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Abstract

0 Introduction

Dye’s celebrated theorem ([5]) states that any ergodic non-singular action of a countable
amenable group is orbit equivalent to a measured odometer action. Hence, a complete
classification of these amenable group actions up to orbit equivalence will follow from a
classification up to orbit equivalence of measured odometer actions.

There is a well-known classification of ergodic non-singular group actions into classes I,
IT and III respectively according to whether the measure is concentrated on a single orbit,
the measure is equivalent to an invariant measure (finite or o—finite) or neither of the
above holds. The case I is a relatively trivial case. The case II is fairly well understood,
so the remaining interesting case (which in some sense is the most prevalent) is case II1.

Krieger introduced a subdivision of case III using an invariant which he called the
ratio set (see [9] and [10]). The ratio set may be informally defined as the set of limits
of ratios dp o vv/dp for  in the group I' of transformations and it may be shown to be a
closed multiplicative subgroup of R U {0,00}. There are then three possibilities for the
ratio set. It can be {0,1,00}, R or {A\" : n € Z} for a fixed A € (0,1). The corresponding



classes of transformations are known as I1ly, III; and III,. It may be shown that any two
systems in III; are orbit equivalent (see [12]). Similarly for any fixed A € (0,1), any two
IIT, systems are orbit equivalent. The situation for IIl; is much less well understood and
it is this category upon which we shall focus.

We will, as described above, be considering measured odometer actions. A natural
class of examples is given by the actions where the measure is a product measure. An
action which is orbit equivalent to one of this type is said to be product type. A necessary
and sufficient condition for an odometer action to be of product type was introduced by
Connes and Woods ([4]) who use a proof based on operator algebras. The condition which
they introduced is that the Poincaré flow associated to the action has a property which
they call approximately transitive or AT. Hawkins ([8]) showed necessity of Connes and
Woods’ condition with a simpler ergodic theoretic proof and Hamachi [7] was able to show
sufficiency, by using purely ergodic techniques.

It nevertheless remains a difficult task to give examples of measures of type Illj or,
given a product measure to decide whether it is of type I1I5. (Moore’s criterion [15] allows
us readily to decide when a product measure is of type I, 1I;, I, or III.)

Hamachi, Oka and Osikawa [10] produced examples of product measures of type III,
and Krieger [14] gave an example of a non-AT action.

Brown and Dooley [2] introduced the notion of a G—measure. (Their formalism
favoured the use of the groups of finite coordinate changes over the odometer; these
two actions have the same orbits.) These provide an explicit description of in some senses
the most general quasi-invariant measure. In [3], it was shown how to compute the ratio
sets of G—measures in some cases, and the machinery was applied to product measures.
However, there were some unresolved conjectures and some rather sketchy proofs.

The present article aims to refine the techniques of [3], resolve some conjectures therein
and give full details of some results on product measures. At the same time, we are able

to somewhat sharpen the examples of type Iy product measures in [10]. From the



perspective of G—measures, the next most complicated measures after product measures
are Markov measures. A second aim is to consider a class of Markov measures on the
infinite product of two point spaces, where the transition probabilities remain constant
on long blocks. We are able to explicitly compute the Poincaré flow of such a measure
and show that it is AT.

A detailed description of the results follows. Consider the infinite product measure
= @u; or X [[Za, where p1;({0}) =1—a;, s({1}) =1+a; (—1<a; <1). In section
2, we give an example of a measure of type I1I, but not of type Il with a; " 1, disproving
a conjecture in [3]. We also give a relatively easy example of a family of product measures
of type IIIp on X. These improve upon the examples found in [10] where the size of the
factors in the product space was unbounded. Examples are found by taking a suitable
sequence {a;} which is constant on blocks of increasing length. In section 3, we give a
detailed proof that if @; — 0 and > a? = oo then p is of type III;, providing full details
of a claims made in [3]. The essential technique in these two sections is Lemma 2.1, a
generalization of Theorem 3.1 of [3] and a primitive version of Theorem 1 of [9].

The final section considers Markov measures on the infinite product of two point
spaces, which have the property that their transition probabilities are constant on long
blocks, behaving in the same way as the probabilities in the examples of section 2. We
are able to compute the Poincaré flow explicitly as an odometer with parity bit. These
flows are AT, and hence the measures are orbit equivalent to product measures (although
they are certainly far from being equivalent to products).

More recent work of Dooley and Hamachi [6] finds examples of non-AT Markov mea-

sures. These are realized on [ ] Zy,) where ¢(n) increases rapidly.

1 Definitions and Notation

We consider transformations of finite or o—finite measure spaces. The transformations

which we consider will be measurable and invertible, with measurable inverses and be



non-singular: that is a set has measure 0 if and only if its image has measure 0. These
transformations will be known as isomorphisms. In the case where the transformation is
from a measure space X to itself, it will be called an automorphism of X. I" will denote a
countable group of automorphisms of (X, B, ). The full group [['] of I" consists of those
automorphisms ¢ of X which have the property that for almost every = € X, 0(x) = v(x)
for some v € I'. Note that we use similar notation for the orbit of a point. Namely, [z] is
the orbit of the point x under the group I' of transformations.

As an example, define X to be {0,1}?" and I' to be the group generated by the maps
7n which reverses the nth coordinate (so (v,(z)); = din, + 2; mod 1). Then defining 6 to
be the standard odometer mapping obtained by regarding points of z as 2-adic integers
and adding 1 (with carry) (so 6(...10110) = ...10111;6(...10111) = ...11000), we see
that 6 € [I'].

Two group actions I acting on a measure space (X1, By, 1) and I'" acting on (Xs, Ba, 12)
are orbit equivalent (sometimes also called weakly equivalent) if there exists an isomor-
phism @ from X; to X5 such that for almost every z € X;, ®([z]) = [®(z)]. In the
example above, the actions of I' on X and {#" : n € Z} on X are orbit equivalent.

The ratio set R, as defined in [13], is the set of r in [0, oo] such that for each € > 0
and set A of positive measure, there exists a subset B C A of positive measure and a
0 € [I'] such that #(B) C A and |dp o 8/du — r| < €. In our case, where I' is a countable
group, it is equivalent to define r € R if and only if for each € > 0 and set A of positive
measure, there exists a subset B of positive measure and v € I' such that v(B) C A and
|dpo~y/du—r| < e on B (that is the automorphism 6 may be chosen from the group itself,
not the full group). We use this latter definition in what follows.

