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Abstract

We consider products of matrices of the form An = On+ϵNn where
On is a sequence of d×d orthogonal matrices and Nn has independent
standard normal entries and the (Nn) are mutually independent. We
study the Lyapunov exponents of the cocycle as a function of ϵ, giving
an exact expression for the jth Lyapunov exponent in terms of the
Gram-Schmidt orthogonalization of I + ϵN . Further, we study the
asymptotics of these exponents, showing that λj = (d − 2j)ϵ2/2 +
O(ϵ4| log ϵ|4).

1 Introduction and Statement of Results

Lyapunov exponents play a highly important role in dynamical systems, al-
lowing quantification of chaos, the development of a theory of hyperbolic and
non-uniformly hyperbolic dynamical systems and much more. We work in
the framework of multiplicative ergodic theory, where one has a base dynam-
ical system σ : Ω → Ω preserving an ergodic measure P and a measurable

map A : Ω → Md×d(R). One then takes the cocycle of partial products A
(n)
ω

of the sequence of d × d matrices and one studies the limiting growth rate
of the jth singular value of the products.

In the case d = 1 this is often straightforward to calculate: the Lya-
punov exponent is just

∫
log |A(ω)| dP(ω). In higher dimensions, Lyapunov

exponents tend to be much harder to calculate, and it is rare to be able to
give exact expressions.

In this paper, we are able to establish exact expressions for Lyapunov
exponents for cocycles of a particular form, namely where the matrices Aω

are of the form Oω + ϵNω, where the Oω are orthogonal matrices and the
Nω are mutually independent Gaussian matrices with independent standard
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normal entries. We further assume that the (Nσnω) are independent of the
cocycle Oω. We then interpret the cocycle as an additive noise perturbation
of a cocycle of orthogonal matrices.

Our main results are the following:

Theorem 1. Let σ : Ω → Ω be an ergodic transformation preserving an
invariant measure P and let O : Ω → O(d,R) be a measurable map into the
d × d orthogonal matrices. Suppose that N : Ω → Md×d(R) is measurable,
and that that conditioned on (Oσnω)n∈Z and (Nσnω)n̸=0, Nω has independent
standard normal entries. Then for all ϵ ∈ R, the Lyapunov exponents of the
cocycle Aω = Oω + ϵNω are given by

λj = E log ∥c⊥j (I + ϵN)∥,

where c⊥j (A) is the jth column of the Gram-Schmidt orthogonalization of A.

The following theorem describes the asymptotic behaviour of the expo-
nents as ϵ tends to 0.

Theorem 2. Let the matrix cocycle be as above. Then the Lyapunov expo-
nents satisfy

λj(ϵ) = (d− 2j) ϵ
2

2 +O(ϵ4| log ϵ|4)

as ϵ → 0.

Wemake the following conjecture. Let σ be an ergodic measure-preserving
transformation of a space (Ω,P). If B : Ω → Md×d(R) is the generator of a
matrix cocycle with the property that ∥Bω∥ ≤ 1 almost surely, and Nω is
Gaussian with the independence properties above, then setting λ′

j(ϵ) to be
the sequence of Lyapunov exponents of the cocycle Aϵ

ω = Bω+ ϵNω, one has

λ′
j(ϵ)− λ′

j+1(ϵ) ≥ λj(ϵ)− λj+1(ϵ) for all ϵ > 0,

where λj(ϵ) are the Lyapunov exponents for the cocycle described in Theo-
rem 1.

That is, we conjecture that there are universal lower bounds on the gaps
between consecutive Lyapunov exponents of Gaussian perturbed cocycles of
matrices where the matrices in the unperturbed cocycle have norm at most
1; and that these lower bounds are obtained in the case where all of the
matrices are the identity matrix.

The results in this paper are closely related to results in Newman [7],
where he gave a result similar to Theorem 1 for some i.i.d. cocycles involving
Gaussian matrices and SDE flows on the space of non-singular matrices.
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Newman also re-derives an important result of Dynkin [3] that also has
intermediate proofs due to LeJan [6]; Baxendale and Harris [1]; and Norris,
Rogers and Williams [8]. Dynkin’s result concerns the Lyapunov exponents
of a simple stochastic flow on GLd(R), the group of invertible d×d matrices,
and identifies explicit exact Lyapunov exponents for the flow. Although this
cocycle is not the same as ours, it is in the same spirit. The Lyapunov
exponents in that paper have a similar form to ours and are given by λk =
(d− 2k + 1)σ2/2

2 Definitions and Preliminary lemmas

If N is a d × d matrix valued random variable whose entries are indepen-
dent standard normal random variables, we will say that N is the standard
Gaussian matrix random variable. We will need the following property of
the normal distribution:

Lemma 3. Let U be an orthogonal matrix and let N be a standard Gaussian
matrix random variable of the same dimensions. Then the matrices N , UN
and NU are equal in distribution.

This follows from a more general fact about the multivariate normal
distribution.

