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ABSTRACT. We introduce a procedure for finding C! Lebesgue measure-preserving maps of
the circle isomorphic to one-sided shifts equipped with certain invariant probability measures.
We use this to construct a C! expanding map of the circle which preserves Lebesgue measure,
but for which Lebesgue measure is non-ergodic (that is there is more than one absolutely
continuous invariant measure). This is in contrast with results for C11¢ maps. We also show
that this example answers in the negative a question of Keane’s on uniqueness of g-measures,
which in turn is based on a question raised by an incomplete proof of Karlin’s dating back to
1953.

1. INTRODUCTION

In this paper, we will be considering differentiable maps of the circle. Such a map T will
be called ezpanding if there is a C' > 1 such that |T'(x)| > C for all z € S1. An expanding
map of the circle is a degree » map for some |r| > 1. This means the map is an |r|-fold
cover of the circle by itself. We will only be considering orientation-preserving maps (that
is those with » > 1), and throughout, we will consider the circle to be the interval [0, 1)
(mod 1). We shall be interested in the existence and number of absolutely continuous

invariant measures (abbreviated to ACIMs) for these maps. We will also be working with
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symbol spaces. The full shift on r symbols is defined to be the set ¥, = {0,... ,r — 1}Z+,

with the metric

27" if z and y differ in the nth place and not before

d(w,y>={0 o

The shift map on ¥, is denoted by . If z € ¥, and a € {0,... ,r —1}*, then we will write
ax to be the sequence in Y,. defined by

a; ifi<k
(az); = .
Ti—p if1>k

We will also write [z]™ for {y : d(z,y) < 27"} (that is those y whose symbols agree with
z from the Oth to the nth). This will be called the n-cylinder about z. Define

var, f = sup |f(z) — f(y)l-

{z,y:d(z,y)<27"}

There is considerable literature about expanding maps. Krzyzewski and Szlenk showed
that for C? expanding maps of compact manifolds (that is C? maps whose Jacobian is
everywhere bounded below by some C > 1), there is a unique ACIM (see [16] and [14]).
Lasota and Yorke showed in [17] that any piecewise continuous and C? expanding map
of the unit interval has an ACIM. This result clearly applies also to maps of the circle.
Kowalski ([13]) improved this by showing that the same conclusion holds if the map is
piecewise C1*1 (that is the map has Lipschitz derivative). Maiié’s book ([20]) gives a
refined proof showing that this remains true if the map is piecewise C1*¢ (that is the
map has Holder continuous derivative with exponent € < 1). Wong([23]) found that the
conclusion holds when the assumption is altered to assuming that the map is piecewise C!

with the reciprocal of the derivative, 1/T”, of bounded variation.
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Krzyzewski in [15] managed to show that the same conclusions do not in general hold
for C' maps by showing that for any manifold M, there exist C' expanding maps of M
which do not preserve any ACIM. His proof however was not constructive, so there was
still some interest in constructing an explicit example of such a C! map in (for example)
the simple case of the circle. This was done by Géra and Schmitt (see [7]).

Various authors then turned their attentions to the number of ergodic ACIMs in the
piecewise C? case (where ACIMs are known to exist). Papers on this include [18], [4] and
[3]. Note that these papers consider a more general situation than that considered in [16]
and [14]. All of these in particular imply that if T is a C? expanding map of the circle
then there is a unique ACIM for T. Such an ACIM would therefore necessarily be ergodic.

A natural question which remains is the one which we shall address in this paper: Does
there exist a C! expanding map of the circle which preserves more than one ACIM? We
will show that such a map does exist. We note that it is relatively straightforward to
construct Lipschitz maps with this property (with an appropriate definition of expanding
for Lipschitz maps). This was first done by Bose in [2] using generalized baker’s trans-
formations and was later done using the techniques of §2 of this paper by the author in

[21].

THEOREM 1. There exists a C! expanding map preserving Lebesgue measure, for which

Lebesgue measure is not ergodic.

