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Abstract

We consider products of matrices of the form A,, = O,, +€N,, where
O,, is a sequence of d X d orthogonal matrices and N,, has independent
standard normal entries and the (N,,) are mutually independent. We
study the Lyapunov exponents of the cocycle as a function of €, giving
an exact expression for the jth Lyapunov exponent in terms of the
Gram-Schmidt orthogonalization of I + eN. Further, we study the
asymptotics of these exponents, showing that \; = (d — 2j)e?/2 +
O(e*| log e[*).

1 Introduction and Statement of Results

Lyapunov exponents play a highly important role in dynamical systems, al-
lowing quantification of chaos, the development of a theory of hyperbolic and
non-uniformly hyperbolic dynamical systems and much more. We work in
the framework of multiplicative ergodic theory, where one has a base dynam-
ical system o: (2 — ) preserving an ergodic measure P and a measurable
map A: Q — Myyq(R). One then takes the cocycle of partial products At(dn)
of the sequence of d x d matrices and one studies the limiting growth rate
of the jth singular value of the products.

In the case d = 1 this is often straightforward to calculate: the Lya-
punov exponent is just [log|A(w)|dP(w). In higher dimensions, Lyapunov
exponents tend to be much harder to calculate, and it is rare to be able to
give exact expressions.

In this paper, we are able to establish exact expressions for Lyapunov
exponents for cocycles of a particular form, namely where the matrices A,
are of the form O, + €N, where the O, are orthogonal matrices and the
N, are mutually independent Gaussian matrices with independent standard



normal entries. We further assume that the (Nyn,,) are independent of the
cocycle O,. We then interpret the cocycle as an additive noise perturbation
of a cocycle of orthogonal matrices.

Our main results are the following;:

Theorem 1. Let o: Q — Q be an ergodic transformation preserving an
invariant measure P and let O: Q — O(d,R) be a measurable map into the
d x d orthogonal matrices. Suppose that N: Q — Mgxqa(R) is measurable,
and that that conditioned on (Ogny)nez and (Ngny)nto, No has independent
standard normal entries. Then for all e € R, the Lyapunov exponents of the
cocycle A, = O, + €N, are given by

Aj = Elog ||ch(]+ eN)|l,

where ch(A) is the jth column of the Gram-Schmidt orthogonalization of A.

The following theorem describes the asymptotic behaviour of the expo-
nents as € tends to 0.

Theorem 2. Let the matrix cocycle be as above. Then the Lyapunov expo-
nents satisfy ,
M(e) = (d—2)% + O log e|*)

as € — 0.

We make the following conjecture. Let o be an ergodic measure-preserving
transformation of a space (2,P). If B: Q — Myx4(R) is the generator of a
matrix cocycle with the property that ||B,| < 1 almost surely, and N, is
Gaussian with the independence properties above, then setting )\;(e) to be
the sequence of Lyapunov exponents of the cocycle A, = B, + €N, one has

Ni(€) = Nipq(€) > Aj(e) = Njpa(e) for all € > 0,

where \j(e) are the Lyapunov exponents for the cocycle described in Theo-
rem 1.

That is, we conjecture that there are universal lower bounds on the gaps
between consecutive Lyapunov exponents of Gaussian perturbed cocycles of
matrices where the matrices in the unperturbed cocycle have norm at most
1; and that these lower bounds are obtained in the case where all of the
matrices are the identity matrix.

The results in this paper are closely related to results in Newman [7],
where he gave a result similar to Theorem 1 for some i.i.d. cocycles involving
Gaussian matrices and SDE flows on the space of non-singular matrices.



Newman also re-derives an important result of Dynkin [3] that also has
intermediate proofs due to LeJan [6]; Baxendale and Harris [1]; and Norris,
Rogers and Williams [8]. Dynkin’s result concerns the Lyapunov exponents
of a simple stochastic flow on GLg(R), the group of invertible d x d matrices,
and identifies explicit exact Lyapunov exponents for the flow. Although this
cocycle is not the same as ours, it is in the same spirit. The Lyapunov
exponents in that paper have a similar form to ours and are given by Ay =
(d— 2k +1)0?/2

2 Definitions and Preliminary lemmas

If N is a d x d matrix valued random variable whose entries are indepen-
dent standard normal random variables, we will say that N is the standard
Gaussian matriz random variable. We will need the following property of
the normal distribution:

Lemma 3. Let U be an orthogonal matriz and let N be a standard Gaussian
matriz random variable of the same dimensions. Then the matrices N, UN
and NU are equal in distribution.

