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Abstract. We consider infinite paths in an illumination problem on the lattice Z
2,

where at each vertex, there is either a two-sided mirror (with probability p > 0)
or no mirror (with probability 1 − p). The mirrors are independently oriented NE-

SW or NW-SE with equal probability. We consider beams of light which are shone

from the origin and deflected by the mirrors. The beam of light is either periodic or
unbounded. The novel feature of this analysis is that we concentrate on the measure

on the space of paths. In particular, under the assumption that the set of unbounded

paths has positive measure, we are able to establish a useful ergodic property of the
measure. We use this to prove results about the number and geometry of infinite

light beams. Extensions to higher dimensions are considered.

1. Introduction and Statement of Theorems

There has been much study recently of the trajectory of a light beam subject
to reflections at the surfaces of randomly positioned objects. In this paper, we
consider a lattice model of this process which has attracted much attention over
the last two decades, but in which relatively little progress has been made.

The model will be referred to as the ‘mirror model’. In this model, there is
assumed to be an arrangement of mirrors and crossings on the lattice and a light
beam is shone from the origin in a direction parallel to one of the axes. The
crossings have no effect on the direction of a light beam so the light carries on,
leaving in the same direction as that in which it entered, while the mirrors are two-
sided and placed at lattice points at ±45◦ to the positive x-axis. This ensures that
a light beam shone from the origin in the lattice will be a sequence of connecting
line segments between adjacent lattice points. The aim is to describe the typical
long-term behaviour of the beam for a random configuration of mirrors (as chosen
by some probability measure) in terms of boundedness of beam etc.

In the related family of Lorentz lattice gas models (see [14]), there is a configura-
tion of massive scatterers (atoms) which deflect a particle of small mass (electron)
(or possibly infinitely many non-interacting particles). The Lorentz lattice gas mod-
els with infinitely many particles may be described in terms of Cellular Automata
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mappings. Another related model in the physics literature is the Ehrenfest wind-
tree model (see [8]). There are a number of variants of the mirror model where
the mirrors are replaced by different kinds of scatterer. Of interest are flipping and
random scatterers (see [15], [5], [1], [2] and [3] for a description of flipping scatterers
and [10] for some results about random scatterers). For some results on a contin-
uum version of this problem, the reader is referred to [11]. In higher dimensions, it
is clear that the number of possible deterministic scatterers is far higher than in 2
dimensions.

We will consider configurations on the lattice Z
2 of crossings (which allow light

to pass without changing direction) and mirrors. There will be two kinds of mirror
in our model, denoted symbolically by / and \. A crossing will be denoted by +.

The set of configurations is given by C = {/, \, +}Z
2

. Given a configuration, we
illuminate a set of vertices by shining a beam of light in an axial direction from the
origin. The light beam is then deflected by the mirrors as illustrated in Figure 1.

Figure 1. A typical configuration and light beam

For a light beam governed by the deterministic rules depicted in Figure 1, since
the light never traverses an edge in two different directions, there is a dichotomy:
either the light beam follows an unbounded path; or it returns to the origin, leaving
it in the same direction as the initial one (from then the light never leaves this finite
closed path). In the case where the light follows a finite closed path, it is said to
be localized. This possibility is illustrated in Figure 2. In the case that the light
beam is infinite, we see that the light can visit each vertex at most twice, and it
follows that the light beam eventually leaves every finite set.
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Figure 2. A typical localized light beam

We introduce a probability measure on the space of configurations by letting p
be a parameter with 0 6 p 6 1 and setting Pp to be the product measure of the
measures ρp at each lattice site where ρp(/) = ρp(\) = 1

2p and ρp(+) = 1 − p.
This means that the configurations at distinct vertices are independent, and that
at each vertex, there is a mirror with probability p which is then oriented with
equal probability in either of the two directions. There is a natural action of the
group Z

2 on C by the translation maps (σ(m,n)ξ)i,j = ξ(m+i,n+j). It is a well-known
fact that Pp is an ergodic invariant measure under this group action.

The central question is whether or not there exist values of p > 0, for which
there is a positive probability that the light beam starting from the origin in a
given direction is infinite. Grimmett ([9]) indicated that if p = 1, then the light
beam from the origin is almost surely localized. The proof is by observing that there
is an embedded critical bond percolation problem, where it is known that there are
almost surely circuits surrounding any finite set. Bunimovich and Troubetzkoy ([1])
observed that this also holds if p = 1, but the proportion of NW-SE and SW-NE
mirrors is different from ( 1

2 , 1
2 ) (it is essential that the proportion of each is strictly

positive). Some numerical results are presented in [6], [7], [12] [18] and [19] which
suggest that even for p < 1, all light beams are localized with probability 1.