Given an action of a group I' on a space X, we define an action of I' on X x R. For
v € I, define y(z,t) = (y(x),t — log(du o v/du(z))). Then form Y = X x R/I", the set
of '—orbits in X x R. There is a natural projection 7 from X x R to Y. The measure

on Y is taken to be projection of u x v where dv(x) = expx dA\(z). The projection can



be used to give Y a o—algebra by defining a subset to be measurable if and only if its
inverse image under 7 is a measurable subset of X. Since the action of R on X x R given
by 0s(z,t) = (z,s+t) commutes with the action of I' on X x R, it follows that the action
of R may be pushed down to an action on Y. This is the associated flow (or Poincaré
flow) of the action of T" on X.

An important property which the associated flow may or may not possess is approxi-
mate transitivity (abbreviated to the AT property, so we often say if this property holds
that the associated flow is AT). An action of a group G on a measure space X is AT if
for all € > 0 and any sequence fi, fa, ..., fn of functions in L'(X)™T, the space of positive
integrable functions, there exists a function f € L'(X)™", finitely many elements g; ; of G
and constants \; ; such that

d Ogi7'
fi— Z <)\i,jf © 9i;j ,ud,u ]>

J

<€

1

for each 7. We will write £,(f) for the function defined by

£4()) = Flala) P22 o),

Note that for positive functions f, £, is an L' norm-preserving operator. The AT condition

may be re expressed as [|f; — > Aij Ly, fll <€

2 Product measures of type Il

Example 1. In the notation of [3], we give an example with a; /* 1 such that the ratio
set is not a subset of {0, 1, 00}. This disproves conjecture 6.3 of [3].

Fix p > 0. Let {o;} be a sequence of the form
Py Pi20,2p, ., 2p,3p,
such that if n;, denotes the number of terms of type k., then

ni > € and Ngr1 > N
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The {a;} are then determined as in [3] by

1+a; _ e’ —1
= O-,L /L: —_— 1.
e, so a pr Va

1—&2‘

Let p denote the resulting measure. We prove:
Proposition 2.1 e” € R,,.

We need the following sufficient condition. It is a generalization of Theorem (3.2) (i) of
[3] to the case of more than one 7 € I'™. In this case, we need to assume the disjointness

of the sets of u’s for these v’s, and that of their images under the ~’s:

Lemma 2.1 Let r € (0,00). Suppose that Ve > 0,33 > 0 such that Vn,¥y, € T, there

exist:

Y,Ye, -,V €1
Uy, U, ... . Uy C X"
such that:
o the {U;} are disjoint,
o the {v;U;} are disjoint,
o we have (U5 Us) > Bu(rX"),
. V),
u €U |

Then r e r(X,I', n).

Proof of Lemma 2.1 The proof is based on the method of proof of theorem (3.2) (i)
of [3].

Let r > 0 and let € < r (this will be specified). Let 3 > 0 be fixed as in the statement.
Let A be an arbitrary set of positive y—measure. Then there exists n and 7 € [, such

that
m(AN%X") > (1 —c)u(rX")
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where ¢ to be specified.

For this n and 7y, there exist {v;} and {U;} as stated. It is given that Ul fills up a
proportion 3 of 4 X". Let us check that U~;i{; also has this property for some constant
2

diinnys
Since | HoT

dp

(u) — 7| < e on Uy, it follows that Vj p(vy;U;) > (r — e)u(ld;). So by
disjointness,

pUlty) 2 (r = u(UUy) = (r = €)Bp(nX")
Thus we can take ' = (r — ¢€)0.

We now claim that for at least one index j = 7y, we have
M(A A [’on(A U ujo)]) > 0.

We have u(A N (VL)) = p(Ul;) — p([eX"\A) = (8 = )u(10X™).

Hence, using disjointness:

w(U; (AN Yy)) = ZM(%‘(AQ Uj))

> Y r-ouAny)
= (- u(UAN Uy))
> (r—)(8— ) u(30X")

By definition, the set S = U;v,;(AN U;) is contained in 7o X" and we have shown that
u(S) = (r — ) (B — ¢) u(yX")
Hence
(AN S) = p(S) = p([rX"NA) = ((r — )(B — ) — ¢) p(pX").

This is positive if we ensure that € < r and ¢ < min (3/2, (r —¢€)5/2).

But the statement u(A N S) > 0 gives us:

0<pu(ANU;v(ANU;)) = Z,u(A N[y (AN U;)]) by disjointness of ~;U;.

J



Hence 35 = jp with
M(A A h/jo(A n ujo)]) > 0.

It follows that letting
B={acANU,,: vjac A} CA

we get v, B = AN [v;,, (AN U;,)] € Aand p(yj,B) > 0, which also implies p(B) > 0.

Also, since B C U, we have

d .
\ww)_r <c VueB.
dp
Since € > 0 was arbitrary, we have r € r(X, 7, u). O

Proof of Proposition 2.1 We shall in effect take ¢ = 0 and find a8 > 0. Let any

o0
1=

n,7v € I';, be given. Then, in {0;}3°, there is a block of the form

for some k. Fix such a block and k. Since ng,1 > ng, there are available at least n; terms
of the next constant, p(k + 1), to the right of this block.
The following table defines our choices of {v;} and {{4|} (k = ny) (below k = 4)

oi= ..., pk, pk pk pk p(k+1), p(k+1), plk+1), p(k+1)

(m)i= 0 1 0 0 0 1 0 0 0 0
()= 0 0 1 0 0 0 1 0 0 0
(33;= 0 0 0 1 0 0 0 1 0 0
(w)i= 0 0 0 0 1 0 0 0 1 0
u X 1 X X X 0 X X X X
U X 0 1 X X 0 0 X X X
U X 0 0 1 X 0 0 0 X X
U X 0 0 0 1 0 0 0 0 X

Here the convention is that U; consists of all u having the coordinates shown, and X
denotes either 0 or 1. (And we assume all this in X" of course).

