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Abstract

0 Introduction

Dye’s celebrated theorem ([5]) states that any ergodic non-singular action of a countable

amenable group is orbit equivalent to a measured odometer action. Hence, a complete

classification of these amenable group actions up to orbit equivalence will follow from a

classification up to orbit equivalence of measured odometer actions.

There is a well-known classification of ergodic non-singular group actions into classes I,

II and III respectively according to whether the measure is concentrated on a single orbit,

the measure is equivalent to an invariant measure (finite or σ−finite) or neither of the

above holds. The case I is a relatively trivial case. The case II is fairly well understood,

so the remaining interesting case (which in some sense is the most prevalent) is case III.

Krieger introduced a subdivision of case III using an invariant which he called the

ratio set (see [9] and [10]). The ratio set may be informally defined as the set of limits

of ratios dµ ◦ γ/dµ for γ in the group Γ of transformations and it may be shown to be a

closed multiplicative subgroup of R ∪ {0,∞}. There are then three possibilities for the

ratio set. It can be {0, 1,∞}, R or {λn : n ∈ Z} for a fixed λ ∈ (0, 1). The corresponding
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classes of transformations are known as III0, III1 and IIIλ. It may be shown that any two

systems in III1 are orbit equivalent (see [12]). Similarly for any fixed λ ∈ (0, 1), any two

IIIλ systems are orbit equivalent. The situation for III0 is much less well understood and

it is this category upon which we shall focus.

We will, as described above, be considering measured odometer actions. A natural

class of examples is given by the actions where the measure is a product measure. An

action which is orbit equivalent to one of this type is said to be product type. A necessary

and sufficient condition for an odometer action to be of product type was introduced by

Connes and Woods ([4]) who use a proof based on operator algebras. The condition which

they introduced is that the Poincaré flow associated to the action has a property which

they call approximately transitive or AT. Hawkins ([8]) showed necessity of Connes and

Woods’ condition with a simpler ergodic theoretic proof and Hamachi [7] was able to show

sufficiency, by using purely ergodic techniques.

It nevertheless remains a difficult task to give examples of measures of type III0 or,

given a product measure to decide whether it is of type III0. (Moore’s criterion [15] allows

us readily to decide when a product measure is of type I, II1, III∞ or III.)

Hamachi, Oka and Osikawa [10] produced examples of product measures of type III0

and Krieger [14] gave an example of a non-AT action.

Brown and Dooley [2] introduced the notion of a G−measure. (Their formalism

favoured the use of the groups of finite coordinate changes over the odometer; these

two actions have the same orbits.) These provide an explicit description of in some senses

the most general quasi-invariant measure. In [3], it was shown how to compute the ratio

sets of G−measures in some cases, and the machinery was applied to product measures.

However, there were some unresolved conjectures and some rather sketchy proofs.

The present article aims to refine the techniques of [3], resolve some conjectures therein

and give full details of some results on product measures. At the same time, we are able

to somewhat sharpen the examples of type III0 product measures in [10]. From the

2



perspective of G−measures, the next most complicated measures after product measures

are Markov measures. A second aim is to consider a class of Markov measures on the

infinite product of two point spaces, where the transition probabilities remain constant

on long blocks. We are able to explicitly compute the Poincaré flow of such a measure

and show that it is AT.

A detailed description of the results follows. Consider the infinite product measure

µ = ⊗µi or X
∏

Z2, where µi({0}) = 1− ai, µi({1}) = 1 + ai (−1 < ai < 1). In section

2, we give an example of a measure of type III, but not of type III0 with ai ↗ 1, disproving

a conjecture in [3]. We also give a relatively easy example of a family of product measures

of type III0 on X. These improve upon the examples found in [10] where the size of the

factors in the product space was unbounded. Examples are found by taking a suitable

sequence {ai} which is constant on blocks of increasing length. In section 3, we give a

detailed proof that if ai → 0 and
∑

a2
i = ∞ then µ is of type III1, providing full details

of a claims made in [3]. The essential technique in these two sections is Lemma 2.1, a

generalization of Theorem 3.1 of [3] and a primitive version of Theorem 1 of [9].

The final section considers Markov measures on the infinite product of two point

spaces, which have the property that their transition probabilities are constant on long

blocks, behaving in the same way as the probabilities in the examples of section 2. We

are able to compute the Poincaré flow explicitly as an odometer with parity bit. These

flows are AT, and hence the measures are orbit equivalent to product measures (although

they are certainly far from being equivalent to products).

More recent work of Dooley and Hamachi [6] finds examples of non-AT Markov mea-

sures. These are realized on
∏

Z`(n) where `(n) increases rapidly.

1 Definitions and Notation

We consider transformations of finite or σ−finite measure spaces. The transformations

which we consider will be measurable and invertible, with measurable inverses and be
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non-singular: that is a set has measure 0 if and only if its image has measure 0. These

transformations will be known as isomorphisms. In the case where the transformation is

from a measure space X to itself, it will be called an automorphism of X. Γ will denote a

countable group of automorphisms of (X,B, µ). The full group [Γ] of Γ consists of those

automorphisms θ of X which have the property that for almost every x ∈ X, θ(x) = γ(x)

for some γ ∈ Γ. Note that we use similar notation for the orbit of a point. Namely, [x] is

the orbit of the point x under the group Γ of transformations.

As an example, define X to be {0, 1}Z+
and Γ to be the group generated by the maps

γn which reverses the nth coordinate (so (γn(x))i = δin + xi mod 1). Then defining θ to

be the standard odometer mapping obtained by regarding points of x as 2-adic integers

and adding 1 (with carry) (so θ(. . . 10110) = . . . 10111; θ(. . . 10111) = . . . 11000), we see

that θ ∈ [Γ].

Two group actions Γ acting on a measure space (X1,B1, µ1) and Γ′ acting on (X2,B2, µ2)

are orbit equivalent (sometimes also called weakly equivalent) if there exists an isomor-

phism Φ from X1 to X2 such that for almost every x ∈ X1, Φ([x]) = [Φ(x)]. In the

example above, the actions of Γ on X and {θn : n ∈ Z} on X are orbit equivalent.

The ratio set Rµ, as defined in [13], is the set of r in [0,∞] such that for each ε > 0

and set A of positive measure, there exists a subset B ⊂ A of positive measure and a

θ ∈ [Γ] such that θ(B) ⊂ A and |dµ ◦ θ/dµ− r| < ε. In our case, where Γ is a countable

group, it is equivalent to define r ∈ R if and only if for each ε > 0 and set A of positive

measure, there exists a subset B of positive measure and γ ∈ Γ such that γ(B) ⊂ A and

|dµ◦γ/dµ−r| < ε on B (that is the automorphism θ may be chosen from the group itself,

not the full group). We use this latter definition in what follows.

Given an action of a group Γ on a space X, we define an action of Γ on X × R. For

γ ∈ Γ, define γ̃(x, t) = (γ(x), t − log(dµ ◦ γ/dµ(x))). Then form Y = X × R/Γ, the set

of Γ−orbits in X × R. There is a natural projection π from X × R to Y . The measure

on Y is taken to be projection of µ × ν where dν(x) = exp x dλ(x). The projection can
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be used to give Y a σ−algebra by defining a subset to be measurable if and only if its

inverse image under π is a measurable subset of X. Since the action of R on X ×R given

by θs(x, t) = (x, s+ t) commutes with the action of Γ on X ×R, it follows that the action

of R may be pushed down to an action on Y . This is the associated flow (or Poincaré

flow) of the action of Γ on X.