I should like to thank Geoffrey Grimmett for introducing me to the problem and
for many helpful discussions. I am grateful to Mike Keane for offering insight in
re-interpreting the proofs. I should also like to thank Matthew Harris for pointing
out an error in an earlier version and for some useful suggestions.

Given a configuration ξ ∈ C, there is an induced equivalence relation on the
bond set B

2 = {{x, x + ei}: x ∈ Z
2, i ∈ {1, 2}}. We say two bonds b, b′ ∈ B

2 are
ξ-neighbours if they touch at exactly one end and if the configuration ξ is such that
b and b′ form adjacent edges in a light beam. Taking the transitive closure of this
relation gives an equivalence relation ∼ξ, where two bonds are related if and only
if they lie on the same path. For ξ ∈ C, one may then ask how many infinite light
beams occur in the configuration ξ. This number n(ξ) may be shown to depend
measurably on ξ and is clearly invariant under the action of Z

2 on C. It follows by
ergodicity that for Pp-almost every configuration ξ ∈ C, n(ξ) takes on a fixed value
N(p). Note that since the measures Pp are mutually singular, N(p) may vary with
p and indeed it is easy to see that N(0) = ∞ and it is known that N(1) = 0 (This
follows from the observation that if the light beams starting from the origin are
almost surely localized then with probability 1, the light beams starting from any
given x ∈ Z

2 have probability 0 of being unbounded. By countable additivity, the
probability that there is an unbounded light beam is 0.)

Theorem 1. For each p with 0 6 p 6 1, the quantity N(p) is equal to one of the
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values 0, 1 and ∞.

Some problems about the system may be formulated dynamically in the following
framework: Let D be the set of directions {±e1,±e2} in which a light beam may
leave the origin. Then given a point (ξ, d) in C×D, write T (ξ, d) = (σd(ξ), d

′) where
d′ is the d′ is the resulting direction if the direction d is deflected by the mirror at
the origin of the new configuration σd(ξ) (if there is one). The effect of the map T
may be described as: move the origin one step in the direction specified by d and
adjust the direction if there is a mirror present at the new origin to get the direction
in which light bounces off the mirror. This means that iterating T corresponds to
moving the configuration so that the origin at each stage moves along the path of
the light beam.

It may be seen that T preserves the measure µp = Pp × c on C × D where c is
the normalized counting measure on D. One can ask whether the measure µp is
ergodic, but it is easy to show that for any value of p > 0, the measure has infinitely
many invariant sets, each of positive measure; one corresponding to any closed path
which may arise as the path of a light beam. Let I denote the set of points (ξ, d) in
C ×D such that the light beam starting at the origin in direction d deflected by the
mirrors in ξ is infinite. The set I is clearly invariant under T . If µp(I) > 0, write
νp for the conditional measure of µp conditioned on I: νp(A) = µp(A ∩ I)/µp(I).
This measure is invariant and concentrated on the configurations and directions for
which the light beam through the origin is infinite. We see that µp(I) > 0 if and
only if N(p) > 0. The following theorem addresses the ergodicity of the measure νp

(when it exists). It is known that any invariant measure may be uniquely expressed
as an integral combination of ergodic invariant measures. This is known as ergodic
decomposition. The ergodic measures appearing in the decomposition are called the
ergodic components of the invariant measure (see [17] for a general discussion and

[16] for a more detailed exposition). Given (ξ, d) in C ×D, write R(ξ, d) = (ξ, d̂) for
the same configuration, but with the direction d reflected in the normal to the mirror
at the origin if it exists or rotated by 180◦ if it doesn’t. This gives the direction to
follow in order to follow the path backwards. We note that T ◦ R = R ◦ T−1. The
map R is a measure-preserving involution of C×D and it clearly leaves νp invariant
also.

Theorem 2. Suppose 0 < p < 1 and N(p) > 0. If N(p) = ∞, then the measure

νp is ergodic. If N(p) = 1 then νp is either ergodic or has exactly two ergodic

components νp|A and νp|A
c where A is an invariant set which satisfies R(A) = Ac.

