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Abstract

In this paper, we establish conditions for a continuous family of circle maps to
have a continuous family of invariant measures in the appropriate topologies, and
demonstrate the necessity of some of the conditions.

1. Background

We reserve the symbol 7 for the projection R— §* given by z+ exp (2miz). We will
denote in the usual way intervals on the circle (for example the interval [a, b] is the
closed interval starting at e and going anticlockwise around to b). By a circle map,
we will always mean an orientation-preserving homeomorphism 7:8'— 8. For a
detailed introduction to the theory of circle maps, the reader is referred to {2], §3-3.
The main results, however, are summarized below for convenience. The dynamical
behaviour of circle maps is very well understood, and may be principally
characterized by the rotation number of the map. This is a measure of the ‘average
rotation’ that the map imparts to a point. To define the rotation number of an
orientation-preserving homeomorphism 7':8' - 8!, we first need its lift F/: R — R. The
lift of any continuous map ¢ of the circle (not necessarily a circle map) is a continuous
map defined by the equation 7o F = ¢ on. This is uniquely defined up to an additive
integer constant. The degree of the map ¢ is given by F(x+ 1)—F(x). This is always
an integer and is independent of the point € R and the lift chosen. In the case of a
circle map, the degree is always 1. The rotation number of the circle map 7' is then
given by

p(T) = lim =2
n--a n
where F is a lift of 7. The rotation number may be shown to be independent of the
point zeR chosen in the definition, and is unique for a map 7" up to an additive
integer constant (depending on the particular lift chosen to represent 7'). The notion
of a circle map with rational rotation number is therefore well-defined since this
property does not depend on the lift chosen. It can be shown that if a circle map has
a periodic orbit of some given period, then all periodic orbits of the circle map have
the same period. It may also be shown that a circle map has rational rotation number
with denominator ¢ say (with the fraction expressed in its lowest terms), if and only
if it has periodic points of period ¢. Further, if this is the case, then each point
converges monotonically to a periodic orbit under iteration of the map. From this,
it follows that a circle map with irrational rotation number has no periodic orbits.
Here, the dynamics are also well-understood : each point has the same w-limit point
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Fig. 1. Possible configuration of intervals about a fixed point.

set and this set is either a Cantor set, or the whole circle. In the former case, the map
is semi-conjugate to a rotation through 27 times the rotation number, and in the latter
case, the map is conjugate to a rotation through 27 times the rotation number. It may
be shown by elementary means that the map taking a circle map to its rotation
number is continuous with respect to the C'°-topology on the space of circle maps; see
for example [2], §3:3, theorem 2.

This paper was motivated by the problem of finding an alternative proof of this
fact, but the conditions needed for the results below to work are in fact stronger than
necessary for the proof of this fact alone. The idea is roughly as follows. The rotation
number is numerically equal to the rotation amount at each point integrated with
respect to an invariant measure for the circle map in question, so proving that the
invariant measures for a family of maps vary weak*-continuously with respect to a
parameter gives an alternative proof that the rotation number varies continuously
with the C°-topology on circle maps.

In the statement of the theorem, we will need some definitions. We say that a
family (7),., of circle maps with J a compact subinterval of R is a continuous family
of circle maps if the map 7:J x 8' = 8'; (a, &)~ T.(£) is continuous.

Given a circle map 7' with rotation number p/q, let S be the lift of 79 fixing the
preimages of the periodic points. Define u(x) = S(x) —z. Note that u satisfies the
equation u(x) = u(x+1), since the degree of 7% is 1. The function »:8'->R;
Ersu(m1(§)) is then well-defined. Note that the zeros of v are precisely the periodic
points of the map 7". Then given a periodic point £, there may be a neighbourhood of §
on which v takes the value 0 only at £ itself. If such a neighbourhood exists, we say the
periodic point is of definite type, and conversely, if no such neighbourhood exists, we
say the periodic point is of indefinite type. If the periodic point is of definite type,
it follows that there is an open interval I, clockwise from £ with £ as an endpoint
on which the sign of v is constant, and a similar interval I, anticlockwise from £
(Figure 1).