An important property which the associated flow may or may not possess is approxi-

mate transitivity (abbreviated to the AT property, so we often say if this property holds

that the associated flow is AT). An action of a group G on a measure space X is AT if

for all ε > 0 and any sequence f1, f2, . . . , fn of functions in L1(X)+, the space of positive

integrable functions, there exists a function f ∈ L1(X)+, finitely many elements gi,j of G

and constants λi,j such that∥∥∥∥∥fi −
∑

j

(
λi,jf ◦ gi,j

dµ ◦ gi,j

dµ

)∥∥∥∥∥
1

< ε

for each i. We will write Lg(f) for the function defined by

Lg(f)(x) = f(g(x))
dµ ◦ g

dµ
(x).

Note that for positive functions f,Lg is an L1 norm-preserving operator. The AT condition

may be re expressed as ‖fi −
∑

j λi,jLgi,j
f ||1 < ε.

2 Product measures of type III0

Example 1. In the notation of [3], we give an example with ai ↗ 1 such that the ratio

set is not a subset of {0, 1,∞}. This disproves conjecture 6.3 of [3].

Fix ρ > 0. Let {σi} be a sequence of the form

ρ, ρ, . . . , ρ, 2ρ, 2ρ, . . . , 2ρ, 3ρ, . . .

such that if nk denotes the number of terms of type ke, then

nk ≥ ekρ and nk+1 ≥ nk.
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The {ai} are then determined as in [3] by

1 + ai

1− ai

= eσi , so ai =
eσi − 1

eσi + 1
↗ 1.

Let µ denote the resulting measure. We prove:

Proposition 2.1 e−ρ ∈ Rµ.

We need the following sufficient condition. It is a generalization of Theorem (3.2) (i) of

[3] to the case of more than one γ ∈ Γn. In this case, we need to assume the disjointness

of the sets of u’s for these γ’s, and that of their images under the γ’s:

Lemma 2.1 Let r ∈ (0,∞). Suppose that ∀ε > 0,∃ β > 0 such that ∀n, ∀γ0 ∈ Γn there

exist:

γ1, γ2, . . . , γk ∈ Γn

U1,U2, . . . ,Uk ⊂ γ0X
n

such that:

• the {Uj} are disjoint,

• the {γjUj} are disjoint,

• we have µ(∪k
j=1Uj) ≥ βµ(γ0X

n),

• ∀j,
u ∈ Uj ⇐⇒ |dµ ◦ γj

dµ
(u)− r| < ε.

Then r ∈ r(X, Γ, µ).

Proof of Lemma 2.1 The proof is based on the method of proof of theorem (3.2) (i)

of [3].

Let r > 0 and let ε � r (this will be specified). Let β > 0 be fixed as in the statement.

Let A be an arbitrary set of positive µ−measure. Then there exists n and γ0 ∈ Γn such

that

µ(A ∩ γ0X
n) > (1− c)µ(γ0X

n)
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where c to be specified.

For this n and γ0, there exist {γj} and {Uj} as stated. It is given that ∪Uj fills up a

proportion β of γ0X
n. Let us check that ∪ γjUj also has this property for some constant

β′:

Since |dµ0γj

dµ
(u) − r| < ε on Uj, it follows that ∀j µ(γjUj) ≥ (r − ε)µ(Uj). So by

disjointness,

µ(∪ γjUj) ≥ (r − ε)µ(∪Uj) ≥ (r − ε)βµ(γ0X
n)

Thus we can take β′ = (r − ε)β.

We now claim that for at least one index j = j0, we have

µ(A ∩ [γj0(A ∪ Uj0)]) > 0.

We have µ(A ∩ (∪Uj)) ≥ µ(∪Uj)− µ([γ0X
n]\A) ≥ (β − c)µ(γ0X

n).

Hence, using disjointness:

µ(∪j γj(A ∩ Uj)) =
∑

j

µ(γj(A ∩ Uj))

≥
∑

j

(r − ε) µ(A ∩ Uj)

= (r − ε) µ(∪(A ∩ Uj))

≥ (r − ε)(β − c) µ(γ0X
n)

By definition, the set S = ∪jγj(A ∩ Uj) is contained in γ0X
n and we have shown that

µ(S) ≥ (r − ε)(β − c) µ(γ0X
n)

Hence

µ(A ∩ S) ≥ µ(S)− µ([γ0X
n]\A) ≥ ((r − ε)(β − c)− c) µ(γ0X

n).

This is positive if we ensure that ε < r and c < min (β/2, (r − ε)β/2).

But the statement µ(A ∩ S) > 0 gives us:

0 < µ(A ∩ ∪jγj(A ∩ Uj)) =
∑

j

µ(A ∩ [γj(A ∩ Uj)]) by disjointness of γj Uj.

7



Hence ∃j = j0 with

µ(A ∩ [γj0(A ∩ Uj0)]) > 0.

It follows that letting

B = {a ∈ A ∩ Uj0 : γj0a ∈ A} ⊂ A

we get γj0B = A ∩ [γj0(A ∩ Uj0)] ⊂ A and µ(γj0B) > 0, which also implies µ(B) > 0.

Also, since B ⊂ Uj, we have∣∣∣∣dµ ◦ γj0

dµ
(u)− r

∣∣∣∣ < ε ∀u ∈ B.

Since ε > 0 was arbitrary, we have r ∈ r(X, τ, µ). �

Proof of Proposition 2.1 We shall in effect take ε = 0 and find aβ > 0. Let any

n, γ0 ∈ Γn be given. Then, in {σi}∞i=n there is a block of the form

σi = ρk, . . . , ρk, ρ(k + 1), ρ(k + 1), . . .

for some k. Fix such a block and k. Since nk+1 ≥ nk, there are available at least nk terms

of the next constant, ρ(k + 1), to the right of this block.

The following table defines our choices of {γj} and {U|} (k = nk) (below k = 4)

σi = . . ., ρk, ρk ρk ρk ρ(k + 1), ρ(k + 1), ρ(k + 1), ρ(k + 1) . . .

(γ1)i = 0 1 0 0 0 1 0 0 0 0 . . .
(γ2)i = 0 0 1 0 0 0 1 0 0 0 . . .
(γ3)i = 0 0 0 1 0 0 0 1 0 0 . . .
(γk)i = 0 0 0 0 1 0 0 0 1 0 . . .

U1 X 1 X X X 0 X X X X . . .
U2 X 0 1 X X 0 0 X X X . . .
U3 X 0 0 1 X 0 0 0 X X . . .
U4 X 0 0 0 1 0 0 0 0 X . . .

Here the convention is that Uj consists of all u having the coordinates shown, and X

denotes either 0 or 1. (And we assume all this in γ0X
n of course).

Clearly, applying the γj’s to the Uj’s gives
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γ1 U1 X 0 X X X 1 X X X X
γ2 U2 X 0 0 X X 0 1 X X X
γ3 U3 X 0 0 0 X 0 0 1 X X
γ4 U4 X 0 0 0 0 0 0 0 1 X

The disjointness of the {Uj}nk
j=1 is guaranteed by the 1’s on the diagonal, preceded by

the 0’s. Similarly for the {γj Uj}.

Next, let us verify that u ∈ Uj =⇒ dµ ◦ γj

dµ
(u) = e−ρ.