In this paper, our main tool and an important point of subsidiary interest is that of
a g-measure. These were introduced by Keane in [12], and are invariant measures with
certain prescribed conditional probabilities. The concept of a g-measure is equivalent to the

concept of a chain with complete connections introduced by Doeblin and Fortet ([6]) and



4 ANTHONY N. QUAS

also to that of a bounded uniform martingale introduced by Kalikow ([10]). To describe
the concept of a g-measure, let T' be an r-to-1 local homeomorphism of a compact metric
space X to itself satisfying certain expansiveness conditions - for details, see [12]. We
will only consider the case where T is either the degree r expanding map of the circle,
x — rxz mod 1, or the shift on X,. Let G(X) be the class of those continuous functions
g:X — (0,1) on X such that for all z € X, ZyET,l(m) g(y) = 1. We will write G where
no confusion arises. Write |A| for the diameter of a set A. A g-measure v on X is then a

Borel probability measure satisfying

A _ o),

I
1A 50zea v(T(A))
for all x € X. In particular, if X = ¥,., v is a g-measure if and only if for each ¢ €

{0,...,7— 1} and z,

(1) fim 20

(e O

Note that by compactness, the g-functions which we are considering are bounded away
from 0. It is straightforward to show that for each g € G, there is at least one g-measure.
Such a g-measure is automatically T-invariant and fully supported on X with no atoms (for
proofs of these facts, see [12] and [22]). The set of g-measures for a given g forms a compact
affine subset of the set of measures on X (in the weak*-topology), and the extreme points
of this set are precisely the ergodic g-measures. Further, by the Krein-Mil’'man theorem,
the set of g-measures is the closed convex hull of the set of ergodic g-measures. It follows
that if there is a ¢ with a non-ergodic g-measure then there are at least two g-measures
for that g.

We will now describe a more probabilistic interpretation of g-measures on ¥,.. We

consider sequences (X, )ncz of random variables taking values in the set {0,...,r — 1},
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often regarding their values as outcomes of a sequence of experiments, one performed at
each integer time. Strictly, one should consider the X, as maps from some probability
space  to {0,...,r — 1}, and write X, (w) for X,,, but as we will be using the same
probability space throughout, we often prefer to simply write X, .

We will look at the evolution of the random variables by specifying the probabilities
of the various outcomes of the ‘present’ experiment (that is Xy) conditional on the ‘past’
(that is (X5)n<o). The simplest non-trivial examples of this are given by Markov chains
with stationary transition probabilities, where the probabilities of the outcomes of the
present experiment are completely determined by the outcome of the previous one (that
is P(X,, = | Xpn_1 = j1, Xn_2 = j2, ...) is independent of jo, j3, ... and n). One can
similarly consider the so-called ‘finite range’ processes or k-step Markov chains, where the
probabilities are determined by the outcomes of the previous k£ experiments.

We will look at a generalization of these to ‘infinite range’ processes. Let (X, )nez be a

sequence of random variables taking values in {0, ... ,7—1}. Suppose the sequence satisfies
(2) P(Xn = ’ian_l = a1, Xn_g =az, .. ) = g(i,al, az, ... ),

where g € G. If we now fix an n, then we get a natural map p, : 1 — 3, given by
pn(w); = Xp—i(w). This defines a natural map p};, from the measures on € to the measures
on ¥, by pk(P)(A) = P{w : pn(w) € A}), this measure on ¥, being called the push-
forward of P under p,,. If P is a stationary probability distribution on 2, satisfying (2),
then by stationarity, we have p} (P), the push-forward of the distribution on those symbols

before the nth, is independent of n. Call this measure v, say. By integrating, we see

v([iz]™) = 1y) dv(y).
() = [ o) dvty)
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Using the continuity of g, it follows that v satisfies (1), and hence is a g-measure. Clearly
this also works in reverse. We will also be interested in the operator £ : C(X,) — C(X,)
defined by Lf(z) =3, cr-1(4) 9(y)f(y). We will sometimes write this as £, to emphasise
the dependence on g. A quick calculation shows that L™ f(z) = 3_, cp-m(4) g™ () f(y),
where ¢(™ (z) = g(z)g(o(z))---g(6™ ' (z)). The interpretation of these operators is that
L™ f(x) is the expectation of f(X,,,Xm_1,-..) conditioned on X_; = z;, for all i > 0,

given that the (X,,) satisfy (2).

