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Abstract. We consider the functional equation F ◦T−F = f where T is a measure-

preserving transformation and f is a continuous function. We show that if there is
an L∞ function F which satisfies this equation, then F is constrained to satisfy a

number of regularity conditions and in particular, if T is a one-sided Bernoulli shift,

then we show that there is a continuous function F satisfying this equation. We show
that this is not the case for the two-sided shift.

In this paper, we work with a continuous measure-preserving transformation T
of a compact metric probability space (X,B, µ) with the Borel σ-algebra. We will
assume that µ is ergodic and of full support. We will require that T is a local
homeomorphism in a neighbourhood about each point of x.

If the equation F ◦T (x)−F (x) = f(x) is satisfied for almost every x with respect
to an invariant measure µ, then we say that f is the coboundary of F with respect
to µ. If F is integrable with respect to µ, then it follows that

∫
f dµ = 0 since the

measure µ is invariant.
A cocycle is a map from Z+×X to R satisfying α(n+m,x) = α(n, x)+α(m,Tnx).

It is straightforward to see that for discrete dynamical systems such as those which
we consider here, the cocycle is determined by the function f(x) = α(1, x). Given
a function f , one is often interested in the asymptotic properties of the cocycle
determined by it. A coboundary gives rise to a particularly simple cocycle, namely
α(n, x) = F (Tnx)− F (x). Two cocycles are said to be equivalent if they differ by
a coboundary. If α and β are two equivalent cocyles determined by the functions f
and g, then it follows from the definition that there exists a function F such that
f = g + F ◦ T − F . If such an equation holds, the functions f and g are said to be
cohomologous.

We work here in the space of L∞ functions (with the usual norm denoted by
‖ · ‖∞). In general imposing different regularity conditions on the space of cocycles
will lead to completely different structures of the quotient space of equivalence
classes of cocycles. However, in the context of Theorem 6, we show that a continuous
function is a coboundary of an L∞ function if and only if it is a coboundary of a
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continuous function. This implies that for continuous functions f and g, they are
cohomologous as L∞ functions if and only if they are cohomologous as continuous
functions. This is in contrast with the situation for cohomology as L1 functions.
This class of result is referred to as a rigidity result as it shows that a map having
certain (weak) properties necessarily also has stronger properties. The first rigidity
results for cocycles were due to Livšic (see [3],[4]), who showed that showed that for
maps T which have hyperbolicity properties, and for a Hölder continuous functions
f , if there is an L∞ function F satisfying F ◦ T − F = f , then in fact there is a
Hölder continuous F satisfying the same equation. For further information about
cocycles, including proofs of some of the results of Livšic, an excellent reference is
[2].

In what follows, we will investigate the set of L∞ functions which have continuous
coboundaries and show that these functions have some continuity properties. We
will write f (n) for the function f+f ◦T +. . .+f ◦Tn−1 and note that if F ◦T−F = f
almost everywhere then F ◦ Tn − F = f (n) almost everywhere. Note that if the
coboundary equation is satisfied by two separate functions F and G then F − G
satisfies (F −G) ◦ T − (F −G) = 0 almost everywhere, so by ergodicity F and G
differ almost everywhere by a constant.

In an earlier paper, [7], a class of continuous functions is given which are cobound-
aries of L1 functions F . The functions F constructed there are everywhere discon-
tinuous, in contrast with the situation for L∞ functions. These functions are then
used to construct C1 expanding maps of the circle which have absolutely continuous
invariant measures whose densities are unbounded and everywhere discontinuous.

We start with an example which will contrast with Theorem 6. Let X be the
space {0, 1}Z, the two-sided full shift on two symbols, let T be the shift map and
µ the Bernoulli( 1

2 , 1
2 ) measure on X. Then given x ∈ X, define N+(x) = inf{n >

0: xn = xn+1} and N−(x) = sup{n 6 0: xn = xn+1}. They should be taken to be
respectively ∞ and −∞ if either set is empty. Then we define an L∞ function as
follows:

F (x) =
N+(x)xN−(x) −N−(x)xN+(x)

N+(x)−N−(x)
.