We say that £ is of type + +, + —, — 4+ or — — according to the sign of v on these
two intervals. A hyperbolic periodic point is one of type + — or — + (these are stable
and unstable respectively). The types + 4+ and — — of periodic point are non-
hyperbolic and have stability on one side only. We call a map with non-hyperbolic
periodic points (or sometimes its parameter value) critical. Note that if a point on an
orbit is of a particular type, then all the points of the orbit are of that type (this arises
since the maps are orientation-preserving homeomorphisms), so that it makes sense
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Tig. 2. Lift of an iterate of a circle map showing the types of periodic point.

to say that an orbit is of a specific type, or in particular hyperbolic, or non-hyperbolic
(Figure 2).
We are now ready to state the theorem:

THEOREM. Suppose that (T.),., is a continuous family of circle maps such that (i) for
each non-trivial interval K on which the rotation number has a constant rational value,
there are at most finitely many values of o in K with T, critical, and (ii) for each aed,
T, has either a hyperbolic periodic orbit, or has a single periodic orbit which is non-
hyperbolic. Then there is a weak*-continuously varying family of probability measures
1, such that p, is an invariant measure for T, (that is, such that u (T 7 (B)) = p,(B) for
all Borel sets B).

Part of this theorem was previously known to Herman. In particular, Herman
showed that the map taking a circle map with irrational rotation number to its
unique invariant probability measure is weak*-continuous on the sets F, the
collection of circle maps with rotation number equal to p (irrational). He in fact
shows (see [3], proposition X-6:1) that the (semi-)conjugacy h conjugating a circle
map f to the rotation by p depends weak*-continuously on f. But then the invariant
measure is given by u(4) = A(h(4)), so this implies that the invariant measure p
associated with f depends weak*-continuously on f as stated above when considered
as a map from F, to the probability measures. In the course of the proof below, we
will in fact show that the map taking a uniquely ergodic circle map (that is, one with
a unique invariant Borel probability measure) to its unique invariant Borel
probability measure is continuous (that is, for uniquely ergodic maps, the conditions
(i) and (ii) of the theorem above are unnecessary).

2. Two examples showing necessity of some conditions

Before embarking on a proof of the theorem, we first present two examples to show
that some restrictions are necessary for the conclusion of the theorem to hold. In
particular, we exhibit families which fail to satisfy condition (ii) for which the
conclusion fails. It seems likely that condition (i) is unnecessary for the conclusion of
the theorem to hold, although any significant relaxation of this condition will
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Fig. 3. A family for which the conclusion of the Theorem fails.
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Fig. 4. ‘Speed Function’ for counter-example of Section 2.

necessarily make the construction of the invariant measures much harder than the
one given in this proof.

The first example for which the conclusion fails is illustrated graphically in Figure 3.
The process which takes place is that a pair of fixed points vanish simultaneously
with the birth of a second pair of fixed points. The limits from the two sides in
parameter space of the invariant measures are concentrated on the dying pair
(respectively new pair) for parameter values lower than (respectively greater than)
the critical value (see Lemma 1).

This example shows that even in the one-dimensional case there exist examples for
which the generalized version of this theorem fails. The reliance of the proof on
properties of circle maps suggests that this would fail more spectacularly in higher
dimensions.