Proposition 4. Let X ∼ N(µ,Σ) be a d-dimensional multivariate normal
distribution with mean vector µ and covariance matrix Σ. Suppose V is a
d× n matrix of rank d. Then V X ∼ N(V µ, VΣV T ).

Proof. Recall that X ∼ N(µ,Σ) if and only if X ∼ AZ+µ where AAT = Σ
and Z ∼ N(0, Id). If X = AZ + µ this implies that

V X = V AZ + V µ

∼ N(V µ, V A(V A)T ) by the fact above

∼ N(V µ, V AATV T )

∼ N(V µ, VΣV T )

Lemma 5. Let N be a standard normal random variable. Then for any a
and for b ̸= 0, E log− |a+ bN | ≤ E log− |bN | < ∞.
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Proof. We have

E log− |a+ bN | =
∫ ∞

0
P(log− |a+ bN | < t) dt

=

∫ ∞

0
P(N ∈ [−a− e−t/|b|,−a+ e−t/|b|] dt

≤
∫ ∞

0
P(N ∈ [−e−t/|b|, e−t/|b|] dt

= E log− |bN |.

Since log− |bN | ≤ log− |b|+log− |N |, and E log− |N | = 2√
2π

∫ 1
0 | log x|e−x2/2 dx,

it is easy to see E log− |bN | < ∞.

For a matrix B, let cj(B) denote the jth column of B and let θj(B) =
dist

(
cj(B), lin({ci(B) : i ̸= j})

)
and let Θ(B) = min θj(B).

Lemma 6. Let A be an arbitrary matrix and let ϵ > 0. Let Z denote a
standard d × d Gaussian matrix random variable and N denote a standard
normal random variable. Then E log−Θ(A+ ϵZ) ≤ E log−(ϵN) < ∞.

Further, if S is any set, E
(
log−Θ(A+ϵZ)1S

)
≤ dP(S)(1+log−(ϵP(S))).

Proof. Let F denote the σ-algebra generated by the columns of N except
for the jth. Then E log− θj(A + ϵZ) = E

(
E(log− θj(A + ϵZ)|F)

)
. Let n be

an F-measurable unit normal to the subspace spanned by (ci(A + ϵZ))i ̸=j

(this is almost surely unique up to a change of sign). Then θj(A + ϵZ) =
|⟨n, cj(A + ϵZ)⟩| = |⟨n, cj(A))⟩ + ϵ⟨n, cj(Z)⟩|. Let a = ⟨n, cj(A))⟩ (an F-
measurable random variable) and note that since cj(Z) is independent of the
unit vector n, conditioned on F , by Proposition 4, ⟨n, cj(Z)⟩ is distributed
as a standard normal random variable. Hence we have E log− θj(A+ ϵZ) =
E
(
E(log− θj(A+ ϵZ)

∣∣F)
)
= E

(
E(log− |a+ ϵN |

∣∣F)
)
≤ E

(
E(log− |ϵN |

∣∣F)
)
=

E log− |ϵN | which is finite by the lemma above.
By definition, Θ(A + ϵZ) = minj θj(A + ϵZ) so that log−Θ(A + ϵZ) =

maxj log
− θj(A+ϵZ) ≤

∑
j log

− θj(A+ϵZ). By Lemma 5, we see E log−Θ(A+
ϵZ) < ∞ as required.
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Now if S is any set, we have

E
(
log− θj(A+ ϵZ)1S

)
=

∫ ∞

0
P(S ∩ {log− θj(A+ ϵZ) > t}) dt

≤
∫ ∞

0
min

(
P(S),P(θj(A+ ϵZ) < e−t)

)
dt

≤
∫ ∞

0
min

(
P(S),P(a+ ϵN ∈ [−e−t, e−t])

)
dt

≤
∫ ∞

0
min

(
P(S), e−t/ϵ

)
dt,

where in the third line, as above, a is a random variable that is inde-
pendent of N . For the fourth line, we used the fact that the density
of a standard normal is bounded above by (2π)−1/2 < 1

2 . Separating
the integration region into [0, log−(ϵP(S))] and [log−(ϵP(S)),∞), we ob-
tain E

(
log− θj(A+ ϵZ)1S

)
≤ P(S) log−(ϵP(S)) + P(S). Since log−Θ(B) ≤∑d

j=1 log
− θj(B), the result follows.

For any vector y in Rd, y has at least one coefficient of magnitude
∥y∥/

√
d, say the jth, so ∥By∥ ≥ ∥yjcj(B) +

∑
i ̸=j yici(B)∥ ≥ |yj |θj(B) ≥

(1/
√
d)Θ(B)∥y∥. If B is invertible then Θ(B) is non-zero and substituting

y = B−1x gives ∥B−1∥ ≤
√
d/Θ(B).

