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Abstract

The Multiplicative Ergodic Theorem shows that a real matrix cocycle is block diagonalizable over the
real numbers, given mild hypotheses; that is, the cocycle is cohomologous to one in which the matrices
are supported on blocks corresponding to the Lyapunov exponents. It is shown that it is not always
possible to block triangularize the cocycle, even over the complex numbers.

1 Introduction

The Multiplicative Ergodic Theorem has a rich history of generalizations and variations on a theme; there
are versions of the theorem in many different situations (see Froyland, Lloyd, Quas [3] for a brief survey).
The original proof of the theorem, involving a cocycle into invertible matrices over an invertible ergodic
map, is due to Oseledets [4] (in Russian); an updated proof can be found in Barreira and Pesin [1]. One of
the key steps of part of the proof is to construct a related triangular cocycle over an extended base space,
thereby reducing the computation to the simpler case of triangular cocycles. Other parts of the theorem
are obtained, however, using the original (non-triangularized) cocycle. Therefore, it is natural to ask if in
general, the cocycle may be replaced with a cohomologous triangular cocycle, thus refining the MET and also
simplifying the proof. In this paper, we show that this is not possible. Specifically, we construct an invertible,
measurable cocycle over an invertible, measure-preserving, ergodic base that cannot admit a cohomologous
triangularization.

In Section 2, we detail the setting and formulate the question. In Section 3, we construct a particular
cocycle and prove that it is not cohomologous to a triangular cocycle, in the sense of definition 2.3.

2 Preliminaries

Definition 2.1 (Invertible Matrix Cocycle). Let (X,B, µ, σ) be a dynamical system, where σ is an invertible
measure-preserving transformation, and A0 : X → GLd(R) be measurable. Then we define the cocycle
A : X × Z→ GLd(R) by:

A(x, 1) = A0(x),

A(x, 0) = I,

A(x, n) = A(σn−1(x), 1) · · ·A(σ(x), 1)A(x, 1),

A(x,−n) = A(σ−n(x), 1)−1 · · ·A(σ−1(x), 1)−1,

for all n ∈ Z, n > 0. One easily checks that A(x, n + m) = A(σn(x),m)A(x, n), for all n,m ∈ Z. A0 is
the generator for the cocycle, and we often abuse notation by using the same letter for the cocycle and its
generator.

The MET, in its classical form, yields a measurable equivariant decomposition of Rn. We state an equiv-
alent formulation of the MET, in the case of invertible matrix cocycles, which is about block diagonalization
of the matrices; Theorem 6.3.2 in [1] outlines this statement. Following the theorem, we shall implicitly
assume the existence of the base dynamics over which a cocycle is defined.
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Theorem 2.1 (Equivalent Formulation of MET for Invertible Matrix Cocycles). Let (X,B, µ, σ) be a dy-
namical system, and A : X × Z → GLd(R) be a measurable cocycle. Suppose that σ is ergodic, and that A
satisfies ∫

X

log+(‖A(x, 1)‖) dµ <∞,
∫
X

log+(‖A(x, 1)−1‖) dµ <∞.

Then there exists k ∈ N = {1, 2, . . . }, λ1 > λ2 > · · · > λk ≥ −∞, positive integers m1,m2, . . . ,mk such that
m1 + · · ·+mk = d, a measurable function C : X → GLd(R) , and a σ-invariant set of full measure, X̃ ⊂ X
with the following properties:

1. Equivariance: For all x ∈ X̃, we have that

C(σ(x))−1A(x, 1)C(x)

is block diagonal with block sizes (m1, · · · ,mk);

2. Bilateral Growth: Given x ∈ X̃ and i ∈ {1, . . . , k}, for all non-zero v in the columnspace of the ith
block, we have:

1

n
log(‖A(x, n)v‖) −→

n→∞
λi,

1

n
log(‖A(x, n)v‖) −→

n→−∞
λi.

To see the equivalence between this formulation of the MET and the classical statement of the theorem,
first notice that given the matrices C(x), we may measurably construct the equivariant subspaces by taking
spanR{C(x)eMi+1, . . . , C(x)eMi+mi}, where i = 1, . . . , k and Mi = m1+· · ·+mi−1, with M1 = 0. Conversely,
given the subspaces Vi(x), i = 1, . . . , k in the classical MET, one may measurably choose basis vectors for
each of them; call them vji , for j = 1, . . . ,mi. Then construct the matrix C(x) whose columns are the vji , in
order, to obtain the block diagonalization of A.

