Algorithms and lower bounds for de-Morgan formulas of lowcommunication leaf gates

Sajin Koroth (Simon Fraser University)

Joint with

Valentine Kabanets

Zhenjian
Lu

Dimitrios Igor Carboni
Myrisiotis
Oliveira

Outline

- Background
- Circuit model : Formula $[s] \circ \mathscr{G}$
- Prior work
- Results
- Lower bounds
- PRG's
- SAT algorithm's
- Learning algorithms
- Overview of the lower bound technique

Parallel vs Sequential computation

- Most of linear algebra can be done in parallel
- Gaussian elimination is an outlier
- Intuitively its an inherently sequential procedure
- There are theoretical reasons to believe so
- There is an efficient sequential algorithm

Pvs Nc ${ }^{1}$

Are there problems with efficient sequential algorithms which do not have efficient parallel algorithms ?

Circuit complexity

- Complexity parameters :
- Size : \# of gates
- Depth : length of the longest path from root to leaf
- Fan in : 2, Fan out
- Formulas :
- Underlying DAG is a tree
- No reuse of computation

- Depth $=\log$ (Size $)$

Circuit complexity

Class $N C^{1}=$ Poly-Size Formulas

- Efficient parallel computation (formally CREW PRAM):
- Polynomially many processors
- Logarithmic computation time

In formula, $\operatorname{depth}(F)=O(\log \operatorname{siz} e(F))$

Circuit complexity

P vs $N C^{1}$ rephrased

- A Boolean function f (candidates: Perfect matching, Gaussian elimination etc)
- That can be computed in poly-time $(f \in P)$
- Any de-Morgan formula computing it has super-poly size $\left(f \notin N C^{1}\right)$

P vs Nc ${ }^{1}$
 State of the art

- Andreev' 87 : $\Omega\left(n^{2.5-o(1)}\right)$ for a function in P called the Andreev function
- Also, Andreev' 87 : $\Omega\left(n^{1+\Gamma-o(1)}\right)$, where Γ is the shrinkage exponent
- Paterson and Zwick'93 : $\Gamma \geq 1.63$
- Hastad'98 (breakthrough) : $\Gamma \geq 2-o(1)$
- Tal'14 : $\Gamma=2$
- Best I.b. for Andreev's function (Tal'14) : $\Omega\left(\frac{n^{3}}{\log ^{2} n \log \log n}\right)$
- Best I.b. for a function in $P($ Tal'16 $): \Omega\left(\frac{n^{3}}{\log n(\log \log n)^{2}}\right)$

Cubic formula lower bounds

Andreev's function

Cubic formula lower bounds

Hastad's result

- (Tal'14) : $\Omega\left(\frac{n^{3}}{\log ^{2} n \log \log n}\right)$
- Doesn't work if there are parity gates at bottom

Our Model

Augmenting de-Morgan formulas

- de-Morgan formulas : leaf gates, input literals
- Our model : leaf gates, low communication functions

Our model

Reformulation

- Formula[s]• \mathscr{G}
- Size s de-Morgan formula
- \mathscr{G} : A family of Boolean functions
- Leaf gates are functions $g \in \mathscr{G}$
- Our model :
- \mathscr{G} - low communication complexity Boolean functions
- $s=\tilde{O}\left(n^{2}\right)$

Communication complexity

- Yao's 2-party model
- Input divided into 2 parts x, y
- Goal : compute $f(x, y)$ with minimal communication

Our model

Complexity of Andreev's function

Our model

Prior work - Bipartite Formulas

- Input is divided into two parts, x, y
- Every leaf can gate can access any Boolean function of either x or y but not both
- Models a well known measure - graph complexity
- Tal'16: Bipartite formula complexity of $I P_{n}$ is $\tilde{\Omega}\left(n^{2}\right)$
- Earlier methods could not do super linear

Our model

Connection to Hardness Magnification

- $M C S P_{N}[k]$: Given the truth table of a function f on n bits $\left(N=2^{n}\right)$
- Yes : if f has a circuit of size at most k
- No : otherwise
- Meta computational problem with connections to Crypto, learning theory, circuit complexity etc
- OPS'19:
- If there exists an ϵ such that $\operatorname{MCSP}_{N}\left[2^{o(n)}\right]$ is not in Formula $\left[N^{1+\epsilon}\right] \circ X O R$
- then, $N P \notin N C^{1}$