[We are following the convention

µi({0}) =
1 + ai

2
=

1

1 + e−σi
:= 1− pi := qi

µi({1}) =
1− ai

2
=

e−σi

1 + e−σi
:= pi]

Thus u ∈ Uj =⇒ dµ ◦ γj

dµ
(u) =

µ(1)(0)µ(2)(1)

µ(1)(1)µ(2)(0)
=

1

e−σ(1)

e−σ(2)

1
= e−σ(1)−σ(2) = ekρ−(k+1)ρ =

e−ρ where σ(1), σ(2) denote kρ and (k + 1)ρ for convenience.

It remains to estimate the measures µ(Uj)/µ(γ0X
n) We get

µ̃(U1) = p(1)q(2) ≥ p(1)q(1)

µ̃(U2) = q(1)p(1)q
2
(2) ≥ p(1)q

3
(1)

µ̃(U3) = q2
(1)p(1)q

3
(2) ≥ p(1)q

5
(1)

(where µ̃) denotes µ/µ(γ0X
n)). Thus, using the notation

p(1) = e−kρ/(1 + e−kρ), q(1) = 1− p(1);

µ̃(

nk⋃
j=1

Uj) ≥ p(1)q(1) + p(1)q
3
(1) + p(1)q

5
(1) + . . .

= p(1)q(1)(1 + q2
(1) + q4

(1) + . . .)

= p(1)q(1)

(
1− q2nk

(1)

1− q2
(1)

)

=
q(1)

1 + q(1)

(
1−

(
1

1 + e−kρ

)2nk

)

[Note: it is clear that the infinite series gives
q(1)

1 + q(1)

∼ 1

2
. Therefore we could have

defined nk more conveniently by taking it such that the sum of the first nk terms is

≥ 1
3

=: β say.]
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Now nk ≥ ekρ, so

(
1

1 + e−kρ

)2nk

≤
(

1

1 + e−kρ

)2ekρ

∼ 1

e2
(for k → ∞). Thus we get

say

β =
1

3
(1− 1

e2
) > 0.

Hence the Lemma applies and the proposition is proved. �

Remark 1 It turns out that Example 1 would have been easier if we could have used

Theorem 4.4 (a) =⇒ (b) of [3]. In particular, this application implies the truth of the above

Lemma 1, and moreover the condition that the {γj Uj} be disjoint appears unnecessary.

Unfortunately, [3] Theorem 4.4 (a) =⇒ (b) is false. We give a counter example, which

was motivated by this observation. It was in fact found by first looking for a situation

where the {γj Uj} are not disjoint.

We present this counterexample after presenting a method for construction µ’s with

ratio set contained in {0, 1,∞}. (This method will also be needed for the counterexample.)

Remark 2 Here is a special case of Example 1.

Let eρ = 2.

Let σi = 2k for i ∈ [2k, 2k+1) (thus nk = 2k+1 − 2k = 2k = eρk).

This gives ai = (2k − 1)/(2k + 1) = 1− (
2

2k + 1
), i ∈ [2k, 2k+1).

We have
1

2
∈ r(X, Γ, µ) by the above.

It is easy to verify that any dµ◦γ/dµ takes on only the values 2m, m ∈ Z (or possibly

0,∞).

Thus in fact µ is type IIIλ, with λ = 1/2.

Remark 3 By choosing rationally independent ρ1, ρ2 and including infinitely many

block pairs (kρ1, kρ1, (k + 1)ρi, . . . (k + 1)ρi) of both types, we clearly get a µ of type III1.

Example 2. We now give a family examples of product measure of type III0 on an

infinite product of two-point spaces. The examples of [10] are somewhat more elaborate

and are not realized on products of two point spaces.

In the notation of [3], it is clear that everything is determined if the sequence {σi} is
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specified.

Let {σi} be of the form

. . . , 2k, 2k, . . . , 2k, 2k+1, 2k+1, . . . 2k+1, 2k+2, . . .

where the nk are chosen large enough, to ensure that:

∞∑
i=1

(1− ai) = ∞.

For example, since 1− ai = 2/(1 + eσi) = 2/(1 + e2k
) on the kth block, the choice

nk ≥
1

2
(e2k

+ 1), (nk ∈ N)

will do. By Moore’s criterion [15], this ensures µ is of type III, for eventually,

min (
2ai

1− ai

, 1) = 1 (since ai ↗ 1)

so
∑

min (
2ai

1− ai

, 1)2(1− ai) =
∑

(1− ai) = ∞.

Proposition 2.2 The ratio set of µ is contained in {0, 1,∞}.

Proof Suppose not. Let r ∈ r(X, Γ, µ), r > 2. Let ε = 1.

Choose k such that {σi}∞i=n takes values in {2k, 2k+1, . . .}. Let A = γ0X
n for this n

and any γ0 (say γ0 = 0)

Clearly for any u ⊆ A, and γ such that γu ⊆ A we get

dµ ◦ γ

dµ
(u) = exp

m∑
i=n

αiσi

for some m depending on γ and αi ∈ {−1, 0, 1}. Thus∣∣∣∣∣
m∑

i=n

αiσi

∣∣∣∣∣ ∈ {0} ∪ 2kN,

so clearly ∣∣∣∣dµ ◦ γ

dµ
(u)− r

∣∣∣∣ > 1 (since r > 2.)
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Thus there is no set B as required by the definition of Rµ. �

Example 3 (Counterexample to [3] Theorem 4.4 (a) =⇒ (b))

To define {σi}, take blocks as in example 2 and insert the value 2k − 1 in front of the

kth block for each k. Thus {σi} is a sequence of the form

2k−1, 2k−1, . . . , 2k−1, 2k − 1, 2k, 2k, . . . , 2k, 2k+1 − 1, 2k+1, 2k+1, . . .

The condition on nk is the same as before, e.g:

nk ≥ exp (2k).

or, more conveniently, define nk instead by considering the series

1 + q + q2 + . . . =
1

1− q

where q = µi({0}) =
1

(1 + exp(−2k))
(on the block k) and let nk be the number of terms

needed to get a partial sum of say at least

1

2
(

1

1− q
).

The idea in the form of the sequence is that it is essentially like example 2, but with a

tiny nick on each big step.

Proposition 2.3 Let µ be the resulting measure. Then

(i) The ratio set of µ is contained in {0, 1,∞}.

(ii) ∀ε > 0,∃β > 0, such that ∀n ∈ N,∀γ0 ∈ Γn ∃L ≥ n such that:

µ({u ∈ γ0X
n : ∃v ∈ γ0X

n, eventually equal to u, such that

` > L implies

∣∣∣∣∣∏̀
i=n

gi(v)

gi(u)
− e

∣∣∣∣∣ < ε}) ≥ βµ(γ0X
n).
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Remark 1 (ii) is the case r = e of Theorem (4.4)(a). But by (i), e is not in the ratio

set of µ, contradicting (4.4) (b).

Remark 2 It will be evident from the proof that if (4.4) (a) is altered to read, instead

of ∀n ∃L, to “∃L ∀n . . . ` ≥ n + L . . .”, then this would not be a counterexample. In fact,

the proof given in [3] is valid with this change. Furthermore, this is the version adopted

later, in Theorem (5.2) (where it should read supn(N(n)− n) < K(ε)).

Proof of Proposition 3 (i) Suppose not. Let r < 2 be in the ratio set. Choose k

such that exp (2k) > r + 1. Now consider the set A defined as follows. Choose n ∈ N such

that {σi}∞i=n is the tail starting from block k. Let i = i` be the indices where the nicks

occur, i.e. where

σi` = 2` − 1, ` = 1, 2, . . .

