Algorithms and lower bounds for de-Morgan formulas of lowcommunication leaf gates

Sajin Koroth (Simon Fraser University)

Joint with

Valentine Kabanets

Zhenjian Lu

Dimitrios Igor Carboni Myrisiotis Oliveira

Outline

- Background
- Circuit model : *Formula*[s] G
- Prior work
- Results
 - Lower bounds
 - PRG's
 - SAT algorithm's
 - Learning algorithms
- Overview of the lower bound technique

Parallel vs Sequential computation

- Most of linear algebra can be done in parallel
- Gaussian elimination is an outlier
 - Intuitively its an inherently sequential procedure
 - There are theoretical reasons to believe so
 - There is an efficient sequential algorithm

Class P of poly-time solvable problems

Are there problems with efficient sequential algorithms which do not have efficient parallel algorithms ?

Modeled as circuits

Circuit complexity

- Complexity parameters :
 - Size : # of gates
 - Depth : length of the longest path from root to leaf
 - Fan in : 2, Fan out
- Formulas :
 - Underlying DAG is a tree
 - No reuse of computation
 - Depth = log (Size)

Circuit complexity Class NC^1 = Poly-Size Formulas

- Efficient parallel computation (formally CREW PRAM):
 - Polynomially many processors
 - Logarithmic computation time

In formula, $depth(F) = O(\log size(F))$

Circuit complexity P vs NC^1 rephrased

- A Boolean function f (candidates: Perfect matching, Gaussian elimination etc) • That can be computed in poly-time ($f \in P$)

 - Any de-Morgan formula computing it has super-poly size ($f \notin NC^{\perp}$)

Pvs Nc¹ State of the art

- Andreev'87 : $\Omega(n^{2.5-o(1)})$ for a function in P called the Andreev function
- Also, Andreev'87 : $\Omega(n^{1+\Gamma-o(1)})$, where Γ is the shrinkage exponent
- Paterson and Zwick'93 : $\Gamma \ge 1.63$
- Hastad'98 (breakthrough) : $\Gamma \ge 2 o(1)$
- Tal'14 : $\Gamma = 2$
- Best I.b. for Andreev's function (Tal'14) : Ω

Best I.b. for a function in P (Tal'16) : Ω

$$\frac{n^3}{g^2 n \log \log n}$$

$$\frac{n^3}{\log \log n^2}$$

10

logn

Cubic formula lower bounds **Andreev's function**

Cubic formula lower bounds Hastad's result

(Tal'14):
$$\Omega\left(\frac{n^3}{\log^2 n \log\log n}\right)$$

Doesn't work if there are parity gates at bottom

Our Model Augmenting de-Morgan formulas

- de-Morgan formulas : leaf gates, input literals
- Our model : leaf gates, low communication functions

Our mode Reformulation

- $Formula[s] \circ G$
 - Size s de-Morgan formula
 - \mathscr{G} : A family of Boolean functions
 - Leaf gates are functions $g \in \mathcal{G}$
- Our model :
 - \mathcal{G} low communication complexity Boolean functions

• $s = \tilde{O}(n^2)$

Communication complexity

- Yao's 2-party model
 - Input divided into 2 parts X, Y
 - Goal : compute f(x, y)with minimal communication

Our model **Complexity of Andreev's function**

Our model Prior work - Bipartite Formulas

- Input is divided into two parts, *x*, *y*
- Every leaf can gate can access any Boolean function of either x or y but not both
- Models a well known measure graph complexity
- Tal'16: Bipartite formula complexity of IP_n is $\tilde{\Omega}(n^2)$
- Earlier methods could not do super linear

Our mode **Connection to Hardness Magnification**

- $MCSP_N[k]$: Given the truth table of a function f on n bits ($N = 2^n$) • Yes : if f has a circuit of size at most k

 - No : otherwise
 - Meta computational problem with connections to Crypto, learning theory, circuit complexity etc
- **OPS'19:**

 - then, $NP \notin NC^{\perp}$

• If there exists an ϵ such that $MCSP_N[2^{o(n)}]$ is not in $Formula[N^{1+\epsilon}] \circ XOR$