Corollary 7. Let (An) denote an i.i.d. sequence of d× d random matrices
where An = I + ϵNn, and where Nn is a d × d standard Gaussian matrix
random variables. Then (An) satisfies the following:

1. An ∈ GLd(R) a.s.;

2. the distribution of An is fully supported in GLd(R): for any non-empty
open set U ⊂ GLd(R), P(An ∈ U) > 0.

3. log ∥An∥ ∈ L1(Ω).

This corollary establishes that the sequence (An) satisfies the conditions
of the Gol’dsheid-Margulis theorem [4, Theorem 5.4] which ensures that the
Lyapunov exponents of the cocycle A(n) = (I + ϵNn) · · · (I + ϵN1) are all
distinct.

Proof. The distribution of the matrices Ai is mutually absolutely continuous
with respect to Lebesgue measure. Since the zero locus of the polynomial
equation det(A) = 0 is a measure zero set, the first and second conclusions
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are established. To show log ∥Ai∥ is integrable, we separately show that
log+ ∥Ai∥ and log− ∥Ai∥ are integrable. First,

E log+ ∥A1∥ ≤ E ∥A1∥ ≤ E
∑

1≤i,j≤d

|Aij |

where each Aij is an integrable normal random variable. The fact that
E log+

∥∥A−1
1

∥∥ < ∞ follows from Lemma 6 and the observation that ∥A−1
1 ∥ ≤√

d/Θ(A1) made above.

We make extensive use of the singular value decomposition in what fol-
lows. More information on this topic may be found in Horn and Johnson [5]
and Bhatia [2]. For a d × d matrix A, a singular value decomposition is a
triple (L,D,R) where L and R are orthogonal matrices and D is a diagonal
matrix with non-negative entries such that A = LDR. We impose without
loss of generality the requirement that the diagonal entries of D are decreas-
ing. The matrix D is uniquely determined by A while there is some freedom
in the choice of L and R. The singular values of A are denoted si(A), where
si(A) is the ith entry of the diagonal of A. It is known (see for example Ra-
gunathan [10, Lemma 1]) that there exist measurable functions L, D and R
mapping Md(R) to O(d,R), Mdiag(d,R) and O(d,R) respectively such that
A = L(A)D(A)R(A).

It is well known that |si(A) − si(B)| ≤ ∥A − B∥ where ∥ · ∥ is the
standard operator norm on matrices. We also make use of the products
Sj
i (A) = si(A) · · · sj(A). These have an interpretation in terms of exterior

algebra. We write
∧k Rd for the kth exterior power of Rd and equip it with

the standard inner product coming from the Cauchy-Binet formula and the
corresponding norm. In particular if v1, . . . , vd is an orthonormal basis for
Rd, then {vi1 ∧ · · · ∧ vik : i1 < i2 < . . . < ik} is an orthonormal basis for∧k Rd. With respect to the corresponding operator norm, it is well known
that

∥∥A∧k∥ = Sk
1 (A).

If (An) is an independent identically distributed sequence of random
variables taking values in GLd(R) such that E log ∥A1∥±1 < ∞, it was shown
by Oseledets [9] and Raghunathan [10] that the limits

lim
n→∞

1

n
log sj(An . . . A1)

exist and are almost surely constant for almost every realization of (An). The
almost sure limit is denoted λj and the (λj) are the Lyapunov exponents of
the cocycle.
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3 Exact expressions for Lyapunov exponents

For 1 ≤ k ≤ d, we define ek to be the kth coordinate vector, so that, as
previously defined, ck(A) := Aek is the kth column of A. Let c⊥k (A) denote
the component of the kth column of A which is orthogonal to the first k− 1
columns. That is, suppressing the matrix A for brevity, c⊥1 = c1, and

c⊥k := ck −
∑

1≤j<k

〈
c⊥j , ck

〉〈
c⊥j , c

⊥
j

〉c⊥j .
We now prove Theorem 1 which we restate here for convenience.

Theorem. Let (Un)n∈Z be a sequence of d× d orthogonal matrices and let
(Nn)n∈Z be a sequence of independent d×d matrices, each with independent
standard normal coefficients. Let ϵ > 0 and let Aϵ

j = Uj + ϵZj. Then for
1 ≤ k ≤ d, the kth Lyapunov exponent of the cocycle (Aϵ

σn−1ω · · ·Aϵ
ω) is given

by
λk = E(log

∥∥c⊥k (I + ϵN)
∥∥).

Fix ϵ > 0 and set Ai := Ui + ϵNi for each i. To find the Lyapunov
exponents of this sequence we work with the products A(n) = An · · ·A1.

We now define Σn = D(A(n)) and study the evolution of Σn. More
precisely we are interested in the stochastic process (Σn)n≥0. To write Σn+1

in terms of Σn, we have Σn+1 = D
(
An+1L(A

(n))ΣnR(A(n))
)
. The following

lemma shows that this process (Σn) is Markov and that the process has the
same distribution as the simpler process Σ′

n+1 = D((1 + ϵNn+1)Σ
′
n).

