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ABSTRACT. In this paper, we construct an example of a C! expanding map of the
circle which preserves Lebesgue measure such that the system is ergodic, but not
weak-mixing. This contrasts with the case of C11t€ maps, where any such map
preserving Lebesgue measure has a Bernoulli natural extension and hence is weak-
mixing.

1. INTRODUCTION
In this paper, we apply techniques of [6] to prove the following theorem.

Theorem 1. There is a C' expanding map of the circle preserving Lebesque mea-
sure, such that Lebesque measure is ergodic for the map, but not weak-mixing.

This is in contrast with results for the C'€ case, where it is known that if such a
map preserves Lebesgue measure, then the natural extension of the transformation
is Bernoulli (see [7]). Previously, Bose (in [2]) has established the existence of a
piecewise monotone and continuous expansive map preserving Lebesgue measure
which is weak-mixing but not ergodic. (He also found piecewise monotone and
continuous maps which are weak- but not strong-mixing; and strong-mixing but
not exact). These proofs were based on the construction of generalized baker’s
transformations (see [1] for details).

We will make extensive use of g-measures in what follows. For a fuller description
of g-measures, the reader is referred to [4], [5] and [6]. Here, we will construct a g-
function on the symbol space 319 = {0, ... ,9}Z+ = {xor122...: ; €{0,...,9}}
with shift map o (that is a continuous function ¢ satisfying 0 < g(z) < 1 for all
and Zyeofl( z) g(y) = 1 for all x). Given such a g, we consider sequences of random
variables (X,,) : 2 — {0,...,9} satisfying

(1) P(Xn = i|Xn_1 =aj, Xn_g = a2, .. ) = g(i,al,ag, .. .),
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for all n. There are then natural maps p,, :  — ¢ defined by p,(w) = X,—i(w).
These maps induce natural push-forward maps of probability distributions on €2 to
probability measures on X1q defined by p*(P)(A4) = P(p,1(A)). A g-measure is a
push-forward under p{j of any stationary distribution. Another way of characterizing
g-measures on symbol spaces is that a g-measure is a measure v satisfying

- v([iz]" ) :
(2) nh—{%o 1/([37]”) - g(Z.fE),
for all z € X719, where [x]"™ denotes the cylinder of those points of ¥1¢ which agree
with x for the first n terms, and iz denotes the sequence in 15 which consists of
the symbol ¢ followed by the sequence =x.

We will need to consider g-functions which have the property of compatibility
introduced in [5], that is g(000...) = ¢(999...) and ¢(ai999...) = ¢g(aj000...),
for any 0 < i < 9, j =14 1, and any finite word a. We will need the following
result from [6].

Theorem 2. Let g be a compatible g-function on X.,.. Then if v is a g-measure,
there is a C* expanding map T : S* — S preserving Lebesque measure X, such that
(0,%,,v) is measure-theoretically isomorphic to (T, S, \).

It will then be sufficient to construct an example of a compatible g-function
having a g-measure which is ergodic but not weak-mixing.

We start with some preliminary definitions. As in [6], we introduce a partial
order on X1p. First define 3 < ¢ <6 for any 0 < i < 9. Then x Sy if x; < y;
for all ¢ € Z*. A function f : X9 — R is called monotonic if f(z) < f(y)
whenever x =< y. We will say that a function f : ¥y — R is precompatible if
£(090909...) = £(909090...) and f(ai090909...) = f(aj909090...), where a is
any finite word, ¢ is any symbol with 0 < ¢ < 9 and j = ¢+ 1. We write this second
condition as f(b,090909...) = f(b+1,909090...) for any finite word b not ending
in a 9.

We will need to consider the involutions on X1 given by

99—z, ifnisodd
T if n is even
R(x), =9 — z,.

Write Z for R(x), & for F(x) and & for R o F(z). We say that a function f is
symmetric if f(z) = f(z) for all x.

2. CONSTRUCTION OF THE EXAMPLE
To construct the example, we will use the following lemma.

Lemma 3. There exists a precompatible, compatible, symmetric, monotonic g-
function h with the property that if one considers random variables (X,,) evolving
as

]P)<Xn = i’Xn—l = aq, Xn—2 = a2, .. ) = h(i7a17a27 s )7
L such that

conditioned upon X; = 6, for all © < 0, then there exists a 3 > 3

P(X,, =6) > 3 for all n.
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We will write Pg for the probability distribution on (X,,) defined in this way.
The construction shown here differs from the construction in [6] only in the initial
stages. The reader should note that that paper in turn is based on [3].

Proof. Define 6(x) = xg(z)—x3(z), where x;(z) is 1 if 29 = i and 0 otherwise. Then
let A,,(x) = Z?l_ol 5(ot(z)). To construct h, we will need to define a collection of
functions Wy, ,, : ¥10 — (0,1) indexed by 0 < i < 9 and m > n > 0. These will
be based on a family of functions V,, ,, whose existence is asserted by the following
lemma.

