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Abstract

In this paper, we establish conditions for a continuous family of circle maps to
have a continuous family of invariant measures in the appropriate topologies, and
demonstrate the necessity of some of the conditions.

1. Background

We reserve the symbol IT for the projection IRH***?1 given by x^-exp (2nix). We will
denote in the usual way intervals on the circle (for example the interval [a, b] is the
closed interval starting at a and going anticlockwise around to b). By a circle map,
we will always mean an orientation-preserving homeomorphism T:S1->-S1. For a
detailed introduction to the theory of circle maps, the reader is referred to [2], §3-3.
The main results, however, are summarized below for convenience. The dynamical
behaviour of circle maps is very well understood, and may be principally
characterized by the rotation number of the map. This is a measure of the 'average
rotation' that the map imparts to a point. To define the rotation number of an
orientation-preserving homeomorphism T'.S1 -+S1, we first need its lift F: U. -»• [R. The
lift of any continuous map <f> of the circle (not necessarily a circle map) is a continuous
map denned by the equation noF = <p on. This is uniquely defined up to an additive
integer constant. The degree of the map <j> is given by F(x+1)—F(x). This is always
an integer and is independent of the point xeU and the lift chosen. In the case of a
circle map, the degree is always 1. The rotation number of the circle map T is then
given by

Fn(x)-x
p(T) = lira

n

where F is a lift of T. The rotation number may be shown to be independent of the
point xeU chosen in the definition, and is unique for a map T up to an additive
integer constant (depending on the particular lift chosen to represent T). The notion
of a circle map with rational rotation number is therefore well-defined since this
property does not depend on the lift chosen. It can be shown that if a circle map has
a periodic orbit of some given period, then all periodic orbits of the circle map have
the same period. It may also be shown that a circle map has rational rotation number
with denominator q say (with the fraction expressed in its lowest terms), if and only
if it has periodic points of period q. Further, if this is the case, then each point
converges monotonically to a periodic orbit under iteration of the map. From this,
it follows that a circle map with irrational rotation number has no periodic orbits.
Here, the dynamics are also well-understood: each point has the same w-limit point
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Fig. 1. Possible configuration of intervals about a fixed point.

set and this set is either a Cantor set, or the whole circle. In the former case, the map
is semi-conjugate to a rotation through 2n times the rotation number, and in the latter
case, the map is conjugate to a rotation through 2n times the rotation number. It may
be shown by elementary means that the map taking a circle map to its rotation
number is continuous with respect to the C°-topology on the space of circle maps; see
for example [2], §3-3, theorem 2.

This paper was motivated by the problem of finding an alternative proof of this
fact, but the conditions needed for the results below to work are in fact stronger than
necessary for the proof of this fact alone. The idea is roughly as follows. The rotation
number is numerically equal to the rotation amount at each point integrated with
respect to an invariant measure for the circle map in question, so proving that the
invariant measures for a family of maps vary weak*-continuously with respect to a
parameter gives an alternative proof that the rotation number varies continuously
with the C°-topology on circle maps.

In the statement of the theorem, we will need some definitions. We say that a
family (Ta)aeJ of circle maps with J a compact subinterval of U is a continuous family
of circle maps if the map T:JxS1^-8l; (a, £)>->• 7 (̂£) is continuous.

Given a circle map T with rotation number p/q, let S be the lift of Tq fixing the
preimages of the periodic points. Define u(x) = S(x) — x. Note that u satisfies the
equation u(x) = u(x+1), since the degree of T" is 1. The function v.S'-^IR;
£M-I<(77'~1(£)) is then well-defined. Note that the zeros of v are precisely the periodic
points of the map T. Then given a periodic point £, there may be a neighbourhood of £
on which v takes the value 0 only at £ itself. If such a neighbourhood exists, we say the
periodic point is of definite type, and conversely, if no such neighbourhood exists, we
say the periodic point is of indefinite type. If the periodic point is of definite type,
it follows that there is an open interval I1 clockwise from £ with £ as an endpoint
on which the sign of v is constant, and a similar interval I2 anticlockwise from £
(Figure 1).

