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0. Outline, Key Notation and Formatting conventions

I cover in some detail the material on Multiplicative Ergodic Theo-
rems. The applications part is treated only briefly here.
I want to record a couple of notational conventions that I will use

consistently. Oseledets exponents will be listed in strictly decreasing
order:

λ1 > λ2 > . . . > λk with multiplicities m1, m2, . . . , mk.

Vj(ω) will be the jth ‘slow space’, that is things expanding at rate
λj or less.
Uj(ω) will be a space expanding exactly at rate λj .
The base dynamics will be denoted by a map σ from a probability

space (Ω,P) to itself.

This is when I’m trying to say something ‘unofficial’. These are
meant to be friendly comments.

I’ll use ‘double boxes’ for point(s) I really want to emphasize

1. Motivation: Multiplicative Ergodic Theorems

Only read this section if you’re not already comfortable with the
statement of the multiplicative ergodic theorem.

If σ : Ω → Ω is a dynamical system, and we have a map A : Ω →

Md(R), we study compositions A
(n)
ω = Aσn−1ω · · ·Aω.

The original motivation for this comes from differentiable dynamical
systems. If Ω is a manifold, σ is a differentiable map from Ω to itself and
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Aω is the derivative of σ at ω (in a suitable local chart), then the prod-

uct A
(n)
ω is the derivative of σn. We can look for expanding/contracting

directions etc.
If ω is a fixed point of σ, A

(n)
ω is just An

0 , where A0 is the deriva-
tive matrix at the fixed point. In this case, the Jordan normal form
implies that A0 is similar to an upper triangular matrix in Jordan
form. In particular, there are eigenvalues α1, . . . , αk of (algebraic) mul-
tiplicities m1, . . . , mk summing to d. Corresponding to αi, there is
a mi-dimensional space of (generalized) eigenvectors with generalized
eigenvalue αi. Write Ui for the space spanned by these generalized
eigenvectors.
Now we have a decomposition R

d = U1⊕U2⊕· · ·⊕Uk into subspaces
with the property that if v ∈ Ui \ {0}, then

1
n
log ‖A(n)v‖ → log |αi|.

Hence, at a fixed point of the dynamical system, there’s a direct sum
decomposition of the tangent space into subspaces, each expanding at
a characteristic exponential rate.

Question. How much of this survives if we’re not taking powers of a
single matrix?

We’d like to find a decomposition of Rd over a point ω into subspaces
expanding asymptotically at different rates.
Observations:

(1) We have different matrices over different ω’s – should expect
the decomposition to depend on ω.

(2) Notice asymptotically if A
(n)
ω v grows at a rate λ, then setting

w = Aωv, A
(n)
σ(ω)w grows at the same rate.

We might hope that the decomposition is equivariant :

(1) AωUi(ω) = Ui(σω).

The above suggests we’re looking for some sort of vector bundle
decomposition.
Over each ω, look for a decomposition of Rd as

R
d = U1(ω)⊕ U2(ω)⊕ · · · ⊕ Uk(ω).

This should be equivariant and elements of Ui(ω) should have the same
exponential growth rate λi.

Theorem 1. Oseledets Multiplicative Ergodic Theorem (1968) [12]:
Invertible Form Let (Ω,P) be a probability space. Let σ : (Ω,P) →
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ω σ(ω)

Aω

Ω

Figure 1. We think of Aω as a map from the R
d fibre

over ω to the fibre over σ(ω). From this viewpoint, A
(n)
ω

is the composition of the fibre maps sending the fibre
over ω to the fibre over σnω

(Ω,P) be invertible and ergodic. Let A : Ω → GLd(R) be measurable
and satisfy bilateral integrability:

∫

log ‖Aω‖ dP(ω) <∞
∫

log ‖A−1
ω ‖ dP(ω) <∞

Then there exist λ1 > λ2 > . . . > λk and multiplicities m1, . . . , mk

such that d = m1 + . . . + mk and a measurable decomposition R
d =

U1(ω)⊕ . . .⊕ Uk(ω) satisfying:

Equivariance:
Bilateral Growth conditions: For v ∈ Uj(ω) \ {0},

1
n
log ‖A(n)

ω v‖ → λj as n→∞

1
n
log ‖A(n)

ω v‖ → λj as n→ −∞,

where A
(−ℓ)
ω = Aσ−ℓω · · ·Aσ−1ω so that A

(n+n′)
ω = A

(n′)
σnωA

(n)
ω for

all n, n′ ∈ Z.
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Detailed point: When we talk about measurability of subspaces
of Rd, there is a natural metric on subspaces of Rd given by
d(V, V ′) = dHausdorff(B ∩ V,B ∩ V ′). With this metric, the sub-
spaces of dimension k form a connected compact metric space,
the Grassmannian. The metric induces a Borel σ-algebra on the
Grassmannian. As usual, measurable maps into the Grassman-
nian can be approximated by continuous maps into the Grass-
mannian.