Our model

Connection to PRG for polytopes

- Polytope : AND of LTF's
- LTF : $\operatorname{sign}\left(w_{1} x_{1}+\ldots+w_{n} x_{n}-\theta\right)$
- $w_{1}, \ldots, w_{n}, \theta \in \mathbb{R}$
- Ex: $3 x_{1}+4 x_{2}+5 x_{7} \geq 12$
- Nisan'94 : Randomized communication complexity $O(\log n)$
- PRG's for polytopes : Approximate volume computation

Our model

Interesting low communication bottom gates

- Bipartite functions
- Parities
- LTF's (Linear threshold functions)
- PTF's (Polynomial threshold functions)

Our results

Target function - Generalized inner product

- Generalization of binary inner product
- $I P_{n}(x, y)=\sum_{i \in[n]} x_{i} y_{i}$
- $\operatorname{GIP}_{n}^{k}\left(x^{1}, x^{2}, \ldots, x^{k}\right)=\sum_{i \in[n / k]} \prod_{j \in[k]} x_{i}^{j}$

Our results

Lower bound

- Let $G I P_{n}^{k}$ be computed on average by $F \in$ Formula $[s] \circ \mathscr{G}$,
- That is, $\operatorname{Pr}\left[F(x)=G I P_{n}^{k}(x)\right] \geq 1 / 2+\epsilon$
x
- Then, $s=\Omega\left(\frac{n^{2}}{k^{2} \cdot 16^{k} \cdot R_{\epsilon / 2 n^{2}}^{k}(\mathscr{G}) \cdot \log ^{2}(1 / \epsilon)}\right)$
- $R_{\epsilon / 2 n^{2}}^{k}(\mathscr{G})$: Randomized communication of \mathscr{G} with error $\epsilon / 2 n^{2}$ in the number on forehead communication complexity model

Our results
 MCSP Iower bounds

- If $\operatorname{MCSP}_{N}\left[2^{c n}\right]$ is computed Formula $[s] \circ X O R$, then $s=\tilde{O}\left(n^{2}\right)$
- Contrast : OPS'19:
- If there exists an ϵ such that $\operatorname{MCSP}_{N}\left[2^{o(n)}\right]$ is not in Formula $\left[N^{1+\epsilon}\right] \circ$ XOR
- then, $N P \notin N C^{1}$
- Our techniques cannot handle $\operatorname{MCSP}_{N}\left[2^{o(n)}\right]$

Our results
 PRG

- A pseudo random generator G is said to ϵ fool a function class \mathscr{F} if
- $\left|\operatorname{Pr}_{z \in\{0,1\}^{(n)}}[f(G(z))=1]-\operatorname{Pr}_{x \in\{0,1\}^{n}}[f(x)=1]\right| \leq \epsilon$
- f is any function from \mathscr{F}
- $G:\{0,1\}^{l(n)} \rightarrow\{0,1\}^{n}$
- z is the seed, $l(n) \lll n$
- Smaller the seed length compared to n the better

Our results PRG

- Parities at the bottom can make things harder.
- $A C^{0}$ best known PRG seed length poly $(\log n)$
- $A C^{0} \cdot X O R$ best known only $(1-o(1)) n$

Our results PRG

- There is a PRG that ϵ-fools Formula[s] \circ XOR
- Seed length : $O(\sqrt{s} \cdot \log s \cdot \log (1 / \epsilon)+\log n)$
- Seed length is optimal, unless lower bound can be improved

Our results PRG

- Natural generalization to Formula[s]• \mathscr{G}
- There is a PRG that ϵ-fools Formula $[s] \circ \mathscr{G}$
- Seed length $: n / k+O\left(\sqrt{s} \cdot\left(R_{\epsilon / 6 s}^{k-N I H}(\mathscr{G})+\log s\right) \cdot \log (1 / \epsilon)+\log k\right) \cdot \log k$
- Number in hand

Our results
 PRG - Corollaries

- (Ours + Vio15) : There is a PRG
- Seed length : $O\left(n^{1 / 2} \cdot m^{1 / 4} \cdot \log n \cdot \log (n / \epsilon)\right)$
- ϵ-fools intersection of m halfspaces over $\{0,1\}^{n}$
- Our results beats earlier results when $m=O(n)$ and $\epsilon \leq 1 / n$