Lemma 8. ((Σn) is a Markov process) Let the sequence of matrices (Ai) be
given by Ui + ϵNi as above and let Σn = D(A(n)). Then (Σn) is a Markov
process: For any measurable set F of diagonal matrices,

P(Σn+1 ∈ F |Σn, . . . ,Σ1) = P(Σn+1 ∈ F |Σn)

= P(D((I + ϵN)Σn) ∈ F |Σn).

That is, the Markov process (Σn) has the same distribution as the Markov
process (Σ′

n) where Σ′
0 = I and Σ′

n+1 = D(A′
n+1Σn), where (A′

n) is an
independent sequence of matrices, each distributed as I + ϵN .

Proof. Let Fn denote the smallest σ-algebra with respect to whichN1, . . . , Nn

are measurable. Let Gn be the smallest σ-algebra with respect to which
Σ1, . . . ,Σn are measurable (so that Gn is a sub-σ-algebra of Fn).
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As usual, we write A(n) for the product An . . . A1. Let Ln = L(A(n)),
Σn = D(A(n)), Rn = R(A(n)). Let F be a measurable subset of the range
of D. We compute

P(Σn+1 ∈ F |Fn) = P
(
D(An+1LnΣnRn) ∈ F |Fn

)
= P

(
D(An+1LnΣn) ∈ F |Fn

)
= P

(
D
(
(Un+1 + ϵNn+1)LnΣn

)
∈ F |Fn

)
= P

(
D
(
Un+1Ln(I + ϵL−1

n U−1
n+1Nn+1Ln)Σn

)
∈ F |Fn

)
= P

(
D
(
(I + ϵL−1

n U−1
n+1Nn+1Ln)Σn

)
∈ F |Fn

)
= P

(
D
(
(I + ϵNn+1)Σn

)
∈ F |Fn

)
,

where the second and fifth lines follow from that facts thatD(A) = D(AU) =
D(UA) for any matrix A and any orthogonal matrix U . The sixth line uses
the fact that Nn+1 is independent of Fn and Lemma 3 so that conditioned
on Fn, L

−1
n U−1

n+1Nn+1Ln has the same distribution as Nn+1. Since Nn+1 is

independent of Fn, this is equal to P
(
D
(
(I+ ϵNn+1)Σn

)
∈ F |Σn

)
. We have

established that

P(Σn+1 ∈ F |Fn) = P
(
D
(
(I + ϵNn+1)Σn

)
∈ F |Σn

)
.

Taking conditional expectations of both sides with respect to Gn, we deduce

P(Σn+1 ∈ F |Σn, . . . ,Σ1) = P(Σn+1 ∈ F |Σn).

Proof of Theorem 1. Fix 1 ≤ k ≤ d. We use the stochastic process de-
scribed in Lemma 8: let An = I + ϵNn, Σ0 = I, Σn = D(AnΣn−1) =
diag(s1(AnΣn−1), . . . , sd(AnΣn−1)). As before, we write A(n) = An . . . A1.
We note that Σn is not equal to D(A(n)), but using Lemma 8 the two pro-
cesses (Σn)n≥0 and

(
D(A(n))

)
n≥0

have the same distribution.

Let Bn = AnΣn−1

(
e1 . . . ek 0 . . . 0

)
. Then for all 1 ≤ j ≤ k,∣∣sj(Σn)− sj(Bn)

∣∣ = ∣∣sj(AnΣn−1)− sj(Bn)
∣∣

≤
∥∥AnΣn−1 −Bn

∥∥
=

∥∥AnΣn−1

(
0 . . . 0 ek+1 . . . ed

)∥∥
= ∥An diag(0, . . . 0, sk+1(Σn−1), . . . , sd(Σn−1))∥
≤ sk+1(Σn−1) ∥An∥
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Then we have ∣∣∣∣sj(Bn)

sj(Σn)
− 1

∣∣∣∣ = ∣∣∣∣sj(Bn)− sj(Σn)

sj(Σn)

∣∣∣∣
≤ sk+1(Σn−1)

sj(Σn)
∥An∥

By Gol’dsheid and Margulis, [4, Theorem 5.4], 1
n log sj(A

(n)) → λj and
1
n log sk+1(A

(n)) → λk+1 almost surely for some λj > λk+1. Since the

processes
(
D(A(n))

)
and (Σn) have a common distribution, it follows that

1
n log sj(Σn) → λj and 1

n log sk+1(Σn) → λk+1 almost surely. So

1

n
log

(
sk+1(Σn−1)

sj(Σn)

)
→ λk+1 − λj < 0

almost surely as n → ∞. If this occurs, there is some N ∈ N such
that sk+1(Σn−1)/sj(Σn) < e−n(λk+1−λj)/2 for all n ≥ N . A well-known
consequence of the Strong Law of Large Numbers ensures that C(ω) :=
supn ∥An∥ /n is finite a.s., so that ∥An∥ /n ≤ C(ω) for all n. For n ≥ N we
then have ∣∣∣∣sk+1(Σn−1)

sj(Σn)