We say that £ is of type + + , H—, —h or according to the sign of v on these
two intervals. A hyperbolic periodic point is one of type H— or —I- (these are stable
and unstable respectively). The types + + and of periodic point are non-
hyperbolic and have stability on one side only. We call a map with non-hyperbolic
periodic points (or sometimes its parameter value) critical. Note that if a point on an
orbit is of a particular type, then all the points of the orbit are of that type (this arises
since the maps are orientation-preserving homeomorphisms), so that it makes sense
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Fig. 2. Lift of an iterate of a circle map showing the types of periodic point.

to say that an orbit is of a specific type, or in particular hyperbolic, or non-hyperbolic
(Figure 2).

We are now ready to state the theorem:

THEOREM. Suppose that (Ta)aeJ is a continuous family of circle maps such that (i)/or
each non-trivial interval K on which the rotation number has a constant rational value,
there are at most finitely many values of a in K with Ta critical, and (ii) for each aeJ,
Ta has either a hyperbolic periodic orbit, or has a single periodic orbit which is non-
hyperbolic. Then there is a weak*-continuously varying family of probability measures
/ia such that /ia is an invariant measure for Ta (that is, such that /^(T"1^)) = (ia{B) for
all Borel sets B).

Part of this theorem was previously known to Herman. In particular, Herman
showed that the map taking a circle map with irrational rotation number to its
unique invariant probability measure is weak*-continuous on the sets Fp, the
collection of circle maps with rotation number equal to p (irrational). He in fact
shows (see [3], proposition X-6-1) that the (semi-)conjugacy h conjugating a circle
map / to the rotation by p depends weak*-continuously on/. But then the invariant
measure is given by /i(A) = X(h(A)), so this implies that the invariant measure /i
associated with/depends weak*-continuously o n / a s stated above when considered
as a map from F to the probability measures. In the course of the proof below, we
will in fact show that the map taking a uniquely ergodic circle map (that is, one with
a unique invariant Borel probability measure) to its unique invariant Borel
probability measure is continuous (that is, for uniquely ergodic maps, the conditions
(i) and (ii) of the theorem above are unnecessary).

2. Two examples showing necessity of some conditions

Before embarking on a proof of the theorem, we first present two examples to show
that some restrictions are necessary for the conclusion of the theorem to hold. In
particular, we exhibit families which fail to satisfy condition (ii) for which the
conclusion fails. It seems likely that condition (i) is unnecessary for the conclusion of
the theorem to hold, although any significant relaxation of this condition will
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a<0 a=0 a>0
Fig. 3. A family for which the conclusion of the Theorem fails.

Fig. 4. 'Speed Function' for counter-example of Section 2.

necessarily make the construction of the invariant measures much harder than the
one given in this proof.

The first example for which the conclusion fails is illustrated graphically in Figure 3.
The process which takes place is that a pair of fixed points vanish simultaneously
with the birth of a second pair of fixed points. The limits from the two sides in
parameter space of the invariant measures are concentrated on the dying pair
(respectively new pair) for parameter values lower than (respectively greater than)
the critical value (see Lemma 1).

This example shows that even in the one-dimensional case there exist examples for
which the generalized version of this theorem fails. The reliance of the proof on
properties of circle maps suggests that this would fail more spectacularly in higher
dimensions.

The next example, which is more complicated, shows that the conclusion of the
theorem need not hold even if the condition only fails on the boundary of a
component on which the rotation number is constant. To write down the example,
we regard the circle as the interval [0,1) mod 1. The maps which we consider are then
of the form Tx = x + v(x) mod 1. The form of the functions v which we are considering
is shown above in Figure 4. The function v depends on the parameters e and rj. It is
clear that if e and t] are allowed to vary continuously with respect to some parameter
a say, then the family of circle maps given by Ta(x) = x + vjoc) is in fact a continuous
family of circle maps. The family va is given explicitly by the expression

{V(OL)+4(1-V(OL))\X-I\ (xe&l)).

We then consider a family with the properties that e(a) -> 0 and i)(a) -* 0 as a -> a0,
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and investigate the limit of the invariant measures of the maps T a a s a ^ a 0 and in
particular show that the limit exists if and only if log e/log if has a well-defined limit.
In this case the limit is a measure ji concentrated at the points \ and f with

It is clear that there exist examples of continuous functions e(a) and t](a.) with the
property that e(a) -> 0 and rj{a) - > 0 a s a ^ a o with e(a) > 0 and ^(a) > 0 for all a < a0

such that the limit of log e/log y fails to exist a s a ^ a 0 . The particular point of interest
in this result is then that if condition (ii) of the theorem fails even on the boundary of
a region where the rotation number is a constant rational, then the conclusion of the
theorem can fail to hold. It is therefore the case that the natural weakening of
condition (ii) which only applies at the interior points of the intervals on which the
rotation number is a constant rational is insufficient to prove the theorem.