Our results
 PRG - Corollaries

- There is a PRG
- Seed length : $O\left(n^{1 / 2} \cdot s^{1 / 4} \cdot \log n \cdot \log (n / \epsilon)\right)$
- ϵ-fools Formula[s] • SYM
- First of its kind
- Blackbox counting algorithm (Whitebox due to CW19)

Our results

SAT Algorithm

- Given circuit class \mathscr{C}
- Circuit SAT : Given $C \in \mathscr{C}$, is there an $x, C(x)=1$
- \#Circuit SAT : Given $C \in \mathscr{C}$, how many $x, C(x)=1$

Our results

SAT Algorithm

- Randomized \#SAT algorithm for Formula[s]• \mathscr{G}
- Running time 2^{n-t}

- First of its kind \#SAT for unbounded depth Boolean circuits with PTF's at the bottom

Our results
 Learning algorithm

- There is PAC-learning algorithm
- Learns Formula $\left[n^{2-\gamma}\right] \circ$ XOR
- Accuracy : ϵ, Confidence : δ
- Time complexity : poly($\left.2^{n / \log n}, 1 / \epsilon, \log (1 / \delta)\right)$
- Formula $\left[n^{2-\gamma}\right]$ can be learned in $2^{o(n)}$ [Rei11]
- Crypto connection:
- $\mathrm{MOD}_{3} \circ \mathrm{XOR}$ is assumed to compute PRFs (BIP+18)
- If true, Formula $\left[n^{2.8}\right] \circ X O R$ can't be learned in $2^{o(n)}$ time

Lower bound technique

Outline

- $G I P_{n}^{k}$ cannot even be weakly approximated by low communication complexity functions
- Weakness of Formula[s]• \mathscr{G} : Size s formula can be "approximated" by degree \sqrt{s} polynomial
- $G I P_{n}^{k}$ is weakly approximated by a collection of leaf gates

Lower bound technique
 Part I

- $G I P_{n}^{k}$ cannot even be weakly approximated by low communication complexity functions
- In the number on forehead model
- Protocol computes $G I P_{n}^{k}$ with error ϵ (uniform distribution)
- Then commn.comp $>n / 4^{k}-\log (1 /(1-2 \epsilon))$

Lower bound technique Part II

- Weakness of Formula $[s] \circ \mathscr{G}$: Size s formula can be "approximated" by degree \sqrt{s} polynomial
- Reichardt'11 : Approximation of Boolean formulas by Polynomials
- $F\left(y_{1}, \ldots, y_{m}\right)$ be a formula of size s
- There is a real polynomial $p\left(y_{1}, \ldots, y_{m}\right)$ of degree $O(\sqrt{s})$
- For every $y \in\{0,1\}^{m},|F(a)-p(a)| \leq 1 / 10$
- Fact : For any $0<\epsilon<1, \widetilde{\operatorname{deg}_{\epsilon}}(f) \leq \widetilde{\operatorname{deg}}(f) \cdot \log (1 / \epsilon)$
- Corollary : For any formula F of size $s, \widetilde{\operatorname{deg}}_{\epsilon}(F) \leq \sqrt{s} \cdot \log (1 / \epsilon)$

Lower bound - proof sketch

- F correlates well (ϵ) with p
F correlates well $\left(\frac{1}{{ }_{s} \sqrt{s}}\right)$ with a monomial $\left(\hat{p}_{S} \prod_{j \in[S],|S| \leq \sqrt{s}} g_{i j}\right)$

- Since each g_{i} has low communication complexity, so does

- F correlated well with the target function f, thus it correlates well with the monomial (a low communication function) !!!!!!

Limitations of our approach

- To get better lower bounds, find a smaller degree approximating polynomial
- Approximate degree bound of Reichardt (\sqrt{s}) cannot be improved
- $A N D_{n}$ function can be computed by a size n de-Morgan formula
- Approximate degree of $A N D_{n}$ is $\theta(\sqrt{n})$

Future directions

- Extend lower bounds to Formula $[s] \circ \mathscr{G}$ when $s=\omega\left(n^{2}\right)$
- Design a PRG of seed length $n^{o(1)}$ and error $\epsilon \leq 1 / n$ for intersection of n half spaces
- Learn Formula $[s]$ 。 XOR in time $2^{\tilde{O}(\sqrt{s})}$

Thank you

Questions?