Clearly, applying the «;’s to the U;’s gives



wihy X 0 X X X 1 X X X X
vl X 0 0 X X 0 1 X X X
vty X 0 0 0 0 0 0 0 1 X

The disjointness of the {U;}7%, is guaranteed by the 1's on the diagonal, preceded by
the 0’s. Similarly for the {~,;U;}.

d :
Next, let us verify that v € U; = PO (u) =e’.

dp
[We are following the convention
1+ a; 1
i 0 == == =1- i — (;
1i({0}) 5 e pii=q
1—aq e
7 1 = e = i
pi({1}) 5 oo =P
Thus v € U; = w u) = E ;M@)Eé) 7(17(1) 6_1(2) = e 7M@) = ekp—(k+1)p _
H F(2)
e ” where 0(y), o(2) denote k, and (kz + 1)p for convenience.

It remains to estimate the measures pu(U;)/p(1X™) We get
) = payge) P( )4(1)
i(Us) = 40Pty (1)61(1)
i) = atypaydpa Z PO
(where 1) denotes p/p(vX™)). Thus, using the notation

2
(

pay =€ "/(1+e), qu)y=1—pay;

AlJU) = pyae + payahy + payddy + -

= puyqa(l+ Q(21) + Qé) +..)

i
= Pm4u) 1 — q( )
1
_aw [, (#)2
1+ qa1) 1+ e ke

1
) ~ —. Therefore we could have
I +qq) 2

defined m; more conveniently by taking it such that the sum of the first n; terms is

> 3 =: (3 say]

[Note: it is clear that the infinite series gives



1 2ng 1 2ekp
Now ny > €*?, so (—) < (—) ~ = (for £ — o0). Thus we get

1+ e ke 1+e ke e
say
1 1
=—-(1—-—=)>0.
Hence the Lemma applies and the proposition is proved. 0

Remark 1 It turns out that Example 1 would have been easier if we could have used
Theorem 4.4 (a) = (b) of [3]. In particular, this application implies the truth of the above
Lemma 1, and moreover the condition that the {v;;} be disjoint appears unnecessary.
Unfortunately, [3] Theorem 4.4 (a) = (b) is false. We give a counter example, which
was motivated by this observation. It was in fact found by first looking for a situation
where the {7;U;} are not disjoint.

We present this counterexample after presenting a method for construction p’s with
ratio set contained in {0, 1, 00}. (This method will also be needed for the counterexample.)

Remark 2 Here is a special case of Example 1.

Let e? = 2.

Let o; = 2% for i € [2%,2%1) (thus ny, = 2! — 2F = 2F = ¢rk),
2

This gives a; = (28 — 1)/(2F +1) =1 — (2k—+1)’ i€ [2F, 2k,

We have % € r(X,I, u) by the above.

It is easy to verify that any duo~y/du takes on only the values 2™, m € Z (or possibly
0,00).

Thus in fact u is type 111, with A = 1/2.
Remark 3 By choosing rationally independent pi,p, and including infinitely many
block pairs (kp1, kp1, (k+1)pi, ... (k+1)p;) of both types, we clearly get a p of type III;.
Example 2. We now give a family examples of product measure of type IIly on an
infinite product of two-point spaces. The examples of [10] are somewhat more elaborate
and are not realized on products of two point spaces.

In the notation of [3], it is clear that everything is determined if the sequence {o;} is

10



specified.
Let {o;} be of the form

k ok k ok+1 ok+1 k+1 ok+2
L2k 9k ok oktl oktl | oktl okt2

where the n; are chosen large enough, to ensure that:

[e.9]

Z(l —a;) = 0.

=1

For example, since 1 — a; = 2/(1 + ¢%) = 2/(1 + ¢*") on the kth block, the choice

ne > (¥ + 1), (ny, € N)

DN | —

will do. By Moore’s criterion [15], this ensures p is of type III, for eventually,

2a;
min ( a 1) =1 (since a; /1)
2a;
S0 g min(l_aal,l)Q(l—ai): E (1 —a;) = oc.

Proposition 2.2 The ratio set of p is contained in {0,1,00}.

Proof Suppose not. Let r € (X, I, u), r > 2. Let e = 1.
Choose k such that {o;}2°, takes values in {2F 251 .}, Let A = v X™ for this n

and any 7o (say 70 = 0)
Clearly for any u C A, and ~ such that yu C A we get

d m
ah 7(U) = exp Z%‘Uz‘

dp

for some m depending on v and a; € {—1,0,1}. Thus

E ;0| € {0} U QkN,
so clearly
d
‘ Mov(u)—r > 1 (since r > 2.)
dp

11



Thus there is no set B as required by the definition of R,,. 0
Example 3 (Counterexample to [3] Theorem 4.4 (a) = (b))
To define {o;}, take blocks as in example 2 and insert the value 2% — 1 in front of the

kth block for each k. Thus {o;} is a sequence of the form
AR S AR T A TS L
The condition on ny is the same as before, e.g:
ng > exp (2°).

or, more conveniently, define n; instead by considering the series

9 1

where ¢ = 11;({0}) = (1+ ex;(—Qk))

needed to get a partial sum of say at least

(on the block k) and let ny be the number of terms

The idea in the form of the sequence is that it is essentially like example 2, but with a

tiny nick on each big step.

Proposition 2.3 Let p be the resulting measure. Then
(1) The ratio set of p is contained in {0, 1, c0}.

(11) Ye > 0,30 > 0, such that ¥n € N,¥vy € I';, 3L > n such that:

p({u € X" : Jv € X", eventually equal to u, such that

: 9:(v)
g 9i(u)

¢ > L implies —e| <e€}) > BulrpX").

12



Remark 1 (ii) is the case r = e of Theorem (4.4)(a). But by (i), e is not in the ratio
set of u, contradicting (4.4) (b).

Remark 2 It will be evident from the proof that if (4.4) (a) is altered to read, instead
of Vn AL, to “IL Vn... £ >n+ L...”, then this would not be a counterexample. In fact,
the proof given in [3] is valid with this change. Furthermore, this is the version adopted
later, in Theorem (5.2) (where it should read sup,(N(n) —n) < K(¢)).

