
COUPLING AND SPLICING

The purpose of these lectures is to (re-)introduce an important concept
from discrete probability to symbolic dynamics, namely coupling. We
will apply ideas of coupling to create new invariant measures from old,
by a process that I will call splicing. We will illustrate this with a
number of examples from thermodynamic formalism.

A very important previous application of the idea of coupling was due
to Don Ornstein and his collaborators in their study of isomorphisms
between Bernoulli shifts (and many other related objects).

1. Couplings

Definition. Let µ be a probability measure on X and µ′ be a probability
measure on X ′. A coupling is any measure λ on X × X ′ such that
λ(A×X ′) = µ(A) and λ(X ×B) = µ′(B) for any subsets A of X and
B of X ′.

So what?

Theorem 1. Let (Xn) be an aperiodic irreducible Markov Chain on
a finite state space, S. Let π be the stationary distribution. Then
P(Xn = j|X0 = i0) converges exponentially to πj as n→∞.
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Proof. Define a transition matrix on S × S by

P̄(i,i′),(j,j′) =


Pi,j if i = i′ and j = j′

0 if i = i′ and j 6= j′

Pi,jPi′,j′ otherwise.

�

For fixed i and i′, P̄(i,i′),(j,j′) is a coupling of the measures (Pi,j)j∈S and
(Pi′,j)j∈S. We now consider a new Markov chain on S × S with initial
distribution δi0 ⊗ π and transition matrix P̄ . Let the state at time n
be (Xn, X

′
n). The new Markov chain has the property that Xn and

X ′n evolve independently following the Markov chain transition prob-
abilities until they coincide. From that point, they ‘stick together’
and continue evolving under the Markov chain transition matrix so
that Xn = X ′n from that time onward. If one looks at the trajec-
tory (Xn, X

′
n)n≥0, and studies just the first coordinates, (Xn)n≥0, one

sees exactly the original Markov chain, started from i. If one looks
at (X ′n)n≥0, again one sees the original Markov chain, started from a
randomly chosen point of S with distribution π. Since the distribution
is stationary, we see that P(X ′n = j) = πj for all n.

By the irreducibility and aperiodicity, we observe that there exist N ∈
N, k ∈ S and δ > 0 such that P(Xn+N = k|Xn = i) > δ for each i ∈ S.

The probability of coalescing in the first N steps is at least δ2 (a lower
bound for the probability that XN and X ′N are both at k). Given
that coalescence failed in the first lN steps, the probability of failing
to coalesce in the subsequent N steps is (by the Markov property), at
most 1− δ2. Hence we deduce the inequality

P(XlN 6= X ′lN) ≤ (1− δ2)l.

Now we put this together:

|P(XlN = j)− πj| = |P(XlN = j)− P(X ′lN = j)|
≤ P(XlN 6= X ′lN)

≤ (1− δ2)l.

A dynamical version of this is joining of measures. Let µ and ν be
two T -invariant measures on a sequence space AZ. A joining of µ and
ν is a T × T -invariant measure µ̄ such that µ̄(B × X) = µ(B) and
µ̄(X ×B) = ν(B).
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Just as the set of invariant measures for a continuous transformation of
a compact metric space forms a weak∗-compact set, so the collection of
all joinings of two invariant measures µ and ν forms a compact subset
of invariant measures on X ×X, written J(µ, ν).

Suppose that T : X → X and S : Y → Y are dynamical systems, and
that S is a factor of T : there exists a map π such that π ◦ T = S ◦ π.
Then any T -invariant measure, µ pushes forward to an S-invariant
measure µ ◦π−1. The push-forward of a measure should be interpreted
as taking a typical point from the measure µ, and applying π to give a
typical point of µ ◦ π−1.

2. Entropy

We make extensive use of entropy, and the intuition that it measures
the “amount of information” yielded by a measurement. If one de-
termines which element of a partition P = {B1, . . . , Bn} an unknown
point ω lies in, if one defines the amount of information obtained to be
− log µ(Bi) if ω ∈ Bi, this turns out to be consistent with a number of
properties that one expects (such as the amount of information learned
by recording the outcomes of tossing two coins is twice the amount of
information if one coin is tossed). The entropy is the expected amount
of information gained, namely H(P) = −

∑
B µ(B) log µ(B). If one

has some prior measurements, the conditional probability of being in
B is µ(B|A)(ω). Integrating this, one obtains H(P|A). This is inter-
preted as the amount of additional information obtained by measuring
P given that the information in A is already known. One has the
beautiful formula H(P1 ∨P2) = H(P2) +H(P1|P2), which agrees with
intuition about measurement of information.

