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Abstract. In this paper, we consider the set of C1 expanding maps of the circle

which have a unique absolutely continuous invariant probability measure whose den-

sity is unbounded, and show that this set is dense in the space of C1 expanding maps

with the C1 topology. This is in contrast with results for C2 or C1+ε maps, where

the invariant densities can be shown to be continuous.

For expanding maps of the circle which are C2 or C1+ε (that is differentiable
with Hölder continuous derivative), there is always a unique absolutely continuous
invariant probability measure, whose density is continuous and strictly positive.
These functions will be called invariant densities. These maps with their unique
absolutely continuous invariant measures form exact systems (see [4]). This paper
deals with the case of C1 expanding maps.

Throughout this paper, let E1(M) denote the space of expanding C1 mappings
of a compact manifold M to itself with the C1 topology. In [3], Krzyżewski showed
that the subset A ⊂ E1(M) of those mappings which have no absolutely continuous
invariant probability measure with strictly positive continuous density is residual or
of second category in E1(M). This means that topologically ‘most’ mappings fail to
have absolutely continuous invariant probability measures which have continuous
densities bounded above 0. Clearly there are a number of ways in which this failure
can take place: One way is for there to be no absolutely continuous invariant
probability measure. In the case where M is the unit circle, S1, Góra and Schmitt
showed that this can occur (see [1]). A second possibility is there may be examples
which have absolutely continuous invariant densities which fail to be continuous or
fail to be bounded above 0 although no examples of this type are in the literature.
In particular, the question might be asked as to whether there are examples of C1

expanding maps which have an unbounded invariant density. In this paper, we use
cocycles to answer this question, showing that the set of C1 expanding maps of the
circle which have invariant densities which are not essentially bounded away from
either 0 or ∞ is dense in the space of all C1 expanding maps of the circle.
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Other possibilities of behaviour for a C1 expanding map of the circle is that there
is a non-ergodic absolutely continuous invariant measure or one which is ergodic
but not weak-mixing. This is again in contrast with the C2 or C1+ε case (see [5]
and [6] for details).

Theorem 1. The set of C1 expanding maps of the circle preserving a unique ab-
solutely continuous invariant probability measure where the density has essential
infimum 0 and essential supremum ∞ is dense in E1(S1).

To prove the theorem, first note that the set of C2 expanding maps of the circle
is dense in E1(S1). It is therefore sufficient to show that for any C2 expanding
map, there is a map arbitrarily close to it in E1 with unbounded invariant density.
Now fix a C2 expanding map T0 of the circle. For simplicity, we will assume that
T0 is a degree 2 orientation-preserving map. For other degrees, the proof is similar.
By the results in [4], T0 is known to have a unique absolutely continuous invariant
measure µ. The measure µ is exact with respect to T0 and its density ρ with
respect to Lebesgue measure λ is continuous. To prove the theorem, we will prove
two lemmas, one showing the sufficiency of constructing a cocycle with certain
properties and the other one constructing the cocycle.

Lemma 2. Suppose F is an integrable function with the properties
(i) exp(F ) is integrable and

∫
exp(F ) dλ = 1

(ii) F (T0(x))−F (x) is equal almost everywhere to a continuous function h(x), with
the property that h(x) > − log infy∈S1 T0

′(y) for all x.
Then there is a C1 expanding map of the circle with an absolutely continuous

invariant measure which is measure-theoretically isomorphic and topologically con-
jugate to T0 by a conjugacy θ: S1 → S1 in such a way that the density of the
absolutely continuous invariant measure for T is given by exp

(
−F (θ(x))

)
ρ(θ(x)).

Note that in the statement of this lemma, integrability with respect to µ is
equivalent to integrability with respect to Lebesgue measure λ because the density
ρ is bounded above and below by positive numbers.

Proof. In this proof, we consider the circle to be labelled by points in the interval
[0,1). Define θ by specifying θ−1(x) =

∫
[0,x]

exp(F ) dλ. Then since F is finite
almost everywhere, we see that θ is a homeomorphism of the circle. Then T is
defined by θ−1 ◦T0 ◦θ. It follows that T preserves the push-forward of µ under θ−1,
that is the measure µ ◦ θ.