This follows from a more general fact about the multivariate normal
distribution.

Proposition 4. Let X ~ N(u,X) be a d-dimensional multivariate normal
distribution with mean vector p and covariance matriz 3. Suppose V is a

d x n matriz of rank d. Then VX ~ N(Vu, VEVT).

Proof. Recall that X ~ N(u,X) if and only if X ~ AZ+ p where AAT = %
and Z ~ N(0,1;). If X = AZ + p this implies that
VX =VAZ+Vp
~ NV, VAV A)T) by the fact above
~ NV, VAATVT)
~NWVp,vEVT

O

Lemma 5. Let N be a standard normal random variable. Then for any a
and for b # 0, Elog™ |[a + bN| < Elog™ [bN| < 0.



Proof. We have
Elog™ |[a+ bN| = / P(log™ |a +bN| < t)dt
0
— [ RO ela— et plak e
0

< /0 P(N € [—e~/[b], e~ /|b] dt

= Elog™ [bN].

Since log™ [bN| < log™ |[b|+log™ |N|, and Elog™ |N| = \/% fol | log z|e~*"/2 dx,
it is easy to see Elog™ |bN| < co. O

For a matrix B, let ¢;j(B) denote the jth column of B and let 0;(B) =
dist(c;(B),lin({c;(B): i # j})) and let ©(B) = min 6;(B).

Lemma 6. Let A be an arbitrary matriz and let € > 0. Let Z denote a

standard d x d Gaussian matriz random variable and N denote a standard

normal random variable. Then Elog~ O(A+ eZ) < Elog™ (eN) < oo.
Further, if S is any set, E(log~ ©(A+eZ) 1g) < dP(S)(1+log™ (eP(S))).

Proof. Let F denote the o-algebra generated by the columns of N except
for the jth. Then Elog™ 6;(A + ¢Z) = E(E(log™ 6;(A + €¢Z)|F)). Let n be
an F-measurable unit normal to the subspace spanned by (¢;(A + €2));x;
(this is almost surely unique up to a change of sign). Then 6;(A + €Z) =
[, 5(A + €2))] = [tm,c;(A)) + eln, e (2)]. Let a = {n,c;(4))) (an F-
measurable random variable) and note that since ¢;(Z) is independent of the
unit vector n, conditioned on F, by Proposition 4, (n,¢;(Z)) is distributed
as a standard normal random variable. Hence we have Elog™ 6;(A + eZ) =
E(E(log™ 0;(A+€Z)|F)) =E(E(log™ |a + eN||F)) < E(E(log™ [eN||F)) =
Elog™ |eN| which is finite by the lemma above.

By definition, ©(A + €Z) = min; 6;(A + €Z) so that log~ O(A +€Z) =
max; log™ 0j(A+eZ) < 3;log™ 0(A+eZ). By Lemma 5, we see Elog™ ©(A+
€Z) < oo as required.



Now if S is any set, we have
E(log™ 0;(A + eZ) 15) = /0 T (S A {log 6;(A+¢Z) > 1)) dt
< /Ooo min (P(S),P(0;(A+eZ) < e")) dt
< /OOO min (P(5),P(a+ eN € [—e ", e7"])) dt

S/o min (P(S),e™"/€) dt,

where in the third line, as above, a is a random variable that is inde-
pendent of N. For the fourth line, we used the fact that the density
of a standard normal is bounded above by (27)"1/2 < % Separating
the integration region into [0,log™(eP(S))] and [log™ (eP(S)), 00), we ob-
tain E(log™ 0;(A+ €Z) 1g) < P(S)log™ (eP(S)) + P(S). Since log™ O(B) <
25:1 log™ 0;(B), the result follows. O

For any vector y in R% y has at least one coefficient of magnitude
lyll/Vd, say the jth, so | Byll > llyjc;(B) + ;4 yici(B)|| = ly;10;(B) >

(1/v/d)O(B)|ly||. If B is invertible then ©(B) is non-zero and substituting
y = B~z gives | B~ < Vd/O(B).

Corollary 7. Let (A,) denote an i.i.d. sequence of d x d random matrices
where A, = I + eN,,, and where N, is a d X d standard Gaussian matriz
random variables. Then (A,,) satisfies the following:

1. A, € GLy(R) a.s.;

2. the distribution of Ay, is fully supported in GLg(R): for any non-empty
open set U C GL4(R), P(A,, € U) > 0.