The interpretation of this latter case when N(p) = 1 and νp has exactly two
ergodic components is that there is Pp-almost surely a unique infinite path in ξ.
This path has a distinguished direction: If (m, n) is a point on the path then for
each direction d through (m, n) which points along the path, the point (σ(m,n)(ξ), d)
belongs to A or R(A). If one attaches arrows which point in the directions for
which (σ(m,n)(ξ), d) belongs to A, these match up by the invariance of A, so give a
distinguished direction of the unique infinite path in ξ.

Ergodicity is helpful to us as it allows us to conclude that any invariant measur-
able function is constant almost everywhere. Having exactly two ergodic compo-
nents is nearly as good. It means that for any invariant measurable function, there
is a set of measure 1 on which it takes at most two values: one on A and the other
on R(A). The ergodicity allows us to draw conclusions about the geometry of the
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paths. Since the map T is invertible, any infinite path is in fact bi-infinite. If one
follows the path in either direction, the light beam goes to infinity. The two halves
of the path (the forward and backward halves) are disjoint in the bonds which they
occupy, but may visit the same vertices.

Theorem 3. If for some 0 < p < 1, µp(X0) > 0, then with probability 1, all

bi-infinite paths have the property that their forward and backward halves intersect

each other infinitely often.

In the case where there is a positive probability of infinite light beams, it is of
interest to ask about the asymptotic behaviour of |Xn|, where Xn is the nth vertex
on the light beam and |(i, j)| is defined to be max(|i|, |j|). In what follows, we will
say that the process is superdiffusive if the expectation of |Xn|

2/n is unbounded
as n tends to ∞. Cohen and co-authors have compared the asymptotic diffusive
behaviour with that of Markov chains (see [6], [7], [12] and [18] for a discussion of
this and some numerical results).

Theorem 4. Suppose 0 6 p < 1 and N(p) = ∞, then the process (Xn) given by

following an infinite light beam along the path given by almost every (ξ, d) ∈ I is

superdiffusive.

2. Proofs of Theorems

We start off with a lemma which occurs in two distinct places. This lemma is a
version of the finite energy argument which is used in various places in percolation
theory. When we have 0 < p < 1, an important quantity will be κ = min( p

2/(1 −
p), (1 − p)/ p

2
).

Lemma 5. Suppose that for some value of p with 0 < p < 1, there are least two

distinct infinite paths in Pp-almost every configuration ξ ∈ C. Then there is a

positive probability that two distinct such paths meet at the origin.

Proof. Define a function d: C → Z
+ by letting d(ξ) be the minimum distance

between lattice points, which are visited by two distinct infinite paths. This is
clearly measurable and finite-valued almost everywhere. It is also shift-invariant
and by ergodicity of Pp, it is takes on a constant value d0 for almost every ξ. We
will show that d0 must be 0. Suppose for a contradiction that d0 > 0. For any ξ
for which d(ξ) is equal to d0, there exists a smallest box around the origin which
contains lattice points on two distinct paths at a distance d0 from each other. By
choosing a sufficiently large box size, there is a set S of ξ of positive measure on
which with positive probability there are two points in the box belonging to distinct
infinite paths. We may then make a modification of a single mirror/crossing at one
of the two points which ensures that the paths then get closer to each other. Since
this modification was performed inside a box of fixed size, the mapping effecting the
modification is bounded-to-1 and has Radon-Nikodým derivative bounded below by
κ. It follows that for ξ belonging to a set of positive measure, d(ξ) is strictly smaller
than d0. This contradicts the assumption that d0 is strictly positive. It follows that
for almost all ξ, there is a lattice point at which two distinct infinite paths meet.
By translation invariance, for a set of ξ of positive measure, two distinct infinite
paths meet at the origin.

We now use this lemma in the proof of Theorem 1. The idea of the proof is that
if there is a finite number (greater than one) of infinite paths, then they must all
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enter a sufficiently large box around the origin. However, since the paths must also
intersect at places arbitrarily far away from the origin, there is the opportunity to
change a single mirror at such a point to get with reasonably high probability a
path which stays a long way from the origin. This will then lead to a contradiction.

Proof of Theorem 1. We have to show that for each value of p with 0 6 p 6 1, N(p)
is equal to 0, 1 or ∞. We know already that N(0) = ∞ and N(1) = 0. It suffices
then to work with 0 < p < 1.