It is a well-known fact of ergodic theory that each circle map Ta has some invariant
Borel probability measure /ia say (see [4], corollary 6-9-l). To evaluate the limiting
measure /i described above, we take a small set containing f, say A = [| — 8, \ + 8), and
one containing f, say B = [§ — 8,j + 8), and estimate /ia(A) and /ia(B) for a-s-a0. To
do this, we note that if it takes between n and n+l steps 'for a point to go all
the way round the circle' (that is, if 0 < T%+1(0) < Ta(0) and this is the first
such n), and if it takes between m and m +1 steps for a point to go through A (that is,
if T™+1(1~8) ^1+8 and this is the smallest such ra), then

J n
' 4-0

This follows by invariance of the measure. But for each point we have

from which it follows that \/ia(A) — m/n\ < 1/n. There is of course a similar result for
/ta(.B). If we then show that the amount of steps in each cycle spent outside sets A and
B is bounded above by some constant, then it is clear that we can evaluate the limit
of /ta({j}) as a^-a0, by estimating the values of m and n, since these tend to oo
as a->a0. The only calculation which we need to perform is to solve a recurrence
relation to estimate the time spent in certain sets of a very simple form. Suppose then
we are considering a set C of the form [0,a) and the 'speed' function is given
by v(x) = c— (c — b)x/a where c — b<a, and we have T(x) = x + v(x); then the
recurrence relation is xn+1 = c+( l — (c — b)/a)xn. Let p = l — (c — b)/a. Then we are
solving xn+1 = c + pxn. The solutions are xn = c/(l— p)+Apn. By substituting
the initial conditions, we see that in fajt xn = c(l— pn)/(l— p). The number of steps
thus spent in the set C is thus the rounded-up value of

log ( l - ( l -p )a / c ) / l ogp = (logfc/c)/logp.

We can now apply this to the collection of circle maps described above. The first
thing to show is that the amount of steps per cycle spent outside the sets A and B
is bounded above by a constant as e and 7/ tend to 0. To show this, we note the
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symmetry of the situation: the steps taken to get from 0 to \ — S is the same as the
number of steps taken to get from \-\-S to \. This number is given by the round-up
of (Iog8.w(j — £))/log(§ + 4e). This is bounded above by log (4£)/log(§) provided that
e < j ^ , so we see that the number of steps spent outside A and B is bounded
above by 4 log (4#)/log (f) provided that e, y < j$. The number of steps in A is given by
— 2 log e/log (| -I- 4e) plus a term which is bounded, and similarly the number of steps in
B is given by — 21og^/log(| + 47/) plus a bounded term. Set m = — 2 log e/log (| + 4e)
and p = —21og7;/log (| + 4v). Then given a constant <x > 0, there exists a T such that
ife, v < T, we get \/ioc(A) — m/(m+p)\ < cr and \/ia(B)—p/(m+p)\ < <r. By elementary
analysis, we see that the assertion of equation (1) is now proved, and thus the
example is complete.

3. Proof of the Theorem

A useful lemma is the following:

LEMMA 1. The invariant Borel probability measures for a circle map T with rational
rotation number p/q are precisely those measures which can be expressed in the form

where v is a probability measure concentrated on the fixed points of Tq.

Proof of Lemma 1. Certainly any Borel probability measure of the form described
is invariant for the circle map in question. Conversely, in the preliminary discussion,
it was noted that if the rotation number of a circle map is rational, then each point
of the circle converges monotonically under iteration of the map to a periodic orbit.
From this, it follows that the only non-wandering points of the map are the periodic
points. There is then a standard theorem telling us the non-wandering set has full
measure (that is, measure 1) with respect to any invariant Borel probability measure
(see [4], theorem 6-15). The remainder of the proof follows easily from the invariance
of the measure.

LEMMA 2. Suppose that (Tx)aeJ is a continuous family of circle maps such that T^ has
a hyperbolic periodic orbit of period q through a point E.eS1. Then for each neighbourhood
M of E,, there exists a neighbourhood N of <x0 such that iffieN, then Tp has a periodic point
of period q in M.

