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Parallel vs Sequential computation

• Most of linear algebra can be done in parallel


• Gaussian elimination is an outlier 


• Intuitively its an inherently sequential procedure


• There are theoretical reasons to believe so


• There is an efficient sequential algorithm



P vs NC1

Are there problems with efficient sequential algorithms 

which do not have efficient parallel algorithms ?

Class P of  poly-time solvable problems

Modeled as circuits



Circuit complexity

• Complexity parameters :


• Size : # of gates


• Depth : length of the longest path 
from root to leaf


• Fan in : 2, Fan out


• Formulas : 


• Underlying DAG is a tree 


• No reuse of computation


• Depth = log ( Size )

Internal gates

Leaf gates



Circuit complexity
Class  = Poly-Size FormulasNC1

• Efficient parallel computation (formally 
CREW PRAM):


• Polynomially many processors


• Logarithmic computation time

size(F) = nO(1)

x1 x2 xn x5

F

depth(F) = O(log n)

In formula, depth(F) = O(log size(F))



Circuit complexity
P vs  rephrasedNC1

• A Boolean function   (candidates: Perfect matching, Gaussian elimination etc)


• That can be computed in poly-time (  )


• Any de-Morgan formula computing it has super-poly size (  )

f

f ∈ P

f ∉ NC1



P vs NC1
State of the art

• Andreev’87 :  for a function in  called the Andreev function


• Also, Andreev’87 : , where  is the shrinkage exponent


• Paterson and Zwick’93 : 


• Hastad’98 (breakthrough) : 


• Tal’14 : 


• Best l.b. for Andreev’s function (Tal’14) : 


• Best l.b. for a function in  (Tal’16) : 

Ω(n2.5−o(1)) P

Ω(n1+Γ−o(1)) Γ

Γ ≥ 1.63

Γ ≥ 2 − o(1)

Γ = 2

Ω ( n3

log2 n log log n )
P Ω ( n3

log n(log log n)2 )



Cubic formula lower bounds
Andreev’s function
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Cubic formula lower bounds
Hastad’s result

• (Tal’14) : 


• Doesn’t work if there are parity gates at bottom

Ω ( n3

log2 n log log n )



Our Model
Augmenting de-Morgan formulas

• de-Morgan formulas : leaf 
gates, input literals


• Our model : leaf gates, low 
communication functions

Leaf gatesLeaf gates of low cc



Our model
Reformulation

• 


• Size s de-Morgan formula


•  : A family of Boolean functions


• Leaf gates are functions 


• Our model : 


•  - low communication complexity Boolean functions


•

Formula[s] ∘ 𝒢

𝒢

g ∈ 𝒢

𝒢

s = Õ(n2)



Communication complexity

• Yao’s 2-party model


• Input divided into 2 parts



• Goal : compute  
with minimal 
communication 

x, y

f(x, y) x yf(x, y)

m1
m2

mk



Our model
Complexity of Andreev’s function

f (

)

x1 x2 x3 xn⋯⋯ ,
Truth Table of a   bit function   (  )log n h 2log n = n
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log n

de-Morgan formula of size 
n

log n

Leaf gates

Communication complexity

Of Parity  = 2 bits



Our model
Prior work - Bipartite Formulas

• Input is divided into two parts, 


• Every leaf can gate can access any 
Boolean function of either  or  but not 
both


• Models a well known measure - graph 
complexity


• Tal’16: Bipartite formula complexity of 
 is 


• Earlier methods could not do  super 
linear

x, y

x y

IPn Ω̃(n2)

g1 g2 g3 gs

F

x1 x2 x3 xn⋯⋯ y1 y2 y3 yn⋯⋯

Communication complexity

Of a bipartite function  = 1 bit



Our model
Connection to Hardness Magnification

•  : Given the truth table of a function  on  bits ( )


• Yes : if  has a circuit of size at most 


• No : otherwise


• Meta computational problem with connections to Crypto, learning theory, 
circuit complexity etc


