected graph with Laplacian $L(G)$. Then $\lambda = 0$ is an eigenvalue of $L(G)$ with multiplicity one.
Counting Labelled Spanning Trees

Definition
A graph \(G \) is a tree if \(G \) is connected and contains no cycles.

Definition
Let \(G \) be a graph with a subgraph \(T \). \(T \) is a spanning tree of \(G \) if \(V(T) = V(G) \) and \(T \) is a tree.
Counting Labelled Spanning Trees

Definition
A graph G is a tree if G is connected and contains no cycles.
Counting Labelled Spanning Trees

Definition
A graph G is a tree if G is connected and contains no cycles.

Definition
Let G be a graph with a subgraph T. T is a spanning tree of G if $V(T) = V(G)$ and T is a tree.
Counting Labelled Spanning Trees

Definition
A graph G is a tree if G is connected and contains no cycles.

Definition
Let G be a graph with a subgraph T. T is a spanning tree of G if $V(T) = V(G)$ and T is a tree.

Example

The Petersen Graph
Counting Labelled Spanning Trees

Definition
A graph G is a tree if G is connected and contains no cycles.

Definition
Let G be a graph with a subgraph T. T is a spanning tree of G if $V(T) = V(G)$ and T is a tree.

Example

A spanning tree of the Petersen graph
Counting Labelled Spanning Trees

Question

Given a graph G *with vertices labelled* $\{v_1, v_2, \ldots, v_n\}$ *how many labelled spanning trees of* G *exist?*
Counting Labelled Spanning Trees

Question
Given a graph G with vertices labelled $\{v_1, v_2, \ldots, v_n\}$ how many labelled spanning trees of G exist?

Theorem (Kirchoff’s Theorem)
Let G be a connected graph with $n \geq 2$ labelled vertices, and let $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1}$ be the eigenvalues of $L(G)$. Then the number of spanning trees on G, $t(G)$, is given by

$$t(G) = \det(L(G)[i]) = \frac{1}{n} \prod_{k=1}^{n-1} \lambda_k.$$

Where $L(G)[i]$ denotes the matrix obtained from $L(G)$ by deleteing the i^{th} row and i^{th} column.
Counting Labelled Spanning Trees

Proof Outline:

We proceed by induction on $|V(G)| + |E(G)| = n + m$.

When $n + m = 3$, the only connected graph is P_2. Thus, $L(P_2) = \begin{bmatrix} 1 \end{bmatrix}$.
Counting Labelled Spanning Trees

Proof Outline:

- We proceed by induction on $|V(G)| + |E(G)| = n + m$

 When $n + m = 3$, the only connected graph is P_2.

 $L(P_2) = \begin{bmatrix} 1 - 1 & 1 \\ 1 & 1 - 1 \end{bmatrix}$
Counting Labelled Spanning Trees

Proof Outline:

- We proceed by induction on \(|V(G)| + |E(G)| = n + m|
- When \(n + m = 3\), the only connected graph is \(P_2\)
Counting Labelled Spanning Trees

Proof Outline:

- We proceed by induction on $|V(G)| + |E(G)| = n + m$
- When $n + m = 3$, the only connected graph is P_2

$$P_2 \begin{array}{c}
 \bullet \\
 \big|
\end{array} \begin{array}{c}
 \bullet \\
 \big|
\end{array}$$

$$L(P_2) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
Counting Labelled Spanning Trees

Proof Outline:
Counting Labelled Spanning Trees

Proof Outline:

- Consider a graph $|V(G)| + |E(G)| = n + m + 1$
Counting Labelled Spanning Trees

Proof Outline:

- Consider a graph $|V(G)| + |E(G)| = n + m + 1$
- Let $e = v_i v_j$ be an edge incident with the vertex v_i
Counting Labelled Spanning Trees

Proof Outline:

- Consider a graph $|V(G)| + |E(G)| = n + m + 1$
- Let $e = v_i v_j$ be an edge incident with the vertex v_i
- Notice that $t(G) = t(G - e) + t(G \setminus e)$
Counting Labelled Spanning Trees

Proof Outline:

- Consider a graph $|V(G)| + |E(G)| = n + m + 1$
- Let $e = v_i v_j$ be an edge incident with the vertex v_i
- Notice that $t(G) = t(G - e) + t(G \setminus e)$
Counting Labelled Spanning Trees

Proof Outline:

- Consider a graph $|V(G)| + |E(G)| = n + m + 1$
- Let $e = v_i v_j$ be an edge incident with the vertex v_i
- Notice that $t(G) = t(G - e) + t(G \setminus e)$

![Diagram of a graph with vertices and edges](attachment:graph_diagram.png)

$L(G \setminus e) = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix}$
Proof Outline:

By standard manipulation of the determinant we get

\[
\det(L(G)[i]) = \det(L(G - e)[i]) + \det(L(G \setminus e)[j]) \\
= t(G - e) + t(G \setminus e), \quad \text{by induction hypothesis} \\
= t(G).
\]
Corollary (Cayley’s Formula)

The number of labelled spanning trees on the complete graph K_n is n^{n-2}.
Corollary (Cayley’s Formula)

The number of labelled spanning trees on the complete graph K_n is n^{n-2}.

Proof.
The eigenvalues of $L(K_n)$ are 0 and n with multiplicity 1 and $n - 1$, respectively. Therefore, by Kirchoff’s Theorem the number of spanning trees on K_n is $\frac{n^{n-1}}{n} = n^{n-2}$. \qed
References