Lemma 4. There exists a family V,, ,, (where m >mn > 0) of compatible, precom-
patible, monotonic Holder continuous functions satisfying

0< V() <1

(1 ifAp(z)>n
Vinn(@) = { 0 if Ap(z) <n

The construction of the V,, ,, is rather involved and is (in the author’s opinion)
a distraction from the main flow of the paper. It has therefore been relegated to
an appendix to the paper. Once the V,, , have been defined, the W, ,, are defined
as follows:

Wp () =W (%)
Wi (@) = & = & (Vo () + Vi o (2)) for i # 3,6.

Note that for each =z, Z?:o W, .(z) = 1 and since we require n > 0, we have
that for each x, only one of V,, ,,(z) and V,, (%) is positive. This implies that
W, ,(x) is bounded below by 2 for i # 3,6. The function h will then be given by

h(iz) = Z;il 5(3) Wﬁwj’nj, where m; and n; are appropriately chosen increasing
sequences with n; < m; < mn; ;1. The proof that m; and n; can be chosen so as to

make h have the stated properties is identical to the proof in [6]. O

3. PROOF OF THEOREM 1

In this section, we use the results of §2 to prove Theorem 1, subject to the
construction of V;, ,, in the appendix.

Proof of Theorem 1.

Let h and Pg be as defined in the previous section. Take u, = pf(Ps) and
form Cesaro sums v,, = + Z?:_Ol ;. Then we see (as in [6]) that if v, is a weak*-
convergent subsequence, converging to a measure v, then v is an h-measure. We see
also that v([6]), the measure of those members of ¥y starting with a 6 is at least
(. We may assume v is ergodic, for otherwise, by ergodic decompostion, there is
another h-measure with this property. If v is not ergodic with respect to o2, then
one can check that there exist sets A and B of measure 3 such that 07'(A) = B
and 0~ }(B) = A. It then follows quickly that v is ergodic but not weak-mixing
and by Theorem 2 and the compatibility of h, Theorem 1 follows. It remains to

consider the case where v is ergodic with respect to 2. We note that the involution
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F defined above is not shift-commuting, but that F' does commute with o?. Define
a new measure p by p(A) = v(A) + 5v(A). This is shift-invariant. Now we have

pliz]™+)  gu((ia]™t) + u(lia]™t)
p(f]™) (") + zv([F])
_ (") + vzt
v([z]") + v ((E]")

Then using the symmetry of h, we see h(iz) = h(iZ), so we get

o 00

e W = h(l.fl?) =ho F(zx)
It follows that u is a g-measure, where g = ho F'. Note that by the precompatibility
of h, g is compatible. It remains to show that u is ergodic but not weak-mixing.
Suppose for a contradiction that o=1(A4) = A and 0 < u(A) < 1. Then u(A) =
1u(A) + tv(4), but 0~ (A) = A and o' (A) = A. It follows that v(A) = v(A), so
0< V(A) < 1. But this is a contradiction as 0*2(121) = A and v is assumed to be
ergodic with respect to o2, proving that u is ergodic.

Next, note that yu is not ergodic with respect to 02 as u = %ul + %,ug, where

1 and po are o2-invariant measures defined by 1 (A) = v(A) and pg(A) = v(A).
These are not equal as 1 ([6]) > 2 > po([6]). It follows that p is not weak-mixing,
thus completing the proof of Theorem 1 subject to the proof of Lemma 4 in the

appendix. [

APPENDIX. CONSTRUCTION OF V,, .

Proof of Lemma 4. In this appendix, we give the construction of the function V,;, ,,,
which was introduced in §2. First we define a contraction map £ on the subspace
X of (C]0,1])* with the metric induced by the uniform norm:

X = {(f17f27f37f4) fi [07 1] - [07 1]; fl(o) - f3<0> =0, fl(l) - f3(1) =1,
f2(0) = £4(0) = 1, f2(1) = fa(1) =0}

We will identify I with X1 so ¢? will denote the map x — 100z mod 1. The map
L is defined by L(f1, fa, f3, fa) = (91, g2, 93, 94), where
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(0 0<z<.04
3f1(0%(x)) 04 <z < .05
3+ 3f1(0%(2)) 05 <z < .06
1 06 <z < .09
5+ 5fa(0*(z)) 09 <z < .10
1 1f(1—o(x) 10<z<.11
0 A1 <z < .15
3f1(0%(x)) 15 <2 < .16
3 16 <z < A7
3 f2(0%(2)) 17 <z < .18

o) = 0 18 <z < .40
1-1p(1-0%(z) A0<2< 41
3f2(0%(z)) 41 <z < .42
0 42 < x < 45
351(0%(2)) 45 < x < .46
3 46 <1 < AT
3f2(0%(x)) AT <z < 48
0 A8 <z < .49
3f3(0%(x)) 49 < 7 < .50