Proof. Suppose that we are given a neighbourhood M of £. There must then exist
a closed subinterval / of M with the property that 7«o(/) <= Int (/) or T9

ao(Int (/))=>/
according to whether £ is stable or unstable. But then for any T which is sufficiently
close to Ta , the appropriate containment property persists (Tq(I) c Int (/) or
^ ( I n t (/)) => /respectively). But then it follows by the fixed point theorem of Brouwer
that T has a periodic point of period q in Int (/).

We now proceed to the proof of the main theorem.

Proof of Theorem. Set C = Cl ({a 6 J:p(TJ£Q}). We will show that for those values
of a in C, the map Ta is uniquely ergodic (that is, there is exactly one invariant Borel
probability measure for Ta). The proof divides into two cases: p(Ta) irrational and p(TJ
rational.
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The case where p(^) is irrational is a standard ergodic theorem and is shown in [4],
theorem 6-18.

If Ta has a hyperbolic periodic point, of period q, say, then by Lemma 2, there is
a neighbourhood of parameter values about a such that for maps in the
neighbourhood there is a periodic point, and hence the rotation number is rational
on a whole neighbourhood of parameter values about a. In particular, a£C.

It therefore follows that iia.eC, but p(TJ is rational, then Ta has no hyperbolic
periodic points, and therefore, since we know by the rotation number charac-
terization that Ta does indeed have periodic points, we see that Ta has only
non-hyperbolic periodic points. It then follows by hypothesis (ii) of the Theorem that
Ta has a unique periodic orbit. By Lemma 1, we see that there is a unique invariant
probability measure. We are now in a position to describe the invariant measure for
Ta for oceC. Let Q. be the Borel <r-algebra of S1. Given /eC(»S1), and a Borel
probability measure /*, define

) ( ) (2)

Elementary integration shows that ffd/i™ = j F^n) d/i.
Then for a uniquely ergodic map Ta, the sequence of functions (^n))neN is known

to converge uniformly to a constant (see [4], theorem 6-19), so it follows that
(J/d/4B>)n6iM is a convergent sequence (to this same constant). It follows (by the
Riesz Representation Theorem - see [4], theorem 6-3), that the sequence of measures
/4B) is weak*-convergent. Let fia be the weak*-limit of this sequence. This is clearly
^-invariant, and independent of the original probability measure /i, so we have for
all aeC and for all Borel probability measures /i,

fia= l\m V s V o T V ) . (3)

We proceed by denning fta for aeJ\C. First, we consider the structure of the set
J\C. Now J\C is an open subset of J, and as such consists of a countable disjoint
union of open subintervals of J, say JltJ2,J3 Now fix such an open interval J(.
Unless Jt is one of the end intervals, J( is open in IR, so we write Jt = (a^,/^). In this
case, T and T^ are uniquely ergodic, so the invariant measures are determined at the
end-points of the interval. If Jt is one of the end intervals, then we just have that it
is closed at one end or the other. Now set Kt = \ai,p^\. The idea behind the
construction is as follows. Plotting the periodic points of Ta against a gives a graph
similar to Figure 5. The invariant measure, being concentrated on the periodic points,
must be chosen to be a superposition of ^-measures, moving along the periodic point
curves. Since these curves can terminate, it may be necessary to transfer to a new
periodic curve. This must also be done continuously, so in the construction, one curve
is being phased in on some transitional region of parameter space, while another
curve is being phased out.

The arguments used below will be familiar to many, but for completeness, a
detailed construction of a continuous choice of invariant measure on the interval K(

follows.
We construct an open cover for Kt. Suppose the rotation number of the maps with

parameters in Kt is p/q. This may be assumed by the continuity of p. Then let Sa be
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Parameter
Fig. 5. Typical diagram of periodic points against parameter.

a lift of Tq
a fixing the preimages (under IT) of the periodic points, and set ua(x) =

Sa(x) — x. Then we see easily that the maps (a, x) H* Sa(x) and (a, x) K> ua(x) are
continuous maps Kt x M -> IR. Given oceKt, we seek a connected open neighbourhood
Na containing a, and a continuous map <f>a: Cl (Na) -> IR taking each parameter value
to a fixed point of S for that parameter value that is such that Sp(<j)a(fl)) = <j>a{fi)-