In the non-invertible case (either the dynamical system or the ma-
trices are not invertible – or the integrability condition fails for the
inverse), the conclusion of the theorem is much weaker:

Theorem 2 (Oseledets Theorem: Non-invertible form [12]). Let (Ω,P)
be a probability space. Let σ : (Ω,P)→ (Ω,P) be ergodic (not necessarily
invertible). Let A : Ω → Md(R) be measurable and satisfy forward

integrability:
∫

log ‖Aω‖ dP(ω) <∞

Then there exist λ1 > λ2 > . . . > λk and multiplicities m1, . . . , mk

such that d = m1+ . . .+mk and a measurable filtration R
d = V1(ω) ⊃

V2(ω) ⊃ · · · ⊃ Vk(ω) ⊃ Vk+1(ω) = {0} satisfying:

Equivariance: AωVj(ω) ⊆ Vj(σ(ω));
Forward Growth conditions: For v ∈ Vj(ω) \ Vj+1(ω),

1
n
log ‖A(n)

ω v‖ → λj as n→∞.

This means that, for example, the λ2 exponent is identified not with
a dimension m2 subspace, but rather a dimension d − m1 subspace.
Typically the m’s are equal to 1. So if d is large, this is a drastic
difference in the dimension.

Corollary 3. (Uniform growth of complementary subspaces; Barreira
and Silva[2]) Let Z(ω) be a measurable family of complementary sub-
spaces to Vj(ω). Then for all ǫ > 0, for almost all ω, there exists a

constant C(ω) such that for all v ∈ Z(ω) and all n > 0, ‖A
(n)
ω z‖ ≥

C(ω)e(λj−1−ǫ)n‖v‖.

Recently, with Gary Froyland and Simon Lloyd, we proved a semi-
invertible version of the multiplicative ergodic theorem addressing the
dimension problem mentioned above.
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Theorem 4 (Oseledets Theorem: Semi-invertible form). Let (Ω,P) be
a probability space. Let σ : (Ω,P)→ (Ω,P) be ergodic and invertible.
Let A : Ω → Md(R) be measurable (but not necessarily invertible) and
satisfy forward integrability.
Then there’s a measurable direct sum decomposition of Rd satis-

fying equivariance and the forward growth condition as in the invertible
case.

2. Useful Tricks

Experts can skip to Lemma 7

2.1. Left/Right Eigenvectors.

This section motivates a phenomenon that will occur in a proof
below.

Take a matrix and assume it’s diagonalizable. Recall that the char-
acteristic equation (and hence eigenvalues) of A and AT are the same.
Notice that an eigenvector of AT is a left eigenvector of A. Now let the
eigenvalues of A be α1, α2, . . . , αd, the corresponding eigenvectors of A
be v1, . . . , vd; and the corresponding eigenvectors of AT be w1, . . . , wd.
Suppose also that the multiset of eigenvalues is β1 repeated m1 times
up to βk repeated mk times.
If αi 6= αj , we have wT

i Avj = αiw
T
i vj and wT

i Avj = αjw
T
i vj , so that

wT
i vj = 0.
A corollary of this is: ifW is the space spanned by eigenvectors of AT

with eigenvalues β1, . . . , βj and V is the space spanned by eigenvectors
of A with eigenvalues βj+1, . . . , βk, then W = V ⊥.

2.2. Sub-additive ergodic theorem. Given a collection of functions
fn : Ω→ R, they’re sub-additive if they satisfy for n,m > 0 and for all
ω,

fn+m(ω) ≤ fn(ω) + fm(σ
nω).

Theorem 5 (Kingman Subadditive Ergodic Theorem (1976)[8]). Let
σ : (Ω,P) → (Ω,P) be ergodic and measure-preserving. Let (fn)n∈N be
a sub-additive sequence (with

∫

(f1)
+ < ∞). Then for P-almost every

ω,

fn(ω)

n
→ C as n→∞,

where C = infk
1
k

∫

fk.
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One application (of many): taking fn(ω) = log ‖A
(n)
ω ‖, we get almost-

everywhere convergence of (1/n) log ‖A
(n)
ω ‖ to a quantity independent

of ω. (This is λ1).

Corollary 6. Let σ, Ω, P and (fn) be as in the statement of Theorem
5. Assume additionally that σ is invertible. Then fn(σ

−nω)/n → C
for almost every ω, where C is the constant that occurs in Theorem 5.