This function is easily seen to take values between 0 and 1. Further, a simple
calculation shows that

F (T (x))− F (x) = f(x) ≡
xN+(x) − xN−(x)

N+(x)−N−(x)

for every x. It follows that the coboundary of F is continuous. We then show
that there is no continuous function G such that G ◦ T − G = F ◦ T − F . To
show this, if such a function G existed, we could assume (by adding a constant
if necessary) that G = F almost everywhere. We now demonstrate that in any
neighbourhood of the point a = . . . 010101 . . . , there are sets of positive measure
A+ and A− on which F is respectively bigger than 1 − ε and smaller than ε. To
show this, pick n > 0. Let N denote the neighbourhood about a consisting of
those elements of X for which xi = ai for all |i| 6 n. Let M > (n + 2)/ε and set
A+ = {x: xi = ai, ∀ − n 6 i 6 M,xM+1 = xM+2 = 0, x−n−1 = x−n−2 = 1} and
A− = {x: xi = ai, ∀ − n 6 i 6 M,xM+1 = xM+2 = 1, x−n−1 = x−n−2 = 0}. Then
it is straightforward to check that F is greater than 1− ε on A+ and less than ε on
A−. It follows that any function G which differs from F on a set of measure 0 must
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also have points in N which take values respectively bigger than 1− ε and smaller
than ε. This demonstrates that such a function cannot be continuous at a. It is
however easy to verify that F is continuous at a set of points of measure 1. This is
shown to hold in general by the next theorem.

Theorem 1. Suppose T is a continuous measure-preserving transformation of the
compact metric space (X,B, µ) with the Borel σ-algebra and that µ is ergodic and
of full support. If F is an L∞ function on X and F ◦T −F = f almost everywhere
(µ) where f is a continuous function on X, then there is a function G: X → R with
the following properties:

(1) G ◦ T −G = f everywhere;
(2) G is bounded; and
(3) G is continuous at each point of S = {x ∈ X: x has a dense orbit}.

Note that by (3), we mean that about each point in S, for each ε > 0, there is a
neighbourhood of that point on which G varies by less than ε. This is a stronger
statement than the fact that G|S is continuous. We note also that since µ is fully
supported and ergodic, it follows from Birkhoff’s ergodic theorem that µ(S) = 1
so this shows that G has some fairly strong regularity properties. Since, as noted
above, G differs from F by a constant almost everywhere, this gives corresponding
regularity properties for the initial function F .

We prove the theorem in a sequence of lemmas. In what follows f will denote a
fixed continuous function.

Lemma 2. Suppose F1 ∈ L∞ and F1 ◦ T −F1 = f almost everywhere with respect
to µ. Then there exists a bounded measurable function F2 such that F2 ◦T −F2 = f
everywhere.

Proof. Let S1 = {x: |F1(x)| > ‖F1‖∞ or F1 ◦ T (x) − F1(x) 6= f(x)} and let A1 =(⋃
n∈Z+ T−nS1

)c. Then µ(S1) = 0 and so µ(A1) = 1. If x ∈ A1 then we have
f (n)(x) = F1(Tnx)−F1(x) and since both terms on the right hand side are smaller
in modulus than ‖F1‖∞, it follows that |f (n)(x)| 6 2‖F1‖∞ for every x ∈ A1 and
n ∈ N. Since µ is of full support and A1 is of full measure, A1 is a dense set. As
f (n) is continuous it follows that |f (n)(x)| 6 2‖F1‖∞ for all x and n. Now following
the proof in [2], (theorem 2·9·3), define F2(x) to be lim supn→∞−f (n)(x). Then
F2(x) = lim supn→∞−f (n)(x) = lim supn→∞(−f(x) − f (n−1)(Tx)) = −f(x) +
F2(Tx) for all x and ‖F2‖ 6 2‖F1‖∞ where ‖ · ‖ denotes the supremum norm,
which completes the proof. �

Let M = ess sup F2 − ess inf F2. We now show that we may modify F2 so that
supF2 = ess sup F2 and inf F2 = ess inf F2.

Lemma 3. Let F2 be as above. If Tnx = Tmy, then |F2(x)− F2(y)| 6 M .