We will show that N(p) = 2 leads to a contradiction. The same argument works
for all other values of N(p) which are strictly between 1 and ∞. So we will suppose
that 0 < p < 1 and N(p) = 2.

For Pp-almost all configurations ξ, there are exactly two infinite paths. It follows
that with positive probability α > 0, they meet at the origin. Now let ε < κα/6.
For any configuration ξ with exactly two distinct infinite paths, there is a smallest
number m(ξ) such that the box Λm(ξ) with side 2m(ξ) about the origin intersects
both infinite paths. As usual, there is a number M such that with probability at
least 1−ε/2, both infinite paths enter ΛM . Since there are only finitely many paths
leaving this box, which later return to the box, there is a number R such that with
probability at least 1− ε, both infinite paths enter ΛM and there is no path leaving
ΛM , which hits ∂ΛR before returning to ΛM . Let S denote this event. Now let x
be any lattice point outside ΛR. Let T denote the event that both infinite paths
meet at x. We have Pp(T ) = α. It then follows that Pp(S ∩ T ) > α − ε > α/2.
For ξ ∈ S ∩ T , there are two distinct infinite paths meeting at x. Exactly one side
of each path enters ΛM . It is now possible to modify the configuration at x so as
to link the two halves of the infinite paths which do not enter ΛM . This defines
a mapping on S ∩ T . Since the resulting configuration has an infinite path which
does not enter ΛM , it follows that the mapping sends S ∩ T into Sc. As before,
this map is three-to-one and has Radon-Nikodým derivative bounded below by κ.
It follows that P(Sc) > κ/3 · α/2 > ε. This is a contradiction. �

To prove Theorem 2, we now work separately in the two cases: N(p) = 1 and
N(p) = ∞.

Proof of Theorem 2. First assume that N(p) = 1. Suppose that A is an invariant
subset of I with 0 < νp(A) < 1. Then the set of ξ such that there is some d with
(ξ, d) ∈ A has positive Pp measure. By ergodicity of Pp under the shift, for almost
every ξ ∈ C, there is some z and d such that (σz(ξ), d) ∈ A. Similarly there is some
z′ and d′ such that (σz′ , d′) ∈ Ac. However since almost every ξ has a unique infinite
path, σz(ξ) and σz′(ξ) must have the origin lying at (possibly) different points on
the same infinite path. If the directions d and d′ are pointing along the path in
the same sense, then by invariance of A, we would have (σz′(ξ), d′) ∈ A which is a
contradiction. It follows that R(σz(ξ), d) ∈ Ac. This establishes that R(A) = Ac.
It follows that νp(A) = 1/2 and νp has exactly two ergodic components.

We deal now with the case N(p) = ∞. Suppose A is an invariant subset of C×D
with 0 < ν(A) < 1. Let I∗ denote the subset of I for which there are two distinct
infinite paths crossing at 0. We first show that for almost all ξ ∈ I∗, for all d,
(ξ, d) ∈ A or for all d, (ξ, d) ∈ Ac. Suppose that this does not hold and on a set of
ξ of positive measure, there are d1 and d2 such that (ξ, d1) and (ξ, d2) belong to A
and Ac. For such a ξ, we can change a mirror at 0 to get a point in I whose forward
orbit belongs to A and whose backward orbit belongs to Ac. For such a point, the
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forward and backward orbits are generic for two different measures. The set of
points with this property is of measure 0 with respect to any invariant measure and
certainly with respect to νp. This contradicts the fact that the Radon-Nikodým
derivative of the map effecting the modification is bounded away from 0.

We conclude that for almost every ξ, if two paths meet at a point, then they
either both belong to A or they both belong to Ac. We then use an argument
identical to that used in Lemma 5 to get a contradiction: given ξ, consider the
minimum distance between a path of type A and a path of type Ac. This is a finite
invariant function which is bounded below by 1 by the above observation. However,
it is clear by the argument of Lemma 5, that the constant value of this function
must be 0. This contradicts the assumption that 0 < νp(A) < 1 and we conclude
that νp is ergodic. �

We now seek to apply the above theorem to arrive at the geometric conclusion
that if N(p) > 0 for some 0 < p < 1, then for Pp-almost every ξ, any infinite path in
ξ has the property that its forward and backward halves intersect infinitely often.
The idea of the proof is to show first that a given half of any path winds infinitely
often around the origin. In order for the other half to intersect the first half only
finitely many times, its winding number must keep pace with the winding number
of the first path. Since the paths don’t intersect infinitely often, they are essentially
independent, so it is sufficient to show that two independently chosen paths do not
have the property that their winding numbers ‘keep pace’ with each other.