• OPS’19:


• If there exists an  such that  is not in 


• then, 

MCSPN[k] f n N = 2n

f k

ϵ MCSPN[2o(n)] Formula[N1+ϵ] ∘ XOR

NP ∉ NC1



Our model
Connection to PRG for polytopes

• Polytope  : AND of LTF’s 


• LTF : 


• 


• Ex : 


• Nisan’94 : Randomized communication complexity 


• PRG’s for polytopes : Approximate volume computation 

sign(w1x1 + … + wnxn − θ)

w1, …, wn, θ ∈ ℝ

3x1 + 4x2 + 5x7 ≥ 12

O(log n)



Our model
Interesting low communication bottom gates

• Bipartite functions 


• Parities


• LTF’s (Linear threshold functions)


• PTF’s (Polynomial threshold functions)



Our results
Target function - Generalized inner product

• Generalization of binary inner 
product


• 


•

IPn(x, y) = ∑
i∈[n]

xiyi

GIPk
n(x1, x2, …, xk) = ∑
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Our results
Lower bound

• Let  be  computed on average by ,


• That is, 


• Then, 


•  : Randomized communication of  with error  in the 
number on forehead communication complexity model

GIPk
n F ∈ Formula[s] ∘ 𝒢

Pr
x

[F(x) = GIPk
n(x)] ≥ 1/2 + ϵ

s = Ω ( n2

k2 ⋅ 16k ⋅ Rk
ϵ/2n2(𝒢) ⋅ log2(1/ϵ) )

Rk
ϵ/2n2(𝒢) 𝒢 ϵ/2n2



Our results
MCSP lower bounds

• If  is computed , then 


• Contrast : OPS’19:


• If there exists an  such that  is not in 



• then, 


• Our techniques cannot handle 

MCSPN[2cn] Formula[s] ∘ XOR s = Õ(n2)

ϵ MCSPN[2o(n)]
Formula[N1+ϵ] ∘ XOR

NP ∉ NC1

MCSPN[2o(n)]



Our results
PRG

• A pseudo random generator  is said to  fool a function class  if


• 


•  is any function from 


• 


•  is the seed, 


• Smaller the seed length compared to  the better

G ϵ ℱ

Pr
z∈{0,1}l(n) [f(G(z)) = 1] − Pr

x∈{0,1}n [f(x) = 1] ≤ ϵ

f ℱ

G : {0,1}l(n) → {0,1}n

z l(n) ⋘ n

n



Our results
PRG

• Parities at the bottom can make things harder. 


•  best known PRG seed length 


•  best known only 

AC0 poly(log n)

AC0 ∘ XOR (1 − o(1))n



Our results
PRG

• There is a PRG that -fools 


• Seed length : 


• Seed length is optimal, unless lower bound can be improved

ϵ Formula[s] ∘ XOR

O( s ⋅ log s ⋅ log(1/ϵ) + log n)



Our results
PRG

• Natural generalization to 


• There is a PRG that -fools 


• Seed length : 


• Number in hand

Formula[s] ∘ 𝒢

ϵ Formula[s] ∘ 𝒢

n/k + O( s ⋅ (Rk−NIH
ϵ/6s (𝒢) + log s) ⋅ log(1/ϵ) + log k) ⋅ log k



Our results
PRG - Corollaries

• (Ours + Vio15) : There is a PRG 


• Seed length : 


• -fools intersection of  halfspaces over 


• Our results beats earlier results when  and 

O(n1/2 ⋅ m1/4 ⋅ log n ⋅ log(n/ϵ))

ϵ m {0,1}n

m = O(n) ϵ ≤ 1/n



Our results
PRG - Corollaries

• There is a PRG 


• Seed length : 


• -fools 


• First of its kind


• Blackbox counting algorithm (Whitebox due to CW19)

O(n1/2 ⋅ s1/4 ⋅ log n ⋅ log(n/ϵ))