Keane ([12]) demonstrates that if g is Lipschitz then there is a unique g-measure, when
X = S'. Walters shows in [22] that the same conclusion holds when X = ¥, if g has sum-
mable variation (that is Y .-, var;g < 0o), or in particular if g is Holder continuous. He
shows further that in this situation, if the unique g-measure is v then for any continuous
function f, we have L™ f(z) converges uniformly to [ f dv as m — oo. More recently,
Berbee ([1]), also working on symbol spaces, took up the question, providing weaker con-
ditions on g which also guarantee uniqueness of g-measures. Kaijser ([9]) worked on a
situation which can be regarded as a generalization of the case X = S, where he managed
to show uniqueness of g-measures under the very weak ‘Dini condition’. Hulse ([8]) applied
some ideas of statistical mechanics to find a new class of g which have unique g-measures.
The paper was interesting as the result followed from general statistical mechanical restric-
tions on g, rather than stronger continuity conditions. He worked on ¥, and introduced a

partial order < on it:

zyifz; <y, Vi 20,
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A g-function is then called attractive or monotonic if

Zg(zx) < Zg(iy), whenever z <y

i>j i>j

Hulse showed that attractiveness greatly facilitated calculations with g-measures and we
make considerable use of a similar property in what follows. We note that in the proba-
bilistic interpretation, this says the bigger the past has been, the bigger the values we get
at the present experiment.

All of the above papers gave conditions on g under which there exists a unique g-
measure, but the question still remained, does there exist some g € G for which there is
more than one g-measure? This question was finally answered by Bramson and Kalikow
in the ingenious paper [5], for the case X = o, in which they construct an example of
a g-function, for which there are at least two g-measures. The methods used below are
heavily based on those in [5], which may be regarded as inspiration for the proofs in this
paper. The proof of Bramson and Kalikow made extensive use of ‘coupling’ arguments (also
known as joinings). For a thorough description of these methods, the reader is referred to
Lindvall’s book, [19]. Briefly, suppose (X,) and (Y,,) are sequences of random variables
with distributions I’; and P, respectively, then a coupling is a joint probability distribution
P whose marginal distribution on the (X,,) is P; and on the (Y,,) is Ps.

The work of Bramson and Kalikow still leaves open the case X = S', which was the
question originally asked by Keane in [12]. In fact, Keane points out that much earlier,
Karlin had claimed to answer this question, but his results depended on strong continuity
assumptions, similar to those in other papers discussed above. Keane also points out that
his question had also been raised by Doeblin and Fortet in [6].

In this paper, we show that the non-uniqueness of g-measures when X = S? is equivalent
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to Theorem 1. To prove Theorem 1, we note that there is a third equivalent form of the
question which relates to g-measures on symbol spaces, and it is in this formulation that
we will be most easily able to prove the result. The proof of these equivalences is in
fact little more than changes of coordinate. This is carried out in the next section. The
remainder of the paper is concerned with proving the equivalent version of Theorem 1,
which relates to g-measures on symbol spaces as described in §2. The technique employed
there is based on one used by Bramson and Kalikow in [5], and in physics terms could be
described as finding an example of a g-function with symmetry which exhibits spontaneous
symmetry breaking in that the g-measures do not respect the symmetry of the g-function.
The situation where there are two distinct g-measures is known in the physics literature

as phase transition.

2. EQUIVALENT FORMULATIONS OF THEOREM 1

To state the result of this section, we need some further definitions. If X = ¥, let
u=000... andv=r—1,r—1,r—1,.... We define an equivalence relation ~ on X

generated by

u~v

aju ~ aiv for i <r — 1, j =i+ 1 and any finite word a.

Note that the cardinality of any ~-equivalence class is either 1 or 2. The equivalence
classes consist precisely of elements of 3,., which describe the same number (mod 1) when
considered as a base r expansion (with a point at the front).

If g € G is a g-function on X, then we say that g is compatible if x ~ y implies

g(z) = g(y). Let G°™P denote the set of those g € G which are compatible.
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THEOREM 2. The following are equivalent:

1) There exists an orientation-preserving expanding C! map of S! preserving Lebesgue
p g exp g P b g g
measure for which Lebesgue measure is not ergodic;
(2) There exists a g € G°°™P which has more than one g-measure;

(3) There exists a g € G(S'), which has more than one g-measure.

