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Abstract. In this paper, we construct an example of a C1 expanding map of the

circle which preserves Lebesgue measure such that the system is ergodic, but not

weak-mixing. This contrasts with the case of C1+ε maps, where any such map

preserving Lebesgue measure has a Bernoulli natural extension and hence is weak-

mixing.

1. Introduction

In this paper, we apply techniques of [6] to prove the following theorem.

Theorem 1. There is a C1 expanding map of the circle preserving Lebesgue mea-
sure, such that Lebesgue measure is ergodic for the map, but not weak-mixing.

This is in contrast with results for the C1+ε case, where it is known that if such a
map preserves Lebesgue measure, then the natural extension of the transformation
is Bernoulli (see [7]). Previously, Bose (in [2]) has established the existence of a
piecewise monotone and continuous expansive map preserving Lebesgue measure
which is weak-mixing but not ergodic. (He also found piecewise monotone and
continuous maps which are weak- but not strong-mixing; and strong-mixing but
not exact). These proofs were based on the construction of generalized baker’s
transformations (see [1] for details).

We will make extensive use of g-measures in what follows. For a fuller description
of g-measures, the reader is referred to [4], [5] and [6]. Here, we will construct a g-
function on the symbol space Σ10 ≡ {0, . . . , 9}Z+

= {x0x1x2 . . . : xi ∈ {0, . . . , 9}}
with shift map σ (that is a continuous function g satisfying 0 < g(x) < 1 for all x
and

∑
y∈σ−1(x) g(y) = 1 for all x). Given such a g, we consider sequences of random

variables (Xn) : Ω → {0, . . . , 9} satisfying

(1) P(Xn = i|Xn−1 = a1, Xn−2 = a2, . . . ) = g(i, a1, a2, . . . ),
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for all n. There are then natural maps ρn : Ω → Σ10 defined by ρn(ω) = Xn−i(ω).
These maps induce natural push-forward maps of probability distributions on Ω to
probability measures on Σ10 defined by ρ∗n(P)(A) = P(ρ−1

n (A)). A g-measure is a
push-forward under ρ∗0 of any stationary distribution. Another way of characterizing
g-measures on symbol spaces is that a g-measure is a measure ν satisfying

(2) lim
n→∞

ν([ix]n+1)
ν([x]n)

= g(ix),

for all x ∈ Σ10, where [x]n denotes the cylinder of those points of Σ10 which agree
with x for the first n terms, and ix denotes the sequence in Σ10 which consists of
the symbol i followed by the sequence x.

We will need to consider g-functions which have the property of compatibility
introduced in [5], that is g(000 . . . ) = g(999 . . . ) and g(ai999 . . . ) = g(aj000 . . . ),
for any 0 6 i < 9, j = i + 1, and any finite word a. We will need the following
result from [6].

Theorem 2. Let g be a compatible g-function on Σr. Then if ν is a g-measure,
there is a C1 expanding map T : S1 → S1 preserving Lebesgue measure λ, such that
(σ,Σr, ν) is measure-theoretically isomorphic to (T, S1, λ).

It will then be sufficient to construct an example of a compatible g-function
having a g-measure which is ergodic but not weak-mixing.

We start with some preliminary definitions. As in [6], we introduce a partial
order on Σ10. First define 3 � i � 6 for any 0 6 i 6 9. Then x � y if xi � yi

for all i ∈ Z+. A function f : Σ10 → R is called monotonic if f(x) 6 f(y)
whenever x � y. We will say that a function f : Σ10 → R is precompatible if
f(090909 . . . ) = f(909090 . . . ) and f(ai090909 . . . ) = f(aj909090 . . . ), where a is
any finite word, i is any symbol with 0 6 i < 9 and j = i+ 1. We write this second
condition as f(b, 090909 . . . ) = f(b+1, 909090 . . . ) for any finite word b not ending
in a 9.

We will need to consider the involutions on Σ10 given by

F (x)n =
{

9− xn if n is odd
xn if n is even

R(x)n = 9− xn.

Write x̄ for R(x), x̂ for F (x) and x̃ for R ◦ F (x). We say that a function f is
symmetric if f(x̄) = f(x) for all x.