Clearly, θ−1 is absolutely continuous. We now show that θ is also absolutely
continuous. Define the absolutely continuous measure ν by dν/dλ(x) = exp(F (x)),
where λ is Lebesgue measure. Then ν([0, x]) = θ−1(x) = λ[0, θ−1(x)] = λ ◦
θ−1([0, x]). It follows that ν = λ ◦ θ−1. Since 0 < expF < ∞ almost every-
where, it follows that ν(A) = 0 if and only if λ(A) = 0. It follows that A has
Lebesgue measure 0 if and only if θ−1(A) has measure 0 and taking A = θ(B), it
follows that B has measure 0 if and only if θ(B) has measure 0. It follows that θ is
absolutely continuous. It therefore follows that T is absolutely continuous.

A quick calculation shows that the derivative of T is given almost everywhere by
T0
′(θ(x)) exp

(
F (T0(θ(x)))

)
/ exp

(
F (θ(x))

)
= T0

′(θ(x)) exph(θ(x)). Since T is abso-
lutely continuous, it follows that the derivative of T is equal to T0

′(θ(x)) exph(θ(x))
everywhere. The density of µ ◦ θ at x is given by ρ(θ(x))θ′(x), which is equal to
ρ(θ(x)) exp

(
−F (θ(x))

)
proving the lemma. �
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Lemma 3. There exists an integrable function F whose essential supremum is ∞
and whose essential infimum is 0 on the circle such that F (T0(x))− F (x) is equal
to a continuous function h(x) almost everywhere and expF is integrable.

Proof. We may assume (by relabelling if necessary) that 0 is a fixed point of T0.
The preimages of 0 are then 0 and c for some point c ∈ (0, 1). Write τL and τR

for the inverse branches of T0, mapping the circle onto [0, c) and [c, 1) respectively.
Let g: S1 → [−1, 1] be a continuous function such that

(i) The conditional expectation Eµ[g|T−1B] is 0;

(ii) g|[0,τL(c)) > 0 and g|(τL(c),τR(c)) < 0.

We now check that such a function exists. To satisfy (i), it is necessary that
for any x, with preimages yL and yR, that g(yL)ρ(yL) + g(yR)ρ(yR) = 0. This is
satisfied if we set g(τL(x)) = k(x)/ρ(τL(x)) and g(τR(x)) = −k(x)/ρ(τR(x)), where
k is any continuous function on [0,1). For continuity of g at 0 and c, we require
k(0) = −k(1). To satisfy (ii), we require k is positive on [0, c) and negative on [c, 1).
We may ensure that ‖g‖∞ = 1 by scaling by a positive constant.

Then define

F b
a(x) =

b−1∑
k=a

g(T0
k(x))

k + 1

Fn(x) = F∞
n (x); FN (x) = FN

0 (x); F (x) = F∞
0 (x)

First, note that g ◦ T0
m is orthogonal to g ◦ T0

n for all n 6= m with respect to the
invariant measure µ. To see this, note that if m > n, then

∫
(g◦T0

n) ·(g◦T0
m) dµ =∫

g · (g ◦ T0
m−n) dµ. Since g ◦ T0

m−n is measurable with respect to T0
−1B, this is

equal to
∫

Eµ[g|T0
−1B] · (g ◦ T0

m−n) dµ which is 0 as required.

It follows that FN converges in the L2 norm to F . The function F is there-
fore integrable. Similarly, Fn exists as an L2 function with ‖Fn‖2

2 uniformly
bounded above by π2/6 and that Fn converges in the L2 norm to 0. In partic-
ular, ‖Fn‖1 is a uniformly bounded sequence. By a similar argument to the above,
Eµ[g ◦T0

n|T0
−mB] = 0 whenever m > n. In particular, letting Bn be the σ-algebra

T0
−nB, we have Eµ[Fn|Bn+1] = Fn+1. This and the integrability of Fn prove that

the sequence Fn is a backwards martingale and so converges pointwise almost every-
where and in L1 to a function F∞ (see [2] for details). This function is necessarily
measurable with respect to

⋂
Bn, but since (T0, µ) is exact, this σ-algebra is trivial.

It follows that F∞ is constant almost everywhere. Since
∫

Fn dµ = 0 for all n, it
follows that F∞ is 0 almost everywhere. In particular, since F (x) = Fn(x)+Fn(x),
it follows that for almost all x, F (x) is the L1 and almost everywhere pointwise
limit of the functions FN .