Definition 2.2 (Block Diagonalization). We say that a measurable cocycle A(x) can be put into block diag-
onal form if there exists a measurable family of matrices C : X → GLd(R) such that C(σ(x))−1A(x, 1)C(x)
is block diagonal, and satisfying the equivariance and growth conditions as in Theorem 2.1.

Definition 2.3 (Block Upper-Triangularization). We say that a measurable cocycle A(x) can be put into
block upper-triangular form over the field F if there exists a measurable family of matrices C : X → GLd(F)
such that C(σ(x))−1A(x, 1)C(x) is block diagonal, satisfying the equivariance and growth conditions as in
Theorem 2.1, and that each of the blocks is upper-triangular.

Remark 1. We wish to consider trying to block upper-triangularize a cocycle A. We must decide over which
field to do this. Consider the case of a cocycle where the base is the one-point space. Then the cocycle
consists of powers of a single matrix, and we have that the cocycle is block upper-triangularizable if and
only if the matrix is conjugate to a matrix in block upper-triangular form. It is well known that this cannot
always be accomplished over the real numbers; for example, the matrix

A =

[
0 −1
1 0

]
is not conjugate to a real upper-triangular matrix. For this reason, we shall consider performing block
upper-triangularization over C.

Given these definitions, we may now state precisely the question which we wish to ask:
Question: Given a cocycle A satisfying the MET (Theorem 2.1), can we necessarily always block upper-
triangularize A, in the sense of Definition 2.3?

We now proceed to answer this question in the negative, via the following example.

3 A non-triangularizable cocycle

Consider the following invertible matrix cocycle. Let X = [0, 1) be the additive 1-torus, with Borel σ-algebra
and Lebesgue measure λ. Let η ∈ [0, 1) be irrational, and define σ : X → X, σ(x) = x + η. Let α ∈ [0, 1)
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be irrational, and define the cocycle A : X × Z→ GLd(R) by specifying its generator:

A(x, 1) =



[
cos(πα) − sin(πα)

sin(πα) cos(πα)

]
x ∈ [0, 1− η),[

1 0

0 −1

]
x ∈ [1− η, 1).

We shall, in the remainder of the paper, prove the following.

Theorem 3.1. The cocycle A cannot be block upper-triangularized over C.

A is a measurable cocycle of invertible matrices, as its generator A(·, 1) is measurable, and

log(‖A(x, 1)v‖) = 0

for all non-zero v ∈ R2 and x ∈ X, as A(·, 1) is an isometry, thus the integrability condition is satisfied.
Finally, σ is ergodic (see [6, Theorem 1.8]), and therefore the MET applies, so that we obtain a measurable
block diagonalization of the cocycle. Importantly, we see that we can determine in which space a vector
resides by calculating its Lyapunov exponent. Observe that for all x ∈ X, 0 6= v ∈ R2, we have:

1

n
log(‖A(x, n)v‖) =

1

n
log(‖v‖) −→

n→∞
0,

and likewise for n → −∞, since A(x, n) is an isometry for all x and for all n. Therefore, the only possible
Lyapunov exponent is λ1 = 0. This forces the decomposition to be simply V1(x) = V1 = R2. Thus the MET
has told us nothing new about the situation.

Suppose now, for contradiction, that the cocycle A may be upper-triangularized. This implies that
we may find a measurable equivariant family of 1-D complex subspaces of C2. To see this, note that if
C(σ(x))−1A(x, 1)C(x) is upper-triangular, then the family of subspaces V (x) = spanC{C(x)e1}, for e1 =
(1, 0), is equivariant:

A(x, 1)C(x)e1 = C(σ(x))C(σ(x))−1A(x, 1)C(x)e1 = δC(σ(x))e1,

for some non-zero complex number δ, and so A(x, 1)V (x) = V (σ(x)). This property says that the graph of
the function x → V (x) from X to Gr1(C2), as a subset of X × Gr1(C2), is invariant under the action of
σ ×A.

Given a basis {v1, v2} of C2, there is a measurable bijection between the Grassmannian Gr1(C2) (equipped
with Borel subspace σ-algebra) and the extended complex plane C̄ (equipped with the usual σ-algebra), given
by:

spanC{v1 + zv2} ←→ z, spanC{v2} ←→∞.