Well known equalities state that for symbolic dynamical systems, h(µ) =
limn→∞(1/n)H(

∨n−1
j=0 T

−jP) = H(P|
∨∞
j=1 T

−jP). This says, in the in-
formation interpretation, that the entropy of the measure is the limit
of the expected amount of information per step measured in n steps,
which is the same as the expected amount of information measured in
a single step when the entire past is known.

It is straightforward to show that h(µ ◦ π−1) ≤ h(µ) for a factor map
π.



4 COUPLING AND SPLICING

3. d̄ distance

Let µ and ν be two ergodic invariant measures on AZ. The d̄-distance
from µ to ν is defined by

d̄(µ, ν) = inf
µ̄∈J(µ,ν)

µ̄{(x, y) : x0 6= y0}.

By compactness, this infimum is attained at some optimal joining. By
taking ergodic decompositions, the infimum is attained at an ergodic
optimal joining, µ̄. Notice that by the ergodic theorem, for µ̄-a.e. pair
(x, y) ∈ AZ × AZ, (1/N)#{j < N : xj 6= yj} → d̄(µ, ν).

4. Continuous entropy reduction

Let X be a shift space with a safe symbol, ‘0’. That is: if x ∈ X then
x̃ ∈ X where x̃ is obtained by replacing any subset of coordinates with
0’s.

We use coupling and splicing to show the following:

Theorem 2 (Konieczny, Kupsa, Kwietniak). Let X be a shift with a
safe symbol. Let µ be an ergodic invariant measure on X. Then there
is a family µt of invariant measures on X such that d̄(µt, µs) ≤ |t− s|
with µ1 = µ, µ0 = δ0 and t 7→ h(µt) is a non-decreasing function.

Proof. Let X̄ = X × [0, 1) and let T̄ = T ×Rα, where Rα is a rotation
through the irrational angle α. Let µ̄ = µ × λ, where λ is Lebesgue
measure and define a family of maps Φt : X̄ → X̄ by Φt(x, y) = (z, y)
where

zn =

{
xn if Rn

α(y) < t;

0 otherwise,

so that Φ1(x, y) = (x, y) and Φ0(x, y) = (0, y). Define µ̄t = µ̄ ◦ Φ−1
t

and µt = µ̄t ◦ π−1
1 , where π1 is the projection onto the first coordinate.

That is, we see µt as the measure on the sequences obtained by starting
with a µ-typical element of X and then replacing a fraction 1− t of the
symbols with 0’s. Notice that if s < t, then Φs ◦Φt = Φs, so that µ̄s is
a factor of µ̄t.

Let P1 be the partition of X̄ given by {[a] × [0, 1) : a ∈ A} and P2

be the partition {X × [0, α), X × [α, 1)}. Then h(µt) = h(µ̄t,P1) ≤
h(µ̄t,P1 ∨ P2) = h(µ̄t) ≤ h(µ̄t,P1) + h(µ̄t,P2) = h(µ̄t,P1) = h(µt), so
that h(µt) = h(µ̄t) for each t.
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Since h(µ̄s) ≤ h(µ̄t) for s < t, it follows that h(µs) ≤ h(µt) for s < t as
required.

Finally, define Ψs,t : X × [0, 1)→ X ×X by

Ψs,t(x, y)n = (π1(Φs(x, y)), π1(Φt(x, y))).

Now we see immediately from the definitions that ν̄µ̄ ◦Ψs,t is a joining
of µs and µt.

ν̄({(u, v) : u0 6= v0}) = µ̄(Ψ−1
s,t {(u, v) : u0 6= v0})

≤ µ̄({(x, y) : s ≤ y < t} = t− s.

�

5. Specification

Recall that if X is a subshift and φ is a continuous function, then the
pressure of φ is supµ∈Minv

(h(µ) +
∫
φ dµ). In fact, a compactness ar-

gument shows that there is at least one invariant measure for which
the supremum is attained: µ 7→ h(µ) is upper semi-continuous with
respect to the weak∗-topology; and µ 7→

∫
φ dµ is continuous, so that

the sum is upper semi-continuous. Upper semi-continuous functions
on compact sets attain their suprema by the standard argument. An
invariant measure for which the supremum is attained is called an equi-
librium state.

A subshift X is said to satisfy specification if there exists an ` (the
specification distance) such that for all x, y ∈ X, there exists a point
z ∈ X such that zn = xn for all n < −` and zn = yn for all n ≥ 0.
Applying the specification condition inductively, it is not hard to see
that if x(1), . . . , x(k) are k points in X and I(1), . . . , I(k) are k sub-

intervals, there is a point x ∈ X such that xn = x
(i)
n for all n ∈ I(i).

This is illustrated in the figure.

x(1)

x(2)

x(3)

x
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Applying induction and compactness, one may also do this for count-
ably many points. However, there is a serious drawback from the ther-
modynamic formalism point of view. One would like to be able to
obtain an invariant measure by splicing together pieces. The pieces
that are used for filling may in general depend on the order in which
the filling is done. This will break invariance of any measure created
in this way.