Proof of Proposition 3 (i) Suppose not. Let r < 2 be in the ratio set. Choose k
such that exp (2¥) > r + 1. Now consider the set A defined as follows. Choose n € N such
that {o;}3°,, is the tail starting from block k. Let i = iy be the indices where the nicks
occur, i.e. where

o, =20 — 1, (=1,2,...

Fix a vy € I',,, define
A={ueynX": 0=u, =uy,, =...} ={u€yX": v, =0 VI>k}.

Let us first observe that if u € A and yu € A then clearly

d m
’;;’V(u) —exp| 3 ao

because by the definition of A, there can be no change in the coordinates i = iy,
(=kk+1,... (ie. all those i, which are > n).

Here m > n and «; € {—1,0,1} depend on « and u of course.

So, since these o; take values in {2%, 251 ..} (i.e. no 2° — 1 type values), we have, as
in example 2,

> 1 for all such w.

dp

Hence for this set A, and for e = 1, there is no set B as required in the definition of

d
‘MOWQO—T

re R,

13



It remains to check, however, that ;(A) > 0. Clearly

u(A) = [T m({0}) = ] ] i ({0}).

w>n

1 1
ut i, (10}) 1+ exp(—o;,) 14exp(—(2¢—1))
the “nicks”. This certainly gives a convergent product (since > _,°, exp(—2¢) < cc.)

since this is the definition of o; on

Thus p(A) > 0 as required. O
Proof of 3 (ii) Fix e > 0 (it may as well be 0 in fact). Fix n € N and vy € T',,. Consider
a k such that the kth block, including its “nick” occurs inside the tail {o;};~,. We shall
do coordinate changes within this block &k only, hence we can take the L to be the end of
block k.

Consider u € X" of the following types:

X X 01 X X X X (Uy)
X X 00 1 X X X (Us)
X X 00 0 1 X X (Us)
XX 00 0 o0 1 X :
X X 0|0 ... .o o0 0.1 (Un,)
For each U; consider the 7; shown below:

00 1]1 0 0 0 O "

00 1]0 1 0 0 O Yo

00 1]0 0 1 0 O e

00 1]0 0 0 1 O Vg

Clearly u € U; — v;u =: v € X" since we have agreed that all our ¢; are in v, X".

i, ({13) ({0}
pi({0}) p({1})

an irrelevant index between i;, and L (i.e. in the block k).

d ,
Let us compute %(u) for w € U;. This is just where * denotes
i

iU
This of course, by the way, coincides with 9i( ) It reduces to
i=n+1 gi(u)
e i L _ 6_(2k_1) e+(2k) — e
1 e o

14



In other words, it is true, for all u € U;li 1 U;, that Jv in v X", eventually, equal to u,

such that ¢ > L implies

¢
H ?EZ; —e| <e> Bu(rnX") holds.

It remains to check that the measure satisfies

Ny

ZZ(U U;) > [ for some absolute 3 > 0.

We have

pth) = pi ({0} ({1})
pta) = ({0 ({0} ({1})
pUs) = i ({03) e ({03) e ({0}) e ({1})

etc.
and they are all disjoint. Thus, we get a total of
@i Py (1 + aey + qGy + - )

Where ¢;, = 115, ({0}), poy = 1({1}), @ =1 — py).-

We agreed that n; was large enough to give us at least

11 1
1
i i = . 1 lto 1.
since ¢;, = 7 P2 =) is nearly equal to
Hence we can take 3 = £. This proves 3 (ii). O

Remark Notice how this fits in with Lemma 2.1. There it was required also that {~;U; }
be disjoint. Here we can check directly how badly they fail to be disjoint (of course, they
must fail, because otherwise Lemma 2.1 would be contradicted).

The ~; U; are:

15



X " U
X Yo Us
< .

I
o o O

X
0
0

SHsls

10 0 0 O
ete; clearly all are subsets of the first one, which has fi(y,U,) very small (< pu;, ({1})).
O

3 Proof of a Proposition

The following proposition was given as Proposition 6.2 in [3]. Unfortunately, its proof
used Theorem 4.4, which we have just disproved! Here is a corrected proof, not without

interest in its own right.

Proposition 3.1 If a; — 0 and > a? = oo, then the measure p is of type 11y i.e., its

ratio set is [0, 00].

We need the following probabilistic lemma. First let us fix some notation as on pp.
13-14 of [3]. For given 0 < a; < 1/2, i =1,2,... we associate the sequence
o =log{(1+a;)/(1 —a;)} (a; <o; <4a;) and vice versa (i.e. if a statement refers to
{o;} first, we assume {a;} defined in terms of {o;}).

We also associate with a given {a;} independent random variables as follows. These

are {u;} and {v;}, where

1+ a
Plu=0) = Py =0)=—"
l—a

and all are taken to be independent (thus {u;} are independent and {v;} is a second
independent copy of the sequence {w;}). Here as usual P(x) is the probability of the
event *.

Now put A; = v; — u,.

16



Then A; € {—1,0,1} and E(A;) = 0. A simple calculation shows that E(A;)?* =
1—a?

5

Also define for 1 < n <m, (and for given {a;}),

Syt = zm:aiAi = iai(vi — ).

Lemma 3.1 Given —oo < a < b < oo, there exist p : p(a,b) >0 and 1 > 6 :=6(a,b) >0

such that given any {a;} and any m € N satisfying: 0 < 0; < 9, 1 < i < m, and

2 < Zaf <2462 it follows that:

i=1

Pa < ST"<b) > p.
Remarks:

1. We emphasize that p and 6 depend only on the given interval [a, b]. So the conclusion

holds “uniformly”, whenever {a;}™, has the stated properties.

2. Obviously, if instead of “1 <7 < m” we consider “n < i < m”, we get the same
m

result (applying the lemma): If 0 < o; <6, n < i <m, and 2 < Zaf < 24 6%,
i=1
Then

Pla < S <b) >p,

since the index ¢ plays no role in the statement. (Here 6 = 6(a,b), p = p(a,b)).

3. The {A;} are independent, but not identically distributed, the distribution of A; is
given by a;. However, the distributions are all “comparable” since a; < 1/2 (in fact

a; < 0; < 0 imposes an even stronger uniformity on them if ¢ is small.)

4. If ¢ is small, then m must be large (at least 1/6%). Thus S7" is an essentially

normalized sum of a large number of independent random variables.

