AN ENTROPY ESTIMATOR FOR A CLASS
OF INFINITE ALPHABET PROCESSES

ANTHONY N. QUAS

Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge

June 1997

ABSTRACT. Motivated by recent work by Kontoyiannis and Suhov, and by Shields,
we present an entropy estimator which works for a class of ergodic finite entropy
infinite symbol processes for which the entropy of the time-zero partition is finite,
and which satisfy a ‘Doeblin condition’. The results are then extended to random
fields indexed by Z<.

0. INTRODUCTION

In this paper, we consider the problem of estimation of the entropy of a se-
quence of data, by only looking at a finite portion (the reader is referred to [12]
for definitions etc). Since the entropy is a measure of the information content of a
sequence of data, there are practical reasons for wanting to measure entropy. There
are a number of techniques available for estimation of entropy, but the drawbacks
in general are that it is hard to prove that the estimators converge to the true
value of the entropy, or that one requires an extremely large amount of data to
compute an estimate. In general, if we consider the sequence of data to be random
variables indexed by Z taking values in a finite or countable set S, the entropy
is much harder to compute if the random variables have long-range dependence.
The method presented below is proven to work, is able to deal with systems having
long-range dependence (although for any estimator, the longer the range, the more
terms will be needed to get a reliable estimate) and can work with a relatively small
amount of data.

Let (X, )nez be a stationary ergodic stochastic process taking values in a count-
able set S. Let u be the induced probability measure on S%. Throughout this paper,
we will need to make the assumption that the time-zero partition P into sets of the
form [s] = {z: z9 = s} has finite entropy (i.e. H(P) = > .q—u([s])logpu([s]) <
o0). Under this condition, it follows that the entropy of the process is finite (See
[12]). Write h for the entropy of the process.

1991 Mathematics Subject Classification. 28D20 28D05 60G10 94A24.
Key words and phrases. Entropy Estimator, Prefixes.

Typeset by ApS-TEX



2 ANTHONY N. QUAS

Following the Ziv-Lempel encoding algorithm, Grassberger ([4]) introduced the
notion, which we will need, of a prefix. Given a sequence z in S%, the word consisting
of the terms of the sequence x,,Zy,+1 ...2, Wwill be denoted by z,,. The prefix at
scale n of a sequence x starting at ¢ is the shortest word x;&k*l which is not equal
to gcngk_l for j # i and 0 < j < n (that is it is the shortest segment of x starting
from the ith term which is not repeated starting from some distinct term before
the nth). The shortest prefix at scale n starting at ¢ is denoted by W/ (x). L?(x)
is the length of W (x). Note that as n increases, the length of the shortest prefix
increases as a longer sequence is needed to ensure that it is not repeated. In this
paper, we will show that the growth of the prefix length is typically of the order of
log n, with the constant related to the entropy of the process.

The other condition which we will need is that there exists an a < 1 and an
r > 1 such that

(1) PXo=sXp=2_p, X p1=2_p_1,...) <

for all s and almost all z. We will refer to this as a Doeblin condition, although
Doeblin conditions are usually given for finite state processes and the probability
is bounded below rather than above. Since the probabilities sum to 1, the usual
Doeblin condition on a finite state space implies the condition (1) which we will
use.

We are now ready to state the theorem.

Theorem 1. Suppose (X, )nez s a stationary ergodic process taking values in a
countable set S with entropy h and induced measure p on S%. Suppose further that
the process satisfies the Doeblin condition (1), and that the time-zero partition has
finite entropy. Then for u-almost every x € S%, we have

(2) h = lim

This theorem has already been shown in the case where S is finite by Kontoyian-
nis and Suhov ([6]), using a result of Shields ([13]), which in turn was based on a
result by Ornstein and Weiss ([9]). The result (lemma 1) of the paper of Ornstein
and Weiss on which Shields’ paper is based depends crucially on the finiteness of
the set S. The main work here is to show how using a direct argument one can
avoid the need to use Ornstein and Weiss’ lemma. Shields’ paper contained a sec-
ond result which is used in [6], but this result seems to have a small gap in the
proof. Since we also need to use Shields’ result, we take the opportunity to supply
a completion of Shields’ proof.