ϵ Formula[s] ∘ SYM



Our results
SAT Algorithm

• Given circuit class 


• Circuit SAT : Given , is there an , 


• #Circuit SAT :  Given , how many , 

𝒞

C ∈ 𝒞 x C(x) = 1

C ∈ 𝒞 x C(x) = 1



Our results
SAT Algorithm

• Randomized #SAT algorithm for 


• Running time 


•



• First  of its kind #SAT for unbounded depth Boolean circuits with PTF’s at 
the bottom

Formula[s] ∘ 𝒢

2n−t

t = Ω
n

s ⋅ log2 s ⋅ R2
1/3(𝒢)

1/2

 for LTFslog n



Our results
Learning algorithm

• There is PAC-learning algorithm 


• Learns 


• Accuracy : , Confidence : 


• Time complexity : 


•  can be learned in  [Rei11]


• Crypto connection:


•  is assumed to compute PRFs (BIP+18)


• If true,  can’t be learned in  time

Formula[n2−γ] ∘ XOR

ϵ δ

poly(2n/log n,1/ϵ, log(1/δ))

Formula[n2−γ] 2o(n)

MOD3 ∘ XOR

Formula[n2.8] ∘ XOR 2o(n)



Lower bound technique
Outline

•  cannot even be weakly approximated by low communication 
complexity functions


• Weakness of  : Size  formula can be “approximated” by 
degree  polynomial


•  is weakly approximated by a collection of leaf gates

GIPk
n

Formula[s] ∘ 𝒢 s
s

GIPk
n



Lower bound technique
Part I

•  cannot even be weakly approximated by low communication 
complexity functions


• In the number on forehead model


• Protocol computes  with error  (uniform distribution)


• Then commn.comp > 

GIPk
n

GIPk
n ϵ

n/4k − log(1/(1 − 2ϵ))



Lower bound technique
Part II

• Weakness of  : Size  formula can be “approximated” by degree  polynomial


• Reichardt’11 : Approximation of Boolean formulas by Polynomials


•  be a formula of size 


• There is a real polynomial  of degree 


• For every 


• Fact : For any , 


• Corollary : For any formula  of size , 

Formula[s] ∘ 𝒢 s s

F(y1, …, ym) s

p(y1, …, ym) O( s)

y ∈ {0,1}m, |F(a) − p(a) | ≤ 1/10

0 < ϵ < 1 d̃egϵ( f ) ≤ d̃eg( f ) ⋅ log(1/ϵ)

F s d̃egϵ(F) ≤ s ⋅ log(1/ϵ)



Lower bound - proof sketch

g1 g2 g3 gs

F

size(F) = s
∏ d ≤ s

̂pS gi1

gid

≤ s s∑

p(x)

•  correlates well ( ) with 


•
 correlates well ( ) with a monomial ( )

F ϵ p

F
1

s s
̂pS ∏

j∈[S],|S|≤ s

gij

• Since each  has low communication complexity, so does 

 


•  correlated well with the target function , thus it 
correlates well with the monomial ( a low communication 
function) !!!!!!!

gi

∏
j∈[S],|S|≤ s

gij

F f

Reichardt ‘2011

∀x ∈ {0,1}n, |F(x) − p(x) | ≤ ϵ
deg(p) ≤ s



Limitations of our approach

• To get better lower bounds, find a smaller degree approximating polynomial


• Approximate degree bound of Reichardt (  ) cannot be improved 


•  function can be computed by a size  de-Morgan formula


• Approximate degree of  is 

s

ANDn n

ANDn θ( n)



Future directions

• Extend lower bounds to  when 


• Design a PRG of seed length  and error  for intersection of  half 
spaces


• Learn  in time 

Formula[s] ∘ 𝒢 s = ω(n2)

no(1) ϵ ≤ 1/n n

Formula[s] ∘ XOR 2Õ( s)



Questions?

Thank you