2. Construction of the Example

To construct the example, we will use the following lemma.

Lemma 3. There exists a precompatible, compatible, symmetric, monotonic g-
function h with the property that if one considers random variables (Xn) evolving
as

P(Xn = i|Xn−1 = a1, Xn−2 = a2, . . . ) = h(i, a1, a2, . . . ),

conditioned upon Xi = 6, for all i < 0, then there exists a β > 1
2 such that

P(Xn = 6) > β for all n.
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We will write P6 for the probability distribution on (Xn) defined in this way.
The construction shown here differs from the construction in [6] only in the initial
stages. The reader should note that that paper in turn is based on [3].

Proof. Define δ(x) = χ6(x)−χ3(x), where χi(x) is 1 if x0 = i and 0 otherwise. Then
let ∆m(x) =

∑m−1
i=0 δ(σi(x)). To construct h, we will need to define a collection of

functions W i
m,n : Σ10 → (0, 1) indexed by 0 6 i 6 9 and m > n > 0. These will

be based on a family of functions Vm,n whose existence is asserted by the following
lemma.

Lemma 4. There exists a family Vm,n (where m > n > 0) of compatible, precom-
patible, monotonic Hölder continuous functions satisfying

0 6 Vm,n(x) 6 1

Vm,n(x) =
{

1 if ∆m(x) > n

0 if ∆m(x) < n

The construction of the Vm,n is rather involved and is (in the author’s opinion)
a distraction from the main flow of the paper. It has therefore been relegated to
an appendix to the paper. Once the Vm,n have been defined, the Wm,n are defined
as follows:

W 6
m,n(x) = 1

10 + 1
2Vm,n(x)

W 3
m,n(x) = W 6

m,n(x̄)

W i
m,n(x) = 1

10 −
1
16 (Vm,n(x) + Vm,n(x̄)) for i 6= 3, 6.

Note that for each x,
∑9

i=0W
i
m,n(x) = 1 and since we require n > 0, we have

that for each x, only one of Vm,n(x) and Vm,n(x̄) is positive. This implies that
W i

m,n(x) is bounded below by 3
80 for i 6= 3, 6. The function h will then be given by

h(ix) =
∑∞

j=1
1
2 ( 2

3 )jW i
mj ,nj

, where mj and nj are appropriately chosen increasing
sequences with nj < mj < nj+1. The proof that mj and nj can be chosen so as to
make h have the stated properties is identical to the proof in [6]. �

3. Proof of Theorem 1

In this section, we use the results of §2 to prove Theorem 1, subject to the
construction of Vm,n in the appendix.

Proof of Theorem 1.
Let h and P6 be as defined in the previous section. Take µn = ρ∗n(P6) and

form Cesàro sums νn = 1
n

∑n−1
i=0 µi. Then we see (as in [6]) that if νni is a weak∗-

convergent subsequence, converging to a measure ν, then ν is an h-measure. We see
also that ν([6]), the measure of those members of Σ10 starting with a 6 is at least
β. We may assume ν is ergodic, for otherwise, by ergodic decompostion, there is
another h-measure with this property. If ν is not ergodic with respect to σ2, then
one can check that there exist sets A and B of measure 1

2 such that σ−1(A) = B

and σ−1(B) = A. It then follows quickly that ν is ergodic but not weak-mixing
and by Theorem 2 and the compatibility of h, Theorem 1 follows. It remains to
consider the case where ν is ergodic with respect to σ2. We note that the involution
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F defined above is not shift-commuting, but that F does commute with σ2. Define
a new measure µ by µ(A) = 1

2ν(Â) + 1
2ν(Ã). This is shift-invariant. Now we have

µ([ix]n+1)
µ([x]n)

=
1
2ν([îx]

n+1) + 1
2ν([ĩx]

n+1)
1
2ν([x̂]

n) + 1
2ν([x̃]

n)

=
ν([ix̃]n+1) + ν([̄ix̂]n+1)

ν([x̃]n) + ν([x̂]n)
.

Then using the symmetry of h, we see h(ix̃) = h(̄ix̂), so we get

lim
n→∞

µ([ix]n+1)
µ([x]n)

= h(ix̃) = h ◦ F (ix).