Proof. Let gn(ω) = fn(σ
−nω). Then gn+m(ω) = gn(ω) + gm(σ

−nω), so
that gn is a sub-additive sequence for the ergodic transformation σ−1.
Hence gn(ω)/n converges pointwise almost everywhere to infk(

∫

gk)/k =
infk(

∫

fk)/k. �

2.3. Exterior Algebra. The kth exterior power of a vector space V ,
ΛkV is the vector space spanned by vectors of the form v1∧v2∧ . . .∧vk
satisfying relations like (17v1) ∧ v2 ∧ . . . ∧ vk = 17(v1 ∧ v2 . . . ∧ vk) and
v2∧v1∧v3∧ . . .∧vk = −v1∧v2∧ . . .∧vk (hence v∧v∧v3∧ . . .∧vk = 0).

Think determinants

It’s a
(

d

k

)

-dimensional space (a basis is {ei1 ∧ ei2 ∧ · · · ∧ eik : i1 < i2 <
. . . < ik}).

If a matrix A acts on V , there’s a matrix
∧k A acting on

∧k V just
given by applying A to each coordinate of the wedge.
Using this, together with the sub-additive ergodic theorem, we can

compute a sequence of expansion rates: take fk
n(ω) = log

∥

∥

∥

∧k A
(n)
ω

∥

∥

∥
.

These are sub-additive. Define the limit of fk
n(ω)/n to be µ1+ . . .+µk.

These are necessarily non-increasing (see Corollary 8 below).
Suppose the distinct values of the µi are λ1, . . . , λk, with λi occurring

mi times. Then these will turn out to be exactly the λ’s appearing in
the statement of the multiplicative ergodic theorem.

2.4. Singular Value Decomposition. Given a matrix A in Md(R),
think of it as a linear map of Rd. If you have a basis of Rd consisting of
eigenvectors, then with respect to this basis, the matrix is in diagonal
form. For eigenvectors, it’s crucial to use the same basis in the domain
and the range (they’re the same space and we want to be able to iterate
the map).
In our case, we think of the fibre over ω and σω as different spaces.

There’s no reason to use the same basis in each. Since we’re choosing
different bases, we would be just looking for matrices B and C such
that A = CDB−1 where D is diagonal. That’s just too easy! You can
take B and D to be the identity and C = A for example. Now the
diagonal matrix tells you nothing about A at all!
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The singular value decomposition (SVD) asks to express A as a prod-
uct CDB−1 where B and C are orthogonal. The singular values are
the entries of D, the right singular vectors are the columns of B and
the left singular vectors are the columns of C. It’s clear (assuming
uniqueness of the SVD) that A and AT have the same singular values.
Throughout, we will use the Euclidean norm on R

d.
An inductive procedure that yields a singular value decomposition is

as follows:

• Find a unit vector v1 for which ‖Av1‖ is maximized;
• Assuming vectors v1, . . . , vj−1 have been obtained, let R be the
collection of unit vectors perpendicular to these. Choose the
element of R maximizing ‖Avj‖.

It turns out that Av1, Av2, . . . are always orthogonal. To see this,
one can calculate that if Avj is not orthogonal to Avi (suppose without
loss of generality that i < j and the inner product is positive), then
for sufficiently small ǫ, v′i = (1− ǫ2)vi + ǫvj has norm less than 1, but
‖Av′i‖ > ‖Avi‖, contradicting the choice of vi.
Now set wi = Avi/‖Avi‖ (if Avi = 0, just pick wi orthogonal to the

previous w’s). Take B to be the matrix whose columns are the vi, C
to be the matrix whose columns are the wi and D to be the diagonal
matrix with entries ‖Avi‖. Then one quickly checks that A = CDB−1

as required (just apply each side to vi).
A more streamlined procedure to find the SVD is to consider the

matrix Q = A∗A. This is a positive semi-definite self-adjoint matrix,
and hence can be diagonalized by an orthogonal matrix: Q = BD′BT .
We may assume without loss of generality that the diagonal entries of
D′ are non-increasing. Let D be the square root of D′. Create a new
matrix C in the following way: For each non-zero entry of D, let the ith
column of C be a normalized copy of A applied to the ith column of B.
These columns are all orthogonal. For the remaining columns, simply
complete C arbitrarily to an orthogonal matrix. Then A = CDBT is
the required decomposition. This decomposition is essentially unique
(up to ordering of singular values and choice of orthogonal basis for
the blocks with a common singular value – we always assume that the
singular values are arranged in decreasing order).