The next example, which is more complicated, shows that the conclusion of the
theorem need not hold even if the condition only fails on the boundary of a
component on which the rotation number is constant. To write down the example,
we regard the circle as the interval [0, 1) mod 1. The maps which we consider are then
of the form 7% = x+v(x) mod 1. The form of the functions v which we are considering
is shown above in Figure 4. The function v depends on the parameters € and 7. It is
clear that if € and 7 are allowed to vary continuously with respect to some parameter
a say, then the family of circle maps given by 7.(2) = x +v,(x) is in fact a continuous
family of circle maps. The family v, is given explicitly by the expression

o(z) = {e(a)+4(%—e(a)>lx—%| (xe[0,3))
" 7@) +4G—n@)lz—3 (ze[} 1]

We then consider a family with the properties that e(a) - 0 and g(a) -0 as ¢~ a,,
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and investigate the limit of the invariant measures of the maps 7T, as a -, and in

particular show that the limit exists if and only if loge/log 7 has a well-defined limit.

In this case the limit is a measure u concentrated at the points ; and 2 with
loge(a)

B a1 log ()
P = lim loge(@) +logn@’ W)= hjn log €(a) +log ()’ Y

It is clear that there exist examples of continuous functions €(a) and y(x) with the
property that e(a) >0 and 9(a) -0 as a - o, with e(a) > 0 and () > O for all a < «,
such that the limit of log e/log # fails to exist as & — a¢y. The particular point of interest
in this result is then that if condition (ii) of the theorem fails even on the boundary of
a region where the rotation number is a constant rational, then the conclusion of the
theorem can fail to hold. It is therefore the case that the natural weakening of
condition (ii) which only applies at the interior points of the intervals on which the
rotation number is a constant rational is insufficient to prove the theorem.

It is a well-known fact of ergodic theory that each circle map 7] has some invariant
Borel probability measure p, say (see [4], corollary 6-9-1). To evaluate the limiting
measure g described above, we take a small set containing }, say 4 = [}—4,3+9), and
one containing 2, say B =[3—4,344), and estimate g (4) and g, (B) for a -, To
do this, we note that if it takes between » and n+1 steps ‘for a point to go all
the way round the circle’ (that is, if 0 < 77*(0) < 7,(0) and this is the first
such n), and if it takes between m and m+ 1 steps for a point to go through A (that is,
if T7*Y(2—48) = 1+ and this is the smallest such m), then

n—-1

1 .
#o(A) = fo dy = | = X xa0 T dp,
i=0

This follows by invariance of the measure. But for each point we have

m—1 17"} ) m+1
< - ) € ——,
n n E XAOTa(x) n

i=0

from which it follows that |x,(4) —m/n| € 1/n. There is of course a similar result for
1,(B). If we then show that the amount of steps in each cycle spent outside sets A and
B is bounded above by some constant, then it is clear that we can evaluate the limit
of u,({3}) as a—oa,, by estimating the values of m and =, since these tend to o
as a—>a,. The only calculation which we need to perform is to solve a recurrence
relation to estimate the time spent in certain sets of a very simple form. Suppose then
we are considering a set ' of the form [0,a) and the ‘speed’ function is given
by w(z) =c—(c—b)x/a where c—b < a, and we have T(x) = z+wv(x); then the
recurrence relation is x,,, = ¢+ (1—(c—b})/a)x,. Let p =1—(c—b)/a. Then we are
solving x,,, =c+pz,. The solutions are z, =c¢/(1—p)+A4p". By substituting
the initial conditions, we see that in fa .t x, = ¢(1 —p™)/(1 — p). The number of steps
thus spent in the set C' is thus the rounded-up value of

log (1—(1—p)a/c)/logp = (logb/c)/log p.

We can now apply this to the collection of circle maps described above. The first
thing to show is that the amount of steps per cycle spent outside the sets 4 and B
is bounded above by a constant as ¢ and 7 tend to 0. To show this, we note the
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symmetry of the situation: the steps taken to get from 0 to ;—4 is the same as the
number of steps taken to get from + 0 to i. This number is given by the round-up
of (10g8 v(3—0))/log (3 +4¢). This is bounded above by log (44)/log () provided that
€ < i, so we see that the number of steps spent outside 4 and B is bounded
above by 4log (44)/log (3) provided that €, 7 < . The number of steps in 4 is given by
—2loge/log (3 + 4¢) plus a term which is bounded, and similarly the number of steps in
B is given by ~2log#/log (3+47) plus a bounded term. Set m = —2loge/log (34 4¢)
and p = —2logy/log (:+4%). Then given a constant o > 0, there exists a 7 such that
ife, 5 <7, weget |y, (4d)—m/(m+p)| < oand |u,(B)—p/(m+p)| < o. By elementary
analysis, we see that the assertion of equation (1) is now proved, and thus the
example is complete.