Proof of Lemma It follows from an exercise in [5], § 7.1 page 205, problem 5.

17



This exercise asserts the following: For every € > 0 there is a § = d(¢) > 0 such that:

whenever k € N and X1,..., X, are independent random variables with

i=1
k

k
S E(XP) < 6 and §:=) X,
=1

=1

Then sup,ep|P(S < 2) — ®(x)| < € where ®(z) = [ e */2dt/\/2r is the standard
normal distribution function.

This is simply a quantitative version of Liapunov’s Central Limit Theorem and can
be verified by following the steps in the proof of it given in [5] (Theorem 7.1.2).

(A more direct proof can be given for our random variables A;).

Given the above result, the lemma follows by normalizing S7* and substituting it for
the S in this result: (indeed S7* is almost normalized, but not quite, because of the §).

Given —oo < a < b < 00, choose a < @’ <b < b (say a' = %a—l—ib, b = ia—i—%b to be
definite). ,

Let p' = &) — ®(d') = /b e~ "2dt /2 and put € = p' /100, &' = 6(¢').

a/

To obtain the lemma, choose dy < 1 and small enough to ensure

a<ad\/1£8 <b\/1+£62<Db

and put

1 . ,
(S(Cl,b) = mﬂllﬂ(ég,d )

We shall compute the resulting p = p(a,b) : Assume o; < §(a, b) :=: § and

2 < Z 0? < 2+ 62 as in the statement of the lemma.
i=1
To normalize S7", we need the variance

m m

B(S7")) = ) E(oA}) = ) oi(—5)

i=1 =1

18



Since 0; < 6(a,b) =: §, and 2 < Z <2462 a; <o? < 8(a,b)?

So that

1.e.

1= < B((STY?) <1+ %52.

Putting X; = 0,4;/+/E((57")?)

S =3%"", X, we have that

XilP = Xl - 1XG]?
< max(g;) - \/1_752|Xi|2
< \/%XE
Thus
ZE|X| mgz&gcs':a(e’).

Hence Chung’s exercise apphes with € = ¢/. Thus
Pld<S<?t) = P(S<b)—P(S<d)
> (B(H) - D(a)) - 2¢
= p' —2p/100 = (0.98)p’
But now, we show that the inequalities

a <SS <V

imply
a<S7"<b:

If S <¥, then

Sm = SVEST) < V)1 + %52 <\ /TE0, <b
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If < S, then a’v1 — %2 < S7", s0 a < ST".
We conclude that

Pla< S

3
A
>
Vv
=
@\
A
W
A
=
v
=
©
N
)ﬁ\

and thus we can take

%a+%b
pla,b) = (0.98)p" = (0.98)/ e~/ dt )\/2r)

3
ot

=

and the lemma is proved. O
Proof of Proposition 6.2 It suffices to show the following, which is a version of (2.3)
(i) of [3]:

For any 0 < r < oo, p > 0, put p = logr. Then for every A C X with u(A) > 0, there

exists v € I such that

d
p({x € A:vyx € A and |log L;Ofy(m) —p| <e})>0

d i

Recall that if u = (u;)2,, vu = ((yu);)2, :==: (v;)$2, then ——— ,u ’y H 9il
L+ iy, (s d,uO'y = . .
H(m) i g0 log Z oi(v(u); —u;). Thus, consider the interval, (for
t =1

given ),

[=p—€&—p+e=lab]
Let the set A C X be given, pu(A) > 0. Let

1
= —np(a,b
k= gogPla:b).
(recall that p(a,b) is defined in Lemma 3.1). Let n; € N be large enough to ensure that
n>n = o, < d(a,b).

(recall : d(a,b) is also defined in the Lemma 3.1).
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Since pu(A) > 0, we can find n > ny and vy € T',, such that the cylinder v, X™ satisfies
(AN YX") = (1= k)pu(70X")

Put o = Lﬂ restricted to 19 X", Ag = AN X", Xg=X".
(o X™)

Consider Xy x Xy with measure i x p. Observe:
Ag x Ag C Xog x Xg and
(1 x 1)(Ag x Ag) > (1 —K)*>1 - 2k.
Let (u,v) € Xo x X, and identify

u = (Up, Upy1,---)

v o= (Un,Upni1,...)

Then {u;}5°, , {v;}2, are independent random variables on the probability space

(Xo x Xo, i x ) satisfying all the conditions of the Lemma (in the same notation). Since
o; < d(a,b) i>mn,
we can also choose m > n large enough (not too large) so that

2 < ZO’? <2+ d(a,b)?.
i=1

oo
Since Z o7 = oo, this is achieved by letting m be the smallest integer such that

i=n

Thus, applying the lemma to

we have



Let G} denote the “good set”

G ={(u,v) € Xog x Xo:a<8"(u,v) <b}
so that
i p(GYY) = pla, b).
Since S]" depends only on the coordinates n, ..., m, then G} is a disjoint union of cylinder
sets

Gr = JUa x V)

[0}

where each U,, V, is of the form

Us = (upupyq,-. up) x {01} x {0,1} x ..

Vo = (vy, v 1, um) x {0,1} x {0,1} x ..

(where the u$, v} i =n,...,m are the “good” choices of zeros and ones).
Our problem is to show that there is an a = ag such that the v = ~,, (determined by

aQ

sending ui® — v, i =mn,...,m) satisfies property (6).

Put P = pu x i for convenience. We have

PG N (Ag x Ag)) = P(G)) = P(GI\ (Ao x Ag))

> P(G) — P((Xo x Xo)\(Ag x Ap))
> P(G) ~ 2 = P(G) = goop(a.b)
> P(GY) - 1(1)0 (@)

(0.99)P(G™).

i.e. Ag x Ay covers 99% or more of the good set, GI'".
Consequently, Ag x Ay covers 99% or more of at least one of the U, x V, (whose

disjoint union is G").
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Proof Put F = Ay x Ag. Suppose on the contrary that Vo, P(E N (U, x V,)) <
(0.99)P(U, x V). Summing over a,

P(ENG)) =Y P(EN(Usx Va)) < (0.99)P(Us x Vo) = (0.99)P(G}}),

a contradiction.