Proof. Suppose (1) holds. Then suppose the expanding map in question is T, a degree r
map. By a change of coordinates of the form z — z + a, we may assume that 7°(0) = 0.
Then let the preimages of 0 be 0,a4,... ,a,_1. Then set Iy = [0,a4], I; = [a1,a2], ...,
I._y = [ar—1, 1]. These sets form a Markov partition of the circle. By a standard argument,
there is a semi-conjugacy m; from (o, %,) to (T, S'). By the expanding condition, we can
check that each point of the circle has a unique preimage under 77, except for the countable
number of points which are preimages under T' of 0. In particular, m(z) = m1(y) if and
only if z ~ y. We can therefore define a measure on ¥,. by defining v(A) = A(m1(A)) where
A denotes Lebesgue measure (as it will throughout this paper), since A has no atoms. Now

fix a point & € ¥, and consider sets A containing . We have

As the diameter of A becomes smaller, the ratio on the right hand side approaches the
limit 1/7"(m1(z)), so we have v is a g-measure, where g(z) = 1/7"(m1(z)). But 7y is a
measure-theoretic isomorphism (o, 3,,v) — (T, S, \), so since A is not ergodic, we must
have that v is non-ergodic, hence there is more than one g-measure. This g-function is
clearly compatible, so we have shown (2) holds.

Next, suppose (2) holds for g € G®™P(X,.). Then define 7z : ¥, — S, &+ B2z~ ]
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This is a semiconjugacy from (o, X,) to (T}, S'), with the property that = ~ y if and only
if mo(x) = m2(y). Then let v be a non-ergodic g-measure. Define a measure y on S by

pushing v forward: u(A) = v(r; *(A)). Given a point € S*, consider sets A containing

x. We have

wd) vyl (4)
T (A) ~ o (4))

If x is not a preimage under T, of 0, then this expression clearly converges to g(my ' (z))

as |A] — 0. But if z is a preimage of 0 under 7., the same conclusion holds by the
compatibility of g. It follows that u is an h-measure, where h(x) = g(m; *(z)). This can
be seen to be well-defined and continuous because of the compatibility of g. Again, 7 is a
measure-theoretic isomorphism (o, X,,v) — (T}, S*, 1), so it follows that p is non-ergodic,
and hence there is more than one h-measure. This proves (3).

Finally, suppose (3) holds. Let g € G(S!) be a g-function which has more than one
g-measure. Then let v be a non-ergodic g-measure. Define h(z) = v[0,z|. This is an
orientation-preserving homeomorphism of the circle (since g-measures are fully supported

and have no atoms). Let u be the measure pushed forward by h. Then we have
pl0,2] = v(h™1[0,2]) = v([0, A7 (2)]) = h(h ' (2)) = .

It follows that p is Lebesgue measure. Let T = h o T, o h~1. Then we have (T}, S!,v) is
measure-theoretically isomorphic to (T, S, \) by h, so we see that A is non-ergodic for 7.

Now suppose = € S* is fixed and y < < z. Then we have

T(z) - T(y) _ ATly.2)) _ v(T,[h" (), i~ ()
oy A | WA E)

Taking the limit as y increases to z and z decreases to x, we get convergence to 1/g(h~!(z)).

It follows that T is differentiable and expanding, preserving Lebesgue measure (which is
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non-ergodic for T'), so we have shown (1) holds and thus completed the proof of the

equivalences. [

From the above, we know that to prove Theorem 1, it is sufficient to find an example

satisfying condition (3) of Theorem 2.

3 PRELIMINARIES FOR THE PROOF OF THEOREM 1

There are difficulties reconciling attractiveness with compatibility in general (see [21]),
and for this reason, we will need to use a weaker order than that used in the definition of
attractiveness given above. We will work for the rest of the paper with » = 10, so as to
produce a ten-branched map (this started as an arbitrary choice as 2 was too small, but
it turns out that this construction uses the fact that there are 10 branches in a non-trivial
way).