Shields also showed that even for finite state very weak Bernoulli processes, (2)
does not hold in general. Kontoyiannis and Suhov ([6]) were the first to show
the usefulness of Doeblin conditions in this area, providing a natural condition
which gives sufficient regularity of the quantities L!'(z). This partly answers a
question asked in [14], of what is the right class of processes to consider to get good
asymptotic results.

In §2, we describe generalizations of these results to the case of random fields.
We apply the theory in §3, leading to a conjecture of a better entropy estimation
technique. In §4, we make some preliminary observations about this technique and
in §5, we conclude with some problems which seem interesting.
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1. PROOF OF THEOREM 1

Proof of Theorem 1. Fix € > 0. The proof is in three parts. These are as follows:

(1) For almost every x € SZ, we have

) 1
lim sup —
n—oo TN

h

{z’ <n:L'(2) < 28" —e)}’ = 0.

(2) For almost every z € SZ, we have

) 1
lim sup —
n—oo N

1
{z’<n:L?(a:)> O}f”(ue)}’:
(3) There exists a ¢ > 0 such that for almost every x, we have
L
lim sup max ﬁ <
n—oo 0<i<n logn

Given these statements, it follows that for almost all x we have
n—1

1 3 i (z)

n = logn

Since € is arbitrary, the theorem follows. We demonstrate (1), (2) and (3) in Lemmas
2, 3 and 4 respectively.

lim sup <

n—oo

SRS
>

Lemma 2.
If the conditions of Theorem 1 hold, then for almost every x € S%, we have

) 1
lim sup —
n—oo N

{z’ <n:LMz) < 10}%"(1 —E)H — 0.

Proof. Define

f(x) = limsup 1

n—oo N

{i <n:LMz) < 10%"(1 —E)H.

We may check that this is an invariant function, so by ergodicity of the measure pu,
it suffices to check that for each § > 0, we have that f(x) < J on a set of positive
measure. It will then follow that f(x) < 0 on a set of measure 1. Let P, be
\/?:_01 T~P. This is the partition of S% according to the first n symbols. For z € SZ,
let P, (z) denote the element of P, containing x. By the Shannon—Macmillan—
Breiman theorem (see [12]), we have L log u(P,(x)) — —h almost everywhere. Set

Sy = {x: ’llog,u(Pn(x)) + h' < he, Vn > N} :
n

Then we see that Sy is an increasing sequence of sets and J, Sy has measure 1.
It follows that there exists an Ny such that u(Sy,) > 1 — g. Then if x € Sy, and
n > N; then we have u(P,(z)) > exp(—nh(1 +¢)).
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Now for almost all z, by Birkhoff’s theorem, there exists an n(x) such that
]_ . i 5
n>n(x)=>—|{i <n:T'z e Sn,} 21—5.
n

It follows that there exists an Ny such that n(x) < Ny on a set A of positive

measure. Suppose now that x € A, n > Ny and IOQgh" > N;p. Suppose further that

L (x) < 10%”(1 —€). Then there are two possibilities:
(1) T%(x) & Sn,. This accounts for a proportion less than 3 of is with i < n.
by definition of A.

(2) T%(x) € Sy, . This implies

logn

(Pl () 2 e (| 2520 - 0| (h1+ ) 07,

Since the W/*(z) are distinct, the sets [W/*(z)] (i.e. the sets of those points
in SZ which agree with the prefix of = starting at i for the first L?(z) terms)
are disjoint. In the case in hand, we have L7 (z) < Lloin (1—¢)] so [W](x)]
contains Ptm%(l_e)J (T'z). In particular, we see that [W(z)] has measure

at least n=1+<" . It follows that the number of i satisfying this condition is at
2 2

most n' ¢ . Now picking n such that n=¢ < g, we see that the proportion

of i falling into case (2) is at most 3.

