ON REPRESENTATIONS OF MARKOV CHAINS BY
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ABSTRACT

In this paper, we consider the problem of representing a Markov chain on a smooth manifold by a
measurable collection of smooth maps, and establish sufficient conditions for such a representation to exist.

1. Introduction

We first introduce some notation. By smooth, we always mean C®. A Markov
chain on (M,<Q), a measurable space, will be given by a map P: M xQ — I, with
P(x, A) a measurable function of x for fixed 4eQ and P(x, -) a probability measure
on (M, Q) for each x. P(x, A) specifies the probability of moving from the point x into
the set A. A representation of P is a collection & of maps from M to itself and a
probability measure m on them such that

P(x,A) =m({feF :fix)eA}), xeM, AeQ. )

Then, as described in [§, §1.1], the Markov chain can be reconstructed by making
each transition the result of picking a map from & with probability distribution m.
In [5] Kifer goes on to show the following.

THEOREM 1. If M is a Borel subset of a complete metric space, then any Markov
chain on M can be represented by a collection of measurable maps.

With the notation that P(A) = P(x, A), he then reproduces the result of [4]
showing the following.

THEOREM 2. Let M be a connected and locally connected compact metric space.
Let P be a Markov chain on M with the properties that P, depends continuously on x
in the weak*-topology on the set of measures on M, and P, has full support for each x.
Then P may be represented by a collection of continuous maps on M.

We consider the case when M is a smooth manifold, and P a Markov chain on
M. Under certain further conditions, P may be represented by a measurable
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collection of smooth maps on M. Specifically, we take M to be a smooth, compact,
orientable Riemannian manifold, with metric g. This induces a natural volume
element w, with associated Riemannian measure V, say. Let Q be the ¢-algebra of
Borel sets on M, and let P be the map describing the Markov chain. The conditions
on P are as follows.

(i) P, is absolutely continuous with respect to V, xe M.

dP(x,y)
av(y)

(iii) A(x,y) >0, x,yeM.

() h(x,y) =

is smooth in x and y, x,ye M. )

The theorem is then as follows.

THEOREM 3. Suppose that M is a smooth, compact, orientable Riemannian
manifold. If P is a Markov chain on M satisfying the conditions in (2), then we can
represent P by a collection of smooth maps on M.

2. Physical sketch of the proof

We first present an outline of the proof, showing the fluid dynamical motivation.
This is not essential for what follows.

The Markov chain is to be represented by a collection of smooth maps. We regard
the function A(x, y) as giving the density of maps taking x into a neighbourhood of
y (that is, the measure of the maps taking x into a neighbourhood U of small diameter
about y is approximately h(x, ) Vol (U)). The problem is then to find a collection of
maps, and a measure on them, such that the density of the images of x under the maps
is h(x,y). We are thus seeing the images of x for the varying maps as part of a
continuum, and are seeing how the points of the continuum move as we vary x along
smooth paths. Since A(x, y) > 0 for each x, ye M, we expect to find at least one map
taking any given x € M to any given ye M. Further, when x moves along any smooth
curve (to x’ say), we expect the images of the maps to move along curves of the flow,
so that if two maps agree at x, then they agree at x’, and hence everywhere. With this
in mind, we impose that there should be exactly one map taking each x to each y.
Fixing x,e€ M, each map on the manifold may thus be labelled by the image of x,
under that map. The maps are then smooth maps f, with the property that f,(x,) = y
We then define the map a,: y+— f,(x). By the fluid analogy again, we expect the map
a, to be a smooth diffeomorphism, since «,(y) is the point to which y = a, (y) flows
as x moves along a path from x, to x.

Take IT to be the space of smooth positive density distributions on the manifold
(that is, smooth functions with [fdV = 1, f > 0). Then the diffeomorphisms « on the
manifold act naturally on IT as

a*:IT— 11, (a*(p))(a(x)) = p(x)/expansion coefficient,

where the expansion coefficient is the absolute value of the Jacobian of the map «

evaluated at the point x. This is just an expression of conservation of mass. For each

x,y€ M, write p,(y) = h(x, y). Then p, €Il and let p, be the distinguished density p, .
We then define the corresponding measures p, by u,(4) = P(x,A) (the
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correspondence being du,/dV = p,), and set u(4) = P(x,, A). We are then forced to
define m({f,: y € A}) = u(A) by considering equation (1) in the case x = x,. Further,
by considering equation (1), we see that

P(x, 4) = m({f, . f(x)e A}) = u({y:f(x) e 4}) = u({y: % (y) € A}) = p(a;(4))

or, since a, is a homeomorphism, P(x, «,(4)) = u(4). This is equivalent to saying that
o*(p,) = p,. The problem is then reduced to finding a smoothly parametrised
collection of diffeomorphisms «, such that o(p,) = p,.

It is clearly sufficient to find a collection of diffeomorphisms «, such that
o¥(po) = p, with enough smoothness that a, is smoothly parametrised by x. Now,
given a pell, define a path in IT by p(f) = p, + tn, where 7 is given by p—p,. We then
seek a collection o, of diffeomorphisms associated to densities p(¢) (that is, such that
o3, (o) = p(#)). Moving along this path, there is a constant rate of change of density
at each point of the manifold, such as could arise from a constant flux (by comparison
with the fluid dynamics equation V- ® + p = 0, where ® = pv is the flux). We therefore
seek a flux vector field whose divergence is —#, and which depends with
sufficient smoothness on 7. This then gives an expression for the velocity of each point
in the continuum which gives rise to the required flux (at a specific time on the path
being given by ®/p(t)), and so we let a,(x) be the position of the point x after unit
time flow along the parametrised velocity field. We shall then find that a}(p,) = p,
as required, and it will remain to check that we have the required smoothness. This
is then shown by the theory of elliptic partial differential equations on manifolds,
completing the proof.