Proof. Write z for the point Tnx = Tmy. Then by assumption Tn is a local
homeomorphism on a neighbourhood N1 of x mapping to a neighbourhood N ′

1 of
z. Similarly there is a neighbourhood N2 of y mapping to a neighbourhood N ′

2 of
z. Write h1 and h2 for the restrictions of Tn and Tm to N1 and N2.

Suppose F2(y) − F2(x) > M . Then since F2(x) = F2(z) − f (n)(x) and F2(y) =
F2(z) − f (m)(y), it follows that f (n)(x) − f (m)(y) > M . This may also be written
f (n)(h1

−1(z)) − f (m)(h2
−1(z)) > M . Since the left hand side is continuous, it
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follows that there exists a neighbourhood N of z contained in N ′
1 ∩ N ′

2 on which
this inequality holds.

Now since h1 and h2 are non-singular (as T is measure-preserving), it follows that
for almost every z ∈ N , F2(h1

−1(z)) 6 ess sup F2 and F2(h2
−1(z)) > ess inf F2.

In particular, we have for almost every z ∈ N ,

f (n)(h1
−1(z))− f (m)(h2

−1(z)) = F2(h2
−1(z))− F2(h1

−1(z))
6 ess sup F2 − ess inf F2 = M.

This is a contradiction since N has positive measure. �

Lemma 4. Suppose the conditions of the theorem are satisfied. Then there exists
a bounded measurable function G such that

(1) G ◦ T −G = f everywhere;
(2) supG = ess sup G and
(3) inf G = ess inf G.

Proof. Let F2 be as above. We know that F2 is bounded. Define a function H by

H(x) = inf
{

F2(y): y ∈
⋃

m,n∈Z+

T−m(Tn{x})
}

.

It is straightforward to see that H is a bounded invariant function. To check
measurability, note that since T is locally a homeomorphism about each point and
X is a compact space, there are only countably many inverse branches of T so that
H is the infimum of a countable collection of measurable functions. It follows that
H is constant almost everywhere and in fact H(x) = ess inf F2 almost everywhere.

Now let G = F2 − H. Then G > 0 everywhere and ess inf G = ess inf F2 −
ess inf F2 = 0 so inf G = ess inf G = 0. Similarly, we see that ess sup G =
ess sup F2 − ess inf F2 = M . Suppose G(x) > M for some x. We have G(x) =
F2(x)−inf{y: T my=T nx, for some m,n} F2(y). Then it follows that there exists a y such
that Tmy = Tnx for some m,n and F2(x)− F2(y) > M . This however contradicts
the assertion of Lemma 3 and shows that supF 6 ess sup F as required. �

We now use these lemmas to complete the proof of the theorem.

Proof of theorem 1. We use G as defined in Lemma 4. Let ε > 0 be given. Let
B+ = {x: G(x) > M − ε/4} and B− = {x: G(x) < ε/4}. Then both of these sets
have positive measure. It follows by ergodicity that there exists a point x ∈ B−
such that Tnx ∈ B+ for some n > 0. Then we see that f (n)(x) = G(Tnx)−G(x) >
M − ε/2. Now since f (n) is continuous, there exists a neighbourhood N of x such
that x′ ∈ N implies f (n)(x′) > M − ε/2. Since G(Tnx) 6 M , it follows that
0 6 G(x′) = G(Tnx′)− f (n)(x′) < ε/2, whenever x′ ∈ N .

Now we recall that S was defined to be the set of all points of X which have
dense orbits. Given y ∈ S, we now exhibit a neighbourhood of y on which G
remains within ε of G(y). Since y has a dense orbit, there exists an m > 0 such
that Tmy ∈ N . By continuity of f (m) and Tm, there exists a neighbourhood U
of y such that y′ ∈ U implies |f (m)(y) − f (m)(y′)| < ε/2 and Tmy′ ∈ N . Now
fix y′ ∈ U . It then follows that 0 6 G(Tmy′) < ε/2 and 0 6 G(Tmy) < ε/2 so
|G(Tmy) − G(Tmy′)| < ε/2. But now |G(y) − G(y′)| = |(G(Tmy) − f (m)(y)) −
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(G(Tmy′) − f (m)(y′))| < ε. Since y was an arbitrary point of S and ε > 0 was
arbitrary, it follows that G is continuous at each point of S as required. �

We are then able to apply the above to recover an old result of Gottschalk and
Hedlund.