3. Proof of the Theorem

A useful lemma is the following:

LemMma 1. The invariant Borel probability measures for a circle map T with rational
rotation number p/q are precisely those measures which can be expressed in the form

i 7-44),

where v is a probability measure concentrated on the fixed points of 1.

Proof of Lemma 1. Certainly any Borel probability measure of the form described
is invariant for the circle map in question. Conversely, in the preliminary discussion,
it was noted that if the rotation number of a circle map is rational, then each point
of the circle converges monotonically under iteration of the map to a periodic orbit.
From this, it follows that the only non-wandering points of the map are the periodic
points. There is then a standard theorem telling us the non-wandering set has full
measure (that is, measure 1) with respect to any invariant Borel probability measure
(see [4], theorem 6:15). The remainder of the proof follows easily from the invariance
of the measure.

LemMma 2. Suppose that (1)), ; is a continuous family of circle maps such that T, has
a hyperbolic periodic orbit of period q through a point £ S*. Then for each neighbourhood
M of &, there exists a neighbourhood N of oy such that if B€ N, then Ty has a periodic point
of period q in M.

Proof. Suppose that we are given a neighbourhood M of £. There must then exist
a closed subinterval I of M with the property that 72 (I) < Int (I) or T¢ (Int (1)) > [
according to whether £ is stable or unstable. But then for any 7 which is sufficiently
close to T,, the appropriate containment property persists (7'%(I) < Int(l) or
T(Int (I)) o Irespectively). But thenit follows by the fixed point theorem of Brouwer
that 7" has a periodic point of period ¢ in Int ({).

We now proceed to the proof of the main theorem.

Proof of Theorem. Set C = Cl({aeJ :p(7})¢ Q}). We will show that for those values
of o in C, the map T, is uniquely ergodic (that is, there is exactly one invariant Borel
probability measure for 7). The proof divides into two cases: p(T.) irrational and p(7},)
rational.
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The case where p(7}) is irrational is a standard ergodic theorem and is shown in (4],
theorem 6-18.

If T, has a hyperbolic periodic point, of period ¢, say, then by Lemma 2, there is
a neighbourhood of parameter values about o« such that for maps in the
neighbourhood there is a periodic point, and hence the rotation number is rational
on a whole neighbourhood of parameter values about «. In particular, a¢ C.

It therefore follows that if € C, but p(7}) is rational, then 7, has no hyperbolic
periodic points, and therefore, since we know by the rotation number charac-
terization that 7, does indeed have periodic points, we see that 7, has only
non-hyperbolic periodic points. It then follows by hypothesis (ii) of the Theorem that
T, has a unique periodic orbit. By Lemma 1, we see that there is a unique invariant
probability measure. We are now in a position to describe the invariant measure for
T, for aeC. Let Q be the Borel o-algebra of S'. Given fe(C(S'), and a Borel
probability measure u, define

n—1 n-1
Fow = (T A05e). wo®) =1 (S urm) frbea )
7 \i=o  \i=0
Elementary integration shows that [fdu™ = [F™ dyu.