5.1. The specification interpolation method. A solution (the so-
lution?) is to perform a hierarchical filling as specified by an external
process: use an i.i.d. process (for example) to assign each gap a positive
integer: assign the integer n with probability 2−n for example. Then
iteratively fill in all level n gaps using the lexicographically smallest
filler. In the end, all gaps are filled, and invariance is maintained!

Let’s give a more precise description of this in a special case. Let X be
a subshift with specification length ` and let µ be an ergodic invariant
measure on X. Let W be a legal word of length n in X and let ν
be a mixing invariant measure on {0, 1}Z, in which 1’s are separated
by at least 2` + n + 1 (mixing so that the product µ × ν is ergodic).
Finally, let λ be an i.i.d. measure on NZ where the symbol n appears
with frequency 2−n. The master space is then X̄ = X × {0, 1}Z × NZ,
equipped with the measure µ̄ = µ × ν × λ. We define a sequence of
maps Φn : X̄ → ĀZ, where Ā = A ∪ {?}.
First, define

Φ0(x, y, z)n =


Wi if yn−i = 1 for some 0 ≤ i < |W |;
? if yn+i = 1 for some 0 < i ≤ `;

? if yn−i = 1 for some |W | ≤ i < |W |+ `

xn otherwise.

That is, Φ0(x, y, z) is a sequence in ĀZ, in which at each 1 in the
y sequence |W | symbols of x have been replaced by the word W ;
and ` ?’s have been added on either side. We call the blocks of ?’s
star blocks. The gap between 1’s ensures that the star blocks are
non-overlapping and non-contiguous. A key property of this map is
that Φ0(σ(x), σ(y), σ(z)) = σ(Φ0(x, y, z)). We call this property shift-
commuting.

We then define the maps Φn(x, y, z). For each star block, its order
is the z label of the first ? in the block. The map Φn will then fill
in all of the nth order star blocks. More precisely, in Φn−1(x, y, z),
there are (with probability 1) infinitely many star blocks, of all orders.
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Let a
(n)
0 (x, y, z) be the smallest positive integer such that (1) a star

block of order n starts at a
(n)
0 (x, y, z); and (2) there is a star block of

higher order starting at some 0 ≤ j < a
(n)
0 (x, y, z). If a

(n)
i (x, y, z) is

defined, then let b
(n)
i (x, y, z) be the position of the first star block of

order higher than n that starts after a
(n)
i (x, y, z) and let a

(n)
i+1(x, y, z) be

the first star block of order n that starts after b
(n)
i (x, y, z). The same

inductive process is also run along the negative integers, so that all

star blocks occurring in [a
(n)
i (x, y, z), b

(n)
i (x, y, z)) are of order n; these

blocks cover all star blocks of order n; and there is at least one star
block of higher order between any pair.

By the specification property, there is at least one way to replace the

star blocks in [Φn−1(x, y, z)]
b
(n)
i (x,y,z)−1

a
(n)
i (x,y,z)

in such a way that the new block

belongs to the language of X. We choose the lexicographically smallest
such completion in each star block simultaneously, and denote the point
obtained by Φn(x, y, z). The map Φn is defined on a set of measure 1
(where there are infinitely many star blocks of all orders in both halves
of the coordinates) and is shift-commuting (but not continuous).

Notice that Φn(x, y, z) converges to a point Φ(x, y, z) with no ?’s. Also,
every block of Φ(x, y, z) appears as a block of Φn(x, y, z) for sufficiently
large n, but every ?-free block of Φn(x, y, z) belongs to the language
of X, so that every block of Φ(x, y, z) belongs to the language of X.
Hence, since X is a subshift, Φ(x, y, z) ∈ X. Since the Φn are shift-
commuting, so is the limit, Φ. In particular, Φ(x, y, z) is a point of X
agreeing with x, except that at every n such that yn=1, a segment of
x is replaced by a W , and the l surrounding symbols are replaced in
order to ensure that the resulting point lies in X.

Since Φ is a shift-commuting measurable map from X × {0, 1}Z × NZ

to X, and µ × ν × λ is a shift invariant measure, the push-forward,
(µ× ν × λ) ◦ Φ−1 is a shift-invariant measure on X.

6. A theorem of Bowen

In this section, we describe a coupling and splicing proof of a theorem
of Bowen.

Theorem 3. (Bowen) Let X be a subshift with specification, and let φ
be a function with the property (the Bowen condition) that there exists
an M such that for all k > 0, if x, y ∈ X satisfy xk−1

0 = yk−1
0 , then
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|Skφ(x) − Skφ(y)| ≤ M , where Skφ(x) =
∑k−1

i=0 φ(T ix). Then there is
a unique equilibrium state.