We start with a lemma about winding number. To state the lemma, we need
a notion of the nth lattice point on a path. Let zn(ξ, d) ∈ Z

2 be defined by the
equations:

z0(ξ, d) = 0

zn+1(ξ, d) = zn(ξ, d) + dn,

where dn is the second coordinate of T n(ξ, d). We then let θn measure the winding
number of the path z0, z1, . . . , zn about the point (− 1

2 ,− 1
2 ). Formally, we define

θ0(ξ, d) = 1
8

zn(ξ, d)− (− 1
2 ,− 1

2) = |zn(ξ, d)− (− 1
2 ,− 1

2 )|(cos(2πθn(ξ, d)), sin(2πθn(ξ, d)))

− 1
4 6 θn+1(ξ, d)− θn(ξ, d) 6 1

4 .

Note that there are advantages and disadvantages to considering winding about
(− 1

2 ,− 1
2) rather than the origin. The disadvantages are that this entails a small

loss of symmetry, but we make a corresponding gain when it comes to defining a
winding function later.

Lemma 6. Suppose 0 < p < 1 and N(p) > 0. For νp-almost every (ξ, d) in I,

lim supn→∞
|θn(ξ, d)| = ∞.

Proof. Set A to be the set of (ξ, d) in I for which lim supn→∞
|θn(ξ, d)| = ∞. We

first note that A is a T -invariant subset of I as if a configuration is such that
the upper limit of the absolute value of the winding number about (− 1

2
,− 1

2
) is

infinite, then the same conclusion must hold for the winding number about any
lattice point in the plane (using the fact that an infinite path may only travel along
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a given bond once). In particular if the path defined by (ξ, d) is such that the
path winds infinitely often about (− 1

2 ,− 1
2 ), then the same conclusion must hold

for T (ξ, d). This establishes the T -invariance of A. It follows that B = I \A is also
invariant and has νp measure 0 or 1 in the ergodic case, or 0, 1

2 or 1 in the non-
ergodic case. We will suppose for a contradiction that B has positive measure. For
(ξ, d) in B, lim supn→∞

θn(ξ, d) is a finite-valued function. We see that although
this function is not invariant, its fractional part, which we will call φ(ξ, d), is T -
invariant: θn(ξ, d) − θn(T (ξ, d)) converges to one of 0, 1 and −1 according to the
configuration of the infinite path on the immediate neighbourhood of the origin.
Since φ is a T -invariant function, it takes on a single value almost everywhere in
the ergodic case and at most two distinct values in the non-ergodic case. We will
use the symmetry of the system to show that this yields a contradiction.

The original system has a degree four rotational symmetry in the origin: a
configuration in I (and mirrors) can be rotated by π/2 about the origin giving a
new configuration in I. Clearly the effect of this rotation on the fractional part of
φ is to add 1

4 (mod 1). It follows then that φ must take on at least four distinct
values, each on a set of positive measure. This is a contradiction. �

The following lemma will give a useful way of telling whether a pair of paths
cross and will be an important part of the deduction of Theorem 3 from Theorem
2.

Let R denote the ray of points through (− 1
2 ,− 1

2 ) parallel to the positive horizon-

tal axis, R = {(x,− 1
2
): x > − 1

2
}. We show how for (ξ, d) ∈ I to define a function

f(ξ,d): R → R which encodes data about the winding of zn(ξ, d) about 0. This
function will be called the winding function. For a point (ξ, d) ∈ I, we consider
the times at which the path zn(ξ, d) crosses R. If the path crosses R at a point a
then it does so at most once as the infinite path travels along each bond at most
once. We consider the corresponding winding number of the path at the time when
it crosses at a and define f(ξ,d)(a) to be this winding number. The function f(ξ,d)

is then defined on the remainder of the ray R by interpolation. Let γ+(ξ, d) denote
the (one-sided) curve followed by the light beam described by (ξ, d) (i.e. the union
of the line segments joining the points zn(ξ, d) and zn+1(ξ, d) as n runs over Z

+).
Similarly, γ−(ξ, d) is the curve given by following the light beam in the opposite

direction: γ−(ξ, d) = γ+(ξ, d̂). We will denote by ‖ · ‖, the supremum norm.