We define a partial order on {0,1,...,9} by 3 < ¢ < 6, for all i. We then define a
partial order on X9 by z <X y if z; < y;, for all 4 € Z*. Write m for the map 19 — I,
defined by z — >_:2 z;10~ 0+, We will identify %19 with I and often omit reference to
7, when applying functions on I to arguments in Y.

We attempt to construct Holder continuous functions h ~ and h\, on I such that
hA(0) =0, hx(1) =1, hn(0) =1, hn(1) =0 and 2 2y = h »(z) < hA(y), b (2) <
h~(y). These will be used to write down the g-function later.

Define an operator ® » : C (I) — C »(I) as follows:

0 <04

o B 1 z > 0.6
~f (@) = Lf(o(x)) 04<x2<05
L(f(o(z)) +1) 0.5<z < 0.6,
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where C ~(I) = {f : I — I, f(0) =0, f(1) = 1, f continuous}. It is clear that this
operator maps C » into itself, and it can also be seen to be a contraction map (with
respect to the uniform norm). It follows that there is a unique fixed point h ». It remains
to show that this function respects the order and is Hélder continuous. To this end, suppose
z and y lie in the same n-cylinder of X1 (where n > 0). Then since h ~ is a fixed point of
® », it follows that |h ~(y) — h ~(z)| < |h ~(0(y)) — h ~(o(z))|. By induction, it follows

that |h x(y) — h »(z)| < 27", It follows that h » is Holder continuous.
PROPOSITION 3. Suppose z <y. Then h »(x) < h »(y).

Proof. By induction on the first digit where z and y differ. Note that by definition of =,
if z and y differ in the Oth place then either x starts with a 3 (in which case h »(z) =
0 < h #(y)) or y starts with a 6 (in which case h »(z) < 1 = h (y)). Clearly, in either
case the statement holds. Suppose the proposition holds for all £ and y which differ
first in the nth place (with n > 0), but suppose we are given z < y with z; = y;, for
all i < nand Tpt1 < Yny1. If Zo < 4 or kg > 6, then h »(z) = h (y). Otherwise,
h A(y) — h () = 5(h ~(0(y)) — h ~(o(z))). But o(z) < o(y) and they differ first on the
nth digit, so by the induction hypothesis, we see h »(y) — h »(z) > 0 and the proposition

holds. O

Next, we construct h~ . Let C\ begivenby {f : I — I; f(0) =1, f(1) =0, f continuous}.]j

Then define &\ : C\, — C\, by

( 1(f(o(z))+1) z<0.1
2f(o(2)) 01<z<0.2
O f(z) = ¢ h(x) 02<z<0.8
11+ f(o(z))) 08<z<09

| 1fo@) @3>0
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Then @\ is also a contraction. Similar arguments to those given above show that the
unique fixed point h~_ also respects the partial order and is Hélder continuous (with the

same constant).

We note that A\ (1 —xz) =1—h- (z) and h x(1 —2z) =1 —h »(x). These two functions

reverse the partial order and will also be used in the construction of the g-function.

Given m € N, let S, denote {0,...,9}™, the set of words of length m. Given a € S,,,
definea—1€ S, and a+1 € S,, in the obvious way (that is such that 13246 + 1 = 13247
and 00000 — 1 = 99999 for example). Define 9* : S,,, — {0,... ,m} by setting 1¢(a) to be

the number of occurrences of the symbol i in a. We will then be considering é(a) given by

8(a) = ¢°(a) — 9*(a).

PROPOSITION 4. We have |6(a) —d(a+1)| < 1 for all a € S,,.

The proof of this is straightforward and is omitted.

Write [a] for the m-cylinder consisting of those elements of X719 whose first m terms are

the block a. We then define V5 , : ST — [0,1] cylinder by cylinder:

(1 if 6(a) >n

0 if 6(a) <n
Vﬁn[](w)=< 0 %fd(a)zn, da—1)<n, da+1)<n
e h »(c™(z)) ifd(a) =n, d(a—1)<n, d(a+1)>n
h(c™(z)) ifdé(a) =n, 6(a—1)>mn, 6(a+1)<n
(1 if 6(a) =mn, d(a—1)>mn, d(a+1)>n

It is then immediate to check that V5  is Hélder continuous and respects the partial order.