The proof goes via a number of steps. The first of these is to show that
any equilibrium state has positive entropy.

Lemma 4. Let X be a subshift with specification on an alphabet A with
|A| ≥ 2. and let φ satisfy Bowen’s condition. Then any equilibrium
state has positive entropy.

Proof. Suppose for a contradiction that µ is an equilibrium state, and
the µ has 0 entropy. Let ` be the specification distance.

Let a, b be two distinct symbols in A. For a small parameter ε > 0,
consider the i.i.d. measure on symbols 0, a and b, where a and b
appear with frequency ε/2. Let Φ be the map from {0, a, b}Z to itself
that replaces any a or b within 2` + 1 of any other a or b with a 0.
We let the push-forward of this i.i.d. measure under Φ be νε, so that νε
has zeros with frequency 1− ε + O(ε2) and a’s and b’s with frequency
ε
2
−O(ε2).

We then apply the method specification interpolation described above
to obtain a new shift invariant measure µ′ from µ× νε × λ, where the
push-forward map Ψ ensures that

Ψ(x, y, z)n =

{
xn if yn−` = . . . = yn+` = 0;

yn if yn = a or b.

We now estimate
∫
φ dµ′ and h(µ′) to show that for sufficiently small

ε > 0, h(µ′) +
∫
φ dµ′ > h(µ) +

∫
φ dµ.

First, we bound the entropy from below. Let P be the time zero
partition and let L = 2` + 1. We consider H(

∨N−1
j=0 σ−jLP). A simple

counting argument shows that

(1/LN)Hµ′

(
LN−1∨
j=0

σ−jP

)
≥ (1/LN)Hµ′

(
N−1∨
j=0

σ−jLP

)
& (1/L)H( ε

2
, ε

2
, 1− ε)

= Ω(−ε log ε),

whereA = Ω(B) meansA ≥ cB for all small enough ε; andH(p1, . . . , pn) =∑
i−pi log pi. In particular h(µ′) ≥ −cε log ε.

Now we compare
∫
φ dµ′ to

∫
φ dµ. For this, we use Bowen’s condition,

and we also use the map Ψ defined above to build a coupling of µ and
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µ′. Namely we define the map Ψ̄(x, y, z) = (x,Ψ(x, y, z)) and let µ̄
be the push-forward of µ × νε × λ under Ψ̄. The two points x and
Ψ(x, y, z) differ only on blocks of size 2`+ 1 surrounding places where
y is non-zero. Hence for µ̄-a.e. pair (x, x′), the point x is a generic
point for µ; the point x′ is a generic point for µ′ and they disagree on
blocks of length 2`+ 1 that occur with frequency ε.

We are then able to use the Bowen condition, to show that the dif-
ference in the orbit sums of φ along x and x′ disagree by at most
M on the common orbit segments and by at most 2(2` + 1)‖φ‖ on
the interpolation segments. Hence for µ̄-almost every pair (x, x′),
|SNφ(x)− SNφ(x′)| . (εN)(M + (2`+ 1)‖φ‖).
In particular, since for µ̄-a.e. (x, x′), x is generic for µ and x′ is generic
for µ′, we see on dividing by N (recalling that M , ` and ‖φ‖ are con-
stant) that ∣∣∣∣∫ φ dµ−

∫
φ dµ′

∣∣∣∣ = O(ε)

Combining the two estimates, we see that for small ε, h(µ′)+
∫
φ dµ′ >

h(µ) +
∫
φ dµ, giving the required contradiction. �

We now invoke a theorem of Ornstein and Weiss.

Theorem 5 (Ornstein and Weiss). Let µ be an ergodic measure on a
subshift with h(µ) = h > 0. Then for µ-a.e. x ∈ X,

lim
n→∞

1
n

log min{j > 0: xn−1
0 = x

j+(n−1)
j } = h.

As a corollary, we obtain

Corollary 6. Let µ be an ergodic measure of positive entropy. Then
for all ε > 0, there exists an n0 > 0 such that for all n > n0,

µ{x : xj−1
0 = xn−1

n−j for some n
3
≤ j < n} < ε.

Proposition 7. Let µ be an ergodic measure of positive entropy. Then
for all ε > 0, there exists an n0 > 0 such that for all n ≥ n0 and all
x ∈ X,

µ

(
n−1⋃
j=0

σ−j([x0 . . . xn/3])

)
< ε.