Fix a γ0 ∈ Γn, define

A = {u ∈ γ0X
n : 0 = uik = uik+1

= . . .} = {u ∈ γ0X
n : ui` = 0 ∀` ≥ k}.

Let us first observe that if u ∈ A and γu ∈ A then clearly

dµ ◦ γ

dµ
(u) = exp

 m∑
i=n

i6∈{i`}

αiσi


because by the definition of A, there can be no change in the coordinates i = i`,

` = k, k + 1, . . . (i.e. all those i` which are ≥ n).

Here m ≥ n and αi ∈ {−1, 0, 1} depend on γ and u of course.

So, since these σi take values in {2k, 2k+1, . . .} (i.e. no 2`− 1 type values), we have, as

in example 2, ∣∣∣∣dµ ◦ γ

dµ
(u)− r

∣∣∣∣ > 1 for all such u.

Hence for this set A, and for ε = 1, there is no set B as required in the definition of

r ∈ Rµ.
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It remains to check, however, that µ(A) > 0. Clearly

µ(A) =
∏
i`≥n

µi`({0}) =
∞∏

`=k

µi`({0}).

But µi`({0}) =
1

1 + exp(−σi`)
=

1

1 + exp(−(2` − 1))
since this is the definition of σi on

the “nicks”. This certainly gives a convergent product (since
∑∞

`=k exp(−2`) < ∞.)

Thus µ(A) > 0 as required. �

Proof of 3 (ii) Fix ε ≥ 0 (it may as well be 0 in fact). Fix n ∈ N and γ0 ∈ Γn. Consider

a k such that the kth block, including its “nick” occurs inside the tail {σi}i>n. We shall

do coordinate changes within this block k only, hence we can take the L to be the end of

block k.

Consider u ∈ γ0X
n of the following types:

ik (ik + nk)
X X 0 1 X X X X (U1)

X X 0 0 1 X X X
... (U2)

X X 0 0 0 1 X X
... (U3)

X X 0 0 0 0 1 X
...

...
...

...
...

...
...

X X 0 0 . . . . . . . . . . . . 0.1 (Unk
)

For each Uj consider the γj shown below:

0 0 1 1 0 0 0 0 γ1

0 0 1 0 1 0 0 0 γ2

0 0 1 0 0 1 0 0 . . .
0 0 1 0 0 0 1 0 γnk

Clearly u ∈ Uj −→ γju =: v ∈ γ0X
n since we have agreed that all our Uj are in γ0X

n.

Let us compute
dµ ◦ γj

dµ
(u) for u ∈ Uj. This is just

µi`({1})
µi`({0})

µ∗({0})
µ∗({1})

where ∗ denotes

an irrelevant index between ik and L (i.e. in the block k).

This of course, by the way, coincides with
L∏

i=n+1

gi(v)

gi(u)
. It reduces to

e−σi`

1

1

e−σ∗
= e−(2k−1) e+(2k) = e.
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In other words, it is true, for all u ∈
⋃nk

j=1 Uj, that ∃v in γ0X
n, eventually, equal to u,

such that ` > L implies∣∣∣∣∣∏̀
i=n

gi(v)

gi(u)
− e

∣∣∣∣∣ < ε ≥ βµ(γ0X
n) holds.

It remains to check that the measure satisfies

µ̃(

nk⋃
j=1

Uj) ≥ β for some absolute β > 0.

We have

µ̃ (U1) = µik({0})µ∗({1})

µ̃ (U2) = µik({0})µ∗({0})µ∗({1})

µ̃ (U3) = µik({0})µ∗({0})µ∗({0})µ∗({1})

. . . etc.

and they are all disjoint. Thus, we get a total of

qikp(k)(1 + q(k) + q2
(k) + . . .)

Where qik = µik({0}), p(k) = µ∗({1}), qk = 1− p(k).

We agreed that nk was large enough to give us at least

qikp(k)
1

2

1

1− q(k)

= qik

1

2
≥ 1

3

since qik =
1

1 + exp(−(2k − 1))
. is nearly equal to 1.

Hence we can take β = 1
3
. This proves 3 (ii). �

Remark Notice how this fits in with Lemma 2.1. There it was required also that {γjUj}

be disjoint. Here we can check directly how badly they fail to be disjoint (of course, they

must fail, because otherwise Lemma 2.1 would be contradicted).

The γj Uj are:

15



1 0 X X X γ1 U1

1 0 0 X X γ2 U2

1 0 0 0 X
...

1 0 0 0 0
...

etc; clearly all are subsets of the first one, which has µ̃(γ1U1) very small (≤ µik({1})).

�

3 Proof of a Proposition

The following proposition was given as Proposition 6.2 in [3]. Unfortunately, its proof

used Theorem 4.4, which we have just disproved! Here is a corrected proof, not without

interest in its own right.

Proposition 3.1 If ai → 0 and
∑

a2
i = ∞, then the measure µ is of type III1. i.e., its

ratio set is [0,∞].

We need the following probabilistic lemma. First let us fix some notation as on pp.

13-14 of [3]. For given 0 ≤ ai ≤ 1/2, i = 1, 2, . . . we associate the sequence

σi = log{(1 + ai)/(1 − ai)} (ai ≤ σi ≤ 4ai) and vice versa (i.e. if a statement refers to

{σi} first, we assume {ai} defined in terms of {σi}).

We also associate with a given {ai} independent random variables as follows. These

are {ui} and {vi}, where

P (ui = 0) = P (vi = 0) =
1 + ai

2

P (ui = 1) = P (vi = 1) =
1− ai

2
,

and all are taken to be independent (thus {ui} are independent and {vi} is a second

independent copy of the sequence {ui}). Here as usual P (∗) is the probability of the

event ∗.

Now put ∆i = vi − ui.
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Then ∆i ∈ {−1, 0, 1} and E(∆i) = 0. A simple calculation shows that E(∆i)
2 =

1− a2
i

2
.

Also define for 1 ≤ n ≤ m, (and for given {ai}),

Sm
n =

m∑
i=n

σi∆i =
m∑

i=n

σi(vi − ui).

Lemma 3.1 Given −∞ < a < b < ∞, there exist p : p(a, b) > 0 and 1 ≥ δ := δ(a, b) > 0

such that given any {ai} and any m ∈ N satisfying: 0 ≤ σi ≤ δ, 1 ≤ i ≤ m, and

2 ≤
m∑

i=1

σ2
i ≤ 2 + δ2, it follows that:

P (a ≤ Sm
1 ≤ b) ≥ p.

Remarks:

1. We emphasize that p and δ depend only on the given interval [a, b]. So the conclusion

holds “uniformly”, whenever {ai}m
i=1 has the stated properties.

2. Obviously, if instead of “1 ≤ i ≤ m” we consider “n ≤ i ≤ m”, we get the same

result (applying the lemma): If 0 ≤ σi ≤ δ, n ≤ i ≤ m, and 2 ≤
m∑

i=1

σ2
i ≤ 2 + δ2,

Then

P (a ≤ Sm
n ≤ b) ≥ p,

since the index i plays no role in the statement. (Here δ = δ(a, b), p = p(a, b)).

3. The {∆i} are independent, but not identically distributed, the distribution of ∆i is

given by ai. However, the distributions are all “comparable” since ai ≤ 1/2 (in fact

ai ≤ σi ≤ δ imposes an even stronger uniformity on them if δ is small.)

4. If δ is small, then m must be large (at least 1/δ2). Thus Sm
1 is an essentially

normalized sum of a large number of independent random variables.