∣∣∣∣ ∥An∥ ≤ C(ω)ne−n(λk+1−λj)/2 → 0

as n → ∞. Hence
sj(Bn)

sj(Σn)
→ 1 as n → ∞. (1)

For a matrix A, let sk1(A) = s1(A) · · · sk(A). Since Bn has k non-zero
columns, Bn

∧k has rank one and we have

sk1(Bn) = ∥Bne1 ∧Bne2 ∧ · · · ∧Bnek∥
= ∥(AnΣn−1)e1 ∧ (AnΣn−1)e2 ∧ · · · ∧ (AnΣn−1)ek∥
= ∥(Ane1)s1(Σn−1) ∧ (Ane2)s2(Σn−1) ∧ · · · ∧ (Anek)sk(Σn−1)∥
= sk1(Σn−1) ∥c1(An) ∧ c2(An) ∧ · · · ∧ ck(An)∥
= sk1(Σn−1)

∥∥c⊥1 (An)
∥∥∥∥c⊥2 (An)

∥∥ · · · ∥∥c⊥k (An)
∥∥,

where ∧ denotes the wedge product.
For n ∈ N and 1 ≤ k ≤ d, let Xk

n :=
∥∥c⊥1 (An)

∥∥∥∥c⊥2 (An)
∥∥ · · · ∥∥c⊥k (An)

∥∥.
Then Xk

1 , X
k
2 , . . . is a sequence of i.i.d. random variables. Since Θ(A) ≤
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∥c⊥i (A)∥ ≤ ∥A∥, we see, using Lemma 6 and Corollary 7 that log ∥c⊥i (A)∥ is
integrable. We have

sk1(Σn) =
sk1(Σn)

sk1(Bn)
sk1(Bn)

=
sk1(Σn)

sk1(Bn)
Xk

ns
k
1(Σn−1).

Using induction, we obtain

sk1(Σn) =

 n∏
j=1

sk1(Σj)

sk1(Bj)

Xk
1 . . . X

k
n.

Hence

1
n log sk1(Σn) =

1

n

n∑
j=1

log
sk1(Σj)

sk1(Bj)
+

1

n

n∑
j=1

logXk
j .

By (1), the first term on the right side converges almost surely to 0 and by
the Strong Law of Large Numbers the second term converges almost surely
to E logXk

1 . Hence we obtain

λ1 + . . .+ λk = E
(
log ∥c⊥1 (I + ϵN)∥+ . . .+ log ∥c⊥k (I + ϵN)∥

)
.

Subtracting the (k − 1)-fold partial sum from the k-fold partial sum, we
obtain

λk = E log ∥c⊥k (I + ϵN)∥,

as required.

This gives us an explicit description of λk. However it is difficult to
compute for large matrices. In the next section we find an approximation
for λk which is easier to compute.

4 An approximation for λj

In this section we focus on the case where A ∼ Id + ϵN and introduce
the computationally simpler vectors c′j(A) approximating c⊥j (A), defined by
c′1(A) = c1(A) and

c′k(A) = ck(A)−
∑

1≤j<k

⟨cj(A), ck(A)⟩ cj(A)
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With the same setup as in the previous section, when |ϵ log ϵ| < (100d)−1

we have

Theorem 9. For any d ∈ N, if A1 ∼ Id + ϵN and 1 ≤ k ≤ d then
E log

∥∥c⊥k ∥∥ = E log
∥∥c′k∥∥+O(ϵ4| log ϵ|4).

We will say that A = I + ϵN is bad if |Nij | > | log ϵ| for some i, j. Let
bad denote the event that A is bad. We first control the contribution to
E log

∥∥c⊥k ∥∥− E log ∥c′k∥ coming from the bad set.

Lemma 10. Let ϵ > 0. Then

E
(
1bad

∣∣ log ∥c⊥j (I + ϵN)∥
∣∣) = O(| log ϵ|e−(log ϵ)2/2); and

E
(
1bad

∣∣ log ∥c′j(I + ϵN)∥
∣∣) = O(| log ϵ|e−(log ϵ)2/2).

Proof. We write c⊥j and c′j for c⊥j (I + ϵN) and c′j(I + ϵN) respectively. We

control the positive parts log+ ∥c′j∥ and log+ ∥c⊥j ∥, and the negative parts

log− ∥c′j∥ and log− ∥c⊥j ∥. For the positive parts, notice that ∥c⊥j ∥ ≤ ∥cj∥ ≤∑
i,j |aij | and ∥c′j∥ ≤

(
1 +

∑
i,j |aij |

)3
. The set bad is a union of d2 parts of

the form badij = {N : |Nij | > | log ϵ|}. Using the bound log+(x) ≤ x, this
gives

E
(
1bad log

+ ∥c⊥j ∥
)
≤

∑
i,j

∫
badi,j

(
d+ ϵ

∑
k,l

|xkl|
)
fX

(
(xkl)

)
d(xkl)

≤ d2
∫
bad1,1

(
d+ ϵd2|x11|

)
fN (x11)dx11

= O(exp(−(log ϵ)2/2)).