Now let non (for non-overlapping) be the collection of n-words W for
which W j−1

0 6= W n−1
n−j for all n

3
≤ j < n.
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We define a relation
µ−→ on non by W

µ−→ W ′ if

µ
(

[W ] ∩ σ−(n+`)
⋃n
j=n/3[W ′

n−j . . .W
′
n−1]

)
µ([W ])

< 1
4
; and

µ
(

[W ] ∩
⋃n−1
j=n/3 σ

`+j[W ′
0 . . .W

′
j−1]
)

µ([W ])
< 1

4
.

that is, the probability of seeing a long suffix of W ′ starting at coor-
dinate n + ` conditional on being in [W ] is small; and also that the
probability of seeing a long prefix of W ′ ending at coordinate −` con-
ditional on being in [W ] is small.

Similarly, write W
µ←→ W ′ if W

µ−→ W ′ and W ′ µ−→ W .

Lemma 8. There exists a constant M , such that for all sufficiently

large n, if W and W ′ belong to non and W
µ←→ W ′, then

1

M

eΦ(W )

eΦ(W ′)
≤ µ([W ])

µ([W ′])
≤M

eΦ(W )

eΦ(W ′)
,

where Φ(W ) denotes Snφ(x) for an arbitrarily chosen x ∈ [W ] (this
quantity does not vary by more than an additive constant if x is changed
to another element of [W ]).

Proof Sketch. Suppose W
µ←→ W ′. Then we create a new measure by

randomly converting some W to W ′ and filling in using the specification
interpolation method.

We define pm to be the set of potential marks,

pm = [W ] \

σ−(n+l)

n⋃
j=n/3

[W ′
n−j . . .W

′
n−1] ∪

n−1⋃
j=n/3

σl+j[W ′
0 . . .W

′
j−1]

 .

That is, these are places where converting a W to a W ′ will not inad-
vertently create additional copies of W ′, even when the specification
interpolation is done. By assumption, we have µ(pm) > 1

2
µ([W ]).

To construct the new measure, let ν be the Bernoulli measure on {0, 1}Z
where ν([1]) = ε (and ε is a parameter to be determined later). Now
define a map Ψ1 : X × {0, 1}Z → X × {0, 1}Z by

Ψ1(x, u)k =

{
(xk, 1) if uk = 1, σk(x) ∈ pm and uj = 0 if |j − k| < n+ `

(xk, 0) otherwise
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This map just removes marks that are too close together. The push-
forward of µ× ν under Φ1 is called µmark.

One can show that for small ε, h(µmark|µ) > µ(pm)(−ε log ε). (To
see this, notice that the right side under-estimates the entropy by
−µ(pm)(1 − ε) log(1 − ε) = Ω(ε), but over-estimates the entropy by
ignoring collisions between marks, leading to an over-estimate of size
O(ε2| log ε|). This implies that for small ε

(1) h(µmark) ≥ h(µ)− εµ(pm) log ε.

We then use the specification interpolation method to produce a mea-
sure µmark,switch on X × {0, 1}Z in which the marked W ’s are replaced
by W ′’s and the interpolation is done to obtain an invariant measure.
The marks are preserved. Finally, we project onto the first coordinate
to obtain a measure µswitch on X, where the marks are erased.

Simple estimates show

(2) h(µmark|µmark,switch) ≤ 2`εµ(pm) log |A|,

(as to reconstruct the point before the replacement was made, it is only
necessary to recover the ` symbols on each side of the replacement).

We now estimate h(µmark,switch|µswitch). This amounts to taking a point
from the measure µswitch (in which some W ’s in the original sequence
have been replaced by W ′’s) and ‘guessing’ where the replacements
took place. We consider the case in which W and W ′ cannot overlap
(so no W ′ are destroyed in the replacement process). In case overlaps
are possible, the estimates below still hold. The frequency of W ′ in
the new sequence is µ(W ′) + εµ(pm) + O(ε2). Write a = µ(W ′) and
δ = µswitch(W ′)−µ(W ′) = εµ(pm) +O(ε2). For each occurrence of W ′,
by concavity of entropy, the expected amount of information is at most
H(a/(a+δ), δ/(a+δ)), where H(p, 1−p) = −p log p−(1−p) log(1−p).
This yields

h(µmark,switch|µswitch) ≤ (a+ δ) log(a+ δ)− a log a− δ log δ

≤ δ(1 + log a)− δ log δ + Cδ

= εµ(pm)(log µ(W ′)− log(εµ(pm)) + Cεµ(pm)

= εµ(pm)(− log ε− log(µ([W ])/µ([W ′])) + Cεµ(pm).

Combining with (2), we obtain

h(µmark|µswitch) ≤ εµ(pm)(− log ε− log(µ([W ])/µ([W ′])) + Cεµ(pm).



12 COUPLING AND SPLICING

or

h(µswitch) ≥ h(µmark)−εµ(pm)(− log ε−log(µ([W ])/µ([W ′])))−Cεµ(pm).

