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ABSTRACT. We consider the topological category of various subsets of the set of expanding
maps from a manifold to itself, and show in particular that a generic C' expanding map of
the circle has no absolutely continuous invariant probability measure. This is in contrast with
the situation for C2? or C11€ expanding maps, for which it is known that there is always a

unique absolutely continuous invariant probability measure.

Let X be a compact boundaryless Riemannian manifold with Riemannian volume A.
We will write E"(X) for the collection of all C" expanding maps from X to itself, and
will be mainly interested in E'(X). We will be interested in the existence and properties
of invariant measures for maps in E'(X) which are absolutely continuous with respect to
A. We will work both with absolutely continuous invariant probability measures (which
we abbreviate to a.c.i.p.) and o-finite absolutely continuous invariant measures (which we
abbreviate to a.c.i.o.). By a.c.i.o., we will always mean a o-finite absolutely continuous
invariant measure which is not a finite measure. An absolutely continuous invariant mea-
sure will mean either an a.c.i.p. or an a.c.i.c.. The density of an absolutely continuous

invariant measure is the Radon-Nikodym derivative of the measure with respect to A.
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If T is a member of E%(X), it is known (see [7] and [5]) that T has a unique a.c.i.p..
This measure also has strong ergodic properties. Krzyzewski ([6]) showed that the set of
C! expanding maps which have an a.c.i.p. with a continuous density bounded away from
0 is meagre in E'(X), but it is clear that there are a number of ways in which this can
fail. In [10], it was shown that in the case where X is the circle, there is a dense set of
C! expanding maps with an a.c.i.p. whose density is not bounded away from 0, nor from
oo. In [3], an example of a C! expanding map of the circle was produced for which there
is no a.c.i.p., but there was no information about the size of the class of maps with this
property. This example was later shown to have an a.c.i.c.(see [4]). An example of a C*
expanding map with no a.c.i.o. or a.c.i.p.was given in [2].

In this paper, we show that the class of expanding maps of the circle which have no
a.c.i.p. is a dense Gy set (i.e. is the intersection of countably many dense open sets),
and also prove a statement in the general case where X is a manifold about the class of
expanding maps having more than one absolutely continuous invariant measure.

If T is an expanding map X — X, let L1 be the corresponding Ruelle-Perron-Frobenius
operator with respect to A. This operator may be defined by the equation [ fL7[g] d\ =
[foT-gdforall ge L'()\) and f € L>()\) and is given explicitly by the equation

Lrlflz)= )

yeT 1z

If T preserves an absolutely continuous invariant probability measure p, write Dr for its
Ruelle-Perron-Frobenius operator with respect to p. This operator satisfies [ fDr[g] du =
[ foT-gduforall g € L*(u) and f € L*(u) and is normalized (Dr[1] = 1). If 4 has density
h, then Dr and Lr are related by the equation Dz[f](z) = Lr[h- f](z)/h(z). If ¢: ST — S*
is a diffeomorphism, S is an expanding map with absolutely continuous invariant measure
w and T is the conjugate map ¢~ o S o ¢ preserving the absolutely continuous measure
po ¢~1 then the operators Dg and Dr are related by Drlg] = Dslgo @] o $~1. The
reader is referred to [11] for a fuller discussion of the properties of Ruelle-Perron-Frobenius
operators.

A measure u (not necessarily invariant) is called ergodic under T if u(A A T71A) =0

implies that p(A) =0 or u(A°) = 0.
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Theorem 1. If X is a compact Riemannian manifold, then the set of C! expanding maps

T: X — X which are ergodic and conservative with respect to Lebesgue measure is residual.

This should be compared with a result of [8], which is stated in terms of g-measures
(the set of g for which there is more than one g-measure is meagre).

Since X is assumed to be a compact space, it is known that C'(X) has a countable dense
subset. Let fi, f2, ... be a countable dense set of functions in C(X) with the uniform
norm topology. Set

_ L) ang Srlfnl@) o Lhlfa)() 1
A = {1 € P00 s RS - T <)

This is clearly an open set in E*(X).
Next, set

R =AU At
m n k

Since |J;, Am k,n is open, R is a countable intersection of open sets. We now prove some

lemmas about R and the apply them to complete the proof of Theorem 1.
Lemma 2. The set R is dense in E1(X) so R is a residual set.