A similar argument holds for E
(
1bad log

+ ∥c′j∥
)
.

To control E
(
1bad log

− ∥c⊥j ∥
)
and E

(
1bad log

− ∥c′j∥
)
, recall ∥c⊥j ∥ and ∥c′j∥

are bounded below by Θ(A). By standard estimates on the tail of the
normal distribution, P(bad) = O(e−(log ϵ)2/2/| log ϵ|). We see from Lemma
6, E log−Θ(I + ϵN)1bad = O(| log ϵ|e−(log ϵ)2/2), which gives the required
estimates.

We now give pointwise estimates for
∣∣ log ∥c⊥k ∥− log ∥c′k∥

∣∣ when A is not
bad. That is, when A = I + ϵNij where |Nij | ≤ | log ϵ| for all i, j.

11



Lemma 11. There exist ϵ0 > 0 and C > 0 depending only on d such that
for all matrices A of the form A = I+ ϵX where |Xij | ≤ | log ϵ| for each i, j,
then for each k,∣∣∣ log ∥∥c⊥k (A)

∥∥− log
∥∥c′k(A)∥

∣∣∣ ≤ C(ϵ| log ϵ|)4 for all ϵ < ϵ0.

As usual, we write cj , c
⊥
j and c′j in place of cj(A), c⊥j (A) and c′j(A) for

brevity. We define αj
i :=

⟨c⊥i ,cj⟩
∥c⊥i ∥

2 so that c⊥j = cj −
∑

i<j α
j
i c

⊥
i . Throughout

the proof, we let η = | log ϵ|. We let ϵ0 be sufficiently small that ϵη <
1/(100d) for ϵ < ϵ0. The proof makes use of a number of claims.

Claim 1. Let A = I + ϵX where |Xij | ≤ η for all i, j. For all 1 ≤ n ≤ d,
the following hold:

(i) | ∥cn∥2 − 1| ≤ 2ϵη + dη2ϵ2 ≤ 3ϵη;

(ii) |
∥∥c⊥n ∥∥2 − 1| ≤ 3ϵη;

(iii) |αk
i | ≤ 6ϵη for all i ≤ n and k > i;

(iv) |
〈
c⊥n , ck

〉
| ≤ 3ϵη for all k > n.

Proof. Since |Xij | ≤ η for all i, j, for any 1 ≤ n ≤ d and i < j we have

| ∥cn∥2 − 1| ≤ 2ϵη + dϵ2η2 and

| ⟨ci, cj⟩ | ≤ 2ϵη + dϵ2η2.

This shows (i) for all n, as well as (ii), (iii) and (iv) for n = 1.
Now suppose for some 2 ≤ j ≤ d, (ii)–(iv) each hold for all n ≤ j − 1.

Then for all k > j we have〈
c⊥j , ck

〉
=

〈
cj −

∑
i<j

αj
i c

⊥
i , ck

〉
=

〈
cj , ck

〉
−
∑
i<j

αj
i

〈
c⊥i , ck

〉
This implies ∣∣〈c⊥j , ck〉∣∣ ≤ |

〈
cj , ck

〉
|+

∑
i<j

|αj
i |
∣∣〈c⊥i , ck〉∣∣

≤ (2ϵη + dϵ2η2) + d · (6ϵη)(3ϵη)
≤ 3ϵη,

12



where we used (i) and the induction hypotheses in the second line and the
condition on ϵ0 in the third line. This establishes (iv) for n = j.

Since c⊥1 , . . . , c
⊥
j are mutually perpendicular, it follows that∥∥cj∥∥2 = ∥∥c⊥j ∥∥2 +∑

i<j

(αj
i )

2
∥∥c⊥i ∥∥2

Thus we have ∣∣∣∥∥c⊥j ∥∥2 − 1
∣∣∣ = ∣∣∣∣∥∥cj∥2 − 1 +

∑
i<j

(αj
i )

2
∥∥c⊥i ∥∥2∣∣∣∣

≤
∣∣∣∥∥cj∥∥2 − 1

∣∣∣+∑
i<j

(αj
i )

2
∥∥c⊥i ∥∥2

≤ (2ϵη + dϵ2η2) + d(6ϵη)2(1 + 3ϵη)

≤ 3ϵη,

establishing (ii) for n = j.
We show that (iii) holds for n = j. Since by the induction hypothesis,

|αk
i | ≤ 6ϵη for all i < j and k > i, if suffices to show that |αk

j | ≤ 6ϵη for all
k > j. For any k > j, using (iv), we have

∣∣αk
j

∣∣ = |
〈
c⊥j , ck

〉
|∥∥c⊥j ∥∥2 ≤ 3ϵη

1/2
= 6ϵη

which shows that (iii) holds for n = j.

Claim 2. For each 1 ≤ n ≤ d, c⊥n = cn +
∑

j<n β
n
j cj where |βn

j | < 7ϵη.