Lemma 7. Suppose (ξ, d) ∈ I is such that the one-sided paths γ+(ξ, d) and γ−(ξ, d)
both cross R infinitely often, but meet each other only finitely many times. Then

‖f(ξ,d) − f(ξ,d̂)‖ < ∞.

Proof. Let f(ξ,d) : R → R and f(ξ,d̂) be defined as above. Suppose the paths

γ+(ξ, d) and γ−(ξ, d) only intersect within the box Λl about the origin. Since each
of the paths only enter Λl finitely many times, there is an L such that neither path
re-enters Λl after crossing the boundary of ΛL.

We now consider the part of R lying outside ΛL. We will work with γ+(ξ, d)
and demonstrate that if r1 and r2 are a pair of crossings of γ+(ξ, d) over R which
are adjacent in the sense that there is no point of R between r1 and r2, then
the difference in winding number can be at most 1, as otherwise there is a loop
encircling the origin. To show this, suppose that the winding numbers of a pair of
adjacent crossings differ by n > 1.
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This situation is illustrated by Figure 3. In this case, the section of the path be-
tween the two crossings together with the segment of the ray between the crossings
forms a closed curve which winds around the origin n times. Such a curve must
cross itself at least n − 1 times. It is clear that there must be a curve forming a
subset of this curve which consists entirely of segments which formed part of the
original path (i.e. not including the segment of the ray between the two cross-
ings) which is a closed curve winding around the origin. We now have that part
of γ+(ξ, d) forms a closed curve around the origin, which stays outside Λl. Since
γ−(ξ, d) goes out to infinity, it follows that it must cross γ+(ξ, d) outside Λl, which
is a contradiction.

R

Figure 3. A path with non-consecutive winding numbers

It follows that we may assume that γ+(ξ, d) and γ−(ξ, d) have the property that
between adjacent crossings of the ray R, the winding number differs by at most 1.
Then consider the set U = R

2 \ (γ+(ξ, d) ∪ R). We call the open components of
U regions. Two regions are said to be separated by the ray R if there are points
of the form a + (0, 1

4
) and a − (0, 1

4
) for a = (n + 1

2
,− 1

2
) ∈ R which lie in the two

regions.

We now introduce a system for numbering some of the regions. The region
lying above and to the left of the first intersection of γ+(ξ, d) with R outside ΛL

is labelled 0. Thereafter, regions are numbered inductively by the rule that if two
regions are separated by R, then their numbers differ by 1 in such a way that
the region which touches from the upper half plane has label greater by 1. This
numbering is illustrated in Figure 4.



10 ANTHONY N. QUAS

0

1

0 0

2 2

-1

Figure 4. Numbering of the regions of R
2 \ (γ+(ξ, d) ∪ R)

To ensure that this numbering scheme is consistent, we note that if a region
is numbered in two different ways according to this scheme, then it follows that
there exists a closed path which does not intersect γ+(ξ, d) and which has non-zero
winding number about the origin. This is clearly a contradiction since γ+(ξ, d) goes
from 0 to ∞.

Since we assume that γ−(ξ, d) does not cross γ+(ξ, d) outside the box of side l,
it follows that the curve γ−(ξ, d) only moves from one region to another by crossing
R, where the crossings are made at integer points of R. That is to say, the only
crossings between regions are between adjacently numbered regions. It follows that
(since γ−(ξ, d) and γ+(ξ, d) intersect R infinitely often, that infinitely many regions
are numbered under the above scheme. However, since γ−(ξ, d) starts at the origin
and does not cross γ+(ξ, d) outside the box of side l, then at all points on γ−(ξ, d),
the winding number about the origin differs from the number of the region that
contains it by at most a constant (which depends on the number of crossings inside
Λl). It follows that ‖f(ξ,d) − f(ξ,d̂)‖ < ∞ as required. �

To finish the proof of Theorem 3, we will use the following lemma, which shows
that if the paths cross each other only finitely many times, then the forward and
backward parts of the path have some independence properties. To do this, we
introduce a measure which describes only the sites on γ+(ξ, d). Set M = {/, \, +}

and P = (M×D)Z
+

. We call P the (one-sided) path space as it gives the sequence of
mirrors and directions along a path. Let π+: C ×D → P be defined by π+(ξ, d)n =
Q(T n(ξ, d)), for n > 0 where Q(ξ, d) = (ξ0, d). Thus π+(ξ, d) describes the path
followed by the forward light beam, by giving the mirror and direction at each
stage. Note that π+ ◦ T = σ ◦ π+, where σ is the left shift map on P, so π+ is
a semi-conjugacy (factor mapping) of T onto the map σ on the path space. We

also define π−: C × D → P to be π−(ξ, d)n = Q(T n(ξ, d̂)). This describes the path

followed by the backward light beam. Define µ̄+
p = µp ◦ π+−1

, ν̄+
p = νp ◦ π+−1

.