Proof. To show this, we show that any C? expanding map belongs to R. Let T be any
C? expanding map. Then there exists a continuous function h such that £X[1] converges
uniformly to h (see [11] for a proof). We have also that for each n, L%[f,] converges
uniformly to ¢,h for some constant ¢, (see [5]). Since h may be shown to be uniformly
bounded away from 0, it follows that for each m and n, T € |, Am, k,n, and so T € R as
required. [

Lemma 3. The set R (defined above) consists of those T in E*(X) for which L[ f]/L%[1]

converges uniformly to [ f dX\ for each continuous function f.

Proof. Given T as described in the statement of the lemma, it is clear that for each n,

Chifal LI

lim sup =0.

k—oo zex [,’,_%[1] zeX [,’7"1[1]

It follows that for each m > 0 and n > 0, there exists a k such that T' € A,, » and
accordingly, we see that T' € R.
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Conversely, if T € R and f € C(X), let 0 < € < 1 be given. We first note that
L5[f]/£k[1] is uniformly convergent to [ f d if and only if the same conclusion holds for

f + c for any constant c. We may therefore assume without loss of generality that f(z) > 1

for all x.
k k
Let ax(f) and bi(f) be defined by ai(f) = inf ﬁg[[ﬂ and bg(f) = sup ﬁg[[{]] We have
then
(1) ar(f)LH[1] < L7[f] < bu(f)LE[1]-

Applying Lr, we see that ay(f)LET[1] < LEF[f] < br(f)LET[1] and it follows that
ar(f) < apr1(f) < bpr1(f) < be(f). It follows that ax(f) is an increasing sequence and
bi(f) is a decreasing sequence. Integrating (1), we see that ax(f) < [ f dX\ < bi(f).
It follows that ax(f) and bx(f) are convergent sequences to a(f) and b(f) say, where
a(f) < [ fdX<b(f). It is then sufficient to verify that by (f) —ax(f) tends to 0 as k tends
to 0o. To see this, note that by assumption, we have bg(fn) — ax(fn) — 0 as k tends to
00, 80 since ak(frn) < [ fn dX < br(fr), we see that ax(f,) and bi(fr) converge to [ f, dA
as k — oo. Now as the f,, are a dense sequence, there exists an n such that ||f — f,||
is bounded above by €/2. Since min f, > minf —¢/2 > 1 — %, on dividing through by
fn, we see that ||f/fn — 1|| < e. Then we have (1 —¢€)f, < f < (1 +¢€)f,. It follows
that (1 — an(fa) < ax(f) < () < (1+ bk(fa), 50 that b(f) — a(f) < 2¢ [ fu dA.
Since f,, may be chosen arbitrarily uniformly close to f and e was arbitrary, it follows that

a(f) =b(f) = [ f dX as required. [
We now apply these lemmas to complete the proof of the theorem.

Proof of Theorem 1. We show that if T' € R then the volume measure )\ is ergodic under
T. Suppose that this is not the case. Then there exists a set A such that A = T4
up to a set of measure 0 and 0 < A(A) < 1. Since A is non-singular with respect to T,
we may assume that A = T~ !'A by modifying A on a set of measure 0. Applying T, we
now see that A = T'(A) and similarly, we get A° = T'(A°). Now let p1 = xa/A(A4) and
p2 = Xae/A(AC). Then |[p;|][s = 1 for i = 1,2. Further, since p; is supported on A, the
images L7.[p1] are of mass 1 and are supported on T™(A) = A. A similar statement is
valid for ps and we deduce that ||L%[p1] — L%[p2]|l1 = 2 for all n. However since C(X)

is dense in L!(X), there exist two positive continuous functions f; and f, each of mass 1
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such that ||p; — fi|[1 < 3. By Lemma 3, we see that £3.[f;]/L£%[1] converges uniformly to
1 so (L%[f1] — L[ f2])/L%[1] converges uniformly to 0. Multiplying through by £7.[1] and

integrating shows that |L%[f1] — L[ f2]|l1 converges uniformly to 0. But now we have

2 = ||[L7]p1] — L7[p2]ll2
< L7lpa] = L2 fallls + 1£71f1] — L7lfolll + (1£7[f2] — L7lp2]lly
< 5+ ILE[A] — LElfalll + 5
< 2 for large n.

The second inequality follows from the fact that ||£r||1 = 1. This contradiction establishes
that A is ergodic as claimed.