Then for a uniquely ergodic map 7., the sequence of functions (F{™), . is known
to converge uniformly to a constant (see [4], theorem 6-19), so it follows that
([fdul™),cn is a convergent sequence (to this same constant). It follows (by the
Riesz Representation Theorem — see [4], theorem 6-3), that the sequence of measures
u™ is weak*-convergent. Let u, be the weak*-limit of this sequence. This is clearly
T,-invariant, and independent of the original probability measure u, so we have for
all &€ C and for all Borel probability measures g,

1 n—1
po= lim 1S o). ®)
n-oo T\ =0

We proceed by defining u, for a e J\C. First, we consider the structure of the set
J\C. Now J\C is an open subset of J, and as such consists of a countable disjoint
union of open subintervals of J, say J;,J;,J;.... Now fix such an open interval J,.
Unless J; is one of the end intervals, J; is open in R, so we write J; = (,, £;). In this
case, T, and Tj are uniquely ergodic, so the invariant measures are determined at the
end-points of the interval. If J; is one of the end intervals, then we just have that it
is closed at one end or the other. Now set K; = [«;,f;]. The idea behind the
construction is as follows. Plotting the periodic points of 7, against a gives a graph
similar to Figure 5. The invariant measure, being concentrated on the periodic points,
must be chosen to be a superposition of d-measures, moving along the periodic point
curves. Since these curves can terminate, it may be necessary to transfer to a new
periodic curve. This must also be done continuously, so in the construction, one curve
is being phased in on some transitional region of parameter space, while another
curve is being phased out.

The arguments used below will be familiar to many, but for completeness, a
detailed construction of a continuous choice of invariant measure on the interval K,
follows.

We construct an open cover for K,. Suppose the rotation number of the maps with
parameters in K, is p/q. This may be assumed by the continuity of p. Then let S, be
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Fig. 5. Typical diagram of periodic points against parameter.

a lift of T fixing the preimages (under ) of the periodic points, and set u,(x) =
S,(x)—=x. Then we see easily that the maps (o, z)—S () and (a,x)u,(x) are
continuous maps K; x R— R. Given a€eK;, we seek a connected open neighbourhood
N, containing a, and a continuous map ¢,:Cl (¥,) > R taking each parameter value
to a fixed point of § for that parameter value that is such that Sy(¢,(8)) = ¢,(8).

If the periodic points of 7, are all non-hyperbolic, choose £ to be any periodic point
of T,. If however, T} has a hyperbolic orbit, choose £ to be a hyperbolic periodic point
of T,. Then there is a neighbourhood of £ in which there are no other periodic points
of 7,. Let x be a preimage (under 7) of £ There is then a neighbourhood of x which
contains no fixed points of S,. Choose 7 small such that [x—7,2+7] is in this
neighbourhood. Then set ¢ = min (Ju,(x—7)|, |y, (x+7)|). Then by continuity of w,
there exists a §; > 0 such that |f—a| < §, implies that u; + 0 at x—7 and x+7. We
know also that there are finitely many values of £ in the above neighbourhood with
T} critical, so it follows that there is a § > 0 such that 0 <|f—a| < J implies that
uy # 0 at x—7 and xz+7, and that 7, has no non-hyperbolic periodic points (note
that there may be a non-hyperbolic orbit at « itself, but if so, it either lies outside
#([x—7,2+71]), or there are no hyperbolic periodic points for 7)).

We then define N, = {#:|a— | < 8} N K, and we define ¢, on this reduced interval
by the equation

$.(8) = sup{yefz—7,2+1]:u,(y) = 0}.

We claim that ¢, is continuous. If ¢, is not continuous, there exists a sequence (4;);cn
of points in N, tending to some feN, such that ¢,(f4;) fails to converge to ¢,(8). By
passing to a subsequence, we may assume that the ¢,(f;) converge to some other
value. But if ¢,(f) is smaller than this limit, then we get a contradiction by noting
that u,(lim @,(f;)) = 0, so that ¢,(f) was not in fact the supremum of those fixed
points in the range of interest. Conversely, if ¢,(f) is greater than the limit, then 7}
certainly has at least two periodic orbits in [x—7,2+7], and so by construction we
see that 7, has no non-hyperbolic points. It follows that the periodic orbit through
m(¢,(F)) is hyperbolic, and, therefore, that there exist periodic points arbitrarily close
to this one for all 7. with g’ sufficiently close to 8, by Lemma 2. This then gives the
required contradiction, since it shows that we should have had a larger value for
¢.(f;) for large j. We have therefore established as required that for each x € K;, there

https://doi.org/10.1017/50305004100075666 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004100075666