Letting π(2) be the map sending (ξ, d) to (π+(ξ, d), π−(ξ, d)), we get measures µ̄
(2)
p

and ν̄
(2)
p on P2 as above.

Lemma 8. Under the assumption that N(p) > 0 and that for νp-almost every

(ξ, d) ∈ I, the number of crossings of γ+(ξ, d) and γ−(ξ, d) is finite, the measure

ν̄(2) is absolutely continuous with respect to ν̄+
p × ν̄+

p .

Proof. To prove the lemma, we first give a description of µ̄+
p and ν̄+

p . Let C be a

cylinder set in (M × D)Z. Such a set is described by a sequence (mn, dn)06n6s of
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mirrors and directions. The set C then consists of those sequences of mirrors and
directions which agree with (mn, dn) when n is between 0 and s. It may be seen
that

(1) µ̄+
p (C) =

s
∏

n=0

∗

ρp(mn),

where ρp(m) is p
2 if m is / or \; and 1− p otherwise and the product is taken once

over all the sites which are visited. This means that if the cylinder corresponds
to a light path which crosses itself one or more times, then at those sites, the
corresponding weight is only taken into account on the first visit to the site. The
interpretation of this is that each time we arrive at a new (previously unvisited
site), the state of the mirror at that site is dynamically chosen with the correct
probabilities.

Letting I = π+(I), we have ν̄+
p (C) = µ̄+

p (C ∩ I)/µ̄+
p (I). Now, let An be the set

of (ξ, d) for which the forward and backward paths meet exactly n times and set
Bn = π(An). Then since Bn ⊂ I, we have ν̄+

p (Bn) = µ̄+
p (Bn)/µ̄+

p (I).

Notice that on Bn, µ̄
(2)
p is absolutely continuous with respect to µ̄+

p × µ̄+
p as the

number of omitted factors in (1) is bounded above by n. It follows that on Bn,

ν̄
(2)
p is absolutely continuous with respect to ν̄+

p × ν̄+
p . Since

⋃

n>0 Bn = I, the
conclusion of the lemma follows. �

We are now able to complete the demonstration of the fact that there are infin-
itely many crossings of γ−(ξ, d) and γ+(ξ, d). We observe that the function f(ξ,d)

depends only on the one-sided path γ+(ξ, d). This is exactly the information given
by a point of P, so we abuse notation and write fγ for γ in P to mean the winding
function introduced above for the path corresponding to the point γ. The idea of
the proof is the following: we show that for ν̄+

p × ν̄+
p -almost every pair of infinite

paths, their winding functions fγ and fδ satisfy ‖fγ − fδ‖ = ∞. It will then follow
that any two such paths intersect infinitely often. The above lemma will then yield
the desired conclusion.

Proof of Theorem 3. We will need to consider the involution of C × D given by
reflecting the configuration, mirrors and initial direction in the x-axis. Clearly,
this has the effect of reflecting the whole path in the x-axis. It makes sense to
consider this involution on P, the path space. We call it S. Clearly S preserves
the measure ν̄+

p . We note that if γ ∈ P, then S(γ) winds around the plane in
the opposite direction. In particular, there is a relationship between fγ and fS(γ),
namely, fγ ≈ −fS(γ). This is not an equality because the ray R is through the

line y = − 1
2 rather that y = 0. It is sufficient for our purposes to note that

‖fγ − (−fS(γ))‖ < ∞.
We now use this involution to complete the proof of the theorem. We deal first

with the case where νp is ergodic. We suppose for a contradiction that for νp-
almost every point (ξ, d) in I, the number of crossings of γ+(ξ, d) and γ−(ξ, d)
is finite (the set of points with this property is invariant so has measure 0 or 1).
Since νp is ergodic, it follows that ν̄+