To show that a residual set of C! expanding maps are conservative with respect to
Lebesgue measure, we use proposition 1.3.1 from [1], which states that C, the conservative
part of a transformation 7" is equal (up to a set of measure 0) to {z: > ~o o L%[f](z) = oo},
where f is any strictly positive function which is integrable (with respect to A). In this
case, we take the function f to be 1. We then see that to show that 7' is conservative, it
is sufficient to show that

o oo n
Te (| UL D £il1] > N}

N=1n=1 i=0
This set is clearly a G set and it remains to show that it is dense. To see this, note that if

T is a C? expanding map, then £%[1] is uniformly convergent to a strictly positive function

h. Tt follows that T belongs to the set. [

Corollary 4. The set of C' expanding maps preserving more than one absolutely contin-

uous invariant measure (a.c.i.p. or a.c.i.o.) is meagre.

Proof. We have shown that the set of ergodic conservative maps is residual. These maps
have at most one absolutely continuous invariant measure (see [1], theorem 1.5.6). The

corollary follows. [J

We now specialize to the case where X is the unit circle. We will identify the unit circle,
S1, with [0,1). In the case that X = S, we are able to show that the set of C! expanding

maps which have absolutely continuous invariant probability measures is a meagre set. Set

S= {T € B'(S"): liminf A({z: £3[1)(2) > 1}) = o} .
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Lemma 5. The set S contains a dense Gy set.

1if £ > = and linear in

Proof. Let f(x) be the continuous function which is 0 if z < :

1.
3
between. Then define a family of continuous maps from E'(S!) to R by

A1) = [ F(£3 (1)) dAa).

Then it is clear that

liminf A, (T)=0=T € ﬁ ﬁ U {T: An(T) < £}
k=1m=1n>m
This set is a Gs set and liminf A,,(T) = 0 implies that 7" € S. It remains to prove that
the set of T such that liminf A,,(T') = 0 is dense in E*(S!).

Since E2(S') is dense in E'(S%), it is sufficient to show that any E'-neighbourhood of
any map in E?(S') contains a map T such that liminf A,,(T) = 0. To show this, we use
Baire’s theorem and show that in any E!'-neighbourhood N of any map Sy in E2(S!), for
any € > 0 and m > 0, there is an n > m and a T € N such that A,(T) < e. This then
shows that (J,,s,,,{T: An(T) < £} is dense in E*(S*).

Now pick Sy in E?(S'). Since Sy is a C? expanding map, it preserves an absolutely

n=m

continuous probability measure py. Let the density of 1o with respect to A be p. It is known
(see [5]) that p is a C! function. Setting ¢~ (z) = uo([0, z]), and letting Tp(z) = ¢~ LoSpod
makes Ty a C? expanding map preserving A\ which is conjugate to Sy. (To see that Ty
preserves ), note that A = yp o ¢ and to see that Ty is expanding, note that any C' map
preserving ) is automatically expanding.) We then find a small C' perturbation of Ty and
apply the conjugacy to get a map close to Sy. The map Sy, density p and map ¢ are fixed
for the remainder of the proof.

Fix € < 1 and let P be the natural partition of S into the branches of Ty. We now
introduce a collection of quantities which depend on the choice of €. These will be denoted
by for instance s(€) when they are first introduced, and then simply by s for tidiness.

Since Tj is expanding, there exists s(e) > 0 such that the intervals of Py = Vf:_(} Ty “P
are of length at most €. Next, let £ be the Ruelle-Perron-Frobenius operator for the map 7§
with respect to A. Since T} is conjugate to Sy, the relationship between the Ruelle-Perron-

Frobenius operators shows that £"f converges uniformly to [ f d\ for any continuous
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function f. Since the functions x4 for A € P, may be approximated above and below by
continuous functions with arbitrarily small L' difference, it follows that £y 4 converges
uniformly to A(A) for A € Ps. Since |Ps| is finite, there exists a k(e) > 0 such that for
each A € P, |L¥x 4 — A(A)| is uniformly bounded by eA(A). It is known that Uf LF(f) =
Ex[f|Ty *B] where Ur(f) = f o T (see [9]) so it follows that [Ex[xa|Ty *B] — A(A)| is
bounded above by e\(4). Now pick a §(¢) > 0 such that (1 + 6)* < 14 € (it then
follows that (1 — §)® > 1 — ¢) and let f(z) be a continuous function with || f||.c = 1 and
Ex[f|Ty *B] = 0. Set G(z) = 1+ 6f(x) and write G (z) = G(2)G(To(z)) ... G(Te (z)).
We will specify n later, but note that G(™ has the property that i G™ dX\ =1 because