Proof of Lemma It follows from an exercise in [5], § 7.1 page 205, problem 5.

17



This exercise asserts the following: For every ε > 0 there is a δ = δ(ε) > 0 such that:

whenever k ∈ N and X1, . . . , Xk are independent random variables with

E(Xi) = 0 ∀i,
k∑

i=1

E(X2
i ) = 1,

k∑
i=1

E(|Xi|3) ≤ δ, and S :=
k∑

i=1

Xi,

Then supx∈R|P (S ≤ x) − Φ(x)| ≤ ε where Φ(x) =
∫ x

−∞ e−t2/2dt/
√

2π is the standard

normal distribution function.

This is simply a quantitative version of Liapunov’s Central Limit Theorem and can

be verified by following the steps in the proof of it given in [5] (Theorem 7.1.2).

(A more direct proof can be given for our random variables ∆i).

Given the above result, the lemma follows by normalizing Sm
1 and substituting it for

the S in this result: (indeed Sm
1 is almost normalized, but not quite, because of the δ).

Given −∞ < a < b < ∞, choose a < a′ < b′ < b (say a′ = 3
4
a + 1

4
b, b′ = 1

4
a + 3

4
b to be

definite).

Let p′ = Φ(b′)− Φ(a′) =

∫ b′

a′
e−t2/2dt/

√
2π and put ε′ = p′/100, δ′ = δ(ε′).

To obtain the lemma, choose δ0 < 1 and small enough to ensure

a ≤ a′
√

1± δ2
0 < b′

√
1± δ2

0 ≤ b

and put

δ(a, b) =
1

1000
min(δ0, δ

′).

We shall compute the resulting p = p(a, b) : Assume σi ≤ δ(a, b) :=: δ and

2 ≤
m∑

i=1

σ2
i ≤ 2 + δ2 as in the statement of the lemma.

To normalize Sm
1 , we need the variance

E(Sm
1 )2) =

m∑
i=1

E(σ2
i ∆

2
i ) =

m∑
i=1

σ2
i (

1− a2
i

2
)
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Since σi ≤ δ(a, b) =: δ, and 2 ≤
m∑

i=1

σ2
i ≤ 2 + δ2, ai ≤ σ2

i ≤ δ(a, b)2.

So that

1

2

m∑
i=1

σ2
i ≥

m∑
i=1

σ2
i (

1− a2
i

2
) ≥ 1

2

m∑
i=1

σ2
i − S2

m∑
i=1

σ2
i /2 ≥ 1− δ2.

i.e.

1− δ2 ≤ E((Sm
1 )2) ≤ 1 +

1

2
δ2.

Putting Xi = σi∆i/
√

E((Sm
1 )2)

S =
∑m

i=1 Xi, we have that

|Xi|3 = ‖Xi‖∞ · |Xi|2

≤ max
i

(σi) ·
1√

1− δ2
|Xi|2

≤ δ√
1− δ2

X2
i

Thus
m∑

i=1

E(|Xi|3) ≤
δ√

1− δ2
≤ 2δ ≤ δ′ = δ(ε′).

Hence Chung’s exercise applies with ε = ε′. Thus

P (a′ < S < b′) = P (S < b′)− P (S ≤ a′)

≥ (Φ(b′)− Φ(a′))− 2ε′

= p′ − 2p′/100 = (0.98)p′

But now, we show that the inequalities

a′ < S < b′

imply

a ≤ Sm
1 ≤ b :

If S < b′, then

Sm
1 = S

√
E(Sm

1 )2) < b′
√

1 +
1

2
δ2 ≤ b′

√
1± δ0 ≤ b.
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If a′ < S, then a′
√

1− δ2 < Sm
1 , so a ≤ Sm

1 .

We conclude that

P (a ≤ Sm
1 ≤ b) ≥ P (a′ < S < b′) ≥ (0.98)p′

and thus we can take

p(a, b) = (0.98)p′ = (0.98)

∫ 1
4
a+ 3

4
b

3
4
a+ 1

4
b

e−t2/2 dt/
√

2π!

and the lemma is proved. �

Proof of Proposition 6.2 It suffices to show the following, which is a version of (2.3)

(i) of [3]:

For any 0 < r < ∞, ρ > 0, put ρ = log r. Then for every A ⊂ X with µ(A) > 0, there

exists γ ∈ Γ such that

µ({x ∈ A : γx ∈ A and | log
dµ ◦ γ

dµ
(x)− ρ| ≤ ε}) > 0.

Recall that if u = (ui)
∞
i=1, γu = ((γu)i)

∞
i=1 :=: (vi)

∞
i=1 then

dµ ◦ γ

dµ
(u) =

∞∏
i=1

gi((γu)i)

gi(u0)
=

∏
(
1 + ai

1− ai

)ui−(γu)i so log
dµ ◦ γ

dµ
(u) = −

∞∑
i=1

σi(γ(u)i−ui). Thus, consider the interval, (for

given ρ, ε),

[−ρ− ε,−ρ + ε] =: [a, b].

Let the set A ⊂ X be given, µ(A) > 0. Let

κ =
1

200
p(a, b).

(recall that p(a, b) is defined in Lemma 3.1). Let n1 ∈ N be large enough to ensure that

n ≥ n1 =⇒ σn ≤ δ(a, b).

(recall : δ(a, b) is also defined in the Lemma 3.1).
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Since µ(A) > 0, we can find n ≥ n1 and γ0 ∈ Γn such that the cylinder γ0X
n satisfies

µ(A ∩ γ0X
n) ≥ (1− κ)µ(γ0X

n)

Put µ̃ =
µ

µ(γ0Xn)
restricted to γ0X

n, A0 = A ∩ γ0X
n, X0 = γ0X

n.

Consider X0 ×X0 with measure µ̃× µ̃. Observe:

A0 × A0 ⊂ X0 ×X0 and

(µ̃× µ̃)(A0 × A0) ≥ (1− κ)2 ≥ 1− 2κ.

Let (u, v) ∈ X0 ×X0, and identify

u = (un, un+1, . . .)

v = (vn, vn+1, . . .)

Then {ui}∞i=n, {vi}∞i=n are independent random variables on the probability space

(X0×X0, µ̃× µ̃) satisfying all the conditions of the Lemma (in the same notation). Since

σi ≤ δ(a, b) i ≥ n,

we can also choose m > n large enough (not too large) so that

2 ≤
m∑

i=1

σ2
i ≤ 2 + δ(a, b)2.

Since
∞∑

i=n

σ2
i = ∞, this is achieved by letting m be the smallest integer such that

2 ≤
m∑

i=n

σ2
i .

Thus, applying the lemma to

Sm
n =

m∑
i=n

σi(vi − ui)

we have

(µ̃× µ̃)(a ≤ Sm
n ≤ b) ≥ p(a, b).
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Let Gm
n denote the “good set”

Gm
n = {(u, v) ∈ X0 ×X0 : a ≤ Sm

n (u, v) ≤ b}

so that

µ̃× µ̃(Gm
n ) ≥ p(a, b).

Since Sm
n depends only on the coordinates n, . . . , m, then Gm

n is a disjoint union of cylinder

sets

Gm
n =

⋃
α

(Uα × Vα)

where each Uα, Vα is of the form

Uα = (uα
n, uα

n+1, . . . , u
α
m)× {0, 1} × {0, 1} × . . .

Vα = (vα
n , vα

n+1, v
α
m)× {0, 1} × {0, 1} × . . .

(where the uα
i , vα

i i = n, . . . , m are the “good” choices of zeros and ones).