One can check ‖A‖ = ‖D‖ and in fact ‖
∧k A‖ = ‖

∧k D‖. If D has

entries z1 ≥ z2 ≥ . . . ≥ zd, then
∧k D is diagonal with respect to the

basis given earlier and has entries zi1 · · · zik where i1 < i2 < . . . < ik.
The biggest entry is therefore z1z2 . . . zk.
Writing χj(M) for the jth singular value of M , we obtain from the

above
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Lemma 7. Let σ : Ω → Ω preserve the measure P. Suppose that P

is ergodic. Let A : Ω → Md(R) be measurable. Then ‖
∧k A

(n)
ω ‖ =

χ1(A
(n)
ω ) · · ·χk(A

(n)
ω ).

Taking logarithms, dividing by n and taking the difference between

log ‖
∧j A

(n)
ω ‖ and log ‖

∧j−1A
(n)
ω ‖, we obtain

Corollary 8. Let µ1, µ2, . . . be as above. Then 1
n
logχj(A

(n)
ω ) → µj.

Hence the µj are non-increasing in j.

3. Multiplicative Ergodic Theorems and Duality

In this section, we give some indication of the proof of the weaker
non-invertible version of the multiplicative ergodic theorem and we
show how to derive the semi-invertible version from the non-invertible
version. It’s not hard to derive Theorem 1 from Theorem 4. The ideas
for the proof we give of the non-invertible version, based on exterior
algebras, singular value decomposition and the Kingman sub-additive
ergodic theorem are due to Raghunathan[13]. The semi-invertible ver-
sion is derived from ideas obtained in collaboration with Gary Froyland,
Cecilia González Tokman and Simon Lloyd[4, 5, 16].

3.1. The non-invertible version.

Sketch proof of Theorem 2. The forward integrability condition allows

us to apply the sub-additive ergodic theorem to ‖
∧j A

(n)
ω ‖. Let the ex-

ponents (coming from the sub-additive ergodic theorem and the exte-
rior algebra) be λ1 > λ2 > . . . > λk with multiplicities m1, m2, . . . , mk.
Define spaces V n

j (ω) to be the span of the singular vectors with the

smallest mj +mj+1 + . . .+mk singular values of A
(n)
ω .

Verify that these form an (exponentially convergent) Cauchy se-
quence in the Grassmannian and let Vj(ω) be the limit. Verify (us-
ing the speed of convergence which is exactly right for this) that if

v ∈ Vj(ω), we have lim 1
n
log ‖A

(n)
ω v‖ ≤ λj.

Let v ∈ Vj(ω) \ Vj+1(ω). Write v = u + w with u ∈ Vj+1(ω) and
w ∈ Vj(ω)⊖Vj+1(ω) (here V ⊖W is the orthogonal complement of W in
V ). For n sufficiently large, u is very close to V n

j+1(ω) and w is very close

to V n
j (ω) ⊖ V n

j+1(ω). We therefore obtain ‖A
(n)
ω u‖ . e(λj+1+ǫ)n while

‖A
(n)
ω w‖ & e(λj−ǫ)n. Hence ‖A

(n)
ω v‖ ≥ ‖A

(n)
ω w‖−‖A

(n)
ω u‖ & e(λj−ǫ)n‖w‖

Hence Vj(ω) is exactly the collection of vectors that expand
at rate λj or less. Equivariance follows. �
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3.2. Non-invertible implies semi-invertible.

Proof of Theorem 4 from Theorem 2. We are now assuming that the
base dynamical system, σ is invertible. This allows us to define the
dual cocycle over the inverse dynamical system, σ−1. That is, one
applies the map σ−1 each time, rather than σ. The generator of the
dual cocycle is A∗(ω) = A(σ−1ω)T , so that A∗(n)

ω = A∗
(σ−1)n−1ω . . . A

∗
ω =

A(σ−nω)T . . . A(σ−1ω)T = (A
(n)
σ−nω

)T .
By the earlier remark (that M and MT have the same singular val-

ues) plus Corollary 6, we check that the exponents and multiplicities
of the dual cocycle are the same as those of the original cocycle.
Let V ∗

j (ω) be the filtration obtained for the dual cocycle. We then
define Wj(ω) = (V ∗

j (ω))
◦, the annihilator of V ∗

j (ω).

Lemma 9. Wj(ω) is an equivariant complementary space to Vj(ω).

Vj(ω) is the ‘slow space’ consisting of vectors that expand at rate
λj or slower. Wj(ω) will be the fast space. All non-zero vectors
in Wj(ω) will expand at rate λj−1 or faster (that is strictly faster
than λj).