/ G ) = / G(2)C(To(@)) . .. G () dA(x)
— [ BAGIT Bl@)G(To ) ... G(T3 (@) dA(2)
_ / G(To(2)) ... G(T?(z)) d\(z)

— [ BalG o TolTy *B)@)G(TE (2)) .. Gl (@) dA@)

= 1.
We have also that if A € P, then
/AG(”) dX < /(1+5)kXAGoT§...Gng—1 dX
<(1+ e)/EA[XA|T0_"’B]GoT§ . GoTy 1t dr
< (1+e)2)\(A)/GoT({“...GoTO"_1 d\
= (14 €)2)\(A).

Similarly, [, G(™ dXA > (1 — €)2A(4). Now, define a homeomorphism 6: S' — S* by
f(x) = f[O,a:] G™) d\. Since the interval [0, z] consists of a union of elements of P, together
with a remainder interval which is contained in a single element of P,, we see from the
above that |6(x) — x| < 6¢ for each x € S*.

Since we have [G d\ = 1, and G is non-constant, we have, by Jensen’s inequal-

ity, that [logG d\ < 0. Let a« = — [logG d)\. Note that log G (z) = log G(z) +
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...+ log G(Ty~'(x)). By ergodicity of A\ under Ty, we have that for \-almost all z,
1/nlog G™(z) = 1/n(log G(x) + ... + log G(Ty ' (z))) converges to —a. In particular,
there exists an N such that for n > N, there exists a set of measure at least 1 —einf p/8 on
which log G(™ (z) < —na/2. Now choose n > N such that exp(—na/2) < €/2. Now for z in
a set of measure 1 —einf p/8, G(™ (z) < ¢/2. Tt follows that [ min(G(™)(z),4/ inf p) d) < .
But we have

G™ < min(G™, 4/ inf p) + G(")X{x; G(™) (z)>4/ inf p}-

Integrating, we get

(2) / G X (a: G (2)34) inf p} A > / (G™ —min(G™,4/inf p)) dA>1—e.

We now use 6 to define a map 7T'(¢) conjugate to Ty by setting T = 0 o Ty o #~1. This
technique was used similarly in [10]. Since € can be made arbitrarily close to the identity
and the map sending a homeomorphism to its inverse is continuous, it follows that as € is
reduced to 0, T approaches T in the uniform norm. To establish C'! convergence, it is also
necessary to establish that 7" approaches T} as € is reduced to 0. To see this, note that

/ —1
OB )

_ G(Th(07"(2)))

G (6~ (x))
n(p—1

S )

14307 (7 (@)
1+0f(60-(z))

To(0~*(x))

To(0~" (2))-

As € is reduced to 0, Tj(0~1(x)) converges to Tj(x) and § tends to 0, so the first term con-
verges to 1. It follows that as € is reduced to 0, the map T(¢) converges to Ty in the C! norm.
The map T preserves the absolutely continuous invariant measure vy = A o . This has
density pr(z) = 1/G™(6=1(z)), so in particular, pr(z) < inf p/4 when G™ (0~ (z)) >
4/inf p. That is {z: pr(z) < inf p/4} is (A) where A = {z: G™ (0~ (z)) > 4/ inf p}. It is
not hard to see that A(9(A)) = [, G™ dX, but by (2), we see A(§(A4)) > 1 —e. It follows
that pr is less than inf p/4 on a set of Lebesgue measure at least 1 — e.

Now, letting S(e) = ¢ oT o ¢~1, S is a C! expanding map preserving the absolutely

continuous invariant measure vg = vy o ¢~ . The density of this measure is given by
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ps(z) = pr(¢~(x)) /¢’ (¢~1(x)). This is less than 1/4 on the image under ¢ of a set whose
vr-measure is at least 1 — €, so we see that pg is less than 1/4 on a set of vg-measure at
least 1 — ¢/inf p. Clearly as € is reduced to 0, S(€) converges in the C! topology to Sy (as
the map T +— ¢oT o ¢~ 1 is C! continuous) and the density pg is less than 1/4 on a set of
measure arbitrarily close to 1.