Proof. We use induction on j. The base case is c⊥1 = c1. Suppose the claim
holds for all n < j ≤ d. Then

c⊥j = cj −
∑
i<j

αj
i c

⊥
i

= cj −
∑
i<j

αj
i

(
ci +

∑
ℓ<i

βi
ℓcℓ

)
= cj −

∑
ℓ<j

αj
ℓcℓ −

∑
i<j

αj
i

∑
ℓ<i

βi
ℓcℓ

= cj −
∑
ℓ<j

αj
ℓcℓ −

∑
ℓ<j−1

( j−1∑
i=ℓ+1

αj
iβ

i
ℓ

)
cℓ

13



For any ℓ < j, the coefficient of cℓ in the above expression is bounded by

|αj
ℓ |+

j−1∑
i=ℓ+1

|αj
iβ

i
ℓ| ≤ 6ϵη + d(6ϵη)(7ϵη) ≤ 7ϵη

Claim 3. For all 1 ≤ j ≤ d, c′j = c⊥j +
∑

n<j γncn where γn = O(ϵ2η2),
where the implicit constant depends only on d

Proof. For any such j we have

c′j − c⊥j =
∑
i<j

( 〈
c⊥i , cj

〉〈
c⊥i , c

⊥
i

〉c⊥i − ⟨ci, cj⟩ ci
)
.

We identify the coefficient of cℓ when c′j − c⊥j is expanded in the basis
(ck). That coefficient may be seen to be〈

c⊥ℓ , cj
〉〈

c⊥ℓ , c
⊥
ℓ

〉 − ⟨cℓ, cj⟩+
∑
ℓ<i<j

〈
c⊥i , cj

〉〈
c⊥i , c

⊥
i

〉βi
ℓ

=

〈
c⊥ℓ , cj

〉
− ⟨cℓ, cj⟩〈

c⊥ℓ , c
⊥
ℓ

〉 +
⟨cℓ, cj⟩

(
1−

〈
c⊥ℓ , c

⊥
ℓ

〉 )〈
c⊥ℓ , c

⊥
ℓ

〉 +O(ϵ2η2),

where we added and subtracted ⟨cℓ, cj⟩ /
〈
c⊥ℓ , c

⊥
ℓ

〉
; and the estimate for the

third term follows from Claims 1 and 2.
Since

〈
c⊥ℓ , cj

〉
− ⟨cℓ, cj⟩ = −

〈∑
i<ℓ β

ℓ
i ci, cj

〉
, the estimates in Claims 1

and 2 show the first term is O(ϵ2η2). Finally since ⟨cℓ, cj⟩ = O(ϵη) and
1−

〈
c⊥ℓ , c

⊥
ℓ

〉
is O(ϵη) by Claim 1, the middle term is also O(ϵ2η2).

Proof of Lemma 11. By orthogonality,

∥∥c′j∥∥2 = ∥∥∥∥c⊥j +
∑
n<j

γncn

∥∥∥∥2 = ∥∥c⊥j ∥2 + ∥∥∥∥∑
n<j

γncn

∥∥∥∥2,
where γn is as in Claim 3. Since γn = O(ϵ2η2), we obtain

∥∥c′j∥∥2 =
∥∥c⊥j ∥2 +

O(ϵ4η4). Since
∥∥c⊥j ∥2 is in the range (12 ,

3
2), it follows that

∣∣ log ∥∥c′j∥∥ −
log

∥∥c⊥j ∥∥∣∣ = O(ϵ4η4) as required.
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Proof of Theorem 9. Lemma 10 shows that∣∣E( log ∥c⊥k ∥ − log ∥c′k∥)1bad
)∣∣

≤ E
(
log ∥c⊥k ∥1bad

)
+ E

(
log ∥c′k∥1bad

)
= O(| log ϵ|e−(log ϵ)2).

and Lemma 11 shows that
∣∣ log ∥∥c⊥k ∥∥−log

∥∥c′k∥∥∣∣1badc = O(ϵ4| log ϵ|4). Taking
the expectation of this and combining the estimates gives the theorem.

5 Computing E log ∥c′k∥
Finally, we find the dominant term in the asymptotic expansion for E log ∥c′j∥
in the same setup as the previous section. This is Theorem 2 which we
restate here for convenience.

Theorem. Consider an orthogonal-plus-Gaussian cocycle as in Theorem 1.
Then the Lyapunov exponents satisfy

λk(ϵ) = (d− 2k) ϵ
2

2 +O(ϵ4| log ϵ|4) as ϵ → 0.

As in the previous sections, let A = Id + ϵN where N is a standard
Gaussian matrix random variable.