Combining with (1), we see

h(µswitch) ≥ h(µ) + εµ(pm) log(µ([W ])/µ([W ′]))− Cεµ(pm)

for a constant C that does not depend on n, W or W ′.

As in the proof of Lemma 4, we see that for sufficiently small ε,∫
φ dµswitch ≥

∫
φ dµ+ εµ(pm)(Φ(W ′)− Φ(W ))− Cεµ(pm).

Hence

P (µswitch) ≥ P (µ) + εµ(pm)

(
log

(
µ([W ])e−Φ(W )

µ([W ′])e−Φ(W ′)

)
− C

)
,

where P (µ) = h(µ) +
∫
φ dµ. Since the constant C is independent of

n, W and W ′, if µ([W ])
µ([W ′])

> eCeΦ(W )−Φ(W ′), then P (µswitch) > P (µ) for

small ε, giving the required contradiction. �

Lemma 9. Let
µ←→ be the relation on non defined above. For any U

and W in non, there is a V ∈ non such that U
µ←→ V

µ←→ W .

Proof sketch. Suppose that U,W ∈ non have the property that there

is no V ∈ non such that U
µ←→ V

µ←→ W . Then for each V , one of

U 6 µ−→ V , V 6 µ−→ W , W 6 µ−→ V or V 6 µ−→ U holds.

We show that the measure of the union of the cylinder sets [V ] for
which one of these conditions is satisfied is small.

To show that the union of the set of [V ] such that U 6 µ−→ V is small,
notice that the conditional probability of seeing a fragment of such a
V to the right (or left) of U is large, so that there cannot be more than
8 V ’s that don’t contain a common fragment of length n/3. Choose
a fragment of length n/3, and removing all V ’s that contain it. Then
repeat. We see that we will obtain at most 8 such n/3 fragments. Now
appealing to Proposition 7, we see that µ(

⋃
U 6µ−→V [V ]) < 8ε. Similarly

µ(
⋃
W 6µ−→V [V ]) < 8ε.

To estimate µ(
⋃
V 6µ−→U [V ]), notice that this entails a large entropy drop

(the conditional probability of seeing a fragment of the fixed word U
given that one is in V is at least 1

4
), so that the entropy conditioned

on being in V is small. By the Shannon-Macmillan-Breiman theorem,
this happens on a small subset of the space.
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A similar estimate applies to µ(
⋃
V 6µ−→W [V ]). Since the measure of the

combined bad cylinder sets is smaller (for large n) than the measure of

non, we see there exist V ∈ non such that U
µ←→ V

µ←→ W . �

Combining the last two lemmas, we see there exists an M such that
for all large n and all U,W ∈ non,

1

M

eΦ(U)

eΦ(W )
≤ µ([U ])

µ([W ])
≤M

eΦ(U)

eΦ(W )
,

If ν were a distinct ergodic equilibrium state, then it would satisfy
the same inequality for all large n. Also both µ and ν would satisfy
µ(
⋃
V ∈non [V ]) → 1 as n → ∞. It is then straightforward to show that

µ([V ]/ν([V ]) is uniformly bounded for cylinder sets in a large part of
the space. It then follows that µ and ν are equivalent measures, and
so are equal.

7. Average Sample Complexity

Average Sample Complexity is a notion introduced by Karl Petersen
and collaborators, related to the notion of intricacy, introduced by
Edelman, Sporns and Tononi in neurophysiology as a measure of the
self-dependence of a sequence of measurements.

Let µ be a shift-measure on a shift space X and let the coordinate
partition be P . If A is a finite subset of N, let PA denote

∨
j∈A σ

−jP .

Then the average sample complexity (ASC) of µ is defined by

ASC(µ) = lim
N→∞

1

N

1

2N

∑
S⊂{0,...,N−1}

Hµ(PS),

where Hµ(·) denotes the entropy of a partition with respect to µ as
usual. Here, the 2N is just normalizing over the number of sets being
summed over, while the N is the standard normalization appearing in
the entropy.

It is not hard to see from the inequality H(P ∨ Q) ≤ H(P) + H(Q)
and T -invariance of µ that

1

2N+M

∑
S⊂[N+M−1]

Hµ(PS) ≤ 1

2N

∑
S⊂[N ]

Hµ(PS) +
1

2M

∑
S⊂[M ]

Hµ(PS),

where [N ] denotes {0, 1 . . . , N − 1}. Hence the limit in the definition
of average sample complexity exists.
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There is also a topological notion of average sample complexity, ASCtop

given by

ASCtop(X) = lim
N→∞

1

N

1

2N

∑
S⊂[N ]

logN (S),

where N (S) denotes the number of elements of {x|S : x ∈ X}.
Unlike for regular entropy, there is no variational principle, and even
for the golden mean shift of finite type, the topological average sam-
ple complexity is strictly larger than the maximum measure-theoretic
average sample complexity.