Now S is a C! expanding map and may be chosen to be arbitrarily close in the C*
topology to Sp. It is also conjugate to Sy and it follows from this that the Perron-Frobenius
operator Dg for S with respect to vg is conjugate to the Perron-Frobenius operator for
So with respect to po. This operator inherits the property that D%[f] converges uniformly
to [ f dvg as n — oo. Now the Perron-Frobenius operator for S with respect to A is
given by Lg = M,;DsM p_sl where My is the multiplication operator sending a function g
to fg. It follows that L£%[f] converges uniformly to ps [ f dA as n — co. In particular,
A, (S) < ¢/ inf p for sufficiently large n, so for small €, we have
(i) S is in the original neighbourhood

(ii) liminf A,(S) < 1/k.
This completes the proof of the lemma. [J

We are now able to use this to prove our main theorem.

Theorem 6. The set of T in E*(SY) which have no absolutely continuous invariant prob-

ability measure contains a dense Gs set.

Proof. We will show that the C! expanding maps belonging to R NS have no absolutely
continuous invariant probability measures. Pick 7' € R NS and suppose that T has an
absolutely continuous invariant probability measure p. The density of p with respect to A is
then an L' function p which satisfies L1 [p] = p. Given ¢, there is then a continuous function
f such that ||f — p|l1 < e and [ f d\ = 1. Now, by Lemma 3, there exists an ng such that
for n > ng, (1—€)L%[1] < L2[f] < (1+¢€)L7[1]. It follows that ||L7%[1]— L% [f]||1 < e. Since
Lr is a contraction in the L' norm, we see that ||£%[1]—p|l1 < ||[LZ[1]—=LE[fll1 +]1f —pl1-
It follows that ||L%[1] — p|l1 < 2e for n sufficiently large. Since € was arbitrary, it follows
that £2[1] converges in the L' norm to p. We now show that this contradicts the fact that
TeS.

Since p is a density, the set A = {z: p(z) > %} has positive measure, a say. As T was
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assumed to be in S, we have also that there exists a sequence n; such that A({z: L7/ [1](z) >
1}) < a/2. Tt then follows that ||£7¢[1] — p||l1 > /8. This contradiction shows that T has
no absolutely continuous invariant probability measure as claimed when 7" € R NS, and

R NS clearly contains a dense G5 set by Theorem 1 and Lemma 5. [

We note that in fact for T € R, T € § if and only if 7' has no absolutely continuous
invariant probability measure. To show this, we note that if T ¢ S, then there exists an
a > 0 such that for all n, A({z: L%[1](z) > 1}) > a. We have that £7[1] is the density
of A o T™™ with respect to A. Setting f,, = %X{z: L;a[l](z)>%}’ we have f, < L7[1] and
g < [ frdX < % Let v, be the sequence of measures defined by v,,(A) = [ 4 fn(A) for each
A€ B. As f, < 3 and f, < LB[1], we see that v,(A) < 3A(A) and vp(A4) < Ao T™™(A)
for each n > 0 and A € B.

By weak*-compactness, there is a sequence n; such that v,,, is weak*-convergent to some
measure v (not a probability measure) and also A o T~"™ is convergent to a probability
measure p say. These limiting measures satisfy v(A) < 2A(A4) and v(4) < p(A4). It
follows that v is absolutely continuous. By construction, we have v(S') > %. Using the
Lebesgue decomposition theorem, we may write p as a sum g, + s, where i, is absolutely
continuous with respect to Lebesgue measure and g is singular with respect to Lebesgue
measure. It follows that there exists a set B € B such that A\(B) =1 and us(B) = 0. We
now have pac(B) = pu(B) = v(B) = v(S*) —v(B°) = v(S') > ¢ and it follows that j, is
non-trivial.

We then verify that p,. is invariant as follows: Since T' € R, we have L}[Lr[1]]/L%[1]

converges uniformly to 1. It follows that for each continuous function g,

/gon)\oT_"—/g d)\oT_":/g(Engl[l]—E%[l]) d,

which converges to 0 and so u is an invariant measure for 7'. Since 7' is non-singular with
respect to A, it follows that the absolutely continuous component p,. of x is an invariant
measure and so we see that 7" has a finite absolutely continuous invariant measure as
claimed.

It would be interesting to know whether a generic C! expanding map of a manifold

has an absolutely continuous invariant measure and even in the case where the manifold
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is the unit circle, it is unclear whether or not a generic C! expanding map has a o-finite

absolutely continuous invariant measure.

I should like to thank James Campbell for helpful discussions of some of the above

material and also the referee for pointing out areas needing attention.
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