The statement of the above lemma should be reminiscent of
Subsection 2.1

A key feature is that the slow space depends on the ‘future’ of ω,
while the fast space depends on the past of ω. That is, to decide if v ∈
Vj(ω), one needs to know (Aσnω)n≥0, whereas to decide if v ∈ Wj(ω),
one needs to know (Aσnω)n<0. This is analogous to the definition of
stable and unstable manifolds. To find the stable manifold, you look at
the points that behave well in the future; to find the unstable manifold,
you look at points that behave well in the past.
Right now I make the following claims:

(a) Wj(ω) is equivariant;
(b) Wj(ω) ∩ Vj(ω) = {0} almost surely.

Since the dual cocycle and primal cocycle have the same exponents
and multiplicities, V ∗

j (ω) has the same dimension (i.e. mj + mj+1 +
. . .+mk) as Vj(ω). By linear algebra (the ‘rank-nullity theorem’), the
dimensions of V ∗

j (ω) and Wj(ω) sum to d, so that Vj(ω) and Wj(ω)
have complementary dimensions. Hence establishing (a) and (b) shows
that Wj(ω) is an equivariant complement of Vj(ω) which will prove the
lemma.
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To prove (a), note that A∗
ωV

∗
j (ω) ⊂ V ∗

j (σ
−1ω) by the equivariance

property of the filtration for the dual cocycle (this would be an equality
if the matrices were known to be invertible as the two sides would have
the same dimension). We rewrite this as

(2) A∗
σωV

∗
j (σ(ω)) ⊂ V ∗

j (ω).

Let v ∈ Wj(ω) and θ ∈ V ∗
j (σ(ω)). Then

〈θ, Aωv〉 = 〈A
T
ωθ, v〉 = 0,

where the second equality follows since by (2), the left member belongs
to V ∗

j (ω) and the right belongs to (V ∗
j (ω))

◦.
This shows that Aωv is annihilated by any element of V ∗

j (σ(ω)) and
hence establishes the inclusion

(3) Aω(Wj(ω)) ⊂Wj(σ(ω)).

The following diagram plays a key role in what comes next.

(Rd)ω
Aω−−−→ (Rd)σ(ω)

Aσ(ω)
−−−→ (Rd)σ2ω

A
σ2ω−−−→ (Rd)σ3ω

A
σ3ω−−−→ (Rd)σ4ω

(Rd)∗ω
AT

ω←−−− (Rd)∗σ(ω)
AT

σ(ω)
←−−− (Rd)∗

σ2ω

AT

σ2ω←−−− (Rd)∗
σ3ω

AT

σ3ω←−−− (Rd)∗
σ4ω

The top row of the diagram consists of Rd fibres sitting over points
on an orbit in the base, while the bottom row consists of Rd (considered
as dual spaces to the top R

d’s) fibres sitting over the orbit. The map
Aω maps the fibre over ω to that over σ(ω), whereas the transpose, AT

ω

maps the dual fibre over σ(ω) to that over ω.
The defining duality property ensures that if we take any point v in

(Rd)ω and push it forward by A
(n)
ω ; and any dual vector θ in (Rd)∗σnω

and pull it back by A∗(n)
σnω, one has

(4) (A∗(n)
σnωθ)(v) = θ(A(n)

ω v).

Let Z(ω) be a family of complementary subspaces to Vj(ω) as in
Corollary 3 and let C = C(ω) be as in that statement. Now if v ∈

Z(ω) is any vector of norm 1 in Z(ω), we have ‖A
(n)
ω v‖ ≥ Cen(λj−1−ǫ).

Now let θ ∈ V ∗
j (σ

nω) be of norm 1. Since θ ∈ V ∗
j (σ

nω), we have

‖A∗(n)
σnωθ‖ ≤ C ′en(λj+ǫ) (where C ′ is independent of the choice of θ).

The next lines form the core of the argument

Hence if we let w = A
(n)
ω v, by (4), we have θ(w) . e−n(λj−1−λj)‖w‖

and this holds for an orthonormal basis of θ’s in V ∗
j (σ

nω). We conclude
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that if w is written as w1+w2, where w1 lies in Wj(σ
nω) = (V ∗

j (σ
nω))◦

and w2 lies in Wj(σ
nω)⊥, then ‖w2‖ . e−n(λj−1−λj)‖w‖.

Since A
(n)
ω expands all vectors in Z(ω), we have A

(n)
ω Z(ω) is of the

same dimension, namely m1+ . . .+mj−1, as Wj(σ
nω). Since all vectors

in A
(n)
ω Z(ω) lie close to Wj(σ

nω) and they are of the same dimension,

facts about Grassmannian imply A
(n)
ω Z(ω) is exponentially close to

Wj(σ
nω).