Invariant measures for circle maps 593
1

¢/]_\ %
/"”\
0 ————
a, a; b as b, by

Fig. 6. Possible arrangement of chosen periodic points.

exists a neighbourhood N, in K;, containing the point «, and a continuous function
@, defined on N,, such that ¢,(f) is a fixed point of S;, where defined. By reducing
each N,, we may further assume that ¢, is continuous on the closure of N,, that the
only neighbourhood containing a; is N, and the only neighbourhood containing g, is
Ny, We then have found an open cover of K;, and so may apply compactness of K,
to pick out a finite subcover. Note that by construction N, and N, must be in the
subcover. We may assume that this subcover is minimal by inclusion (that is, that
there is no smaller subcover, each of whose sets is a member of our chosen subcover).
We label the sets in the open cover in the order of the left-most point from left to
right as N}, N,, ..., N,, and write N; = (a;,b;) for 1 <j < k; N, = [a,,b,); Ny = (ay, by],
where we have taken b, = g, and a, = a,. Let ¢, be the ¢ function associated to the
interval ;. We then have

4, <a,<b <ay<b,<a,<...<a,<b,_,<b;

by the minimality of the cover. To see this, note that clearly the sequence of a’s is
increasing by construction. The sequence of b’s must also be increasing, since
otherwise one of the intervals is completely contained in another. We need that
N,UN,,, $ N,,, giving the condition that b, < a,,,, and the condition a,,, < b, arises
from the requirement that the collection be a cover.

In Figure 6, an example of such a configuration is shown. We are then in a position
to construct the invariant measures for the 7, with a € K;. Define

bj—a a—a
8o T L2804 @ (€ €[y, b;])
. = b,—a;,, ($4(a)) b—a,,, @141(@) (@41, 0]
an(¢,“(a)) (xelbs, as,])
where d; is the d-measure with unit mass concentrated at £. Given a continuous
function fe C(8?),
b—a oa—yy,
b— f(”(¢1(a)))+b f(”(¢j+1(a))) (O‘E[ajﬂa bj])
deu = 5 X1 5 @
S (Pi1(2))) (x€[by, asy,))-

Continuity is clear everywhere except at the «, and b;, and this can be checked by
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comparing the expressions and using the fact that the ¢ functions were chosen to be
continuous on the closures of the interval. We can then see that v, is a continuous
family of probability measures concentrated on periodic points of 7, so that forming

19! .

Ko = — Z v, 0 T;t

q =0
gives a continuous family of measures with the measure concentrated on periodic
orbits, and with the same value for each point of the orbit, so by Lemma 1, a
continuous family of invariant measures on K,. Notice that by the construction, since
we forced N, = N, and N, = N, the limit of the measures as they approach the end-
points is just the required measure in the case that the map at the end-point is
uniquely ergodic.

Repeating this process inductively, we will be able to define a family of invariant
Borel probability measures, one measure for each parameter in the set J\C, and so
since we have already determined the uniqueness of invariant probability measures
for parameter values in C, we have defined the whole family of invariant measures
with parameters in J. The family thus constructed has already been shown to be
continuous on all intervals contained in J\C, and therefore, since J\C is an open set,
it follows that the map M:awu, defined on J is continuous at points of J\C. It
remains therefore to show that this map is also continuous at points of C.

Now fix a€C. To show continuity of the family at «, we need to show that we can
bound | [ fdu,— [ fdu, to be as small as we like by restricting /8 to lie near « for a fixed
feC(8"). We proceed by estimating |[fdu,— [ fdu,. Note that by the Tj-invariance
of p,, we have [fdu,= [F{du, for all neN. Also, by (3), we see that [fdu, =
lim [ F{™ du,. We therefore have

[ran=[rauy=tim [ p0 =g

so that a bound on |[F{”(z) — F{"(x)| for each x€S" and for each n in some increasing
sequence of natural numbers gives rise to a bound on | [ fdu,—[fdu,l.