Thus, there exists aq such that
P((Ao X Ag) U (Upsy X Viay)) = (0.99)P(Upy X Viap)

where Uy, X V,, C G
Put Uy = U,,, Vo = Vu,.- We have

P((Ao NTp) x (AgNp)) 1(Ao N Up) (Ao N Vo)

R R A (75 7117
(Ao N Up) (Ao N Vo)
LT = 099) and BEREE > (0.99)

Defined the proposed v € I' by the conditions
(ve);=X; if i<n or 1>m
(vx); =0 if 2, =U" and n<i<m

Clearly v(Up) = Vp and

n(E) _ p(y(E)) whenever E C Uy.

1(U) (Vo)

Thus
A A
p(v(Ao N o)) p(Ao N Up) > (0.99)
(Vo) (Uo)
A
Combining this knowledge with the above fact that W > (0.99), we get
H{Vo

w(y(Ao N Up) N (ag N Vp)
1(Vo)
Put B =y 1 (v(Ao N V) N (AgNV;)). Then

> (0.99) — (0.01) = 0.98 > 0

n(B) >0,
BCA()HU()CA()CA,
v(B) C AgNVy C Ay C A,
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and B x v(B) C Uy x Vo C G, i.e., if u € B, then

— Z((fyu)l — u;)o; € [logr — €,logr + €] ()
which is the required property. O

4 Markov measures of type Il

We now present a class of examples which are measured odometers, but with a measures
which are not a product measures, but rather a Markov measures.

We use the Daniell-Kolmogorov consistency theorem to define a measure on X =
{0,1}”" by specifying the measure of each cylinder. To be specific, let [zoz; . . . 2,,] denote
the set of points in X whose first n 4+ 1 coordinates are xg, 1, ...,Z,. A set of this kind

will be called an n—cylinder and will also be denoted [z]|*. Then define

1
pw([zozy .. xy)) = =P pA - pm

o @orr ! ez H e e
where Pi(jk) = { ;k_ Uk i i ;i’
This gives a measure on X. We then define the transformation group on the space:
I' is the group of all finite coordinate rotations of X generated by the 7, as introduced
above.
We will now demonstrate briefly an orbit equivalent system which in some ways resem-
bles the more familiar systems. Define a second measure v on X which is just a product

measure:

Loy m

V([rory ... xy,]) = 50 - oy s
# _ J1-aq iti=0;
where g = {qk if i =1.

When then define a second transformation group on the space: I" is the group of all finite

coordinate changes on X which change an even number of coordinates (this is generated
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by the v, 07,). Then we can show that the I' action on (X, u1) is orbit equivalent to the I
action on (X, v). The equivalence is given by a map which is in fact a measure-preserving
homeomorphism. Namely, define & : X — X by &(x), = xo + 21 + ...z, mod 1. If
X, - .., X, are given, define yg, ..., y, by yx = zo+x1+ ...+ 2, mod 1. Then a quick check
shows that Py(,leyk = ¢ 50 it follows that v([xg...xn]) = (Yo - - - yn]). This shows that
® is measure-preserving as required. We can write down an explicit inverse ¥ as follows:
U(y)n = Yn—1+yn mod 1, thereby showing that ® is a homeomorphism (and in particular
is invertible). To check that ® is an orbit equivalence, from (X, v, I") to (X, u, '), pick an
x € X and note that ®(v,, o v,(x)) differs from ®(z) in all coordinates between the mth
and the n—1st. It is thus clear that the image of a I' orbit under @ is exactly a I" orbit
as required.

Note that the system (X,v,I') is known to have an associated flow with the AT
property by Hawkins’ result. (In fact, more is true: the flow on X xR prior to forming the
quotient also has the AT property.) But the system which we are considering, (X, u,T'),
is not orbit equivalent to the above, but rather to (X, v,I”) which appears at first sight
to be very similar to (X, v, I") (I is a subgroup of I" of index 2), but Hawkins’ proof does
not seem to work in this situation where there is more dependence.

The system as defined so far has a number of parameters ¢,. We now show how
to choose them in such a way that the system is a Il system by analogy with the
construction in §2. We will construct an increasing sequence of integers n; and a rapidly

decreasing sequence of real numbers p; and define

% ifn=20
gn = .
pi ifn;i_1 <n<n,.

Defining ng = 0 and m; = n; — n;_1, the sequences are chosen so that
oo

(1) Zmipi = 0Q;
i=1

(2) R;>1 and lim R; =00 where

J—o0
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i\ 1= p
Rj:H(lp ) : 4p:oo

i<j —Di Dbj
We remark that it is possible to simultaneously satisfy these conditions by an inductive
construction. Supposing ni,...,n; and py,...,p; are chosen. Then px, 1 may be chosen
to ensure that pr.q > k+ 1 and subsequently, n;; may be chosen so that mg 1 pry1 > 1.

The first condition, (1) is to ensure that the system is not of type I. The condition is
that the expected number of transitions (i.e. places at which x; # x;_41) is infinite). By
the Kolmogorov 0-1 law, this ensures that the probability of having a sequence which is
eventually all 1s or eventually all Os is 0 and this is sufficient to guarantee that the system
is not of type L.

The second condition, (2) is to ensure that the only ratios occurring in the ratio set
are 0, 1 and oco. Further, it can be checked as in §2, that all these occur so that the
system really is of type IIly. Given v € I' and x € X, we see that the ratio du o v/du
is constant on any n;—cylinder about x where v only affects coordinates before the n,th
and so dp o y/dp(x) = p(ly(x)]"™)/p([2]™).

Given x € X, define its block type as follows: the block type is a sequence of numbers
(ag, a1, as,...) where ag = zp and a; denotes the number of transitions in block i (that
is the number of n with n;_; < n < n; such that a, # a,_1, where ny is taken to be 0).
The number ay is to be interpreted as the number of transitions in the Oth block (i.e. we
have a notional initial state of 0 and then ag denotes the number of transitions from 0
in the Oth block.) Next, we note that the measure of a cylinder set of the form [z]™ is
determined by its block type. If the block type is (ag, aj, as . . .) then the measure of [z]|* is
Hle pit(1—p;)™~%. If v is as above and «(z) has block type (bg, b1, . . ., bg, Qgt1, Qrya, .- .)
then we see that

L) = b ) = (12 )( . )

du 1—p 1 —py

We then see that either all of the terms b; — a; are 0 (in which case the ratio is 1) or there

is a largest ¢ for which b; — a; is non-zero. It is then straightforward to check that the
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ratio is either larger than Ry, or smaller than 1/R; according to whether b; — a; is negative
or positive. Since in the definition of a ratio set, the ratios are required to be found in
any set A of positive measure, letting A be an ny—cylinder, if B is a subset of A and
v(B) C A, then the ratio dpo~ydu on B is either 1 or larger than Ry or smaller than 1/ Ry.
Conversely, inside any set of positive measure, there are ratios which are arbitrarily close
to 0 and oco. This proves that the system is of class IIlj).