It follows that the proportion of ¢ with L}(z) < 10%(1 — €) is at most §. This
proves that f(z) < ¢ for x € A as required. O

Lemma 3.
For almost every x € S%, we have

1
(3) lim sup —

n—oo N

1
{z’ <n:LMz)> O}gLn(l—i—e)}‘ = 0.

Proof. It was claimed in [13] that (3) holds if S is a finite set, but the proof seems to
be incomplete. We present here a completion of Shields’ proof and then show how
to apply it in the situation of this paper, where there are infinitely many symbols.
To describe the problem, we need to introduce two quantities, Si(z) and R(x).
These are defined as follows:

Ry (z) = inf{m > k: x%“ﬂfl = xlg_l}
Si(z) = inf{m > 1. gmTF=1 = gk-11

In lemma 3 of [13], part of [10] is quoted, showing that for almost every z, log R (x)
/k — h as k — oo. This concerns the time before the first non-overlapping recur-
rence of the block of k symbols. Shields’ lemma makes no distinction between
overlapping recurrence and non-overlapping recurrence, so in fact the result needed
for lemma 3 of [13] to hold is that for almost every «,

|
lim 08 Sk ()
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We now prove this, given that log Ry (x)/k — h for almost all z.
To prove this, it is clearly necessary and sufficient to show that for almost every
x, the number of overlapping recurrences is finite. Let

A= {z: 2~ = 22*~! for infinitely many k}.

We start off by showing that pu(A) = 0. Pick e satisfying 0 < € < % As before set
1
Sy = {a:: ’— log (1(Pp(z)) + h’ < he, Vn > N} :
n

Then, as before, by the Shannon-Macmillan-Breiman theorem, we have u(Sy) — 1
as N — oo. Next, let B,, = {z : "' = 22™'}. Let m > N and suppose
x € By, N Sy. Then we see that (P, (x)) > exp(—hm(1 + ¢€)) and pu(Pap(z)) <
exp(—2hm(1 —¢€)). Let W be any word of length m. Write [IW] for those points
whose first m terms are those of W and [WW] for those points whose first m terms
and second block of m terms are both W. Then we see from the above argument
that if [WW] N Sy is non-empty, then u([WW]) < p([W])exp(—hm(1 — 3¢)). In
particular, for any word W, we have u([WW]N Sy) < p([W]) exp(—hm(1 — 3¢)).
Now summing over words W of length m, we see that u(B,, N Sy) < exp(—hm(1—
3¢)). We now apply a Borel-Cantelli argument. Set C; = {J,,5; Bm- Then the
above shows that p(C; NS;) < exp(—hi(1 —3¢))/(1 — exp(—h(1 — 3¢))). It then
follows that pu(C;) < exp(—hl(1 — 3¢))/(1 — exp(—h(1 — 3¢€))) + 1(S;°). Since this
expression converges to 0 and A is ﬂfil Cj, this implies A has measure 0 as required.

To complete the proof, note that any periodic points lie in A. Now take x € A°.
Then there are at most finitely many k such that xg_l = a:ik_l. Let these k£ be

ki,..., k.. Since x € A€, x is aperiodic. It follows that there exist i1,... , %, such
that x;, # xy, 14, for j =1,...,r. Next let £ = max{i; : 1 <j < r}. Then suppose
s >tand x5 ' = 287! for some k < s. Then xf ! = 27", so it follows that

k = k; for some j < r. But then x;, # Tx44, so we see that 91:8_1 + a:},j“_l which
contradicts our assumption.

In particular, it follows that for x € A€, there are at most finitely many n for
which there exists k < n with ngl = x];Jr”*l. This completes the proof of Shields’
result. We now adapt Shields’ result to our purposes.