On the other hand, we can show that there is a separation that
is at worst sub-exponentially small (i.e. bigger than any decreasing

exponential) between points of A
(n)
ω Z(ω) and Vj(σ

nω) (otherwise the
uniform growth conditions are contradicted).
Hence we conclude that for large n, Vj(σ

n(ω))∩Wj(σ
nω) = {0}. By

the Poincaré Recurrence theorem, this must hold for all n and (b) is
satisfied. �

By Corollary 3, all non-zero vectors in Wj(ω) have expansion rate
λj−1 or faster.
We now use the spaces Wj(ω) and Vj(ω) to give a swift conclusion

to the argument. In fact, we define Uj(ω) = Vj(ω)∩Wj+1(ω) and claim
that

(1) Uj(ω) is equivariant;
(2) U1(ω)⊕ U2(ω)⊕ · · · ⊕ Uk(ω) = R

d.

The first of these is immediate since it is the intersection of two
equivariant sets. For the second, we show that

Vj(ω) = Vj+1(ω)⊕ Uj(ω),

from which the fact that the Uj(ω) form a decomposition follows in-
ductively. To see this, first notice that Vj+1(ω) ∩ Uj(ω) ⊂ Vj+1(ω) ∩
Wj+1(ω) = {0} from above. Secondly, if v ∈ Vj(ω), then since Wj+1(ω)
is a complementary space of Vj+1(ω) in R

d, we have v = w + z where
w ∈ Wj+1(ω) and z ∈ Vj+1(ω). Now since v and z both lie in Vj(ω),
it follows that w ∈ Vj(ω) and hence w ∈ Uj(ω). This establishes
Vj(ω) = Vj+1(ω)⊕W (ω) as required.
Note that in the case where the matrices are invertible, there is

a similar, but alternative route used by Oseledets and implicitly by
Raghunathan. In place of the dual cocycle, one can study the inverse
cocycle over σ−1 generated by Bω = A−1

σ−1ω
. In this case, no duality

is needed. The exponents for the inverse cocycle are the negatives of
those for the primal cocycle. To find Uj(ω), one intersects Vj(ω) with
V −1
d−j−1(ω), that is the set of vectors that are no faster than λj in the
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future, together with the set of vectors that are no faster than −λj in
the past.

In the case where the matrices are non-invertible, the inverse
cocycle can obviously not be used, so the advantage of using the
dual cocycle is that one obtains a decomposition of the space
rather than a filtration, even if the matrices are non-invertible.

3.3. Multiplicative Ergodic Theorem Extensions. The multiplica-
tive ergodic theorem has been extended in many ways by many people.
One direction of this is the generalization of matrices to linear opera-
tors. Results in this direction are due to Ruelle[14] (compact operators
on Hilbert space), Mañé[10] (compact operators on Banach spaces),
Thieullen[15] (norm-continuous families of quasi-compact operators on
Banach spaces) and Lian and Lu[9] (families of operators on separa-
ble Banach spaces continuous in the “strong operator topology” [ a
topology weaker than the norm topology!]).
Mañé’s paper, on which that of Thieullen and the book of Lian and

Lu were based was in the context of injective operators (without the
assumption of invertibility). For them, the inverse cocycle was therefore
not defined.
Thieullen introduced a black box which deduced a non-invertible

form from the invertible form. The proof above that non-invertible
yields semi-invertible generalizes to the settings of Thieullen and Lian
and Lu.

Question. Can the Raghunathan method described above be used to
give streamlined versions of non-invertible versions of operator multi-
plicative ergodic theorems?
If so, the above techniques allow an easy extension to semi-invertible;

and possibly to injective versions (the difference being that the latter
control backwards rates of growth also).

4. Perron-Frobenius Operators and Ulam’s Method

4.1. Perron-Frobenius Operators. Given a map T from a space
(X,m) to itself (T is not assumed to preserve the measure m), it’s said
to be non-singular if m(T−1B) = 0 whenever m(B) = 0. The above is
an obvious necessary condition to be able to find an invariant measure
equivalent to m.
Given a non-singular map (a simple example to which we shall return

often is the case of a piecewise expanding map of the interval), one often
wants to look for an equivalent absolutely continuous measure. A key
tool for this is the Perron-Frobenius operator.
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If ρ(x) is a non-negative L1 function of integral 1 (a density), then
the Perron-Frobenius operator, L can be thought of as follows:

If one picks a point from the space with distribution density ρ(x)
and apply T to it, the distribution density of the image point is
given by L[ρ](x)

A consequence of this is: if one computes the expected value of f ◦T
with respect to the density ρ, that is