We then define V3 | (z) = V% (1 —x). By the earlier observations, we see that this is
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order-reversing and in fact satisfies V3, (z) =1 - V5 _, (). Now set
Wi (@) = 15 + 3 Vinn(®)
Won(@) = 15 + 5Vimn (@)

W:;z,n(m) = 15— %G(V,g,n(x) + Vs’l,n(x)) for ¢ # 3, 6.

Notice that Y, W, . (z) = 1. We will always be considering the case where n > 0 and
in this case, it is easy to see that for each z, one of V5 () and V;3 . (z) is 0. It follows
that 5 < Wi ,(z) < 35 for i = 3,6 and &5 < W}, . (z) < {5 otherwise. Our g-function

will then be constructed as an infinite affine combination of the W, .

4. CONSTRUCTION OF THE EXAMPLE

From here, the proof resembles that given in [5], but the example is more complicated
so some details differ. Let g¢; = (2)?, so Z;’il g; = 1. We will choose n; and m; such
that taking g(iz) = >332, ‘IjW:;z,-,nj (z) will give a compatible continuous g with more
than one g-measure. The choice of n; and m; will be made inductively, by considering
certain Holder continuous truncations of the final g-function. Suppose ny,...,nx_1 and

mi,... ,mg_1 are chosen. Then define vectors as follows:

u:(iiiéiiiiii)

V= (5, o, o, 5h, ) ohs S oy By Bn

z_(iiiliiliii)
— \80’ 80780 20°80” 80’20’8080’ 80/’
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with indices running from 0 to 9. Now define

oo
Zq.? ™mj,mn; )+quzi

j=k
Z q] m] n] + kUi + Z q;V;

j=k+1

qu m],n] +quMN Z 95Yi
j=k+1

where M > N > 0. These are all Holder continuous g-functions and as such have unique
g-measures, which we call u where e = 1,2, 3. First note that g; is symmetric: g} (1—z) =
1

1—g;(z). This means the unique invariant measure must be preserved under the involution

z — 1 —z. It follows that pup[6] = ui[3]. We will use the order-preserving properties of g
to show that 3 (6]) > 12((6]) > b ([6]) and () < 42(3]) < mh([3]). Let ax = 5 (2)*.

LEMMA 5. We have p2([6]) = ur([6]) + 2k and p2([3]) < p4([3]) — 2ak. Further, suppose
we are given x € ¥19. Then there is a coupling of the two processes (Y;,) and (Z,,) evolving
under g2 and g; respectively, conditioned onY; = Z; = z_;, for all i < 0 such that Y, < Z,

with probability 1 for all n.

Proof. The proof works by finding couplings of two processes evolving under different
g-functions, which make it obvious that the required inequalities hold.

It is easy to check that g7 (6z) — g;(6z) = 2a) and ¢7(3z) — gi(3z) = —2ay, while
gi(iz) = gi(iz) for all i # 3,6 and all x.

We use this to give an explicit coupling of two random processes (X,,) and (Y,) evolving
under g; and g2 respectively as in (2). We write P(iz, jy) for the probability that ¢ is added
to x and j is added to y. The transition probability will only be defined when x < y, and

it must therefore have P(ix < jy) = 1 in order that it can be applied repeatedly. Suppose
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x = y. Then define

( g;(62) ifi=5=6
max (0, g; (iz) — g2 (iy)) ifi#3,6and j =6
o min (g (iz), g3 (iy)) if i =j#3,6
P(iz, jy) = < o - . .
max (0, g2(jy) — g1 (jz)) ifi=3and j # 3,6
min (g7 (6y) — g5 (62), g3 (3z) — gi(3y)) ifi=3 and j=6
< 9:(3y) ifi=j5=3

We note that all the transition probabilities are non-negative, and we must just check that
the marginals of this coupling are as claimed. We compute one example as an illustration.
We will show that under P, the probability that = goes to 3z is gi(3z) as required. By
observation, we see that the probability that x goes to 3z is

gr(3y) + min (g7 (6y) — gi(62), g5 (3z) — g7 (3y)) + > _ max(0, g (jy) — gi(jz))
Jj#3,6