We will assume without loss of generality that the countable set S is Z™, the
positive integers. Let (X (m)n)nez denote the stationary process defined by X (™), =
min(X,,m). Then (X(™),) gives rise to a shift-invariant measure (™ on {0,...
,m}Z. This measure is in fact the projection of the measure p under the map
xm) . z+% {0,...,m}%; 7™ (z), = min(z,, m). Write h(™ for the entropy of
the measure p(™). Tt is a standard property of entropy that A(™) — h as m — oo
(See [12] proposition 5.2.11). Pick m such that # > 2 Then by Shields’

14+€
result, for almost every y € {0,...,m}* with respect to ™) we have
lim sup — |4 i < L”()>10g"<1+6) 0
imsup — |q7 < n: L > —— — =0.
o A CD) 2

From this it follows that for almost every x € S% with respect to p, we have

1 1
lim sup — {z <n: L} <7T(m)(33')> > % <1 + %)H =0.

n—oo N
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Now using the facts that L? (7(™)(z)) > L?*(z) and 20(% (1+5) <821 +e),

we see that for almost every z € SZ,

{z’ <mn: LM(z) > 1O}gLn(l +6)H =0

) 1
lim sup —
n—oo N

as required. [

Lemma 4. There exists a ¢ > 0 such that for almost every x, we have

L} (x)

1

lim sup max <e.

n—oo 0<i<n log n

Proof. The proof of this Lemma is identical to the proof given in [6]. It is reproduced
here for the convenience of the reader. We start by estimating P(L}(z) > clogn).
Fix n and let [ = |clogn|. Then by definition of L}, L(x) > [ if and only
=1 — I HEL D For a fixed 7,

IP’(XZ»ZH*1 = XJJ-’Ll_l) may be estimated as follows:

if there is a j < n distinct from ¢ such that x

P(XH = Xj*“) <P(X; = X;) P(Xjur = Xigo] X, = X)) - .-
]P(Xj—i—sr = Xz'—i—sr‘XjJr(sfl)r = XiJr(sfl)r; s ;Xj = Xz)a

where s = [I/r] —1. But by (1), each of the probabilities in the product is bounded
above by a. It follows that ]P’(Xf“’1 = X;+l’1) < alVrl < allr, Summing over
j, it follows that P(L?(X) > clogn) < nalc°8"=1/7 From this, we see that
P(maxoci<n LF(X) > clogn) < n2acloen/r=1 = p2+(cloga)/r /o Now choosing
¢ > —3r/loga, we see that the sequence is summable, and hence by the Borel-
Cantelli Lemma, for almost every sequence z, we have

L (x)

7

lim sup max <e.

n—oo 0<i<n logn

O
This completes the proof of the theorem. [

2. GENERALIZATIONS TO HIGHER DIMENSIONS

The theorem has an analogue which works in higher dimensional situations:
Suppose (X,),eza: 2 — S is a stationary random field taking values in a finite set .S
(note that in this section the finiteness of S is needed as the version of the Shannon—
Macmillan—Breiman theorem which we will use is slightly more restrictive. It may
be possible to remove this restriction - see the section on possible extensions.) There
is a naturally associated Z¢ action on SZ defined by (T (z))y = Ty4v. Define also
amap m:Q — %7 (m(w))y = Xy(w). Then 7 pushes forward P, the distribution
on € to a measure p invariant under the Z? action. There is a corresponding
definition of ergodicity for Z¢ actions and we will need to assume that the measure
W is ergodic.
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For v € Z%, write v > 0if v; > 0 fori = 1,... ,d. Define |v| to be max |v;|. Write
A = {v:v > 0;|v| < k}. For z € SZ° et Pr(x) ={y € STy, = xy, Yo € A}
and L7 (z) = inf{k: Pr(Ty(x)) # Pr(Tu(z)), YVu € A, \ {v}}.

The entropy h of a Z¢ action is defined similarly to the entropy of a single
transformation (see Krengel [7] for a relatively complicated definition). Ornstein
and Weiss have proved a version of the Shannon-Macmillan-Breiman theorem (see
[8]) which is applicable in this situation. It should be noted that the proof given
by Ornstein and Weiss is exclusively for finite partitions, and it is for this reason
that the results of this section are given in the case where S is finite. The result
states (in this context) that for almost all = € S

(4) lim id log (P (x)) = —h.

n—oo

Heavy use is made of this result and the constructions used in it in the proof of the
higher dimensional version of Theorem 1.