3. Differential equations background

For the proof of Theorem 3, we shall need to use a lemma which relies on the
following theorems from the theory of Green’s functions for the Laplacian on
compact manifolds.

The Laplacian is defined by Af =V, VY, in local coordinates, where V is the
covariant derivative operator on M (with the Riemannian connection).

THEOREM 4. Let M be a smooth, compact, orientable Riemannian manifold. If f is
a smooth function on M, with [ fdV = 0, then there exists u with Au = f. Further, u is
smooth and unique up to a constant.

Proof. See[l, §4.1.2].

THEOREM 5. Let M be a smooth, compact Riemannian manifold. There exists
G: M x M — R such that for ¢ a smooth function on M, we have

$(x) = V(M )“j ¢(y)dV(y)+f G(x,y) Ag(y) dV(y), 3)
G(xjwy) >0 forall Z yeM, @)

J G(x,y)dV(y) = C, a constant < oo, ©)

’ G(x,y) = G(y, x). 6

Proof. See [1, §4.2.3].
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Define
II= {f:M———» R*\{0} smooth with fde = l},

Z= {f:M—» R smooth with fde= 0},
Z = {smooth vector fields on M}.

LEMMA. Given a smooth, compact, orientable Riemannian manifold M, and a
collection n, (Be M) of smoothly parametrised functions in Z (that is, (B, x) > n,(x) is
a smooth map M x M — R), there is a map ©: % — X satisfying

(@) div(®(np) = —1np,

(i) the map (B, x)— ®(n,)(x) is smooth.

Proof. Suppose that U is an open set in R* and 6, (xe U) is a smoothly
parametrised collection of functions in &, then let H(x) be the solution of the
equation AH_ = 6, such that [ H . dV = 0. This exists, by Theorem 4, and is smooth
in x. Then by (3), we see

H(x) = j G(x,7) 6.() V().

We now have to show that the function H(a, x) = H,(x) is smooth. The ith parametric
partial derivative of H is given by

e F03) = i [ 1605,)) )= 6.D V)

i
oo =0

. d

—tim | G ) (5000 + 26,9 V),

t-0JM aa‘

where ¢, is the ith coordinate vector field in U and {(z, x), the remainder term, is
smooth in x, and {(¢, x) » 0 as t = 0, for all xe M. It follows that {(¢, x) — 0 uniformly
on M (by compactness) as ¢t = 0, and hence by (4) and (5), it follows that

)
e H) = [ G 20V

But the ith partial derivative of 8, remains a smoothly parametrised collection of
functions, and the ith partial derivative of H is clearly continuously dependent on «,
and is a smooth function of x by the argument above, so replacing 8, by its partial
derivative in the above procedure shows inductively that H(a, x) depends smoothly on
o and x.

Finally, take a chart (U, y) of M, and use the above, with 8, = —7,-,, to obtain
a smooth H(a,x) such that AH(x) = —n,-,. Then set F(x) = H,,(x) (chart-
independent), and patch these together using the independence, to obtain a smooth
function F: M x M — M such that AFy(x) = —n,(x), and take (in local coordinates)

O(n,)" (x) = V'E(x).
This gives the map @, as required.
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4. Main proof

Proof of Theorem 3. First note that Il is a convex set, and that there is a
canonical map M — I1 given by x— p,, where p, is defined by

PAy) = h(x, ).
Let @ be as defined in the Lemma, then define y,(y, {) by
v(,0)=y forall x,yeM, ™

dy.(5.0) _ D, —py)
dt (l”t)po'f'tpz

(v:(», ).

Write 3, (») = y.(»,1) and, using the Lemma, we see that the vector field above
depends smoothly on the parameters x and ¢, so that we can use the parametrised flow
theorem (see [2, §21.4]) to show that the y, , form a smoothly parametrised collection
of diffeomorphisms. In particular, define smoothly parametrised diffeomorphisms

ez(y) = yz,l(y)' (8)
We shall then show that

L( P9 dV(y) = f P9 V() o)
(A4) A

for Borel sets 4 and xe M. Assuming this for now, we complete the claim by setting

f,(x) = 6.(»),
F ={f,yeM},
m({f,:ye A}) = P(xy, A) for AeQ.
Then we check

P A) = [ VAV = [ V() = Pl 624

o7

= P(xo, {y:0,(n) € A}) = P(xo,{y:f(x) € 4}) = m({f,: f,(x) e 4})

using, for the second equality, (9) and the fact that §, is a homeomorphism. This
statement is then the required condition (1), thus completing the proof subject to the
proof of (9).

To prove (9), note that it is sufficient to prove it for 4 an open set in M
with piecewise smooth boundary. So fix U open in M, take xe M and set p(¢) =
(1—19) p,+tp,. We show that the following equation holds:

%(L'tw)p(t)(y) dV(y)) =0. (10)

Then (9) will follow from (7), (8) and (10).
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Now, set n = p,—p, and X = ®(n) as defined in the Lemma. Using the transport
theorem with mass density (see [3, §8.2.1]), the left-hand side of (10) is equal to

dp(t
J ,:15 ) w+ -gx/o(c)(/’(t) o),
Yz (U)

where %, denotes the Lie derivative along the vector field Z. The integrand is then
equal to

N0+ 0Ly, P10 +p() Ly (@) = noo+— (D) ( %p(t)) oD div (P(lt)) ©

= 1
nw+— 20 ( 3 ‘p(t))+d1v(X)w+X p() wV, ‘ (t)) 0.
This completes the proof.
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