∫

ρ(x)f ◦T (x) dm(x), this should
be the same as the expected value of f with respect to the density Lρ,
∫

f(y)Lρ(y) dm(y).
In fact, Perron-Frobenius operators are characterized by the equality

∫

f(T (x))g(x) dm(x) =

∫

f(x)Lg(x) dm(x),

where f is an arbitrary L∞ function and g an L1 function.
Notice that if Lg = g, then g dm is an invariant measure, absolutely

continuous with respect to m. There is a one–one correspondence be-
tween fixed points of the Perron-Frobenius operator and absolutely
continuous invariant measures.
In nice situations (like transitive piecewise smooth expanding maps),

there is a unique absolutely continuous invariant measure with density
g0 and one has Lng → (

∫

g dm)g0 in the uniform norm.
Given this, one can conclude a decay of correlations result:

∫

f ◦ T ng dm =

∫

Lng(x)f(x) dm(x)

→

∫
(
∫

g dm

)

g0(x)f(x) dm(x)

=

∫

g dm

∫

f · g0 dm.

In particular, if m is an invariant measure (so that g0 = 1), this gives
∫

f ◦ T ng dm→

∫

f dm

∫

g dm,

an asymptotic independence (or mixing) result.
One might ask for the rate of convergence. Unfortunately, this can

be arbitrarily slow for general g ∈ L1.
You can build a counterexample by noting that L(h ◦ T ) = h when

the invariant density, g0 is 1, and taking g something like
∑

(1/2n)h ◦
T n!!! for a function like h = sin x – this example is something like
the standard continuous nowhere differentiable function on steroids.
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Arguments similar to this show that the spectrum of L is the entire
unit disk.
One can sometimes obtain a rate of convergence if the Banach space

is restricted from L1 to a finer Banach space B ⊂ L1 (with a stronger
norm also). Of course one needs L(B) ⊂ B.
A well known candidate in the interval case is the space BV, of func-

tions of bounded variation. In that case, it’s known that the spectrum
of L looks something like
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The spectral point at 1 corresponds to the fixed point of L. The
other points correspond to other eigenfunctions of L and the blob in
the middle is the ‘essential spectrum’. The spectral radius is the max-
imum absolute value of a point in the spectrum and the essential spec-
tral radius is the maximum absolute value of a point in the essential
spectrum.
An operator for which the essential spectral radius is strictly smaller

than the spectral radius is called quasi-compact (as the operator shares
a number of the properties of compact operators on Banach spaces).
In this case (provided g belongs to BV), the decay of correlations is

exponential, governed by the second eigenvalue of the L acting on BV.
The Lasota-Yorke inequality for a piecewise expanding C2 map of

the interval (for the Banach space pair (BV,L1)) is

‖Lg‖BV ≤
2

min |T ′|
‖g‖BV + C‖g‖1.

Given an inequality of the form ‖Lf‖BV ≤ α‖f‖BV + β‖f‖1, α can
be shown to be an upper bound for the essential spectral radius (this
is a result of Hennion[6] using a characterization of the essential spec-
tral radius due to Nussbaum[11]). In this case, better bounds can be
obtained by considering T n instead of T .

4.2. Ulam’s Method. Ulam proposed in his book [17] in the 1960’s
a very naive method of computing invariant measures of dynamical
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systems. Suppose the dynamical system is T , acting on a space X .
Divide X up into small pieces I1, I2, . . . , IN . Compute the matrix P
with entries Pij = m(Ii∩T

−1Ij)/m(Ii). This computes the conditional
probability that T (x) lies in Ij given that x lies in Ii with distribution
m|Ii. Now pretend that the dynamics of T is actually the same as that
given by the Markov chain with transition matrix P . Compute the left
eigenvector π with eigenvalue 1 for P and deduce an approximation to
the invariant density for T .

Remarkably this works quite well, at least for expanding dynam-
ical systems!

The approximation to the fixed point by Ulam’s method may be re-
expressed as the fixed point of the finite rank operator L̃ = Π◦L, where
Π is the conditional expectation operator Π(f) = Em(f |P), where P
is the partition of the space.
If Lf = f and L̃f̃ = f̃ , then we’re interested in ‖f − f̃‖1. We

estimate as follows:

‖f̃ − f‖1 = lim
n→∞

‖L̃nf − f‖1

≤

∞
∑

n=0

‖L̃n+1f − L̃nf‖1

=

∞
∑

n=0

‖L̃n(ΠLf − f)‖1

=

∞
∑

n=0

‖L̃n(Π− I)f‖1.