3. log || Anll € L'(€).

This corollary establishes that the sequence (A,,) satisfies the conditions
of the Gol’dsheid-Margulis theorem [4, Theorem 5.4] which ensures that the
Lyapunov exponents of the cocycle A™ = (I + €N,,)---(I + eNy) are all
distinct.

Proof. The distribution of the matrices A; is mutually absolutely continuous
with respect to Lebesgue measure. Since the zero locus of the polynomial
equation det(A) = 0 is a measure zero set, the first and second conclusions



are established. To show log ||A;| is integrable, we separately show that
log™ || A;|| and log™ ||A;|| are integrable. First,

Elog" |Ai| <E[ A <E ) Ayl
1<i,j<d

where each A;; is an integrable normal random variable. The fact that
Elog™ HAI_1 | < oo follows from Lemma 6 and the observation that |ATY) <

Vd/© (A1) made above. O

We make extensive use of the singular value decomposition in what fol-
lows. More information on this topic may be found in Horn and Johnson [5]
and Bhatia [2]. For a d x d matrix A, a singular value decomposition is a
triple (L, D, R) where L and R are orthogonal matrices and D is a diagonal
matrix with non-negative entries such that A = LDR. We impose without
loss of generality the requirement that the diagonal entries of D are decreas-
ing. The matrix D is uniquely determined by A while there is some freedom
in the choice of L and R. The singular values of A are denoted s;(A), where
s;(A) is the ith entry of the diagonal of A. It is known (see for example Ra-
gunathan [10, Lemma 1]) that there exist measurable functions L, D and R
mapping Mg4(R) to O(d,R), Mgiag(d,R) and O(d,R) respectively such that
A= L(A)D(A)R(A).

It is well known that |s;(A) — s;(B)| < ||A — B|| where || - || is the
standard operator norm on matrices. We also make use of the products
Sf (A) = 5;(A)---5;(A). These have an interpretation in terms of exterior
algebra. We write /\k R? for the kth exterior power of R% and equip it with
the standard inner product coming from the Cauchy-Binet formula and the
corresponding norm. In particular if vy, ...,vq is an orthonormal basis for
R%, then {v;, A--- A Vi i1 < dg < ... < i} is an orthonormal basis for
/\k R?. With respect to the corresponding operator norm, it is well known
that ||A"F]| = SF(A).

If (Ay,) is an independent identically distributed sequence of random
variables taking values in G L4(R) such that Elog || A;[|T! < oo, it was shown
by Oseledets [9] and Raghunathan [10] that the limits

1
lim — IOg Sj(An . Al)
n—oo N
exist and are almost surely constant for almost every realization of (A,,). The
almost sure limit is denoted A; and the (\;) are the Lyapunov exponents of
the cocycle.



3 Exact expressions for Lyapunov exponents

For 1 < k < d, we define e; to be the kth coordinate vector, so that, as
previously defined, c(A) := Aey, is the kth column of A. Let c; (A) denote
the component of the kth column of A which is orthogonal to the first £ — 1
columns. That is, suppressing the matrix A for brevity, ¢i = c1, and

Ck‘ = Cr — Z <C] 7C

1<j<k J’ j

2
>J

We now prove Theorem 1 which we restate here for convenience.

Theorem. Let (Up)nez be a sequence of d x d orthogonal matrices and let
(Np)nez be a sequence of independent d x d matrices, each with independent
standard normal coefficients. Let € > 0 and let A5 = U; + er. Then for
1 <k <d, the kth Lyapunov exponent of the cocycle (A€ -+ AS)) is given

by

on—ly’
Ao = E(log ||cis (I + eN)|)).

Fix € > 0 and set A; := U; + eN; for each i. To find the Lyapunov
exponents of this sequence we work with the products A™ = A, --- A;.

We now define ¥, = D(A®™) and study the evolution of ¥,. More
precisely we are interested in the stochastic process (£,,),>0. To write X, 1,
in terms of ,, we have 3,11 = D (4,11 L(A™)%, R(A™)). The following
lemma shows that this process (X,) is Markov and that the process has the
same distribution as the simpler process %), | = D((1 + eNyp41)X7,).