Proof. Let η = | log ϵ| and let bad be defined as above. We assume ϵ is
sufficiently small that ∥c′j(I + ϵN)∥2 ∈ (12 ,

3
2) for all N ∈ badc. Expanding,

we have that

∥c′j∥2 =
〈
cj −

∑
i<j

⟨ci, cj⟩ci , cj −
∑
k<j

⟨ck, cj⟩ck
〉

= ∥cj∥2 − 2
∑
i<j

⟨ci, cj⟩2 +
∑
i,k<j

⟨ci, cj⟩⟨ck, cj⟩⟨ci, ck⟩

= ∥cj∥2 − 2
∑
i<j

⟨ci, cj⟩2 +
∑
i<j

⟨ci, cj⟩2∥ci∥2 + 2
∑

i<k<j

⟨ci, cj⟩⟨ck, cj⟩⟨ci, ck⟩

= ∥cj∥2 −
∑
i<j

⟨ci, cj⟩2(2− ∥ci∥2) + 2
∑

i<k<j

⟨ci, cj⟩⟨ck, cj⟩⟨ci, ck⟩,

where to obtain the third line from the second, we separated the case i = k
from the case i ̸= k.

We take a finite Taylor expansion, valid for t ∈ (−1, 1): log(1 + t) =

t− t2

2 + t3

3 − R(t) where R(t) = 1
4(1 + ξ)−4t4 for some ξ with |ξ| ≤ |t|. Let
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Xj be the random variable ∥c′j(I + ϵN)∥2 − 1. Notice from the above that
Xj is a polynomial of degree 6 (whose coefficients don’t depend on ϵ) in the
entries of ϵN . If N = 0, then c′j(I + ϵN) = ej so that the constant term
in the polynomial Xj is 0. Notice also that by Claim 1, on badc, all terms
other than the first term in the expression for ∥c′j∥2 are O(ϵ2| log ϵ|2), while a
calculation shows that ∥cj∥2 = 1+O(ϵ| log ϵ|). Hence Xj1badc = O(ϵ| log ϵ|).
Let Yj = Xj − 1

2X
2
j + 1

3X
3
j , so that Yj is another polynomial in the entries

of ϵN with no constant term. Combining the above, on badc

log(∥c′j(I + ϵN)∥2) = log(1 +Xj) = Yj +O(ϵ4| log ϵ|4).

Then we have

E log(∥c′j(I + ϵN)∥2)
= E log(∥c′j(I + ϵN)∥21badc) + E log(∥c′j(I + ϵN)∥21bad)
= E(Yj1badc) +O(ϵ4| log ϵ|4) + E log(∥c′j(I + ϵN)∥21bad)
= EYj − E(Yj1bad) + E log(∥c′j(I + ϵN)∥21bad) +O(ϵ4| log ϵ|4).

(2)

Since Yj is a fixed polynomial function of the entries of ϵN , and all monomials
that are products of entries N have finite expectation, we see that EYj
agrees up to order ϵ4 with the expectation of its terms of degree 3 or lower.
Also, since the entries of N are independent and each has a symmetric
distribution, the constant term of Yj being 0, the only terms that give a non-
zero contribution to EYj are the terms of the forms N2

ab. Since the lowest
order terms in Yj are polynomials of degree 1, and Yj = Xj − 1

2X
2
j + 1

3X
3
j ,

the terms of the form N2
ab in Yj are those appearing in Xj and 1

2X
2
j .

We established above

Xj = ∥cj∥2 − 1−
∑
i<j

⟨ci, cj⟩2(2− ∥ci∥2) + 2
∑

i<k<j

⟨ci, cj⟩⟨ck, cj⟩⟨ci, ck⟩.

We see that ∥cj∥2 − 1 = 2ϵNjj + ϵ2
∑

iN
2
ij and ⟨ci, cj⟩ = ϵ(Nij + Nji) +

ϵ2
∑

k NkiNkj .
Substituting these in the expression for Xj , we see

EXj = dϵ2 − ϵ2
∑
i<j

E(Nij +Nji)
2 +O(ϵ4)

= (d− 2j + 2)ϵ2 +O(ϵ4).

We also see EX2
j = 4ϵ2EN2

jj +O(ϵ4). Combining these gives

EYj = E(Xj − 1
2X

2
j ) +O(ϵ4) = (d− 2j)ϵ2 +O(ϵ4).
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Therefore by (2), to finish the argument, it suffices to show E(Yj1bad) =
O(ϵ4| log ϵ|4) and E log(∥c′j(I + ϵN)∥21bad) = O(ϵ4| log ϵ|4).

Since ∥c′j(A)∥ ≥ Θ(A), Lemma 6 shows

E(log− ∥c′j(I + ϵN)∥1bad) = O(| log ϵ|2e−(log ϵ)2/2).

Since ∥c′j(A)∥ ≤ 2(
∑

k,l |Akl|)3, we see E(log+ ∥c′j(I+ϵN)∥21bad) = O(P(bad)) =
O(e−| log ϵ|2/2/| log ϵ|).

Finally, for any of the (finitely many) monomial terms M appearing
in Yj , we can check EM1bad = O(P(bad)) = O(e−| log ϵ|2/2/| log ϵ|). This
completes the proof.
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