Our problem is to show that there is an α = α0 such that the γ = γα0 (determined by

sending uα0
i 7→ vα0

i , i = n, . . . , m) satisfies property (6).

Put P = µ̃× µ̃ for convenience. We have

P (Gm
n ∩ (A0 × A0)) = P (Gm

n )− P (Gm
n \(A0 × A0))

≥ P (Gm
n )− P ((X0 ×X0)\(A0 × A0))

≥ P (Gm
n )− 2κ = P (Gm

n )− 1

100
p(a, b)

≥ P (Gm
n )− 1

100
P (Gm

n )

= (0.99)P (Gm
n ).

i.e. A0 × A0 covers 99% or more of the good set, Gm
n .

Consequently, A0 × A0 covers 99% or more of at least one of the Uα × Vα (whose

disjoint union is Gm
n ).
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Proof Put E = A0 × A0. Suppose on the contrary that ∀α, P (E ∩ (Uα × Vα)) <

(0.99)P (Uα × Vα). Summing over α,

P (E ∩Gm
n ) =

∑
α

P (E ∩ (Uα × Vα)) <
∑

α

(0.99)P (Uα × Vα) = (0.99)P (Gm
n ),

a contradiction.

Thus, there exists α0 such that

P ((A0 × A0) ∪ (Uα0 × Vα0)) ≥ (0.99)P (Uα0 × Vα0)

where Uα0 × Vα0 ⊂ Gm
n .

Put U0 = Uα0 , V0 = Vα0 . We have

P ((A0 ∩ U0)× (A0 ∩ V0))

P (U0 × V0)
≥ (0.99) =

µ(A0 ∩ U0)µ(A0 ∩ V0)

µ(U0)µ(V0)
(·̇·P = µ̃× µ̃)

=⇒ µ(A0 ∩ U0)

µ(U0)
≥ (0.99) and

µ(A0 ∩ V0)

µ(V0)
≥ (0.99)

Defined the proposed γ ∈ Γ by the conditions

(γx)i = Xi if i < n or i > m
(γx)i = vα0

i if xi = Uα0
i and n ≤ i ≤ m

Clearly γ(U0) = V0 and

µ(E)

µ(U0)
=

µ(γ(E))

µ(V0)
whenever E ⊂ U0.

Thus
µ(γ(A0 ∩ U0))

µ(V0)
=

µ(A0 ∩ U0)

µ(U0)
≥ (0.99).

Combining this knowledge with the above fact that
µ(A0 ∩ U0)

µ(V0)
≥ (0.99), we get

µ(γ(A0 ∩ U0) ∩ (a0 ∩ V0)

µ(V0)
≥ (0.99)− (0.01) = 0.98 > 0

Put B = γ−1(γ(A0 ∩ V0) ∩ (A0 ∩ V0)). Then

µ(B) > 0,

B ⊂ A0 ∩ U0 ⊂ A0 ⊂ A,

γ(B) ⊂ A0 ∩ V0 ⊂ A0 ⊂ A,
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and B × γ(B) ⊂ U0 × V0 ⊂ Gm
n , i.e., if u ∈ B, then

−
m∑

i=n

((γu)i − ui)σi ∈ [log r − ε, log r + ε] (∗)

which is the required property. �

4 Markov measures of type III0

We now present a class of examples which are measured odometers, but with a measures

which are not a product measures, but rather a Markov measures.

We use the Daniell-Kolmogorov consistency theorem to define a measure on X =

{0, 1}Z+
by specifying the measure of each cylinder. To be specific, let [x0x1 . . . xn] denote

the set of points in X whose first n + 1 coordinates are x0, x1, . . . , xn. A set of this kind

will be called an n−cylinder and will also be denoted [x]n. Then define

µ([x0x1 . . . xn]) =
1

2
P (1)

x0x1
P (2)

x1x2
. . . P (n)

xn−1xn
,

where P
(k)
ij =

{
1− qk if i = j;
qk if i 6= j.

This gives a measure on X. We then define the transformation group on the space:

Γ is the group of all finite coordinate rotations of X generated by the γn as introduced

above.

We will now demonstrate briefly an orbit equivalent system which in some ways resem-

bles the more familiar systems. Define a second measure ν on X which is just a product

measure:

ν([x0x1 . . . xn]) =
1

2
q(1)
x1

. . . q(n)
xn

,

where q
(k)
i =

{
1− qk if i = 0;
qk if i = 1.

When then define a second transformation group on the space: Γ′ is the group of all finite

coordinate changes on X which change an even number of coordinates (this is generated
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by the γm◦γn). Then we can show that the Γ action on (X,µ) is orbit equivalent to the Γ′

action on (X, ν). The equivalence is given by a map which is in fact a measure-preserving

homeomorphism. Namely, define Φ : X −→ X by Φ(x)n = x0 + x1 + . . . xn mod 1. If

x0, . . . , xn are given, define y0, . . . , yn by yk = x0+x1+ . . .+xk mod 1. Then a quick check

shows that P
(k)
yk−1yk = q

(k)
xk so it follows that ν([x0 . . . xn]) = µ([y0 . . . yn]). This shows that

Φ is measure-preserving as required. We can write down an explicit inverse Ψ as follows:

Ψ(y)n = yn−1 +yn mod 1, thereby showing that Φ is a homeomorphism (and in particular

is invertible). To check that Φ is an orbit equivalence, from (X, ν, Γ′) to (X, µ, Γ), pick an

x ∈ X and note that Φ(γm ◦ γn(x)) differs from Φ(x) in all coordinates between the mth

and the n−1st. It is thus clear that the image of a Γ orbit under Φ is exactly a Γ orbit

as required.

Note that the system (X, ν, Γ) is known to have an associated flow with the AT

property by Hawkins’ result. (In fact, more is true: the flow on X×R prior to forming the

quotient also has the AT property.) But the system which we are considering, (X, µ, Γ),

is not orbit equivalent to the above, but rather to (X, ν, Γ′) which appears at first sight

to be very similar to (X, ν, Γ) (Γ′ is a subgroup of Γ of index 2), but Hawkins’ proof does

not seem to work in this situation where there is more dependence.

The system as defined so far has a number of parameters qn. We now show how

to choose them in such a way that the system is a III0 system by analogy with the

construction in §2. We will construct an increasing sequence of integers ni and a rapidly

decreasing sequence of real numbers pi and define

qn =

{
1
2

if n = 0
pi if ni−1 < n ≤ ni.

Defining n0 = 0 and mi = ni − ni−1, the sequences are chosen so that

(1)
∞∑
i=1

mipi = ∞;

(2) Rj > 1 and lim
j→∞

Rj = ∞ where
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Rj =
∏
i<j

(
pi

1− pi

)mi

· 1− pi

pj

= ∞.

We remark that it is possible to simultaneously satisfy these conditions by an inductive

construction. Supposing n1, . . . , nk and p1, . . . , pk are chosen. Then pk+1 may be chosen

to ensure that pk+1 > k +1 and subsequently, nk+1 may be chosen so that mk+1 pk+1 > 1.

The first condition, (1) is to ensure that the system is not of type I. The condition is

that the expected number of transitions (i.e. places at which xi 6= xi−1) is infinite). By

the Kolmogorov 0-1 law, this ensures that the probability of having a sequence which is

eventually all 1s or eventually all 0s is 0 and this is sufficient to guarantee that the system

is not of type I.