LEMMA 3. Suppose that we are given o parameter value a, an increasing sequence (q,,)
of natural numbers and an algebra F of continuous functions on S* with the following
properties: (i) T, is uniquely ergodic; (i) q, = 7, @u_1+8,qu_s with r, and s, non-
negative integers; (iil) F contains the constant functions and separates points of S* (that
18, given two distinct points x,y of S, there exists fe F such that f(x) + fly)); (iv) for
each fe #,

[o o]
ZE(f)< oo, (4)

n=1
where B, (f) is defined by the equations
1 .
E.(f)=—(r, Qn—qun-l(f)+sn Qn—2‘Bq,.-2(f)): B,(f)= sup [FP(@)—FP(y)l. (5)
qn z,yes’
Then the map M: > p, is weak™-continuous at the parameter value a.

Proof. Suppose that the conditions of the lemma hold. Then take ge C(S'), the
space of continuous functions on the circle, and € > 0. We will show that there exists
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a ¢ > 0 such that if [f—af < 8, then ([gdp,—[gdu,| < e. This will demonstrate the
weak *-continuity of the family of measures as required.

By the Stone~Weierstrass theorem, there exists fe # such that |g(x)—f(z)| < 1€ for
each x€S!. We then define F™ as the usual ergodic sum of f composed with powers
of T, as in (2). Let q,, and B, (f) be as in the statement of the lemma, and make the
following definitions:

4,(f B) = sup PP @)= FP(@)], D,(f.8) = max A,(f.A).
xesS 1<i<n

By (2), we see that F{(x)—F () is equal to

=1
In- Z (F @) (T2 ) — — F {n= (i1 )

n  i=0

q "Z F(qn 2) Trnqn 1HiQ,— 2x) Flgqn—z)(Tznqn—l""iqn-—zx))‘

n im0

Each of the terms in the sums is of the form F{¥(z)—F{"(y). By the triangle
inequality, we have

FEe) — FP@) < [FO (@)~ FO )| + IO )~ FP()]
This in turn is bounded above by A4,(f, 8) +B,(f). It follows that

[P ()~ F @ ()] < T—"—qg":-l-(Aq,,‘,(f,ﬂ)+Bqn_,(f))+ ;’ 24, (f.B)+B,, ().

This implies that 4, (f, ) < D,_(f.8)+E,(f), but it is also true that D,_,(f, B) <

D, ([, B)+E,(f), so since we have D,(f, ) =max (D, (f,5).4,,(f8), we get
D, (f.0) <D, (f.0)+E,(f) It therefore follows that

N
Dy(f: B) S Dy (. B+ 2 Ei( f)-
t=n

By hypothesis, the sum on the right is a convergent sum of positive terms as N+ co,
so there is an » such that

2B (f) <ie

i=n
Now D, _,(f, p) is a continuous function of f taking the value 0 when g = «, so that
there exists a neighbourhood U of a on which D,,_,(f, f) takes values less than ;¢. But
if fe U, then D, (f, B) < }e for each m > n. This implies that | [ fdu,~ [ fdu,l < je, s0
using the facts that | f(x) —g(x)| < jefor xe S and p,(S') = uy(S') = 1 gives the result
|[gdpu,—[gdus < e, proving the lemma.