If the periodic points of Ta are all non-hyperbolic, choose £ to be any periodic point
of Ta. If however, Ta has a hyperbolic orbit, choose £ to be a hyperbolic periodic point
of Ta. Then there is a neighbourhood of £ in which there are no other periodic points
of Ta. Let x b e a preimage (under n) of g. There is then a neighbourhood of x which
contains no fixed points of Sa. Choose T small such that [X — T, X + T] is in this
neighbourhood. Then set e = min (\ua{x — T)\, \ua(x + T)\). Then by continuity of u,
there exists a St > 0 such that |/?—a\ < St implies that Up =t= 0 at X — T and X + T. We
know also that there are finitely many values of/? in the above neighbourhood with
Tp critical, so it follows that there is a 8 > 0 such that 0 < |/?—a\ < S implies that
Up =J= 0 at X — T and X + T, and that Tp has no non-hyperbolic periodic points (note
that there may be a non-hyperbolic orbit at a itself, but if so, it either lies outside
n([x — T,x + r]), or there are no hyperbolic periodic points for Ta).

We then define Na = {/?: \a — f}\ < 8} nKt and we define <f>a on this reduced interval
by the equation

<j>a(/3) = supfyeDc-T.z + T]:^*/) = 0}.

We claim that <j>a is continuous. If (j>a is not continuous, there exists a sequence (fii)ie^
of points in Na tending to some fieNa such that 0a(/^) fails to converge to <f>a(ft)- By
passing to a subsequence, we may assume that the <j>a(Pj) converge to some other
value. But if (j>a{fi) is smaller than this limit, then we get a contradiction by noting
that Up(\im<f>Jfi})) = 0, so that <fia(ft) was not in fact the supremum of those fixed
points in the range of interest. Conversely, if <fia(fi) is greater than the limit, then Tp
certainly has at least two periodic orbits in [X — T, X + T], and so by construction we
see that Tp has no non-hyperbolic points. It follows that the periodic orbit through
7r(0a(/?)) is hyperbolic, and, therefore, that there exist periodic points arbitrarily close
to this one for all Tp, with /?' sufficiently close to /?, by Lemma 2. This then gives the
required contradiction, since it shows that we should have had a larger value for
<pa{Pj) for large j . We have therefore established as required that for each aeKt, there
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a \ a2

Fig. 6. Possible arrangement of chosen periodic points.

exists a neighbourhood JVa in Kt, containing the point a, and a continuous function
<f>a defined on Na, such tha t (j>a(P) is a fixed point of Sp, where defined. By reducing
each Na, we may further assume that <pa is continuous on the closure of Na, that the
only neighbourhood containing at is Na( and the only neighbourhood containing /?4 is
Np.. We then have found an open cover of Kt, and so may apply compactness of Ki

to pick out a finite subcover. Note that by construction Na( and Nfii must be in the
subcover. We may assume tha t this subcover is minimal by inclusion (that is, that
there is no smaller subcover, each of whose sets is a member of our chosen subcover).
We label the sets in the open cover in the order of the left-most point from left to
right as NltN2,.. .,Nk, and write N} = (ajt b}) for 1 <j<k;Nl = [al t 6j); Nk = (ak, bk],
where we have taken bk = f$t and ax = at. Let (p} be the 0 function associated to the
interval N4. We then have

bk_1

by the minimality of the cover. To see this, note that clearly the sequence of a's is
increasing by construction. The sequence of 6's must also be increasing, since
otherwise one of the intervals is completely contained in another. We need that
Nj U Nj+2 43 N}+1 giving the condition tha t bj < aj+2, and the condition aj+1 < b} arises
from the requirement that the collection be a cover.

In Figure 6, an example of such a configuration is shown. We are then in a position
to construct the invariant measures for the Ta with aeKt. Define

y , =

(a,e[b},aj+2\)

where 8g is the ^-measure with unit mass concentrated at £. Given a continuous
function

K (^(^+i(a))) (a e [bp aj+2]).

Continuity is clear everywhere except at the a} and b}, and this can be checked by
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comparing the expressions and using the fact that the (f> functions were chosen to be
continuous on the closures of the interval. We can then see that va is a continuous
family of probability measures concentrated on periodic points of Ta, so that forming

1 0-1

1 i-o

gives a continuous family of measures with the measure concentrated on periodic
orbits, and with the same value for each point of the orbit, so by Lemma 1, a
continuous family of invariant measures on Kt. Notice that by the construction, since
we forced JVX = Na( and Nk = Nfi(, the limit of the measures as they approach the end-
points is just the required measure in the case that the map at the end-point is
uniquely ergodic.