We then show that expF is integrable. Write ek(x) for exp
(

1
k+1g ◦ T0

k(x)
)

and note that for x ∈ [−1, 1], expx 6 1 + x + x2. Now set EN
n = expFN

n and
EN = expFN . We then have that

∫
EN

n dx =
∫

enEN
n+1 dx and taking conditional
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expectations with respect to Bn+1, we have∫
EN

n dµ =
∫

Eµ

[
exp
(
( 1

n+1g ◦ T0
n(x)

)∣∣∣T0
−(n+1)B

]
EN

n+1 dµ

6
∫

Eµ

[
1 + 1

n+1g ◦ T0
n(x) +

(
1

n+1g ◦ T0
n(x)

)2∣∣∣T0
−(n+1)B

]
EN

n+1 dµ

6
∫ (

1 +
(

1
n + 1

)2
)

EN
n+1 dµ.

This implies that
∫

EN dx is bounded above by
∏N

k=1(1+ 1
k2 ). This is easily seen

to be bounded above as N →∞ so since EN converges pointwise almost everywhere
to E = expF , it follows by Fatou’s lemma that E is integrable as required.

Since F is the almost everywhere pointwise limit of the FN , it follows that for
almost every x,

F (T0(x))− F (x) =
∞∑

k=1

g(T0
k(x))

k(k + 1)
− g(x).

Let the right hand side of this equation be denoted by h(x). Then this is the uniform
limit of continuous functions and is therefore continuous. We have F (T0(x)) −
F (x) = h(x) almost everywhere as required. Let A be the set of x on which
F (T0

n+1(x))− F (T0
n(x)) = h(T0

n(x)) for all n. This set has measure 1.
It remains to show that F is essentially unbounded. First, note that τL

3([0, 1)) ⊂
[0, τ2

L(c)] which is a compact subinterval of [0, τL(c)). Similarly, (τLτR)2([0, 1))
and (τRτL)2([0, 1)) are subsets of the compact subinterval [τLτRτL(c), τRτLτR(c)]
of (τL(c), τR(c)). It follows that there exists a C > 0 such that for any x ∈ [0, 1),
we have g(τL

3(x)) > C, g((τLτR)2(x) < −C and g((τRτL)2(x)) < −C. Now
pick M > 0. Then there exists an m such that C log(2m − 4) − 5 > M . Set
f (m)(x) =

∑∞
n=0 g(Tnx)/(n + 2m + 1).

We then have ‖f (m)‖1 6 ‖f (m)‖2 = (
∑∞

n=2m+1 1/n2)1/2. This in turn may be
bounded above by 1/

√
(2m). It follows that the set Sm = {x: |f (m)(x)| 6 1} has

positive measure.
Since µ is absolutely continuous with continuous positive density, and the maps

τL and τR have derivatives bounded above 0, it follows that A = (τL)2m(Sm) and
B = (τLτR)m(Sm) have positive measure.

Next, note that if x ∈ A, we have F (x) =
∑2m−1

k=0 g(T kx)/(k + 1) + f (m)(T 2mx).
For k < 2m − 3, T kx = τ2m−k

L x, so we have g(T kx) > C. It follows that F (x) >
C(1 + 1/2 + . . . + 1/(2m− 3))− 4 > M .

Similarly for y ∈ B, we have F (x) 6 −C(1 + 1/2 + . . . + 1/(2m− 4)) + 5 < −M .
It follows that F is essentially unbounded above and below as required.

This completes the proof of the lemma. �

The proof of the theorem now follows:

Proof of Theorem. By the above, there exists an F which is essentially unbounded
above and below with the properties in the statement of Lemma 3. Next, note that
since h(x) ≡ F (T0(x))−F (x) is continuous, it is bounded. Define An(x) = F (x)/n
and Bn(x) = expAn(x). Then Bn(x) converges pointwise to 1 as n → ∞. The
sequence is dominated by max(expF (x), 1) so we have ‖Bn − 1‖1 → 0 as n →∞,
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where 1 denotes the constant function with value 1. Now let Cn(x) = An(x) −
log
∫

Bn dµ.
It follows, using Cn in place of F in Lemma 2 to get a conjugation θn, that

θn
−1 converges uniformly to the identity as n →∞. Then θn converges uniformly

to the identity and Tn defined by Tn = θn
−1 ◦ T0 ◦ θn converges uniformly to T0

as n → ∞. Now T ′n(x) is given by T0
′(θn(x)) exp

(
1
nh(θn(x))

)
which may be seen

to converge uniformly in x to T0
′(x) as n → ∞. Then we have shown that Tn

converges to T0 in the C1 topology. Since the invariant density of Tn is given by
exp
(
− 1

nF (θ(x))
)
ρ(θ(x)), the conclusion of the theorem follows.

�

I thank Chris Bose for suggesting the problem and for useful discussions leading
to its solution.
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