The second condition, (2) is to ensure that the only ratios occurring in the ratio set

are 0, 1 and ∞. Further, it can be checked as in §2, that all these occur so that the

system really is of type III0. Given γ ∈ Γ and x ∈ X, we see that the ratio dµ ◦ γ/dµ

is constant on any nk−cylinder about x where γ only affects coordinates before the nkth

and so dµ ◦ γ/dµ(x) = µ([γ(x)]nk)/µ([x]nk).

Given x ∈ X, define its block type as follows: the block type is a sequence of numbers

(a0, a1, a2, . . .) where a0 = x0 and ai denotes the number of transitions in block i (that

is the number of n with ni−1 < n ≤ ni such that an 6= an−1, where n0 is taken to be 0).

The number a0 is to be interpreted as the number of transitions in the 0th block (i.e. we

have a notional initial state of 0 and then a0 denotes the number of transitions from 0

in the 0th block.) Next, we note that the measure of a cylinder set of the form [x]nk is

determined by its block type. If the block type is (a0, a1, a2 . . .) then the measure of [x]nk is∏k
i=1 pai

i (1−pi)
mi−ai . If γ is as above and γ(x) has block type (b0, b1, . . . , bk, ak+1, ak+2, . . .)

then we see that

dµ ◦ γ

dµ
(x) = µ([γ(x)]nk)/µ([x]nk) =

(
p1

1− p1

)b1−a1

. . .

(
pk

1− pk

)bk−ak

.

We then see that either all of the terms bi−ai are 0 (in which case the ratio is 1) or there

is a largest i for which bi − ai is non-zero. It is then straightforward to check that the
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ratio is either larger than Rk or smaller than 1/Ri according to whether bi−ai is negative

or positive. Since in the definition of a ratio set, the ratios are required to be found in

any set A of positive measure, letting A be an nk−cylinder, if B is a subset of A and

γ(B) ⊂ A, then the ratio dµ◦γdµ on B is either 1 or larger than Rk or smaller than 1/Rk.

Conversely, inside any set of positive measure, there are ratios which are arbitrarily close

to 0 and ∞. This proves that the system is of class III0).

We use a construction of Hamachi and Osikawa ([8]) to give an explicit description of

the associated flow of the system (X, ν, Γ) and show that it still has the AT property. To

construct the flow, it is first necessary to get an explicit description of a quotient space

which arises in their construction. We now give this description.

Since the functions dµ ◦ γ/dµ are continuous, they are defined on the whole space and

not just on sets of measure 1. This means that the following definition makes sense. Given

x and y in X, write x ∼ y if y = γ(x) for some γ ∈ Γ and dµ ◦ γ/dµ(x) = 1. Then let Y

denote the collection of equivalence classes X/ ∼ and let Π denote that natural projection

from X to Y . The σ−algebra on Y is then given by F = {A ⊂ Y : Π−1A ∈ B}. Let

G denote the collection of measurable subsets of X which are unions of ∼ −equivalence

classes. Then we see that F = Π(G).

We are then able to identify certain elements of G. We first note that if x has block

type (a0, a1, a2, . . .) and y has block type (b0, b1, b2, . . .) then

µ([y]nk)

µ([x]nk)
= (

p1

1− p1

)b1−a1 . . . (
pk

1− pk

)bk−ak .

In particular, by the remarks made in the section on the III0 property, we see that x ∼ y if

and only if x and y lie in the same orbit and have ai = bi for all i ≥ 1. We now show that

if x ∼ y then a0 = b0 as well. To see this, suppose x ∼ y. Then as noted above, ai = bi

for each i ≥ 1. This means that xni
= xni−1

+ ai (mod 2) and yni
= yni−1

+ ai (mod 2) for

each i ≥ 1. In particular it follows that yni
−xni

mod 2 is independent of i for i ≥ 0. Since

x and y live in the same orbit, we require that x and y differ only in finitely many places,

so in particular, xni
= yni

for all i ≥ 0. This implies that a0 = b0. Denote the block type
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of x by B(x). We have shown that x ∼ y =⇒ B(x) = B(y). This allows us to identify

certain elements of G as follows. Set Z = {(a0, a1, . . .) : 0 ≤ a0 ≤ 1; 0 ≤ ai ≤ mi}. Given

b ∈ Z, write Ck(b) for {x : B(x)i = bi, ∀i ≤ k}. Then Ck(b) is a finite union of cylinder

sets of length nk so is certainly a measurable set. If x ∈ Ck(b) and x ∼ y, then since y has

the same block type as x, we see y ∈ Ck(b) so Ck(b) is a union of ∼-equivalence classes as

required. It will be useful to note that by the above arguments, if x and y are members

of Ck(b) then xni
= yni

for each i ≤ k.

We have therefore identified a collection of cylinder type sets which belong to G. It is

then possible to show that these sets generate G. We demonstrate this by showing that the

algebra consisting of finite unions of sets of the form Ck(b) may be used to approximate

any element of G.

Let A be any element of G. We will show that A may be arbitrarily closely approx-

imated by taking a union of sets of the form Ck(b). Let ε > 0 be given. Then pick

δ < min(1, ε/2). Then let A denote the algebra of all finite unions of cylinder sets in X.

Then since A generates the σ−algebra B, any element of B may be arbitrarily closely ap-

proximated by an element ofA. In particular, there exists a finite union of cylinders S such

that µ(A4S) < δ2. Since S consists of a finite union of cylinders, one of these cylinders has

a maximum length and in particular, there exists a k such that all of the cylinders forming

S have length less than nk. We may then assume that S is formed of cylinders of length

exactly nk, say C1, . . . Cr. A cylinder will be called good if it satisfies µ(C\A)/µ(C) < δ

and bad otherwise. We let G be the union of the good cylinders forming S and B be the

union of the bad cylinders forming S. Since the cylinders forming B are disjoint and for

each, we have µ(C) ≤ µ(C\A)/δ, it follows that µ(B) ≤ µ(B\A)/δ ≤ µ(S\A)/δ < δ.

Now, we have that G = S\B consists of a finite disjoint union of good nk−cylinders.

Further, we have µ(G4A) ≤ µ(G4S) + µ(S4A) < δ + δ2 < ε.

Now if C is an n − k−cylinder forming part of G, then C is one of the nk−cylinders

forming Ck(b) for some b ∈ Z. We now show that any other cylinder making up Ck(b)
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is also good. To show this, let D be another nk−cylinder which is a subset of Ck(b).

Then there exists a γ ∈ Γ which only affects coordinates up to the nk−1st such that

γ(C) = D. Further, restricted to C, γ is a measure-preserving map. Since we assumed

that S consisted of a union of ∼ −equivalence classes, it follows that µ(S∩D) = µ(S∩C)

from which it follows that D is good as required.

Finally, let G̃ be the union of those Ck(b) which intersect G. Then from the above, it

follows that µ(G̃ ∩ S)/µ(G̃) > 1 − δ. In particular, µ(G̃\S) < ε. But we have also that

µ(S\G̃) < µ(S\G) < ε so we see that µ(S4G̃) < 2ε, proving the claim that any element

of G may be arbitrarily well approximated by unions of sets of the form Ck(b). From this,

it follows that these sets generated the σ−algebra G.

We now show that the quotient space Y may be identified with Z. There is a natural

map from Y to Z and the above shows that any measurable subset of Y agrees with the

inverse image of a Borel measurable subset of Z up to a set of measure 0. This is sufficient

to guarantee the identification of Y and Z. We are also able to calculate the quotient

measure on Z. This is defined by

ν([b]k) =
1

2

k∏
i=1

(
mi

bi

)
(1− pi)

mi−bipbi
i .