We therefore consider functions from X into C̄ instead of into the Grassmannian, and moreover we may
choose an appropriate basis, so that the cocycle action is simplified. Observe that by writing sine and cosine
as linear combinations of complex exponentials, we may write, for x ∈ [0, 1− η):

A(x, 1) =

[
cos(πα) − sin(πα)
sin(πα) cos(πα)

]
=
eπiα

2

[
1 i
−i 1

]
+
e−πiα

2

[
1 −i
i 1

]
.

We observe that:

A(x, 1)

(
a

[
1
i

]
+ b

[
1
−i

])
= e−πiαa

[
1
i

]
+ eπiαb

[
1
−i

]
.

Then for x ∈ [1− η, 1), we have

A(x, 1) =

[
1 0
0 −1

]
,

and observe that:

A(x, 1)

(
a

[
1
i

]
+ b

[
1
−i

])
= b

[
1
i

]
+ a

[
1
−i

]
.
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We therefore choose the basis

v1 =

[
1
i

]
, v2 =

[
1
−i

]
.

Define skew product dynamics on the space X ×Gr1(C2) given by (x,W ) 7→ (σ(x), A(x, 1)W ). We write
this map in the previously introduced coordinates, on the space Y = X × C̄. For z ∈ C∗ = C \ {0}:

T (x, z) =

{
(σ(x), e2παiz) x ∈ [0, 1− η),

(σ(x), 1z ) x ∈ [1− η, 1),

while for z = 0 or z =∞, we have:

T (x, 0) =

{
(σ(x), 0) x ∈ [0, 1− η)

(σ(x),∞) x ∈ [1− η, 1)
,

T (x,∞) =

{
(σ(x),∞) x ∈ [0, 1− η)

(σ(x), 0) x ∈ [1− η, 1)
.

For x ∈ [0, 1− η), T rotates the plane (and thus circles centered at the origin, including the points 0 and ∞)
by 2πα, and for x ∈ [1 − η, 1), T performs an inversion, swapping the circles of radius r and radius 1

r and
flipping in the real axis, with 0 corresponding to ∞. T is clearly measurable and invertible.

Now, the function x→ V (x) associated to the one-dimensional equivariant subspaces now gives rise to a
measurable function f : X → C̄ with the property that its graph (as a subset of X × C̄) is T-invariant. We
shall now prove that there is no measurable function f which has a T -invariant graph.

Recall that we defined equivariance, and so invariance of the graph, as an almost everywhere statement.
We obtain a pointwise statement by removing a T -invariant null set from the dynamics space. From the
MET, we obtain a null set of points N in X on which the equivariance condition fails. The union of the
kth images of this null set under the map σ is exactly the collection of orbits of these points, and thus is
the set of points in X for which equivariance fails at some time. The invertibility of σ says that N × C̄ is
a T -invariant set, and it is a null set. In the sequel, we continue to write Y in place of Y \N × C̄, and we
speak only of invariance of the graph.

Consider now the graph of f , which is now pointwise invariant under T . Notice that each orbit of T are
confined to unions of two circles (which may be {0} or {∞}), one outside of the unit circle and one inside,
or to the unit circle itself. Let k : X → R, k(x) = min{|f(x)|, 1

|f(x)|}. We have, by invariance of the graph

under T :

k(σ(x)) = min{|f(σ(x))|, 1

|f(σ(x))|
}

=

{
min{|f(x)e2παi|, 1

|f(x)e2παi|} x ∈ [0, 1− η)

min{| 1
f(x) |,

1
| 1
f(x)
|} x ∈ [1− η, 1)

=

{
min{|f(x)|, 1

|f(x)|} x ∈ [0, 1− η)

min{|f(x)|, 1
|f(x)|} x ∈ [1− η, 1)

= k(x).

Therefore k must be constant almost everywhere with constant r, as σ is ergodic. Then the graph of f is
everywhere contained in the union of the circles with radius r and 1

r , upon removal of a σ-invariant set of
measure zero from X. This may either be two distinct circles, or the unit circle. We shall consider these two
cases separately; each case reduces the above skew product into one on a space which is easier to understand.