It follows that µ is a g-measure, where g = h◦F . Note that by the precompatibility
of h, g is compatible. It remains to show that µ is ergodic but not weak-mixing.
Suppose for a contradiction that σ−1(A) = A and 0 < µ(A) < 1. Then µ(A) =
1
2ν(Â) + 1

2ν(Ã), but σ−1(Ã) = Â and σ−1(Â) = Ã. It follows that ν(Â) = ν(Ã), so
0 < ν(Â) < 1. But this is a contradiction as σ−2(Â) = Â and ν is assumed to be
ergodic with respect to σ2, proving that µ is ergodic.

Next, note that µ is not ergodic with respect to σ2 as µ = 1
2µ1 + 1

2µ2, where
µ1 and µ2 are σ2-invariant measures defined by µ1(A) = ν(Â) and µ2(A) = ν(Ã).
These are not equal as µ1([6]) > 1

2 > µ2([6]). It follows that µ is not weak-mixing,
thus completing the proof of Theorem 1 subject to the proof of Lemma 4 in the
appendix. �

Appendix. Construction of Vm,n.

Proof of Lemma 4. In this appendix, we give the construction of the function Vm,n,
which was introduced in §2. First we define a contraction map L on the subspace
X of (C[0, 1])4 with the metric induced by the uniform norm:

X = {(f1, f2, f3, f4) :fi : [0, 1] → [0, 1]; f1(0) = f3(0) = 0, f1(1) = f3(1) = 1,

f2(0) = f4(0) = 1, f2(1) = f4(1) = 0}

We will identify I with Σ10 so σ2 will denote the map x 7→ 100x mod 1. The map
L is defined by L(f1, f2, f3, f4) = (g1, g2, g3, g4), where
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g1(x) =



0 0 6 x < .04
1
2f1(σ

2(x)) .04 6 x < .05
1
2 + 1

2f1(σ
2(x)) .05 6 x < .06

1 .06 6 x < .09
1
2 + 1

2f4(σ
2(x)) .09 6 x < .10

1
2 −

1
2f4(1− σ2(x)) .10 6 x < .11

0 .11 6 x < .15
1
2f1(σ

2(x)) .15 6 x < .16
1
2 .16 6 x < .17
1
2f2(σ

2(x)) .17 6 x < .18
0 .18 6 x < .40
1
2 −

1
2f3(1− σ2(x)) .40 6 x < .41

1
2f2(σ

2(x)) .41 6 x < .42
0 .42 6 x < .45
1
2f1(σ

2(x)) .45 6 x < .46
1
2 .46 6 x < .47
1
2f2(σ

2(x)) .47 6 x < .48
0 .48 6 x < .49
1
2f3(σ

2(x)) .49 6 x < .50
1− g1(1− x) .50 6 x 6 1

g2(x) =



1− 1
2f4(1− σ2(x)) 0 6 x 6 .01

1
2f2(σ

2(x)) .01 6 x 6 .02
0 .02 6 x 6 .04
1
2f1(σ

2(x)) .04 6 x < .05
1
2 + 1

2f1(σ
2(x)) .05 6 x < .06

1 .06 6 x < .07
1
2 + 1

2f2(σ
2(x)) .07 6 x < .08

1
2f2(σ

2(x)) .08 6 x < .09
0 .09 6 x < .15
1
2f1(σ

2(x)) .15 6 x < .16
1
2 .16 6 x < .19
1
2f4(σ

2(x)) .19 6 x < .20
g1(x) .20 6 x 6 .80
1− g2(1− x) .80 6 x 6 1
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g3(x) =


g1(x) 0 6 x 6 .07
g2(x) .07 6 x 6 .15
0 .15 6 x 6 .2
g1(x) .2 6 x 6 1

g4(x) =


g2(x) 0 6 x 6 .07
g1(x) .07 6 x 6 .15
g2(x) .15 6 x 6 1.

It is then straightforward to check that L is indeed a contraction map from X
to X, and it follows that there is a unique fixed point, e = (e1, e2, e3, e4). Using the
fact that these form a fixed point of L, it is straightforward to check that if x and
y agree for 2n digits, then the difference between ei(x) and ei(y) is at most 2−n.
It follows that the functions ei are Hölder continuous when considered as functions
Σ10 → [0, 1]. Since the functions are continuous as maps [0, 1] → [0, 1], it follows
that considered as functions Σ10 → [0, 1], they are compatible.