(1 —-91(1 —2x) 50<ze<1

(1-3fi(1—-0%(x)) 0<a<.01
3f2(0%(2)) 01 <z <.02
0 02<r<.04
3/1(0%(x)) 04 <z < .05
3+ 3f1(0%(2)) 05 <z < .06
1 06 <z < .07
Lylf(o%(z) 07T<z<.08

(0= 3f2(0%(2)) 08 <z < .09
0 09<z<.15
5/1(0%(2)) 15 <z < .16
3 16 <z < .19
sfa(0%(z)) 19 <z < .20
91(z) 20 < 2 < .80

(1 —g2(1—2) 80< <1
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( 91(x) 0<z<.07
g () 07 <z <15
9s(z) = 0 5<r<.2
( 91(2) 2<z<1
([ go() 0<z<.07
ga(r) = ¢ g1(x) 07 <z <.15
L g2(7) 15 <z < 1.

It is then straightforward to check that £ is indeed a contraction map from X
to X, and it follows that there is a unique fixed point, e = (e, e2, e3, e4). Using the
fact that these form a fixed point of L, it is straightforward to check that if x and
y agree for 2n digits, then the difference between e;(z) and e;(y) is at most 27".
It follows that the functions e; are Holder continuous when considered as functions
Y10 — [0,1]. Since the functions are continuous as maps [0, 1] — [0, 1], it follows
that considered as functions ¥y — [0, 1], they are compatible.

Next, suppose that x < y and x and y differ in either the zeroth or first place.
Then it is easy to see that e;(z) < e;(y) for each i just by examining the condition
that e is a fixed point of £. Then one checks that = < y implies e;(x) < e;(y)
for each 7 by induction on the first place in which they differ. It follows that the
functions e; are monotonic.

We also need to check the precompatibility of the functions e;. First note the
following table of values of the functions e;. For later use, we include also two
additional functions es and eg defined by e5(z) =1 — e3(1 — z) and eg(z) = 1 —
64(1 — .I')

0  .0909... .9090... 0

er 0 1 0 1

er 1 0 1 0

(3) es 0 0 0 1
es 1 1 1 0

es 0 1 1 1

ee 1 0 0 0

It is then a routine matter to check that e;(a0909...) = e;(a+1,9090...) for each
1 < 4, where a is any word of length 1 or 2 whose last digit is not a 9. Then by
induction on the length of the word, as before, we see that the e; are precompatible
for each 7 < 4.

We have therefore checked that the e; (1 < i < 4) are monotonic, compatible,
precompatible, Holder continuous and take values as shown in (3). One can check
that e5 and eg also have these properties. Further the functions e; are all equal on
the range 0.2 < x < 0.8. This implies that forming f;; defined by

ei(x) =<5
() =
fia@) { ej(r) x>=.5
for 3 < 4,5 < 6 gives 16 functions, each of which is monotonic, compatible, precom-
patible and Hélder continuous. Looking at (3), we see that these functions take all

combinations of values of 0 and 1 on the set {0,.0909...,.9090...,1}. We label
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the functions according to their values on each of these four points as d;, ,i4i, S0 for
example dyy19 takes values 0,1,1 and 0 at 0,.0909...,.9090... and 1 respectively,
so do110 = [5a.

To define V;;, ,,, we also need to define two further maps defined on words of
Sm = {0,...,9}™. We have already made implicit use of the equivalence re-
lation ~ generated by a0909... ~ a + 1,9090..., for any word a not ending
with a 9 when discussing precompatibility. Given a word a € S,,, define ¢(a)
by the requirement that a0909... ~ ¢(a)9090... and v (a) by the requirement
that a9090... ~ 9(a)0909.... We are now in a position to specify V,, . This
is defined cylinder by cylinder. If a € S,,, write [a] for those elements of ¥
whose first m digits are given by a. Define x : S, — {0,1} by &(b) = 1 if
Ay, (b) > n and k(b) = 0 otherwise. By a + 1, we mean the word obtained by
adding 1 (with carry if necessary). The word a — 1 is defined similarly, so for
example, 99999 4+ 1 = 00000 and 88900 — 1 = 88899. Then given a € S,,, de-
fine N(a) = k(a —1),k(¢(a)), k(¢ (a)),k(a + 1). Note that |A,,(a) — Ay (a + 1)),
1A (a) —Ap(a—1)|, |Ap(a) — Ay (¢(a))] and |A,,(a) — Ay, (¢Y(a))| are all bounded

above by 1. Given this, we set

1 Ap(a) >n
Vinn| () = § 0 Ap(a) <n
dn(a)(@™(x)) Am(a) =n

The function V,, ,, defined in this way is then seen to be Holder continuous, mono-
tonic, compatible and precompatible. Further, it satisfies 0 < V;,, , < 1, Vi () =
1 when A,,(z) > n and V,, () = 0 when A,,(z) < n as required. This completes
the construction and hence the proof of Lemma 4 and Theorem 1. [

The author would like to extend his thanks to Chris Bose who suggested the
problem. It would be interesting to see if the other examples in [2] could also be
made to be C!, rather than just continuous.
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