3.1 Two Circles

Suppose the graph of f is contained in two circles in C̄. Let Z2 denote the additive group on two elements,
0 and 1. Let E = X × Z2, and consider the measure space (E,B × P(Z2), λ× c), where c is the normalized
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counting measure, so that λ× c is the normalized Haar measure on the group. Define the map

ι : C̄ \ {z : |z| = 1} → Z2,

{
ι(z) = 0 |z| < 1,

ι(z) = 1 |z| > 1, z =∞.

Then we consider dynamics on E given by pushing Y forward to E using ι, so that we get:

T̂ (x, a) =

{
(x+ η, a) x ∈ [0, 1− η),

(x+ η, a+ 1) x ∈ [1− η, 1).

T̂ is only taking into account on which side of the unit circle points lie. It is measure-preserving, as an
invertible piecewise combination of two rotations preserving Haar measure. Define f̂ = ι ◦ f : X → Z2, and
observe that the graph of f̂ is T̂ -invariant. Moreover, f takes value either 0 or 1, for all x, and so the graph
of f has measure 1

2 , as a subset of the space E. We shall show that T̂ is an ergodic map on E, thus arriving
at a contradiction.

We induce on the set F = [1 − η, 1) × Z2. Observe that the rotation angle η is equal to the interval
length, so that the return time is easy to calculate. Note that

∞⋃
n=0

T̂−n(F ) = E,

so that T̂ is ergodic if and only if the induced map T̂F is ergodic with respect to the induced measure. Let
us compute T̂F .

Let k be a positive integer such that kη < 1 < (k + 1)η, and let q = 2− (k + 1)η. Then we see that the
first return time to F , nF (x, a), is given by:

nF (x, a) =

{
k x ∈ [q, 1),

k + 1 x ∈ [1− η, q).

Hence, we obtain the first return map, T̂F :

T̂F (x, a) = T̂nF (x,a)(x, a) =

{
T̂ k(x, a) x ∈ [q, 1)

T̂ k+1(x, a) x ∈ [1− η, q)

=

{
(x+ kη − 1, a+ 1) x ∈ [q, 1)

(x+ (k + 1)η − 1, a+ 1) x ∈ [1− η, q)

We now perform a coordinate change, x 7→ 1−x
η . This flips the interval [1− η, 1) around, and expands it

to the unit interval. Its inverse is x 7→ 1− ηx. Consider the new dynamics on E, denoted R. The Z2 part of
R is simple; observe this coordinate change doesn’t affect what happens in the Z2 component at all, so we
see that a 7→ a+ 1. Now, for the X part of R, the image of q under the coordinate change is

1− (2− (k + 1)η)

η
= 1 + k − 1

η
= 1−

{
1

η

}
.

Denote β =
{

1
η

}
. We thus obtain x 7→ x+ β. Then we have, for y ∈ X, a ∈ Z2:

R(y, a) = (y + β, a+ 1).

Hence R is a rotation in the y coordinate by β, and in the a coordinate by 1.
By [6, Theorem 1.10], we see that R is ergodic if and only if the only character which remains invariant

under some power of R is the trivial character. All characters of X×Z2 are of the form (x, b) 7→ e2πnxi(−1)ab,
where n ∈ Z, and a ∈ Z2; see [2, Chap. II]. Then we have, if some character γ satisfies γ ◦Rm = γ:

γ ◦Rm(x, b) = e2πn(x+mβ)i(−1)a(b+m) = e2πnmηi(−1)ame2πnxi(−1)ab = e2πnxi(−1)ab.

This implies that
1 = e2πnmηi(−1)am.

Because η is irrational, this forces n = 0, and then we must have a = 0 also. Hence γ is the trivial character,
and so R is ergodic on E. We have our desired contradiction.

5



3.2 One Circle

Suppose now that the graph of f is contained inside the unit circle. Then we may consider the restriction of
the dynamics T (which we continue to denote as T ) to the unit circle as its own system, where the unit circle
is endowed with the usual Borel σ-algebra and Lebesgue measure. Denote W = [0, 1)2, which has the usual
two-dimensional σ-algebra and Lebesgue measure. Upon an appropriate scaling of the second coordinate,
we obtain:

T : W →W, T (x, y) =

{
(x+ η, y + α) x ∈ [0, 1− η),

(x+ η, 1− y) x ∈ [1− η, 1).