Lemma 8. ((X,) is a Markov process) Let the sequence of matrices (A;) be
given by U; + eN; as above and let ¥, = D(A™). Then (%,) is a Markov
process: For any measurable set F' of diagonal matrices,

P(Zn—i-l € F|Em .- '721) = P(Zn—i-l S F’Zn)
— P(D((I + eN)En) € FISn).

That is, the Markov process (X,,) has the same distribution as the Markov
process (7)) where ¥ = I and X7, | = D(A], %,), where (A}) is an
independent sequence of matrices, each distributed as I 4+ eN.

Proof. Let F,, denote the smallest o-algebra with respect to which Ny,..., N,
are measurable. Let G, be the smallest o-algebra with respect to which
¥,..., %, are measurable (so that G, is a sub-o-algebra of F,).



As usual, we write A™ for the product A,,...A;. Let L, = L(A(")),
¥, = D(A™), R, = R(A™). Let F be a measurable subset of the range
of D. We compute

P(Spy1 € F|Fy) =P(D

(Uns1 + eNns1)LaZa) € FIF,)

Un—l—an(I + ELglUn__&an—s-an)En) S F’fn)

/\/‘\/Q/\/—\
—~ —~ —~ —~ —~

(I + €L U Nuy1 Ln)Sn) € F]}“n)
= (D((I + ENnJrl)Zn) S F|]:n>;

where the second and fifth lines follow from that facts that D(A) = D(AU) =
D(UA) for any matrix A and any orthogonal matrix U. The sixth line uses
the fact that N,y is independent of F,, and Lemma 3 so that conditioned
on JFy, L,‘LIU;_&anHLn has the same distribution as N, 1. Since Ny is

independent of F,,, this is equal to ]P’(D((I—i—eNnH)En) € F|En) We have
established that

P(Sp41 € FIFy) = IP’(D((I +eN,1)D) € F\2n>.
Taking conditional expectations of both sides with respect to G,,, we deduce
P(EnJrl € F|En7 s El) = IED(En+1 € F|En)
O
Proof of Theorem 1. Fix 1 < k < d. We use the stochastic process de-
scribed in Lemma 8: let A, = I 4+ eN,, X = I, ¥, = D(A,X,-1) =
diag(s1(AnXn-1),...,84(AnXn_1)). As before, we write A = A AL

We note that ¥, is not equal to D(A™), but using Lemma 8 the two pro-
cesses (X,)n>0 and (D(A(”)))n>0 have the same distribution.

Let B, = A, Y1 (61 ..ep0 ... O). Then for all 1 < j <k,
‘Sj(zn) - Sj(Bn)‘ = }Sj(Anzn—l) - Sj(Bn)‘
< [[An¥n-1 = Bal|
= HAnEn—l (O o0epyr - ed)H
= || Ay, diag(0,...0, Sg+1(Zn—1), .-, Sa(En—1))||
< sk41(Bn—1) [|4nl|



Then we have

5;(Bn) 1‘ _ sj(Bn) — 8j(n)
$j(2n) $j(Xn)
Skt1(Zn—1)

< Sl g,

By Gol'dsheid and Margulis, [4, Theorem 5.4], 1 log 5;(AM) — X\; and
%logsk_ﬂ(A(”)) — Ag+1 almost surely for some A; > Apy;. Since the
processes (D(A™)) and (¥,) have a common distribution, it follows that
%log 5j(3p) = Aj and %log Sk+1(Xn) = Ak41 almost surely. So

l log <3k+1 (En—l)

sj(En) > — Akl — )\j <0

almost surely as n — oo. If this occurs, there is some N € N such
that sgy1(Sn_1)/5;(Sn) < e "M+17%)/2 for all n > N. A well-known
consequence of the Strong Law of Large Numbers ensures that C(w) :=
sup,, ||An|| /n is finite a.s., so that ||A,|| /n < C(w) for all n. For n > N we
then have

k41 (Zn—1) | Ap]| € C(w)ne "PAe+1723)/2
Sj(zn)
as n — 0o. Hence B
Sj( ")—>1asn—>oo. (1)
Sj(zn)

For a matrix A, let s}(A) = s1(A4)---s,(A). Since B, has k non-zero
columns, B,,"* has rank one and we have

s¥(Bp) = ||Bner A Bpea A -+ - A Brey|
=[[(ApXn_1)er A (ApZn—1)ea A - A (ApXn—1)ek]]
= [[(Ane1)s1(Zn—1) A (Anez)s2(En—1) A+ A (Anek)sk(En-1)||
= 81(Zn-1) [ler(An) A ea(A) A= Aer(An) |
= 57 (Zn-1)|er (An)|[[ez (An)]] - - lex (An),
where A denotes the wedge product.