=g (3z) + min (g3 (6y) — gz (6z) — gz (3z) + g2 (3y),0) + 8max(0, g7 (jy) — gi (jz))

=g4(3z) +min [ > gi(iz) — i (iz),0 | +8max(0, g3 (jy) — gi (7))
i#3,6

=g;(32)

as required, where we are using the fact that g(iz) = g(jz), for all 7,5 # 3,6. This shows
that given that x < y, we can choose i and j such that y evolves according to gi and =
according to gi such that with probability 1, iz < jy. Looking further at the coupling, we
see that the probability that y is preceded by a 6 and z is not preceded by a 6 given that
z Xy is gp(6y) — gi(6z), but gi(6y) — gi(6y) = 204 and gy (6y) > g (6x), so it follows
that with (x,y) goes to (iz,6y) for some i # 6 with probability at least 2ay. It follows
that p2([6]) > pps([6]) + 2ak. A similar argument shows that p2([3]) < pi([3]) — 2a.

To prove the remaining parts of the Lemma, it is necessary to consider a coupling of

processes (Y,,) evolving under g7 and (Z,) evolving under g;. This is done by a coupling
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exactly similar to the coupling above, with g,% replacing g,}: and gi’ replacing g,%. The
conclusion then is that given that y < z, then y can be allowed to evolve under g7 and
z under g; in such a way that the ordering is preserved. For a more formal and general

discussion of couplings, the reader is referred to Lindvall’s book ([19]). O

We now describe the inductive choice of my and ni. In each case, ny is given by
|agmy|. Suppose we have chosen my,ma,...mg_1 and hence ny,ngy,...ng_1. Let n(x) =
Xi6)(z) — x31(z) and Aj(z) = ZZ;"O_I n(c%(z)) Let G; denote {z : Aj(z) > n;} and H;
denote {z : Aj(z) > 3n,}. Then note that =" (H;) C G,. Note also that if z € H; and

y = x, then y € H;. Assume that there are ¢1,?,...¢x_1 such that
(3) P(( Xt Xt;-1,-..) € Hj| Xy =, Vi>0) > 1477,
for all j < k and x € ¥19, where the X,, evolve according to g3.

Let Ay = {z : A (z) > 3apm}. We know [ n(z) dui(z) > 4ax and we will use this to

show p2(A.,) — 1 as m — oo.
LEMMA 6. We have pi(Am) — 1 as m — oc.

Proof. Suppose the claim does not hold. Since we have u3 (A,,) < 1 for all m, the only way
the claim can fail is if there exists an € > 0 and a sequence M; such that ui(An,) < 1—¢

for all 7. In this case, we have

ua U A;“ ] > eforall j, so
i>j

ﬂUAZC 26.

J >y
Let S be ;U;s; 4i°. If z € S then

N

W

n—1

1 .
im inf — i(z)) < 3o
hnni1£f - Zon(a (x)) < 3ag
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We have however that ui is ergodic, so for almost all z (with respect to ui), we have
n—1
lim — " n(c*(z)) > das.

1=0

This is a contradiction. [

Next, pick my, such that p2(A4,,) > 1—47% and agmy, > tx_1. Now Hy = A,,, . Since
g: is Holder continuous, we can apply Walters’ theorem ([22]) to get that Lg2"xH,(2)
converges uniformly to u2 (Hy), which is greater than 1 — 4%, Tt follows that there exists

a t; such that ﬁggthH,c(iB) >1—47% for all z € ¥19. This says that for all z € X4,
P((Xty, Xty—1,--.) € Hi|X_j =z, Vi > 0) >1—-47F,

where the X,, evolve according to g2, but by the second statement of Lemma 5, it follows
that the same equation holds when the evolution is according to g;. This is precisely the
statement of (3) when we take j to be k. This completes the inductive step.

To complete the inductive construction of the example, it remains only to specify an
initial case for the induction. For k = 1, however, the induction hypothesis, (3), holds
vacuously. Taking to > 1, applying the above induction step produces mi, n; and t;

which can be used as a starting point for the induction.