(Π−I)f is a function of L1 norm approximately 1/n (but integral 0).
Let us study the interval case. On each sub-interval, it is negative in
one part and positive in another. It takes roughly log n steps until these
are spread over the whole interval. After this time, there is exponential
decay. Hence one obtains a heuristic estimate ‖f̃−f‖1 ≈ log n/n. This
can be established rigorously and is known to be sharp.
A finer analysis was carried out by Keller and Liverani[7], who showed

that not only does the Ulam method approximate the invariant den-
sity, but also subsequent eigenvectors of L̃ approximate those of L for
eigenvalues outside the essential spectral radius.

4.3. Dellnitz-Froyland Ansatz. Dellnitz, Froyland and Sertl [3] stud-
ied the peripheral spectrum of the Perron-Frobenius operator (the part
of the spectrum lying outside the essential spectrum, and consisting of
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at most countably many isolated points, each an eigenvalue with finite-
dimensional eigenspace).
They noticed that when a dynamical system consists of a number of

almost-invariant pieces, these pieces are often detected by eigenfunc-
tions.
A cartoon of this is as follows:

+1
−1

Given an eigenfunction with eigenvalue close to 1, sublevel sets and
superlevel sets are used to locate almost invariant regions.
This has been used to locate poorly mixing regions of the ocean (see

Figure 2).

Figure 2. Gyres in the Southern Ocean. The central
region is Antarctica. The smaller dark parts around
Antarctica are gyres (slowly mixing regions of the ocean),
as calculated using Ulam’s method and the Dellnitz-
Froyland Ansatz.
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5. Rates of mixing in Forced Dynamical Systems

The underlying goal of our program of research has been to find an
extension of the Ulam and Dellnitz-Froyland machinery, which work for
a single dynamical system, to the context of forced dynamical systems.
We have an ergodic measure-preserving base dynamical system σ : Ω→

Ω. This could be a Bernoulli shift (if the maps are to be chosen ran-
domly), an irrational torus rotation (if one wants to study a quasi-
periodic case) etc.
For each ω, there’s a map Tω of a space X to itself. We will study

these through their Perron-Frobenius operators, Lω.
As discussed previously, it no longer makes sense to look for eigen-

values and eigenfunctions. In their place, we’ll look for exponents and
the corresponding equivariant families of subspaces. We are therefore
talking about a operator-valued multiplicative ergodic theorems. We
make use of the theorems of Thieullen; and Lian-Lu.
In slightly more detail, (versions of) these theorems are:

Theorem 10. (Thieullen – injective [15]) Let σ : Ω→ Ω be a homeo-
morphism of a compact metric space with an ergodic invariant measure
P. Let X be a Banach space and let (Lω)ω∈Ω be an (almost) continu-
ously parameterized (in the operator norm) family of injective operators
satisfying a quasi-compactness condition.
Then there exist λ1 > λ2 > . . . > λ∞ = κ, multiplicities m1, m2, . . .

and equivariant families of mi-dimensional spaces Ui(ω) and R(ω) such
that X = U1(ω)⊕U2(ω)⊕ . . .⊕R(ω). Elements of Ui(ω) have backward
and forward growth rate λi. Elements of R(ω) have forward growth rate
at most κ.

A major development here over the previous Mañé result was the
introduction of a suitable version of quasi-compactness in this context.

Theorem 11. (Thieullen – non invertible [15]) No invertibility as-
sumption on the dynamics; No injectivity condition. Conclusion: re-
place decomposition with a filtration. No backward growth rate

Perron-Frobenius operators of non-invertible systems are essentially
never injective, so we could not directly apply the invertible version.
But the conclusion of the non-invertible version gives a filtration. The
second equivariant subspace is typically a 1-codimensional space :(
We found a semi-invertible version. Another difficulty for us is that

the condition ω 7→ Lω is (almost) continuous in the operator norm is ex-
tremely strong. In fact, such a map has at most countable range. This
gave a result for a forced countable family of interval maps. (Froyland
+ Lloyd + Quas)
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Theorem 12. (Lian and Lu – invertible [9]) Roughly the same setup;
now X is a separable Banach space. The major advantage for us is
the continuity assumption is greatly weakened. Now we require for any
fixed g, ω 7→ Lωg is continuous. Same conclusion.

Doan, in his PhD thesis used Thieullen’s invertible→non-invertible
machine to create a non-invertible version of Lian and Lu’s work. The
machine described earlier creates a semi-invertible version.
Viviane Baladi and Sébastien Gouëzel [1] created a family of fancy

Sobolev Banach space on which Perron-Frobenius operators of certain
piecewise hyperbolic maps are quasi-compact. They happen to be sep-
arable and compatible with the required continuity condition!
As a corollary, we can now prove the existence of Oseledets spaces

for a continuous family of expanding maps in finite dimension subject
to a bounded complexity condition.
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