Forn € Nand 1 < k < d, let XF := Hcf(An)HHC%(An)H Hcé(An)H
Then XF, X5 ... is a sequence of i.i.d. random variables. Since ©(A) <



e (A)]| < ||All, we see, using Lemma 6 and Corollary 7 that log ||c;-(A)]| is
integrable. We have

Vo)
=
—

™

S
~—

V)
=
—

Sy

S
~

Slf(En) =

¥
\_/\:_/

V2] V)
[t all k-

I
el

Vo)
=
—~

™
1
[
~

V)
=
—~

W

S
~

Using induction, we obtain

no ok
sY(X,
i) =[] 1(2) XF.o o XxE

i1 s1(B)) "
Hence
1 « LIPS I
Liog sh(Sn) = 3 log S 4 1§y, xk
n i si(Bj) n st

By (1), the first term on the right side converges almost surely to 0 and by
the Strong Law of Large Numbers the second term converges almost surely
to Elog XF. Hence we obtain

Mt A =E(log ler (T+eN)|| + ... +log e (I + eN)]]).

Subtracting the (k — 1)-fold partial sum from the k-fold partial sum, we
obtain
Ak = Elog |[ei (I + eN)l,

as required. O
This gives us an explicit description of A\;. However it is difficult to

compute for large matrices. In the next section we find an approximation
for \; which is easier to compute.

4 An approximation for )\;

In this section we focus on the case where A ~ I; + eN and introduce
the computationally simpler vectors c;-(A) approximating ch(A), defined by
A (A) = c1(A) and



With the same setup as in the previous section, when |eloge| < (100d)~*
we have

Theorem 9. For any d € N, if Ay ~ Ig+eN and 1 < k < d then
Elog ||cit|| = Elog ||c}|| + O( 4|loge| ).

We will say that A = I + €N is bad if |N;;| > |loge| for some 4, j. Let
bad denote the event that A is bad. We first control the contribution to
Elog ||cx|| — Elog||c},|| coming from the bad set.

Lemma 10. Let € > 0. Then

E(lbad’10g||cj_(l+€N)H’) O(|10g€|e (loge) /2); and
E(Lbaa| log [|¢j(I + eN)|[]) = O(|log e|e™ (log€)2/2)

Proof. We write c and ¢} for c; (I +€N) and c;(I + eN) respectively. We
control the posmve parts log+ Hcg|| and log™ ||ch|| and the negative parts
7l

log™ [|c}|| and log™ ||c;||. For the positive parts, notice that ||ch|] < ¢l <

3
laii| and ||| < (14", . laii|) . The set bad is a union of d? parts of
3,J 170 J i,5 191]

the form bad;; = {N: |N;;| > |loge|}. Using the bound log™(z) < z, this
gives

E(1badlog™ [l ]l) < Z/bd <d+€z|«’15kl!>fX(($kl))d($kz)
i,j v Padij k1l

< d2/ (d+ ed?|z11]) fn(z11)don
bady 1
= O(exp(—(log€)?/2)).

A similar argument holds for E(]lbad log™ ||c§H)

To control E(1paq log™ Hc]lH) and E(1paq log ™ Hc;||), recall ||cj-|| and ||c||
are bounded below by ©(A). By standard estimates on the tail of the
normal distribution, P(bad) = O(e~1°89?/2/|log¢|). We see from Lemma
6, Elog~ O(I 4+ eN)lpag = O(|logele~(1089)°/2) which gives the required
estimates.

O]

We now give pointwise estimates for |log|ci|| —log [|c}|| | when A is not
bad. That is, when A = I + eN;; where |N;;| < |loge| for all 7, j.

11



Lemma 11. There exist g > 0 and C' > 0 depending only on d such that
for all matrices A of the form A = I+ eX where | X;;| < |loge| for eachi,j,
then for each k,

‘log HC%(A)H —log Hc%(A)H‘ < C(e|loge))? for all € < €.

As usual, we write c;, ch and ¢; in place of ¢;(4), ch(A) and cj(A) for

brevity. We define o] := (et <o) so that cjl =Cj =D c;-. Throughout

et
the proof, we let n = |loge|. We let ¢y be sufficiently small that en <
1/(100d) for € < €p. The proof makes use of a number of claims.