This is because the inverse under the projection of the cylinder set [b]k is the union of∏k
i=1

(
mi

bi

)
cylinder sets in X of measure 1

2

∏k
i=1(1− pi)

mi−bipbi
i .

Having identified the quotient space, define a function φ on X by φ(x) = min{log dµ◦

γ/dµ(x) : log dµ ◦ γ/dµ(x) > 0}. Since the Ri were taken to be greater than 1, we see

that this is a strictly positive quantity (and in fact bounded below by min Ri). Further, it

is clear that if x ∼ y, then φ(x) = φ(y). This shows that φ may be regarded as a function

on the quotient Z.

The final ingredient in the construction of Hamachi and Osikawa is the construction

of an automorphism U of X such that dµ ◦ U/dµ = exp φ(x). Again, it is clear that if

x ∼ y then U(x) ∼ U(y) so once again, U may be regarded as a map of Z. Clearly from
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the construction of the measure on X, U(x) should be a point in the orbit of x which has

the transitions modified in such a way that

µ([U(x)]nk

µ([x]nk)
=

(
1− p1

p1

)a1−b1 (1− p2

p2

)a2−b2

. . .

(
1− pk

pk

)ak−bk

is minimal but greater than 1, where nk is defined such that U(x) only disagrees with x

before the nkth terms and (a0, a1, . . .) and (b0, b1, . . .) are the block types of U(x) and x.

One can identify the effect of U on the cycle types. Namely, U increases b1 by 1 to a1

unless b1 is already maximal, in which case a1 is set to 0 and b2 is increased (unless b2

should happen to be maximal etc.). This is nothing other than an odometer action where

bi can range between 0 and mi. This determines U apart from its effect on b0. This is

determined by the requirement that x and U(x) should lie in the same Γ−orbit which

determines that the total number of transitions up to nk for x and U(x) should have the

same parity (even or odd). The digit a0 is then a ‘parity bit’ which must be chosen to

ensure that a0 + a1 + . . . + ak differs from b0 + b1 + . . . + bk by an even number.

We call the automorphism U of Z an odometer with parity. The ergodicity of such

odometers with parity is not immediately apparent, but they turn out always to be ergodic.

This will in any case follow from results about the associated flow.

Finally, the construction of Hamachi and Osikawa gives an explicit description of the

associated flow. Namely, it is isomorphic to the suspension flow of U : Z −→ Z with ceiling

function φ(z). To describe this, let Zφ denote the space {(z, t) : z ∈ Z, 0 ≤ t < φ(z)}.

The flow on this space is given by the maps Ts where s > 0,

Ts((z, t)) =


(z, s + t) if s + t < φ(z)
(U(z), s + t− φ(z)) if φ(z) ≤ s + t < φ(z) + φ(U(z))
. . .

Since the map U is invertible, the flow is also defined for negative time. An alternative

description of the flow is the following. An equivalence relation is defined on the space

Z × R, namely ≈ is the equivalence relation generated by (i.e. the transitive closure of)

(z, t) ≈ (U(z), t − φ(z)). Then letting [(z, t)] denote the ≈-equivalence class of (z, t), Ts
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acts on the quotient space Z×R/ ≈ by Ts[(s, t)] = [(z, t+s)]. In particular, we see that if

z and z′ lie differ in finitely many places, then we may pick x and x′ whose block types are

respectively z and z′ which lie on the same orbit. There is then a γ0 ∈ Γ such that γ0(x) =

x′. The ratio dµ ◦γ/dµ(x) is determined by the block types of x and x′ (namely z and z′)

alone so is independent of the particular values of x and x′. Forming τ = log dµ◦γ/dµ(x),

we show that (z, t) ≈ (z′, t+τ). Note that in doing this, we may assume that τ is positive.

Since the ratios log dµ ◦ γ/dµ(x) take values in a discrete set, there can only be finitely

many ratios between 0 and τ (j say). Write R(x) for {log dµ ◦ γ/dµ(x) : γ ∈ Γ}. Then

by the chain rule, we see that R(γ(x)) = R(x) − log dµ ◦ γ/dµ(x). It now follows that

dµ ◦U j/dµ ◦ γ0(x) = 1 so U j(x) ∼ x′. Now we see τ = φ(z) + φ(U(z)) + . . . + φ(U j−1(z)).

In particular, we have that (z, t) ≈ (z′, t − τ). This is extremely important as it shows

that Tτ (z, t) = (z′, t). Letting Kj denote log((1 − pj)/pj), we see that in the case where

zj < mj, TKj
(z, t) = (ẑ, t), where ẑi = zi + δij.

It remains to demonstrate that this flow has the AT property. We will let χS denote

the characteristic function of a set S and use the notation [z]k or [b0 . . . bk] for cylinder sets

in Z. Fix k > 0. Then we will show, taking sufficiently small δ and letting f = χ[0...0]k×[0,δ],

that we can closely approximate arbitrarily closely any given finite collection of functions

of the form χ[b0...bk]k×[c,d]. Since any positive integrable function may be arbitrarily closely

approximated by a finite linear combination of functions of this form, it will follow from

this that the flow has the AT property.

First, we observe that letting τ =
k∑

i=1

aiKi where 0 ≤ ai ≤ mi, we have

L−τf(z, t) = χ[00...0]k×[0,δ](T−τ (z, t))
dµ ◦ T−τ

dµ
(z, t).

But we see that χ[00...0]k×[0,δ](T−τ (z, t)) is equal to χTτ ([00...0]k×[0,δ])(z, t) and it is straight-

forward to check that Tτ ([00 . . . 0]k × [0, δ]) = [c(a)a1a2 . . . ak] where c(a) is such that

c(a) + a1 + . . . + ak = 0 (mod 2). This follows from the fact that if x has block type in

[00 . . . 0]k and γ ∈ Γ affect only the first nk coordinates, leaving γ(x) ∈ [c(a)a1a2 . . . ak]
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then log dµ ◦ γ/dµ(x) = τ . This means that L−τf is just χ[c(a)a1a2...ak]×[0,δ]. From this, it

clearly follows that we can approximate arbitrarily closely (by taking small δ) any func-

tion of the form χ[b]k×[c,d] provided that
∑k

i=0 bi = 0 (mod 2). It remains to show that we

can approximate cylinders where
∑k

i=0 bi = 1 (mod 2).

To this end, pick a very large M and consider L−KM
f. Then as before, we have

f(T−KM
(z, t)) = χTKM

([0...o]k×[0,δ])(z, t). Then we observe that if (y, s) ∈ [0 . . . 0]k × [0, δ]

and yM 6= mM then TKM
(y, s) = (ŷ, s) where ŷ0 = 1 and yi = yi + +δiM for i ≥ 1. Setting

B = {(z, t) ∈ [0 . . . 0]k × [0, δ] : zM 6= mM}, and B′ = ([0 . . . 0]k × [0, δ])\B, we have that

f = χB +χB′ . Since ‖χB′‖1 = pmM
M ‖f‖1 and L−KM

is linear and norm-preserving, we have

‖LKM
f − αχ[100...0]k×[0,δ]‖1 = 2pmM

M ‖f‖1.

where α is chosen to ensure that ‖αχ[100...0]k×[0,δ]‖1 = ‖f‖1. This shows that for large

M , we can get an arbitrarily close approximation to χ[100...0]k×[0,δ] and then by a similar

argument to that for the even parity cylinders, we see that we can approximate any

function of the desired type. This completes the proof.
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