T is indeed measure-preserving, as it is an invertible piecewise combination of rigid transformations over
Lebesgue measure. We consider the function f to take values now in [0, 1), and we remark that the graph of
f is still invariant under T . We shall show that T is ergodic, but that there exists a non-constant T -invariant
function, which is a contradiction.

Remark 2. If one merely wished to determine if a real cocycle of 2-by-2 matrices, satisfying all of the same
hypotheses as above, was measurably equivariantly block upper-triangularizable over the real numbers, one
would note that Gr1(R2) can be put into correspondence with the interval [0, π) by considering subspace
angle, and thus to [0, 1). The dynamics arising from this construction are exactly the dynamics derived in
the one circle case, for this map. Hence the following proof is exactly what we could do to show that A is
not upper-triangularizable equivariantly over the real numbers. It must be noted that this occurred in this
specific case due to the particular structure of the map T on C̄; the graph of f remained away from 0 and
∞.

Consider the distance on the 1-torus |·|W (e.g. |.1 − .8|W = .3, not .7). Define g(x, y) = |y − f(x)|W .
Then we observe that:

g(T (x, y)) =

{
|y + α− f(x+ η)|W x ∈ [0, 1− η)

|1− y − f(x+ η)|W x ∈ [1− η, 1)

=

{
|y + α− (f(x)− α)|W x ∈ [0, 1− η)

|1− y − (1− f(x))|W x ∈ [1− η, 1)

=

{
|y − f(x)|W x ∈ [0, 1− η)

|f(x)− y|W x ∈ [1− η, 1)

= g(x, y).

So g is T -invariant, but clearly g is not constant. We now show that T is ergodic. Similarly to the first case,
we induce upon the set H = [1− η, 1)× [0, 1), and make the identical coordinate change. First, we have:

TH(x, y) = TnH(x,y)(x, y) =

{
T k(x, y) x ∈ [2− (k + 1)η, 1)

T k+1(x, y) x ∈ [1− η, 2− (k + 1)η)

=

{
(x+ kη − 1, (k − 1)α− y) x ∈ [q, 1)

(x+ (k + 1)η − 1, kα− y) x ∈ [1− η, q)

We then change coordinates the same way as before, letting x 7→ 1−x
η and β =

{
1
η

}
, so that we obtain a

new map on W :

T̃H =

{
(x+ β, (k − 1)α− y) y ∈ [0, 1− β)

(x+ β, kα− y) y ∈ [1− β, 1)
.

Observe that if we computed the second-return map to H or of course, its coordinate-change analogue, we
would eliminate the flip in the second coordinate. Moreover, it is a well-known fact that if a map T is
measure-preserving and T 2 is ergodic, then so too is T . Here, to make the situation simpler, we shall assume
β < 1

2 , so that 0 < 1− 2β < 1− β < 1 and β < 1− β. There are plenty of η for which this is the case (for
example, let η = 1√

2
); the case β > 1

2 leads to the same conclusion, but is notationally more complicated. If
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x ∈ [0, 1 − β), then x + β ∈ [β, 1) = [β, 1 − β) ∪ [1 − β, 1), and if x ∈ [1 − β, 1), then x ∈ [0, β). Thus we
obtain:

(T̃H)2(x, y) =

{
T̃H(x+ β, (k − 1)α− y) x ∈ [0, 1− β)

T̃H(x+ β, kα− y) x ∈ [1− β, 1)

=


(x+ 2β, (k − 1)α− ((k − 1)α− y)) x ∈ [0, 1− 2β)

(x+ 2β, kα− ((k − 1)α− y)) x ∈ [1− 2β, 1− β)

(x+ 2β, (k − 1)α− (kα− y)) x ∈ [1− β, 1)

=


(x+ 2β, y) x ∈ [0, 1− 2β)

(x+ 2β, y + α) x ∈ [1− 2β, 1− β)

(x+ 2β, y − α) x ∈ [1− β, 1)

We induce again, this time on the set J = [1 − 2β, 1) × [0, 1). This works exactly in the same way
as the previous induction, because the rotation is the same length as the interval length. We also make
the appropriate coordinate change, to simplify the situation. Let S be the resulting map on W , and let

ζ =
{

1
2β

}
. Note that ζ is irrational. Observe easily that we obtain:

S(x, y) =

{
(x+ ζ, y + α) x ∈ [0, 12 ),

(x+ ζ, y − α) x ∈ [ 12 , 1).