5. COMPLETION OF THE PROOF

Proof of Theorem 1. In the above section, the m; and n; were inductively constructed, so

the g-function is now given by

g(,’:m) = Z qu:;’lj,nj (m)'
j=1
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Note that to check compatibility, we must just check g(000...) = ¢g(999...) and g(¢999...) =|}
9(7000...) for i < 9 and j = i+1. This is however straightforward as all of these quantities
are equal to %. Continuity of this g is also clear as it is the uniform limit of continuous
functions. It therefore remains to show that there are two distinct g-measures for this g.
We consider the events Ejf that (X;, X;_1,...) € Hy. Write Ps for the probability
distribution of the X,, conditioned on X; = 6 for all ¢ < 0 with subsequent evolution under
g- Informally, EY is the event that the process has a ‘large majority of 6s over 3s at the my,
scale at time ¢’. We then consider letting the process evolve from an initial condition of all
6s (so Pg(EY) = 1, Vk). We show inductively that the events E} have a high probability
by induction on ¢, using the result of §4, which says that if the process has a large majority
of 6s on scales M1, Mk42,... at time ¢ — £, then with high probability, the process will

have a majority of 6s on scale my at time t.

LEMMA 7. We have
(4) Ps(EL) > 1 — (x,

for allt € Z and k € N, where (} = %4_"’.

Proof. The proof is by induction on ¢. Note that the hypothesis is automatically true for
all k if ¢ < 0, so we need only prove the inductive step. Suppose (4) holds for all ¢ < s then
pick k € N. Let S =, E;~*. Then by the induction hypothesis, Ps(S°) < Y., ¢ =

347%. Now we decompose Ei° as (BN S) U (E;° N S¢). We then have
Po(E}%) < Po(EL N S) + Pa(5°) < Po(HL|S) + La*.

But now suppose w € S. Then let z = (Xs_¢,,Xs-t,-1,-..) and z = (X, Xs_1,...).

Then = € ;5 H;. Tt follows that if y € 07*(z), for some ¢ < t then y € (5, Gj. In
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particular, g(y) = g3 (y), where the M and N in g} are taken to be my and ny. It follows
that the evolution of x for t; steps takes place under g3, but by (3), the probability that
z € E§° is no more than 47*. In particular, we have shown that Pg(E;°) < ( as required.

This completes the proof of the inductive step and hence of the lemma. [J

We apply this by calculating Pg(X,, = 6). Using the Lemma above, this is bounded
below by >/, g (1 =¢;)2 +¢j15)- This turns out to be equal to 2. Let p, = p(Ps),

as defined in §1. Then we have

i (i)™ 1) = / 9(iy) dyin(y).

[x]™

Now let v, = % Z;:Ol pj. Then we see

<

Sl

([ ™) / g(iy) dvn(y)

[z]™

Taking a weak*-convergent subsequence v,, — v of the v, we find
Al = [ gt dvty)

As noted in §1, this implies that v is a g-measure. However u,([6]) > 25, for all n, so it
follows that v([6]) > 25. Since the g-function which we constructed was symmetric under
x — 1 — z, there is a second g-measure giving weight at least % to the symbol 3. Since
these are probability measures, they cannot be equal. It follows that there are two distinct

g-measures for this g. This completes the proof of Theorem 1. [

It is envisaged that these techniques might find application in constructing other C*
maps with varying degrees of ergodic properties. The author has already used them to

find a C' expanding map of the circle which is ergodic, but not weak-mixing. I hope that
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this result will appear in another paper. It would be interesting to see if this method could

be used to construct C' maps which are (for instance) exact, but not Bernoulli. It would

also be of interest to construct a map with 2 branches for which Lebesgue measure is not

er

godic, rather than the 10 branches in this paper, as it was in this form that the erroneous

proof of Karlin’s theorem was stated and also Keane’s question based on Karlin’s theorem.

I would like to express my thanks to Chris Bose for pointing out an error in an earlier

version of this paper. Thanks too to Peter Walters, Yurii Suhov, Mike Keane, Thomas

Kaijser, Jeff Steif, Bill Parry and Saul Jacka for helpful conversations.
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