Repeating this process inductively, we will be able to define a family of invariant
Borel probability measures, one measure for each parameter in the set J\C, and so
since we have already determined the uniqueness of invariant probability measures
for parameter values in C, we have defined the whole family of invariant measures
with parameters in J. The family thus constructed has already been shown to be
continuous on all intervals contained in J\C, and therefore, since J\C is an open set,
it follows that the map M:ai->jj,a defined on J is continuous at points of J\C. It
remains therefore to show that this map is also continuous at points of C.

Now fix aeC. To show continuity of the family at a, we need to show that we can
bound | ffd/i^ — jfd/i^ to be as small as we like by restricting /? to lie near a for a fixed
/eC^S1). We proceed by estimating \jfd/ia — ffdji^. Note that by the 2^-invariance
of jip, we have \fdfi^ = jF^n)d/i^ for all wef^l. Also, by (3), we see that jfd/ia =

p. We therefore have

so that a bound on \F^n)(x) —F^l)(x) | for each xeS1 and for each n in some increasing
sequence of natural numbers gives rise to a bound on

LEMMA 3. Suppose that we are given a parameter value a, an increasing sequence (qn)
of natural numbers and an algebra IF of continuous functions on S1 with the following
properties: (i) Tx is uniquely ergodic; (ii) qn = rnqn_x + snqn_2 with rn and sn non-
negative integers; (iii) J5" contains the constant functions and separates points of S1 (that
is, given two distinct points x,y of S1, there exists fe^ such that fix) #/(?/)); (iv) for
eachfe^,

S En(f) < co, (4)

where En(f) is defined by the equations

^(nqnlqn_iU) nqn2qn,f)), Bn(f)= sup \F^(x)-F^(y)\. (5)

Then the map M: (5H> /^ is weak*-continuous at the parameter value a.

Proof. Suppose that the conditions of the lemma hold. Then take geCiS1), the
space of continuous functions on the circle, and e > 0. We will show that there exists
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a S > 0 such that if (/?—ot[ < 8, then \ j g d/i^ — j g d/i^\ < e. This will demonstrate the
weak*-continuity of the family of measures as required.

By the Stone-Weierstrass theorem, there exists/e J* such that \g{x) —f(x) | < $E for
each xeS1. We then define F^n) as the usual ergodic sum of/composed with powers
of Ta as in (2). Let qn and Bn(f) be as in the statement of the lemma, and make the
following definitions:

An(f, fi) = sup \Fl*\x) -FjTKx) |, Dn(f, fi) = max A9i(f, fi).

By (2), we see that F^{x)-Ff^\x) is equal to

S (/>*-')(JT?»-a:)-^«->>(!r^—x))
i=0

( - 0

Each of the terms in the sums is of the form F(Jc)(x)—F<f)(y). By the triangle
inequality, we have

This in turn is bounded above by Ak(f,fi)+Bk{f). I t follows that

\Fy{x) -Fjf>.>(x) | < T-^ (AQnJf, fi) +BQnJf)) + S-^(AQnJf, fi) +B,M
In In

This implies that AQn(/,fi) ^I>n-i(f,fi)+En(f), but it is also true that T>n_x{f,fi) ^
Dn-iU>P)+En(f)> s"° since we have DJf.fi) - max (D^if^.A^f.fi)), we get

Dn(f,0)<Dn-i(f,P)+En(f)- l t ; therefore follows that

By hypothesis, the sum on the right is a convergent sum of positive terms asiVn>- co,
so there is an n such that

S
i-n

Now Dn_l (f,fi) is a continuous function of fi taking the value 0 when fi = a, so that
there exists a neighbourhood U of a on which Dn_x{f,fi) takes values less than \ e. But
if fie U, then Dm(f, fi) < f e for each m > n. This implies that | ffdfiu~jfd/ij < | e , so
using the facts that \f(x) — g(x) \ < fefor xeS1 and/^fS1) = fip(Sl) = 1 gives the result
If9d/j,a—fgd/tp\ < e, proving the lemma.