We briefly develop a way of representing the measure-theoretic av-
erage sample complexity that is reminiscent of the formula h(µ) =
H(P|

∨∞
n=1 T

−nP). Let P denote the measure on subsets of Z0− in
which each element is independently present or absent with probabil-
ity 1

2
. Given a subset S of Z0−, write S ∈ T0 if 0 ∈ S and write S−

for S \ {0}. As usual, we write P for the partition of X into cylinder
sets defined by the symbol in the 0th position, and we write PS for the
σ-algebra

∨
j∈S σ

−j(P).

Then

ASC(µ) =

∫
T0

Hµ(P0|PS−) dP(S).

The proof follows from the facts that (1) H(P ∨ Q) = H(P|Q) +
H(Q); (2) H(P|Q) decreases as Q increases; and (3) the monotone
convergence theorem.

Theorem 10. Let X be a shift of finite type with a safe symbol. A
measure of maximal ASC must be fully supported.

Lemma 11. Let (pi)
n
i=1 and (qi)

n
i=1 be two probability vectors satisfying

qi ≥ (1− δ)pi. Then H(q) ≥ H(p)− δ(H(p) + 1).

Proof. Let (pi) and (qi) be as in the statement of the lemma. As they
each sum to 1, we have

(3)
∑
qi>pi

(qi − pi) =
∑
pi>qi

(pi − qi) ≤
∑
pi>qi

δpi ≤ δ.
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Letting φ(x) = −x log x, we see that φ(x)/x is a decreasing function.
So if (1− δ)pi ≤ qi ≤ pi, then φ(qi) ≥ (1− δ)φ(pi). Now

H(q) =
n∑
i=1

φ(qi) =
∑
qi<pi

φ(qi) +
∑
qi≥pi

φ(qi)

≥ (1− δ)
∑
qi<pi

φ(pi) +
∑
qi≥pi

(φ(pi)− (qi − pi))

≥ (1− δ)H(p)− δ,

where, for the second term, we used (3) and the fact that φ′(x) ≥ −1
for all x ∈ [0, 1]. �

Proof of Theorem 10. Let µ be a measure of maximal average symbolic
complexity. Suppose for a contradiction that µ is not fully supported.
That is: there is a word W such that µ([W ]) = 0. By extending W if
necessary, we may assume that W begins and ends with a safe symbol.

As usual, we build another measure on X by techniques of coupling
and splicing.

First, let ν be the Bernoulli measure on {0, 1}Z in which 1’s appear
with frequency ε (ε is a parameter to be adjusted later).

Let ` be the length of the word W . We first modify ν by removing
any two 1’s in the second component that are separated by less than
`. This gives a measure ν2 on {0, 1}Z. Now let µ̄ = µ× ν2.

We then define a map Φ: X × {0, 1}Z → X by

Φ(x, y)n =

{
Wi if yn−i = 1 for some 0 ≤ i < `;

xi otherwise.

Notice that since ν2-a.e. y has no two 1’s separated by less than `, there
is no ambiguity in the definition of Φ. Also, since W begins and ends
with a safe symbol, Φ(x, y) ∈ X for µ̄-a.e. (x, y). Let µ′ = µ̄ ◦Φ−1, the
push-forward of µ̄ by Φ. As usual, we visualize typical points of µ′ as
points of µ in which occasional copies of W have been spliced in.

We now aim to show that for sufficiently small ε, we have ASC(µ′) >
ASC(µ), which will contradict the maximality of the average symbolic
complexity of µ, and complete the proof.

As before, we notice that the ASC’s of both µ and µ′ may be expressed
in terms of entropies on the coupled space X×{0, 1}Z with the measure
µ̄.
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Let π : X×{0, 1}Z be projection onto the first coordinate and we define
P̄S = π−1PS. Similarly, define Q̄S = Φ−1PS. We let R be the partition
of X ×{0, 1}Z given by {A0, . . . , An−1, (A0 ∪ . . .∪An−1)c}, where Ai =
σ̄iπ−1

2 [1]. That is, (x, y) ∈ Ai indicates that Φ(x, y)0 = Wi.

We then have

ASC(µ) =

∫
T0

Hµ̄(P̄0|P̄S−) dP(S); and

ASC(µ′) =

∫
T0

Hµ̄(Q̄0|Q̄S−) dP(S),

thereby suggesting that the coupling will allow us to make pointwise
comparisons.

For now, write (Xn) for the P̄ process; and (Zn) for the Q̄ process. Fix
an S ∈ T0 and write A = S ∩ [−(n− 1),−1], and B = S ∩ (−∞,−n].