Our model **Connection to PRG for polytopes**

- Polytope : AND of LTF's
- LTF: $sign(w_1x_1 + ... + w_nx_n \theta)$
 - $W_1, \ldots, W_n, \theta \in \mathbb{R}$
 - Ex: $3x_1 + 4x_2 + 5x_7 \ge 12$
 - Nisan'94 : Randomized communication complexity $O(\log n)$
- PRG's for polytopes : Approximate volume computation

Our mode Interesting low communication bottom gates

- **Bipartite functions**
- Parities
- LTF's (Linear threshold functions)
- PTF's (Polynomial threshold functions)

Our results Target function - Generalized inner product

- Generalization of binary inner 0 product
- $IP_n(x, y) = \sum x_i y_i$ $i \in [n]$ $GIP_n^k(x^1, x^2, ..., x^k) = \sum_{i} x_i^j$ $i \in [n/k] \ j \in [k]$

Our results Lower bound

- Let GIP_n^k be computed on average by $F \in Formula[s] \circ \mathcal{G}$, • That is, $\Pr[F(x) = GIP_n^k(x)] \ge 1/2 + \epsilon$ • Then, $s = \Omega\left(\frac{n^2}{k^2 \cdot 16^k \cdot R_{\epsilon/2n^2}^k(\mathcal{G}) \cdot \log^2(1/\epsilon)}\right)$
 - number on forehead communication complexity model

• $R_{\epsilon/2n^2}^k(\mathscr{G})$: Randomized communication of \mathscr{G} with error $\epsilon/2n^2$ in the

Our results **MCSP** lower bounds

- If $MCSP_N[2^{cn}]$ is computed $Formula[s] \circ XOR$, then $s = \tilde{O}(n^2)$
- Contrast : OPS'19:
 - If there exists an ϵ such that $MCSP_N[2^{o(n)}]$ is not in $Formula[N^{1+\epsilon}] \circ XOR$
 - then, $NP \notin NC^1$
- Our techniques cannot handle $MCSP_N[2^{o(n)}]$

• A pseudo random generator G is said to ϵ fool a function class \mathcal{F} if

•
$$\Pr_{z \in \{0,1\}^{l(n)}} \left[f(G(z)) = 1 \right] - \Pr_{x \in \{0,1\}^n}$$

- f is any function from \mathcal{F}
- $G: \{0,1\}^{l(n)} \to \{0,1\}^n$
- z is the seed, $l(n) \ll n$
- Smaller the seed length compared to *n* the better

$\int_{a} \left[f(x) = 1 \right] \leq \epsilon$

- Parities at the bottom can make things harder.
 - AC^0 best known PRG seed length $poly(\log n)$
 - $AC^0 \circ XOR$ best known only (1 o(1))n

- There is a PRG that ϵ -fools $Formula[s] \circ XOR$
 - Seed length : $O(\sqrt{s} \cdot \log s \cdot \log(1/\epsilon) + \log n)$
 - Seed length is optimal, unless lower bound can be improved

- Natural generalization to $Formula[s] \circ G$
- There is a PRG that ϵ -fools *Formula*[s] \mathcal{G}

 - Number in hand

• Seed length : $n/k + O(\sqrt{s} \cdot (\frac{R_{\epsilon/6s}^{k-NH}(\mathscr{G})}{1} + \log s) \cdot \log(1/\epsilon) + \log k) \cdot \log k$

Our results PRG - Corollaries

- (Ours + Vio15) : There is a PRG
 - Seed length : $O(n^{1/2} \cdot m^{1/4} \cdot \log n \cdot \log(n/\epsilon))$
 - ϵ -fools intersection of *m* halfspaces over $\{0,1\}^n$
 - Our results beats earlier results when m = O(n) and $\epsilon \leq 1/n$