We use a construction of Hamachi and Osikawa ([8]) to give an explicit description of
the associated flow of the system (X, v, T") and show that it still has the AT property. To
construct the flow, it is first necessary to get an explicit description of a quotient space
which arises in their construction. We now give this description.

Since the functions dju o /dp are continuous, they are defined on the whole space and
not just on sets of measure 1. This means that the following definition makes sense. Given
x and y in X, write z ~ y if y = y(x) for some v € " and dp o vy/du(x) = 1. Then let Y
denote the collection of equivalence classes X/ ~ and let IT denote that natural projection
from X to Y. The o—algebra on Y is then given by F = {A C Y : [I"'A € B}. Let
G denote the collection of measurable subsets of X which are unions of ~ —equivalence
classes. Then we see that F = 11(G).

We are then able to identify certain elements of G. We first note that if x has block
type (ao, ai, as,...) and y has block type (bg, b1, ba, . ..) then

:u([y]nk) :( 4 b1—aq Pk )bk—ak
p(lz]me) 1 —py RNy .

In particular, by the remarks made in the section on the IIIy property, we see that x ~ y if

and only if x and y lie in the same orbit and have a; = b; for all i > 1. We now show that
if x ~ y then ag = by as well. To see this, suppose x ~ y. Then as noted above, a; = b;
for each ¢ > 1. This means that x,, = x,,_, +a; (mod 2) and y,, = yn,_, +a; (mod 2) for
each 7 > 1. In particular it follows that y,,, —x,, mod 2 is independent of ¢ for « > 0. Since
x and y live in the same orbit, we require that = and y differ only in finitely many places,

so in particular, x,, = y,, for all + > 0. This implies that ay = by. Denote the block type
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of « by B(x). We have shown that x ~ y = B(x) = B(y). This allows us to identify
certain elements of G as follows. Set Z = {(ag,a1,...):0<ag <1;0<a; <m;}. Given
b€ Z, write Ci(b) for {x : B(z); = b;, Vi < k}. Then Ci(b) is a finite union of cylinder
sets of length ny, so is certainly a measurable set. If © € Cy(b) and = ~ y, then since y has
the same block type as x, we see y € Ci(b) so Ci(b) is a union of ~-equivalence classes as
required. It will be useful to note that by the above arguments, if x and y are members
of Cy(b) then z,, = y,, for each i < k.

We have therefore identified a collection of cylinder type sets which belong to G. It is
then possible to show that these sets generate G. We demonstrate this by showing that the
algebra consisting of finite unions of sets of the form C(b) may be used to approximate
any element of G.

Let A be any element of G. We will show that A may be arbitrarily closely approx-
imated by taking a union of sets of the form Cy(b). Let ¢ > 0 be given. Then pick
d < min(1,€/2). Then let A denote the algebra of all finite unions of cylinder sets in X.
Then since A generates the o—algebra B, any element of B may be arbitrarily closely ap-
proximated by an element of A. In particular, there exists a finite union of cylinders S such
that u(AAS) < 6% Since S consists of a finite union of cylinders, one of these cylinders has
a maximum length and in particular, there exists a k such that all of the cylinders forming
S have length less than n;. We may then assume that S is formed of cylinders of length
exactly ng, say Ci,...C,. A cylinder will be called good if it satisfies u(C\A)/u(C) < 6
and bad otherwise. We let G be the union of the good cylinders forming S and B be the
union of the bad cylinders forming S. Since the cylinders forming B are disjoint and for
each, we have u(C) < u(C\A)/J, it follows that u(B) < u(B\A)/é < p(S\A)/é < 0.
Now, we have that G = S\B consists of a finite disjoint union of good nj—cylinders.
Further, we have pu(GAA) < u(GAS) + u(SAA) < § + 62 < e.

Now if C'is an n — k—cylinder forming part of G, then C' is one of the ny—cylinders

forming Cj(b) for some b € Z. We now show that any other cylinder making up Cj(b)
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is also good. To show this, let D be another ny—cylinder which is a subset of Cy(b).
Then there exists a v € I' which only affects coordinates up to the ni—1st such that
v(C) = D. Further, restricted to C,~ is a measure-preserving map. Since we assumed
that S consisted of a union of ~ —equivalence classes, it follows that u(SND) = u(SNC)
from which it follows that D is good as required.

Finally, let G be the union of those Ci(b) which intersect G. Then from the above, it
follows that (G N S)/u(G) > 1 — 6. In particular, u(G\S) < e. But we have also that
1(S\G) < u(S\G) < € so we see that u(SAG) < 2e, proving the claim that any element
of G may be arbitrarily well approximated by unions of sets of the form Cy(b). From this,
it follows that these sets generated the c—algebra G.

We now show that the quotient space Y may be identified with Z. There is a natural
map from Y to Z and the above shows that any measurable subset of Y agrees with the
inverse image of a Borel measurable subset of Z up to a set of measure 0. This is sufficient
to guarantee the identification of Y and Z. We are also able to calculate the quotient
measure on /. This is defined by

k

i) =5 T (3 ) a = mm ot

i=1

This is because the inverse under the projection of the cylinder set [b]* is the union of
Hle (ng) cylinder sets in X of measure ; Hle(l — i)™ biph,

Having identified the quotient space, define a function ¢ on X by ¢(z) = min{log du o
v/du(z) : log dp o y/du(x) > 0}. Since the R; were taken to be greater than 1, we see
that this is a strictly positive quantity (and in fact bounded below by min R;). Further, it
is clear that if = ~ y, then ¢(x) = ¢(y). This shows that ¢ may be regarded as a function
on the quotient Z.