Applying this lemma to points of C will finally complete the proof of the theorem.
Suppose aeC and p(Ta) is irrational. Then the number p = p(Ta) has a unique
continued fraction expansion. (See [1], §6-2 for fuller details.) The convergents to
p are rationals pn/qn consisting of the first n terms of the partial fraction expansion.
These have the property that

1
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This, however is the condition for the Denjoy-Koksma inequality (see [2], §3-4,
lemma 1) to operate. The precise statement of this is that if T is a circle map with
irrational rotation number, the rational p/q is such that \p/q—p(T)\ < \/q2 and

is a function of bounded variation, then

1 i-o

Var(/)

where /i is the invariant Borel probability measure for T and Var (/) is the variation
of the function. It follows that \F£n\x)-F«>»\y)\ < 2 Var (f)/qn for each neN and
XjyeS1. That is, there exists a K such that Bq < K/qn for each n. Notice that by
standard continued fraction theory, qn = anqn-i+qn-2 with an > 0, so the sequence
qn satisfies the conditions of Lemma 3. Take ^ to be any algebra of functions of
bounded variation satisfying the conditions of Lemma 3, say the trigonometric
polynomials. Then calculating En(f) as denned in (5), we get

From this, it follows that the sum in (4) is convergent, since the denominators qn

grow at least as fast as gn where g is the golden ratio, and hence that the map M is
continuous at those values of the parameter a which are in C and have p(Ta)
irrational.

The final part of the proof is then to show that the map M is continuous at the
remaining parameter values (that is, those with aeC and p(Ta) rational). Suppose
then that p(TJ = p/q, say, but that aeC. In this case, we know that the map Ta is
critical with a single periodic orbit which is non-hyperbolic. It follows therefore, that
everything tends under iteration to this periodic orbit.

In this case, we take qn = 2nq (with rn = 2 and sn = 0). This satisfies the conditions
for a sequence in Lemma 3, so now we need to check that there exists an algebra of
3F of functions such that for

0

2 En(f) < oo which is equivalent to 2 B2ng(f) < oo.
n - l ra-1

To do this, pick e^eS1 which is not periodic and set at = Tl
a(a0). Then the sequence

ai+nq tends monotonically to a periodic point as «.->• oo for each value of i. We may
assume without loss of generality that the sequence {ai+nq)n€N moves anticlockwise.
We define

£, = l im anq+j, T} = lim a_ng+j.
n-»oo n->oo

Then we may express S1 as the disjoint union

i e Z

We set

such thatSUChthat
n £eK+(»-i>,.«i+»«) VTO ^ °1

0j

for 1 ̂  j < q
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This may easily be shown to satisfy the conditions of Lemma 3. We then
with constant K and estimate B2»Q(f). Note that

B2nq(f) ^ 2sup Wf
1

and
L 1 k-0 i-0 i-0

Now assume £e[aj+im_1)q,aj+mg). Then Tf+i{Qe[aj+i+im+k_1)g,aj+i+{m+lc)q). In par-
ticular,

-* a (b)e[a(m+fc-l)8+((j+i)mod?)'a(m+*+l)g+((j+i)mod8))>

where (j + i) modq is the representative of the conjugacy class of j + i modulo q in the
range 1 to q. If m + k ^ 0, then

If m + k < 0, then |/(Tf+<(£)) -/(Ti +^ | •

Kq
We see therefore that

Hence

i=0 i-0

i 2"-l

<

k-0 L L k-0

and we conclude that the series 2 B2»g(f) is convergent. Applying Lemma 3 completes
the proof of the theorem.

The author would like to thank Peter Walters for his encouragement with the
problem and advice on the ergodic theory; Colin Sparrow for his general support, and
Sebastian Van Strien for his assistance in attempting to track down similar work and
suggestions of improvements to the content of this paper. For the period of research
leading to this paper, the author was supported by a SERC studentship.

REFERENCES
[1] A BAKER. A Concise Introduction to the Theory of Numbers (Cambridge University Press, 1984).
[2] I. P. CORNFELD, S. V. FOMIN and YA. G. SINAI. Ergodic Theory (Springer-Verlag, 1982).
[3] M. R. HERMAN. Sur la conjugaison differentiable des diffeomorphismes du cercle a des

rotations. Inst. Hautes Etudes Sci. Publ. Math. 49 (1979), 5-233.
[4] P. WALTERS. An Introduction to Ergodic Theory (Springer-Verlag, 1981).

https://doi.org/10.1017/S0305004100075666 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004100075666