Our results PRG - Corollaries

- There is a PRG
 - Seed length : $O(n^{1/2} \cdot s^{1/4} \cdot \log n \cdot \log(n/\epsilon))$
 - ϵ -fools *Formula*[s] *SYM*
 - First of its kind
 - Blackbox counting algorithm (Whitebox due to CW19)

Our results **SAT Algorithm**

- Given circuit class \mathscr{C}
 - Circuit SAT : Given $C \in \mathscr{C}$, is there an x, C(x) = 1
 - #Circuit SAT : Given $C \in \mathscr{C}$, how many x, C(x) = 1

Our results SAT Algorithm

- Randomized #SAT algorithm for $Formula[s] \circ G$
 - Running time 2^{n-t}

$$t = \Omega \left(\left(\frac{n}{\sqrt{s} \cdot \log^2 s \cdot R_{1/3}^2} \right) \right)$$

D the bottom

n for LTFs

First of its kind #SAT for unbounded depth Boolean circuits with PTF's at

Our results Learning algorithm

- There is PAC-learning algorithm
 - Learns $Formula[n^{2-\gamma}] \circ XOR$
 - Accuracy : ϵ , Confidence : δ
 - Time complexity : $poly(2^{n/\log n}, 1/\epsilon, \log(1/\delta))$
- $Formula[n^{2-\gamma}]$ can be learned in $2^{o(n)}$ [Rei11]
- Crypto connection:
 - MOD₃ XOR is assumed to compute PRFs (BIP+18)
 - If true, $Formula[n^{2.8}] \circ XOR$ can't be learned in $2^{o(n)}$ time

Lower bound technique Outline

- GIP_n^k cannot even be weakly approximated by low communication complexity functions
- degree \sqrt{s} polynomial
- GIP_n^k is weakly approximated by a collection of leaf gates

• Weakness of $Formula[s] \circ \mathcal{G}$: Size s formula can be "approximated" by

Lower bound technique Part I

- GIP_n^k cannot even be weakly approximated by low communication complexity functions
- In the number on forehead model
 - Protocol computes GIP_n^k with error ϵ (uniform distribution)
 - Then commn.comp > $n/4^k \log(1/(1 2\epsilon))$

Lower bound technique Part II

- Weakness of $Formula[s] \circ \mathcal{G}$: Size s formula can be "approximated" by degree \sqrt{s} polynomial Reichardt'11 : Approximation of Boolean formulas by Polynomials
- - $F(y_1, \ldots, y_m)$ be a formula of size s
 - There is a real polynomial $p(y_1, ..., y_m)$ of degree $O(\sqrt{s})$
 - For every $y \in \{0,1\}^m$, $|F(a) p(a)| \le 1/10$
- Fact : For any $0 < \epsilon < 1$, $deg_{\epsilon}(f) \le deg(f) \cdot \log(1/\epsilon)$
- Corollary : For any formula *F* of size *s*, $\widetilde{deg}_{\epsilon}(F) \leq \sqrt{s} \cdot \log(1/\epsilon)$

F correlates well (ϵ) with p

F correlates well
$$(\frac{1}{s^{\sqrt{s}}})$$
 with a monomial $(\hat{p}_S \prod_{i \in [S], |S| \le \sqrt{s}} g$

- Since each g_i has low communication complexity, so does ightarrow g_{i_i} $j \in [S], |S| \leq \sqrt{s}$
- F correlated well with the target function f, thus it ightarrowcorrelates well with the monomial (a low communication function) !!!!!!!

Limitations of our approach

- To get better lower bounds, find a smaller degree approximating polynomial
- Approximate degree bound of Reichardt (\sqrt{s}) cannot be improved
 - AND_n function can be computed by a size n de-Morgan formula
 - Approximate degree of AND_n is $\theta(\sqrt{n})$

Future directions

- Extend lower bounds to *Formula*[s] \mathscr{G} when $s = \omega(n^2)$
- spaces
- Learn *Formula*[s] *XOR* in time $2^{\tilde{O}(\sqrt{s})}$

• Design a PRG of seed length $n^{o(1)}$ and error $\epsilon \leq 1/n$ for intersection of n half

Thank you

Questions?