The analogue of the Doeblin condition is there exists an o« < 1 and an r > 1
such that for all s and almost all x,

(5) P(Xo = s|X, =2, V|v| 2 7) < a.

We then state the generalization of Theorem 1:

Theorem 5. Suppose S is a finite set and p is an ergodic invariant measure of a
74 action on S%° satisfying (5). Then we have for almost all x € SZd,

-

lim % Z’UGAn LZ’(&?)
n—00 (logn)d

= (d/h)7 .

Since the proof of this theorem is very similar to that of Theorem 1, we will not
present a full proof here, but rather indicate the significant alterations from the
proof given. The proof is divided into three lemmas, similar to the ones proving
Theorem 1. Fix € > 0.

Lemma 6. For almost every x € SZd,
n (1 —¢€)dlogn @
ve A, L(z) < — =0.

Lemma 7. For almost every x € SZd,

dlogn i
LD > =0.
{UEAn L} (x) (h—e) }| 0

. 1
lim sup —
n—oo N

) 1
limsup —
n—oo N
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Lemma 8. There exists a ¢ > 0 such that for almost every x € SZd,

Ln
lim sup max —~ (2)
n—oo VEAn (log TL)

-

The proofs of Lemmas 6 and 8 are so similar to the proofs of Lemmas 2 and
4 as to require nothing but obvious changes. Lemma 7 requires more attention.
The main reason for this is that the theorem in [10] upon which Lemma 3 is based
is only proved in the one-dimensional case. However, Ornstein and Weiss have
recently produced a version of this result which is valid in higher dimensions (see
[11]). We include a statement of the lemma in this paper which we need.

Define

Ry (z) = inf{|u|]: Pr(Tu(x)) = Pr(x)}.

Note that in the definitions, we do not require that the u in the infimum satisfy
u > 0. This definition differs slightly from the one in [11], but the following result
follows from [11].

Lemma 9. For a stationary ergodic random field indexed by Z* we have for almost

every x,
log R h
lim 8 Fn(®) _
n—oo n Cl
Assuming this, to prove Lemma 7, we proceed as in lemma 3 of Shields’ paper,
using Lemma 9 in place of the result from [10].

3. APPLICATION TO TEST DATA

As a test of the methods described above, I tried to apply the technique to
some test data for which the entropy was known. The results, while showing that
the method is comparatively inaccurate suggest another entropy estimator, which
is much more accurate. For this section, we restrict our attention to the one-
dimensional case.

There were 4 classes of data to which I applied the estimator from Theorem 1:
(i) Bernoulli data (randomly generated by computer) with M equally probable sym-

bols;

(ii) Markov data generated by computer with a simple 3x3 transition matrix;

(iii) Continued fraction data generated by calculating accurately a large number of

digits of the continued fraction expansion of .

(iv) Continued fraction data generated by simulating the continued fraction mapping
x — 1/x — |1/x| on a computer with random initial conditions and with the
inherent rounding error.

To apply the theory to the continued fraction map, 7', I first took the standard
generating partition P = {{0}, (3,1], (3, 3],...} and invariant measure m given by
dm(z) = 1/(log2(1 + z))dA(z). Then by standard symbolic dynamics techniques,
each point x of [0,1] gives rise to a sequence of non-negative integers, the labels of
the elements of the partition containing the successive iterates of x under T'. These
non-negative integers are also the terms of the continued fraction expansion. The

. . . . ipy . zt
invariant measure m for T gives rise to a shift-invariant measure p on (Z1)” . It
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is straightforward to check that this shift-invariant measure satisfies the conditions
of Theorem 1. Its entropy can in fact be computed analytically. It is hop =
72/(61og2) (see [2]).

To apply Theorem 1, I took a large number N, computed a string of N + ng
symbols of data (where I took ng to be 10% - this extra data is needed to be able
to calculate the prefixes of the right-hand points of the sequence), and computed
the prefix lengths LY. Taking the average as in (2) gave experimental estimates of
h for the various systems. My findings were that

(i) The true continued fraction data for 7 and the simulated continued fraction map
gave almost identical estimates for hop.