For a point ω ∈ X̄ such that σlω 6∈ A0 ∪ · · · ∪ An−2 (that is such that
xl−1 and xl are not part of a common W replacement), we have

P(Z0 = i|ZA = zA;ZB, XB, RB)

=
P(Z0 = i, ZA = zA|ZB, XB, RB)

P(ZA = zA|ZB, XB, RB)

=

∑
j,xA

P(Z0 = i, ZA = zA|X0 = j,XA = xA;XB)P(X0 = j,XA = xA|XB)∑
xA

P(ZA = zA|XA = xA;RB, XB)P(XA = xA|XB)
.

We bound this quantity from below. The numerator is bounded below
by

P(Z0 = i, ZA = zA|X0 = i,XA = zA;XB)P(X0 = i,XA = zA|XB)

≥ (1− `ε)P(X0 = i,XA = zA|XB)

= (1− `ε)P(X0 = i|XA = zA;XB)P(XA = zA|XB).

The denominator is bounded above by P(XA = zA|XB)+`ε
∑

xA 6=zA P(XA =

xA|XB) ≤ P(XA = zA|XB) + `ε.

Combining the estimates, we see that for each i,

P(Z0 = i|ZA = zA;ZB, XB, RB)

≥ (1− `ε)P(X0 = i|XA = zA;XB)
P(XA = zA|XB)

P(XA = zA|XB) + `ε
.
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Define δ(zA) by:

δ(zA) =
`ε(1 + P(XA = zA|XB))

P(XA = zA|XB) + `ε

and let BB be the σ-algebra generated by ZB, XB and RB.

Then the above can be rewritten

P(Z0 = i|ZA = zA;BB) ≥ (1− δ(zA))P(X0 = i|XA = zA;XB).

Notice that

(4) δ(zA) <
2`ε

P(XA = zA|XB)
.

Now by Lemma 11,

H(Z0|ZA, ZB) ≥ H(Z0|ZA;BB)

=
∑
zA

H(Z0|ZA = zA;BB)P(ZA = zA|BB)

≥
∑
zA

(
H(X0|XA = zA;XB)− δ(zA)

(
1 +H(X0|XA = zA;xB)

))
P(ZA = zA|BB) + E

≥(1− `ε)
∑
zA

(
H(X0|XA = zA;XB)− δ(zA)

(
1 +H(X0|XA = zA;xB)

))
P(XA = zA|BB) + E

=(1− `ε)
∫ (

H(X0|XA, XB)− δ(XA)
(
1 +H(X0|XA, XB)

))
dP + E

≥(1− `ε)
∫
{P(XA|XB)>2`ε}

(
H(X0|XA, XB)− δ(XA)

(
1 +H(X0|XA, XB)

))
dP + E

≥(1− `ε)
∫
{P(XA|XB)>2`ε}

(
H(X0|XA, XB)− δ(XA)

(
1 + logN)

))
dP + E,

where the E that appears in the second inequality, and is carried
throughout the proof is the contribution to the entropy of Z occur-
ring from configurations that have 0 probability in the X sequence.

In the above calculation, the estimate in the third line relies on the
assumption that σlω 6∈ A0 ∪ · · · ∪An−2, as otherwise the hypotheses of
Lemma 11 are not satisfied. A correction needs to be made for these
σ’s. However, this set is BB-measurable, so the entropy contribution
from these σ’s is of O(ε).
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Using (4), we see

∫
{P(XA|XB)>2`ε}

δ(XA) dP < 2`εNn

Let S = {ω : P(XA|XB) ≤ 2`ε}. We have

1S =
∑
U∈AA

1[U ]A(ω)1{P([U ]A|XB)≤2`ε}.

Notice that the second term is XB-measurable. Using properties of
conditional expectations, we see that

P(S|XB) =
∑
U∈AA

P([U ]A|XB)1{P([U ]A|XB)≤2`ε},

which is bounded above pointwise by 2`εNn. Now taking an expecta-
tion and using the tower law, we see that

P
(
{P(XA|XB) ≤ 2`ε}

)
≤ 2`εNn.

Therefore

ASCA∪B(Z) ≥ (1− `ε)
∫
H(X0|XA, XB) dP + E

−
∫
{P(XA|XB)≤2`ε}

H(X0|XA, XB) dP− 2`εNn(1 + logN) + E

≥ (1− `ε) ASCA∪B(X)−
∫
{P(XA|XB)≤2`ε}

logN dP + E −O(ε)

= ASCA∪B(X) + E −O(ε).

In particular, by integrating, we see that ASC(Z) ≥ ASC(X) + E −
O(ε). However, the quantity E is of order −ε log ε. Including those
terms, we see that for sufficiently small ε, ASC(Z) > ASC(X). Hence
we see that a measure of maximum average symbolic complexity is fully
supported, as claimed.
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