Corollary 5. (Gottschalk, Hedlund, [1]) Suppose X is a compact metric space
and T : X → X is minimal (that is each orbit is dense) and continuous. If f is a
continuous function such that there is a point x0 and a number M > 0 such that
|f (n)(x0)| 6 M for each n then there is a continuous G such that G ◦ T −G = f .

Proof. First note that if |f (n)(x)| > 2M for some x and n, then by minimality
there is a point Tmx0 on the orbit of x0 such that |f (n)(Tmx0)| > 2M and this
contradicts the assumptions made, so we see that |f (n)(x)| 6 2M for all x and M .
Let F be as constructed in Lemma 2. Then let µ be any ergodic invariant measure
for T . Since the support of µ is a compact invariant set, it follows that µ is of
full support and since each point has a dense orbit, it follows that the set S in the
statement of Theorem 1 is all of X. Now Theorem 1 gives the required result. �

We now show that this theorem can be applied in some other situations to show
that the function G is continuous on the whole space X. To do this, we recall a
definition: A map T is called locally eventually onto if for any non-empty open set
U , there exists an n > 0 such that TnU = X. This definition is due to Parry. We
will consider maps T with the properties given in the introduction which in addition
are locally eventually onto. Examples of maps with this property are one-sided full
shift spaces, one-sided irreducible aperiodic subshifts of finite type and expanding
maps of the circle.

Theorem 6. Suppose the map T is locally eventually onto and a local homeo-
morphism with an ergodic invariant measure of full support and that F is an L∞

function satisfying F ◦ T − F = f almost everywhere where f is a continuous
function. Then there exists a continuous function G such that G ◦ T −G = f .

Proof. Let G be as constructed in the course of Theorem 1. Let x be any point
which has a dense orbit in X and let ε > 0 be given. By Theorem 1, G is continuous
at x so there exists a δ > 0 such that d(x, x′) < δ implies that |G(x)−G(x′)| < ε/4.
Take n such that Tn

(
Bδ(x)) = X, where Bδ(x) denotes {x′: d(x, x′) < δ}. Then

for each y, there exists a point p(y) such that Tn(p(y)) = y and d(p(y), x) < δ.
It follows that |G(x) − G(p(y))| < ε/4. Now fix y ∈ X. Since T is locally a
homeomorphism about each point, there exists a neighbourhood N1 ⊂ Bδ(x) about
p(y) on which Tn acts homeomorphically. Further, since f (n) is continuous, there
exists a neighbourhood N of p(y) which is contained in N1 such that z ∈ N implies
that |f (n)(z)− f (n)(p(y))| < ε/2. Then define U = TnN . This is a neighbourhood
of y. Write S for

(
Tn|N

)−1. Then S is a local inverse of Tn and given y′ ∈ U , we
see that G(y′) = G(S(y′)) + f (n)(S(y′)). It follows that if y′ ∈ U ,

|G(y′)−G(y)|

=
∣∣∣(G(S(y′))−G(x)

)
−

(
G(S(y))−G(x)

)
+

(
f (n)(S(y′))− f (n)(S(y))

)∣∣∣
6 ε/4 + ε/4 + ε/2 = ε.

This completes the proof. �
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We observe that it follows from the above that the function f constructed in the
example at the start of the paper is not continuously cohomologous to a one-sided
function. If this were the case, then f would be of the form g + h ◦ T − h for some
continuous function h and we would have (F − h) ◦ T − (F − h) would be equal to
g. By Theorem 6, it would then follow that there is a continuous function G such
that G ◦ T − G = g and so in particular, G + h would be a continuous function
such that (G + h) ◦ T − (G + h) = f which contradicts the result shown for this
example. It is however the case (as can be shown using the techniques of [7]) that
there exists a continuous function f̃ which is one-sided such that f̃ is the limit of a
sequence of functions, each of which is continuously cohomologous to f .

I should like to thank Mark Pollicott and Peter Walters for interesting comments
on this work.
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