Next, suppose that x ≺ y and x and y differ in either the zeroth or first place.
Then it is easy to see that ei(x) 6 ei(y) for each i just by examining the condition
that e is a fixed point of L. Then one checks that x ≺ y implies ei(x) 6 ei(y)
for each i by induction on the first place in which they differ. It follows that the
functions ei are monotonic.

We also need to check the precompatibility of the functions ei. First note the
following table of values of the functions ei. For later use, we include also two
additional functions e5 and e6 defined by e5(x) = 1 − e3(1 − x) and e6(x) = 1 −
e4(1− x).

(3)

0 .0909 . . . .9090 . . . 0
e1 0 1 0 1
e2 1 0 1 0
e3 0 0 0 1
e4 1 1 1 0
e5 0 1 1 1
e6 1 0 0 0

It is then a routine matter to check that ei(a0909 . . . ) = ei(a+1, 9090 . . . ) for each
i 6 4, where a is any word of length 1 or 2 whose last digit is not a 9. Then by
induction on the length of the word, as before, we see that the ei are precompatible
for each i 6 4.

We have therefore checked that the ei (1 6 i 6 4) are monotonic, compatible,
precompatible, Hölder continuous and take values as shown in (3). One can check
that e5 and e6 also have these properties. Further the functions ei are all equal on
the range 0.2 6 x 6 0.8. This implies that forming fij defined by

fij(x) =
{
ei(x) x 6 .5
ej(x) x > .5

for 3 6 i, j 6 6 gives 16 functions, each of which is monotonic, compatible, precom-
patible and Hölder continuous. Looking at (3), we see that these functions take all
combinations of values of 0 and 1 on the set {0, .0909 . . . , .9090 . . . , 1}. We label
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the functions according to their values on each of these four points as di1i2i3i4 so for
example d0110 takes values 0,1,1 and 0 at 0, .0909 . . . ,.9090 . . . and 1 respectively,
so d0110 = f54.

To define Vm,n, we also need to define two further maps defined on words of
Sm = {0, . . . , 9}m. We have already made implicit use of the equivalence re-
lation ∼ generated by a0909 . . . ∼ a + 1, 9090 . . . , for any word a not ending
with a 9 when discussing precompatibility. Given a word a ∈ Sm, define φ(a)
by the requirement that a0909 . . . ∼ φ(a)9090 . . . and ψ(a) by the requirement
that a9090 . . . ∼ ψ(a)0909 . . . . We are now in a position to specify Vm,n. This
is defined cylinder by cylinder. If a ∈ Sm, write [a] for those elements of Σ10

whose first m digits are given by a. Define κ : Sm → {0, 1} by κ(b) = 1 if
∆m(b) > n and κ(b) = 0 otherwise. By a + 1, we mean the word obtained by
adding 1 (with carry if necessary). The word a − 1 is defined similarly, so for
example, 99999 + 1 = 00000 and 88900 − 1 = 88899. Then given a ∈ Sm, de-
fine N(a) = κ(a − 1), κ(φ(a)), κ(ψ(a)), κ(a + 1). Note that |∆m(a) −∆m(a + 1)|,
|∆m(a)−∆m(a−1)|, |∆m(a)−∆m(φ(a))| and |∆m(a)−∆m(ψ(a))| are all bounded
above by 1. Given this, we set

Vm,n

∣∣
[a]

(x) =


1 ∆m(a) > n

0 ∆m(a) < n

dN(a)(σm(x)) ∆m(a) = n.

The function Vm,n defined in this way is then seen to be Hölder continuous, mono-
tonic, compatible and precompatible. Further, it satisfies 0 6 Vm,n 6 1, Vm,n(x) =
1 when ∆m(x) > n and Vm,n(x) = 0 when ∆m(x) < n as required. This completes
the construction and hence the proof of Lemma 4 and Theorem 1. �

The author would like to extend his thanks to Chris Bose who suggested the
problem. It would be interesting to see if the other examples in [2] could also be
made to be C1, rather than just continuous.
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