Summarizing the ergodicity implications tells us that if S is ergodic, then T is ergodic. In order to conclude
the proof, we shall prove the following result, and then utilize a result from the literature.

Proposition 3.2. Suppose σ : [0, 1) → [0, 1) is measure-preserving and ergodic with respect to Lebesgue
measure, and let f : [0, 1) → R be a measurable function, with range f([0, 1)) ⊂ αZ, where α is irrational.
Let [0, 1)2 have the usual Lebesgue product measure and Borel sets, and let Tf : [0, 1)2 → [0, 1)2 be the skew
product extension of σ and f to [0, 1)2, so that:

Tf (x, y) = (σ(x), y + f(x)).

Let T̃f : [0, 1) × αZ → [0, 1) × αZ be the skew product extension of σ and f to [0, 1) × αZ with the product
measure λ× c (Lebesgue and counting, with the discrete σ-algebra for the counting measure), so that:

T̃f (x, nα) = (σ(x), nα+ f(x)).

Then if T̃f is ergodic, then so is Tf .

Proof. Let h : [0, 1)2 → R be a bounded measurable function invariant under Tf , so h ◦ Tf = h. We shall
show that h must be a.e. constant; this implies that Tf is ergodic, by a simple modification of [6, Theorem
1.6]. For y ∈ [0, 1), define the measurable function

πy : [0, 1)× αZ→ [0, 1)2, πy(x, nα) = (x, y + nα).

Then we see that Tf ◦ πy = πy ◦ T̃f . In addition, define h̃y = h ◦ πy, so that h̃y is measurable. Since πy
intertwines the dynamics on the two spaces, we get the following:

h̃y ◦ T̃y = h ◦ πy ◦ T̃f = h ◦ Tf ◦ πy = h ◦ πy = h̃y.

Thus h̃y is invariant under T̃f , and so is constant a.e. with respect to the product measure λ × c, since T̃f
is ergodic.

We wish to use the fact that h̃y is a.e. constant for each y ∈ [0, 1) to show that h is constant a.e. To do
this, we make an intermediate step. Define

I : [0, 1)→ R, I(y) =

∫ 1

0

h(x, y) dx =

∫ 1

0

h̃y(x, 0) dx.
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Because h is bounded, I is not infinite, hence well-defined, and by Fubini’s theorem, I is measurable.
Moreover, we have the following, since h̃y is a.e. constant on [0, 1)× αZ:

I(y + α) =

∫ 1

0

h(x, y + α) dx =

∫ 1

0

h̃y(x, α) dx =

∫ 1

0

h̃y(x, 0) dx

=

∫ 1

0

h(x, y) dx = I(y).

y 7→ y + α is an ergodic map on [0, 1), thus we see that I is a.e. constant on [0, 1); write I(y) = C for
a.e. y ∈ [0, 1). Note that for all y, h̃y is a.e. constant on [0, 1) × αZ, so we see that for a.e. x ∈ [0, 1),

h̃y(x, 0) = I(y). Denote YG = {y ∈ [0, 1) : I(y) = C}; this set has full measure in [0, 1). If y ∈ YG, then

for a.e. x, h(x, y) = h̃y(x, 0) = C. Applying Fubini’s Theorem yields the final statement: h = C almost
everywhere. Hence T is ergodic.

To conclude the proof, we utilize the following proposition:

Proposition 3.3 (Schmidt, [5]). Consider the space [0, 1) × αZ as defined above. Define the map S̃ on
[0, 1)× αZ by

S̃(x, nα) =

{
(x+ ζ, (n+ 1)α) x ∈ [0, 12 ),

(x+ ζ, (n− 1)α) x ∈ [ 12 , 1).

Then S̃ is an ergodic measure-preserving transformation.

Proof. The result follows from Theorem 3.9, Corollary 5.4, and Theorem 12.8 of [5], upon the relabelling of
Z to αZ.

Observe that S̃ and S are related in exactly the manner outlined in Proposition 3.2, and Proposition
3.3 states that S̃ is ergodic. Therefore, we see that the map T is ergodic, which means we’ve arrived at a
contradiction.

We see that f cannot exist as assumed. This means that we’ve achieved the negative answer to our
original question: in this situation, it is impossible for there to be an equivariant family of 1-D complex
subspaces for our matrix cocycle A, and so there is no block upper-triangularization of the matrix cocycle
A.
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