The final ingredient in the construction of Hamachi and Osikawa is the construction

of an automorphism U of X such that du o U/dp = exp ¢(x). Again, it is clear that if
x ~ y then U(x) ~ U(y) so once again, U may be regarded as a map of Z. Clearly from
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the construction of the measure on X, U(x) should be a point in the orbit of x which has

the transitions modified in such a way that

(1) (1 (12m)

is minimal but greater than 1, where ny, is defined such that U(z) only disagrees with x

before the nith terms and (ag, aq,...) and (bg, b1, ...) are the block types of U(z) and z.
One can identify the effect of U on the cycle types. Namely, U increases b; by 1 to ay
unless by is already maximal, in which case a; is set to 0 and by is increased (unless by
should happen to be maximal etc.). This is nothing other than an odometer action where
b; can range between 0 and m;. This determines U apart from its effect on by. This is
determined by the requirement that z and U(x) should lie in the same I'—orbit which
determines that the total number of transitions up to ny for x and U(z) should have the
same parity (even or odd). The digit ao is then a ‘parity bit’ which must be chosen to
ensure that ag + a; + ... + ay, differs from by + by + ... + by by an even number.

We call the automorphism U of Z an odometer with parity. The ergodicity of such
odometers with parity is not immediately apparent, but they turn out always to be ergodic.
This will in any case follow from results about the associated flow.

Finally, the construction of Hamachi and Osikawa gives an explicit description of the
associated flow. Namely, it is isomorphic to the suspension flow of U : 7 — Z with ceiling
function ¢(z). To describe this, let Z; denote the space {(z,t) : z € Z, 0 <t < ¢(2)}.

The flow on this space is given by the maps T where s > 0,

(z,5+ 1) if s+t < o(z)
T((2,0) =4 (U(z)5+1—6() i (=) < 5+1 < 6(2) + $(U(2))

Since the map U is invertible, the flow is also defined for negative time. An alternative
description of the flow is the following. An equivalence relation is defined on the space
Z x R, namely ~ is the equivalence relation generated by (i.e. the transitive closure of)

(2,t) = (U(2),t — ¢(2)). Then letting [(z,t)] denote the ~-equivalence class of (z,t), T
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acts on the quotient space Z xR/ ~ by Ts|[(s,t)] = [(z,t+ s)]. In particular, we see that if
z and 2’ lie differ in finitely many places, then we may pick = and 2’ whose block types are
respectively z and 2’ which lie on the same orbit. There is then a vy € I" such that vo(x) =
a’. The ratio dpo~y/du(x) is determined by the block types of x and 2’ (namely z and z’)
alone so is independent of the particular values of x and 2’. Forming 7 = log dpo~y/du(x),
we show that (z,t) =~ (2/,t+7). Note that in doing this, we may assume that 7 is positive.
Since the ratios log du o y/du(x) take values in a discrete set, there can only be finitely
many ratios between 0 and 7 (j say). Write R(x) for {logdu o v/du(x) : v € I'}. Then
by the chain rule, we see that R(y(z)) = R(z) — logdu o v/du(z). It now follows that
dpo U Jdpo~y(z) =1 s0o Ul(z) ~ x'. Now we see 7 = ¢(2) + ¢(U(2)) + ...+ ¢p(UT71(2)).
In particular, we have that (z,t) &~ (2/,¢t — 7). This is extremely important as it shows
that T, (z,t) = (#',t). Letting K; denote log((1 — p;)/p;j), we see that in the case where
zj <my, Tk, (2,t) = (Z,1), where Z; = 2; + dy;.

It remains to demonstrate that this flow has the AT property. We will let xs denote
the characteristic function of a set S and use the notation [z]* or [by . . . by] for cylinder sets
in Z. Fix k > 0. Then we will show, taking sufficiently small ¢ and letting f = X{o._.0%x[0,6]
that we can closely approximate arbitrarily closely any given finite collection of functions
of the form Xpy, . 4,]%x[c,q- Since any positive integrable function may be arbitrarily closely
approximated by a finite linear combination of functions of this form, it will follow from

this that the flow has the AT property.
k

First, we observe that letting 7 = Z a; K; where 0 < a; < m,;, we have
i=1

dpuoT

L . f(z,t) = X00...0]¥x[0,6] (T-7(2,1)) di

(z,1).

But we see that Xo0...0jx[0,6)(T-7(2,1)) is equal to Xt (oo..0]x[0,5)) (2, 1) and it is straight-
forward to check that T5([00...0]* x [0,6]) = [c(a)ajas...a;] where c(a) is such that
cla)+a; + ...+ ar =0 (mod 2). This follows from the fact that if « has block type in

[00...0]% and v € T affect only the first n; coordinates, leaving v(z) € [c(a)aias . . . az]
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then log dy o v/du(x) = 7. This means that £_;f is just X(c(a)aias..ax]x[0,0]- From this, it
clearly follows that we can approximate arbitrarily closely (by taking small ¢) any func-
tion of the form Xk (.,q Provided that Zf:o b; = 0 (mod 2). It remains to show that we
can approximate cylinders where Zf:o b; =1 (mod 2).

To this end, pick a very large M and consider L_g,, f. Then as before, we have
Tk (2:1)) = Xrs,, (0.0 x[0.5)) (2: ). Then we observe that if (y,s) € [0. .. 0]F x [0, 0]
and yy # myy then Tx,, (y, s) = (¥, s) where 5o = 1 and y; = y; + +d;5r for ¢ > 1. Setting
B ={(z1t) €[0...0/F x [0,8] : 25y # mu}, and B’ = ([0...0]¥ x [0,5])\ B, we have that

f=xB+xp. Since || xp |1 = pi/" || fll1 and L_k,, is linear and norm-preserving, we have

| Lrpr f — OéX[loo...o]kx[o,é]Hl = QPnJ\ZMHf”l-

where « is chosen to ensure that |[axpgo.orxjogllt = ||f[/1. This shows that for large
M, we can get an arbitrarily close approximation to x(io..oj¢x[0,s) and then by a similar
argument to that for the even parity cylinders, we see that we can approximate any

function of the desired type. This completes the proof.
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