(ii) There were often very significant errors in the estimates of h (they were often
10-20% too low).

(iii) The estimated value of h for a given system and a given value of N was very
robust to variations of the initial setting of the random number generator. For
the Bernoulli system with N = 10, the estimates of h differed from one another
by less than 0.1% on average. They were however 6% below the true figure. The
other systems showed similar robustness (with the average variations decreasing
in NV as expected). For the continued fraction map, the error in the estimate for
hor with N = 10% was about 15%. The average difference between estimates of
heor was about 0.1% for N = 10°.

These results were initially disappointing suggesting that the method is of limited

applicability, but upon closer examination, it became clear that the errors had a

systematic quality. For a given system, the average prefix length LY = % é\]:_ol LN

appears to differ from what one would like to see, (log N)/h, by a constant. If this

o~

is so, one would have LV = (log N)/h + C. This would allow h to be estimated

by linear regression. The following graphs show for a single sequence of data LN
plotted against log IV.
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These clearly suggest strongly that there is an approximate linear relationship

between LN and log N. Performing the linear regression for this data gave estimates
of h as follows:

System Bernoulli Markov Continued Fraction

Roctual  0.693147  0.912696 2.373138
Restimated  0-688037  0.915675 2.42215

If instead of using the data from a single sequence of symbols, the average data
from a large number of sequences is used, the estimates are even better. The

following data used linear regression on the average values of LN from 20 trials
with N = 10%, 10° and 10° giving estimates as follows:

System Bernoulli Markov Continued Fraction

actual  0.693147  0.912696 2.373138
hestimated  0-691644  0.911943 2.37403

The estimates are all within 0.3% of the true values, making this quite an accu-
rate method.

4. BOUNDS ON LN — log N/h

In this section, we derive some bounds for \fﬂ\v —log N/h| where the data is taken

to be Bernoulli data. What is required is to show that LN —log N/h = C + o(1)
for some constant C'. So far, I have been unable to show this, and comparison with
the problem in [1] suggests that this may be quite hard. As a preliminary result,

we give estimates of P(L}(X) > logn/h + k) and P(L}(X) < logn/h — k).

Lemma 10. If (X;);cz is a sequence of independent identically distributed equally
weighted random variables taking values in {1,... , M}, then P(L}(X) > 1) <
n/M'.

Proof. Tf L?(X) > I then it follows that the word X! "'~ is equal to a word X;+l_1
for some j < n which is distinct from ¢. For fixed 7, the probability of this happening
is 1/M', so we see straightforwardly that P(L?(X) > 1) < n/M' as required. [J

Lemma 11. If (X;);cz is a sequence of independent identically distributed equally
weighted random variables taking values in {1,... , M}, then P(L}(X) < 1) <
3exp(g3mr)-

Proof. Tf L?(X) < I then it follows that the block X/*"~* does not recur for any
j < N. To analyse the probability of this, observe that considering the blocks of
length [ gives a Markov chain, where the transition probability between two blocks
xg...x1—1 and yo...y—1 is 1/M if yo = x1;...;y1—2 = x;—1 and 0 otherwise.
Given that X]]-‘Jrl*1 is a fixed block W = wq...w;_1, this Markov chain may be
further reduced as follows: Define Y; = max{k < I: X1 = wo, Xjpi—p41 =
Wi, ..., Xjy—1 = wi_1}. It is straightforward to check that Y; is a Markov chain
taking values in {0, ... ,l}. For each m < [, the probability of transition to m + 1
is given by 1/M and all the other states which can be reached in one step are less
than or equal to m. As a simplifying assumption, we will assume for now that
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¢t = 0. This helps as we then have Y; = [ and have to work out the probability
that Y; # [ for each 0 < j < n. If i is non-zero, then we have to deal separately
with the possibilities that j < ¢ and j > i. Let po(W) be the probability that
the word W never recurs given that it occurs in the first position. Then we have
po(W) <P(Ys #1;...;Y,-1#1 Y1 =0). One can then check that that the W for
which this quantity is maximized is Wy = 00...0, as then the transition matrix is
the (I 4+ 1) x (I + 1) matrix P given by