Claim 1. Let A = I + €X where | X;;| < n for alli,j. For all1 <n <d,
the following hold:

(i) lleal® — 1] < 2en + dn?e® < 3en;
. 2

(ii) || || = 1] < 3en;

(iii) |aF| < 6en for all i < n and k > i;

(iv) |{ci,ck) | < 3en for all k> n.

Proof. Since | X;;| < n for all 4,7, for any 1 <n < d and i < j we have
[ lleall® = 1] < 2en+ de’n*  and
[ {civej) | < 2en + denp.
This shows (i) for all n, as well as (ii), (iii) and (iv) for n = 1.

Now suppose for some 2 < j < d, (ii)—(iv) each hold for all n < j — 1.
Then for all £ > 5 we have

(cj,cp) = <Cj — Za{cf,c;& = (cjen) — Y _al(ct o)
i<y i<j
This implies
(e en)] < Kegre)l + D lodl[{eit s en)|
i<j
(2en 4 de*n?) + d - (6en)(3en)

12



where we used (i) and the induction hypotheses in the second line and the
condition on € in the third line. This establishes (iv) for n = j.
- L are mutually perpendicular, it follows that

Since ¢ yoees G
leg | = lle I + (@)l
1<J

Thus we have

eIl = 1] = {llesl? = 1+ D@t |
1<j
< llesl* = 1] + S @2 eI
1<j
< (2en + de*n?) + d(6en)?(1 + 3en)
< 3en,

establishing (ii) for n = j.

We show that (iii) holds for n = j. Since by the induction hypothesis,
la¥| < 6en for all i < j and k > i, if suffices to show that |a§| < 6en for all
k > j. For any k > j, using (iv), we have

<]7ck>’ 3en ¢
=T 1

which shows that (iii) holds for n = j. O

Claim 2. For each 1 <n <d, ¢;; = ¢, + > j<n B¢ where [B7| < Ten.

Proof. We use induction on j. The base case is ¢{ = ¢;. Suppose the claim

holds for all n < j < d. Then

jL
_Zo‘ici

i<j
=cj — Zai (ci + Zﬁéco
1<j 0<i
_ J J i
= Yade - Yol Y e
1<j 1<j <
7—1
_ J J i
—-Yada- Y (3 ali)a
1<j <j—1 i=(+1

13



For any ¢ < j, the coefficient of ¢y in the above expression is bounded by

j—1
o] + > |od Bi| < 6en + d(6en)(Ten) < Ten
1=0+1
]

Claim 3. For all 1 < j < d, ¢; = cjl + D n<j InCn where 7y, = O(e2n?),

where the implicit constant depends only on d

Proof. For any such j we have

1
e

c;-fch g <<1’J>cl <ci,cj>ci>.
<cz7z

1<j

We identify the coefficient of ¢, when ¢} — ch

(ck). That coefficient may be seen to be

<CZ aC]> <Cg7C] Z z , C

<C£ G > g<z<] z ’ z

_<c£7cj>_<%cj>+ ce, ) (1 <CZ7C€>) +O(En?),

N (cer) (ctrer)

where we added and subtracted (cg, c;) / (cj, ¢ ); and the estimate for the
third term follows from Claims 1 and 2.

Since <cj-,cj> — (co,¢5) = — <Zz‘<£ ﬁfci,cj>, the estimates in Claims 1
and 2 show the first term is O(e?n?). Finally since (s, ¢;) = O(en) and
1—(ct,cp) is O(en) by Claim 1, the middle term is also O(e?n?).

is expanded in the basis

O
Proof of Lemma 11. By orthogonality,
2
7 = et + 3 e = et + | e
n<j n<j
where 7, is as in Claim 3. Since 7, = O(¢21?), we obtain HCJH = HCJ‘HQ
O(e*n?). Slnce HCJ‘”2 is in the range (3,2), it follows that ‘lochjH -
log HCJ‘H’ = O(e*n*) as required.
O

14



Proof of Theorem 9. Lemma 10 shows that
|E(log [l || — log || Lbad) |
< E(log [l [ 1bad) + E(1og ||}/ 1pad)
=O(| loge\e*(loge)z).

and Lemma 11 shows that | log ||c;- || —log ||¢}, ||| 1badc = O(€*|log €|*). Taking
the expectation of this and combining the estimates gives the theorem. [J

5 Computing Elog||c, ||

Finally, we find the dominant term in the asymptotic expansion for Elog |||
in the same setup as the previous section. This is Theorem 2 which we
restate here for convenience.