Applying this lemma to points of € will finally complete the proof of the theorem.
Suppose aeC and p(7) is irrational. Then the number p = p(7,) has a unique
continued fraction expansion. (See [1], §6-2 for fuller details.) The convergents to
p are rationals p,/q, consisting of the first n terms of the partial fraction expansion.
These have the property that
1

< —
qn qn+1 qn

Pa
Tn

_pl<
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This, however is the condition for the Denjoy-Koksma inequality (see [2], §3+4,
lemma 1) to operate. The precise statement of this is that if 7" is a circle map with
irrational rotation number, the rational p/q is such that |p/q—p(T)| < 1/¢* and
feC(S") is a function of bounded variation, then

\1 qilﬂfo)—ffdu’ < Yar(/)
q =0 q

where u is the invariant Borel probability measure for 7" and Var (f) is the variation
of the function. It follows that |[F{9(x)—F %% (y)| < 2 Var (f)/q, for each neN and
x,ye8*. That is, there exists a K such that B, < K/q, for each n. Notice that by
standard continued fraction theory, ¢, = @, ¢,_, +¢,-, With a, > 0, so the sequence
q, satisfies the conditions of Lemma 3. Take & to be any algebra of functions of
bounded variation satisfying the conditions of Lemma 3, say the trigonometric
polynomials. Then calculating E,(f) as defined in (5), we get

1( K K) K r,+5, < K

— N\ Ty —— + 8,0 — .
g, \ """ IQn—l nin=e n—2 7nQn—1+SnQn—2\Qn—2

E,(f) <

From this, it follows that the sum in (4) is convergent, since the denominators g,
grow at least as fast as g” where g is the golden ratio, and hence that the map M is
continuous at those values of the parameter a which are in C and have p(T))
irrational.

The final part of the proof is then to show that the map M is continuous at the
remaining parameter values (that is, those with «e (' and p(7},) rational). Suppose
then that p(1)) = p/q, say, but that aeC. In this case, we know that the map 7, is
critical with a single periodic orbit which is non-hyperbolic. It follows therefore, that
everything tends under iteration to this periodic orbit.

In this case, we take q,, = 2"¢q (withr, = 2 and s,, = 0). This satisfies the conditions
for a sequence in Lemma 3, so now we need to check that there exists an algebra of
& of functions such that for each fe#,

= o] oo

> E,(f) <oo whichis equivalent to 3 Bys,(f) < 0.

n=1 n=1
To do this, pick a,€8! which is not periodic and set a; = T".(a,). Then the sequence
@, tends monotonically to a periodic point as n— o0 for each value of i. We may
assume without loss of generality that the sequence (a,,,,),.n moves anticlockwise.
We define

§i=lima,,;, 7,=Ilma_,.;

n—>oo n->0

Then we may express S' as the disjoint union

St=U (@ @i4q) Ui 1<i< g
ieZ

We set

T — 1y. |f(§)—f(£j)| <K/2" ge[a’j+(n—-1)q7aj+nq) Vn >
# ={ec: 3K s thas [If(éf)—f(n)l <K/2" L€ty nptynrg) Y30

forlSqu}.
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This may easily be shown to satisfy the conditions of Lemma 3. We then take fe #
with constant K and estimate B, ,(f). Note that

Byng(f) < 2sup |[FE () —FE"9(£))|

Les?
n n [ Lt
and [FEO—FEP(E)] < g 2| ZATEHE Zf€
k=0 | i=0

K+
Now assume €[, (1) Hjimg)- Then TEFHE) €015 (mik-1)0 Hiritimnr o)- I par-
ticular,

k+i
T#Q)e [ m+r-1) g+((j+i) mod q)> X(m+k+1) g+((j+7) mod q))’

where (j+¢) mod g is the representative of the conjugacy class of j+7modulo ¢ in the
range 1 to q. If m+k = 0, then

D) — e < K/2m+ = K /2t
If m+k <0, then |f(Tgk+i(€))—f(Ti+j)| < K/2-m+0 = [ 9m+k|

o qk+l Kq
We see therefore that E,O f(re Z il 2Im TE

Hence |FED)—FEOE)| S o ¥ =im
k=0

and we conclude that the series Zanq( f)is convergent. Applying Lemma 3 completes
the proof of the theorem.
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