M—-1 1 0
MI\{l M 1

M 0 M 0
M—1
ST 0 0 0
v, o
E O PR O ?
T 0 ) 0 M

This transition matrix has the property that any added digit apart from a zero
‘returns one to the bottom of the ladder’, so has the least probability of hitting the
[ state from the 0 state. We then calculate the probability of not hitting / from the
0 state in n — 2 steps for this Markov chain. This quantity is seen to be equal to
(100 ...0)Q"2(111 ... 1)T where Q is the I x [ matrix obtained by truncating
the bottom row and rightmost column of P:

<

M-1 1 0
Mj\{l M 1
M 0 M 0

oo |4t 0 0 0
M'—l : . 1
K 0 .« e O M
M=l L 0 0

We proceed by estimating this. It may be verified that (1 v 42 ... 4'71) is a left
eigenvector of @ if v satisfies v = 7, + %7”1. The eigenvalue is 1/(M~). By the
theory of Perron-Frobenius matrices (see [3]), @ has a unique left eigenvector with
positive entries, and the corresponding eigenvalue is the eigenvalue of maximum
modulus of Q.

It follows that

(W)<(M )—(n—2)1_'}/l < 1 n—2 1
PotV) = W7 11—y S\ My 1—7

Estimating v, we find M~y > 1 + %ﬁ and can then show that po(Wy) <

3exp (5777)- It follows that po(W) < 3exp (z7) for all W and so P(Lg(X) <

) < 3exp (3*—1\211) Dealing separately with the terms left of ¢ and right of ¢ gives
the same estimate for L (X) for i #0. O

Noting that for the Bernoulli system, h = log M, we see that setting g = logn/h,
we have P(L?(X) > lo+k) < 1/M* and P(L?(X) < lo—k) < 3exp(—M*/3). From
this, it follows that E|L?(x) — logn/h| is bounded for all n and i, so in particular,
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E]l/ﬁ —logn/h| is bounded for all n. This is of course much weaker than what is
required to prove that linear regression should give good estimates of h.

To get better bounds, the near independence of the random variables LI (X)
would have to be taken into account. Some possible techniques work for iden-
tically distributed random variables. Defining L(X) to be inf{k: XTF71 £

X j =1 y)j — i| < n} gives a sequence of random variables which is stationary. It

is relatively straightforward to check that Theorem 1 holds with Z? replacing L}
throughout. This might give a sequence of random variables which would be more
amenable to theoretical analysis.

5. CONJECTURES AND PROBLEMS

We conclude with a number of questions and conjectures which have arisen in
the course of this work.
The main conjecture is the one described in §3, that for a class of stochastic

processes including the ones considered in this paper, with probability one, LN —
log N/h = C + o(1) for some constant C' as N — oo.

It would be interesting to know how large the relevant class of stochastic pro-
cesses is. In all the examples in this paper, if one (following Keane [5]) defines a
function g by

g($0x1 .. ) = ]P)(XO = .ﬁo’X_l =T, X_2 =2, .. .),

one finds that g is a Holder continuous function. Stochastic processes with a Holder
continuous g-function have been widely studied and are known to have very good
properties (see [16]). Maybe this is the right class of processes in which to try to
prove the above conjecture.

If this conjecture can be proven, then one can get an entropy estimator by the
linear regression technique of §3. This should be more accurate than the estimator
derived in Theorem 1, but it would be interesting to see how it works with other
kinds of data.

It would also be interesting to know if Ornstein and Weiss’ result ([8]) holds in
the context of countable partitions satisfying » 5.p —u(B)log(u(B)) < oo. This
would allow the result for random fields to be generalized to the case of countably
many symbols.

I should like to thank Yurii Suhov for introducing me to this subject area and
for useful discussions in the course of the preparation of this paper. Thanks also to
Robert Harley and Sheldon Parnes for providing me with a large number of digits
in the continued fraction expansion of .
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