Theorem. Consider an orthogonal-plus-Gaussian cocycle as in Theorem 1.
Then the Lyapunov exponents satisfy

Me(€) = (d — 2k) S + O('|log e!) as € — 0.

As in the previous sections, let A = I + eN where N is a standard
Gaussian matrix random variable.

Proof. Let n = |loge| and let bad be defined as above. We assume e is
sufficiently small that ||c};(1 + eN)|? € (3,3) for all N € bad®. Expanding,
we have that

e = (s = Y teer)ens 5 = S (anrcs)an )

1<j k<j
= llej> =2 (i) + > {eir e (ers ¢5) ey k)
i<j ik<j
= llejl> =2 feie))? + > (eoe)?lell® +2 D (eire)en, ¢) ey )
1<j i<j i<k<j
= llejl> = feie)? @ = lleall®) +2 > (eieg){ers ) {eir e,
i<j i<k<j

where to obtain the third line from the second, we separated the case i = k
from the case i # k.

We take a finite Taylor expansion, valid for t € (—1,1): log(1 +t) =

- % + % — R(t) where R(t) = 2(1 4 &)~** for some ¢ with [¢] < |t|. Let
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Xj be the random variable [|¢;(I + eN)||> — 1. Notice from the above that
X is a polynomial of degree 6 (whose coefficients don’t depend on €) in the
entries of eN. If N = 0, then c}([ + eN) = e; so that the constant term
in the polynomial X; is 0. Notice also that by Claim 1, on bad®, all terms
other than the first term in the expression for ||c} |2 are O(e?|log €|?), while a
calculation shows that ||c;||? = 1+ O(e|loge|). Hence X;1paqc = O(e|loge|).
Let V; = X; — %XJQ + %X;’, so that Y} is another polynomial in the entries
of e N with no constant term. Combining the above, on bad®

log(Hc;(I + eN)HQ) =log(l+ X;)=Y; + 0(64\ log 6\4).
Then we have
Elog(||¢;(I +N)|?)
— Elog(|¢,(I + eN)[Loage) + Elog([¢;(I + N)[*Lpaa)
= E(Vuar) + O(c!log e[ 4) + Elog(|,(7 + V) Lpaa)
=EY; — E(Yjlpad) + Elog(Hc}(I + €N)||?1pag) + O(€*| log e[*).

(2)

Since Y; is a fixed polynomial function of the entries of €V, and all monomials
that are products of entries N have finite expectation, we see that EY
agrees up to order €* with the expectation of its terms of degree 3 or lower.
Also, since the entries of N are independent and each has a symmetric
distribution, the constant term of Y; being 0, the only terms that give a non-
zero contribution to EY) are the terms of the forms N, a2b. Since the lowest
order terms in Y; are polynomials of degree 1, and Y; = X; — %XJQ + %X?,
the terms of the form N 31; in Y; are those appearing in X; and %X ]2
We established above

Xj = lejll* = 1= eien)? @ = lleill®) +2 Y (eirej)(ens e){eis ca).

i<j i<k<j
We see that [|¢j||? —1 = 2eNj; + €3, N and (¢, ¢5) = e(Nij + Nji) +

62 Zk Nksz]
Substituting these in the expression for X;, we see

EXj = d€2 — 62 ZE(NZ] + Nji)2 + 0(64)
1<j
= (d—2j +2)e® + O(eh).
We also see IEJXJ2 = 4’EN ij + O(€*). Combining these gives

EY; = E(X; — X2) + O(e") = (d — 2j)e* + O(e*).
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Therefore by (2), to finish the argument, it suffices to show E(Y;lp.q) =
O(e*|log €|*) and Elog(||c}(I + eN)|[?1pag) = O(e*| log e|?).

Since ||c}(A)|| > ©(A), Lemma 6 shows

E(log_ HC‘/J(I + EN)Hlbad) = O(| log €|26_(10g6)2/2)‘

Since || (A) || < 2(32,,; [Awl)?, we see E(log™ [|¢;(I+€N)|[*1pag) = O(P(bad))
O(e*“‘)ge‘?ﬂ/\ logel).

Finally, for any of the (finitely many) monomial terms M appearing

in Y;, we can check EM1,,y = O(P(bad)) = O(e~1e<?/2 /| 1og ¢|). This
completes the proof.

O]
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