p is ergodic. For a given path γ, we consider
Aγ = {δ: ‖fγ −fδ‖ = ∞}. This is an invariant set under σ and so has measure 0 or
1. Since for ν̄+

p -almost every δ, ‖fδ‖ = ∞, we have ‖fδ −fS(δ)‖ = ∞ and so at least

one of δ and S(δ) belongs to Aγ . It follows that ν̄+
p (Aγ) = 1 and ν̄+

p × ν̄+
p -almost
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every pair of paths (γ, δ) satisfy ‖fγ−fδ‖ = ∞. However, under the hypothesis that
for almost every (ξ, d) ∈ I, γ+(ξ, d) and γ−(ξ, d) intersect finitely many times, this
shows using the above lemma that ‖f(ξ,d) − f(ξ,d̂)‖ = ∞ for almost every (ξ, d) ∈ I

and hence the two halves intersect infinitely often. This is a contradiction.

In the case where νp has two ergodic components, we show that with for almost
every pair of one-sided paths, one from each component, the equality ‖fγ−fδ‖ = ∞
is satisfied. This will be sufficient to prove the theorem as above. Let the two
components of νp be νp,1 and νp,2. These project to ergodic measures ν̄+

1 and ν̄+
2

on P as before. If these measures are equal, then the above proof works. Otherwise,
P splits into two disjoint parts P1 and P2 on which the two measures are supported.
As before, for any path γ, ν̄+

p (Aγ) > 1
2 , so Aγ must be one of P1, P2 or P. Let

B = {γ ∈ P1: P2 ⊂ Aγ}. As before, this is an invariant set. If B has measure 0, then
for ν̄+

1 -almost every γ in P1 and for ν̄+
2 -almost every δ in P2, we have ‖fγ−fδ‖ < ∞.

Now by the triangle inequality, for ν̄+
1 -almost every γ′ ∈ P1, ‖fγ − fγ′‖ < ∞ and

so we have Aγ is of measure 0 for almost all γ. This is a contradiction, so we
conclude that B has positive measure so B = P1. We therefore conclude that for

almost all γ ∈ P1 and δ ∈ P2, ‖fγ − fδ‖ = ∞. However, the measure ν̄
(2)
p may

be seen to be supported on P1 × P2 ∪ P2 × P1 (as almost every infinite path has
one direction belonging to one component and the other direction belonging to the
other component). This means that if we make as before the assumption that the

two halves of an infinite path meet only finitely many times, then for ν̄
(2)
p -every

pair (γ, δ), we have ‖fγ − fδ‖ = ∞, so we conclude that the paths γ and δ intersect
infinitely often. This contradicts our original assumption and we conclude that for
νp-almost every (ξ, d) in I, γ+(ξ, d) and γ−(ξ, d) intersect infinitely often. �

We now turn to the case where N(p) = ∞ and show that in this case, there is
superdiffusion.

Proof of Theorem 4.

The first part of this is an observation due to M. Harris, that in the case where
N(p) > 0, a well-known theorem of Burton and Keane ([4]) applies, showing that
all the infinite paths individually have well-defined densities. This means that the
function r sending a a point of I to the density of the corresponding light beam (i.e.
the density of the points in the lattice visited by the light beam) is well-defined.
Clearly r is invariant under the action of the shift. If the measure νp is ergodic,
then it follows immediately that the density is an invariant function and hence
equal for νp-almost all infinite paths. If νp has exactly two ergodic components,
then the same conclusion holds as the density is unaffected by reversing the sense
of the path. We write ρ(p) for the νp-almost sure constant value of r(ξ, d). From
this, it follows that for any value of p, for which N(p) > 0, almost all configurations
in C have N(p) infinite light beams, all of density ρ(p) in the lattice. Clearly if
N(p) = ∞, then ρ(p) must be 0. This allows us to deduce the conclusion of the
theorem as follows:

Fix ε > 0. Since the density of any infinite path is 0 in Pp-almost every
configuration, there exists a number M such that the νp measure of the set of
(ξ, d) in I for which the infinite path has density less than ε in ΛM is at least 1

2
.

For n large, consider the largest box Λr containing less than n/(4ε) vertices (i.e.

r = b
√

n/(16ε) − 1c). We will assume n is sufficiently large that r > M . Let A be
the set of (ξ, d) in I for which the density in Λr is less than ε. By the above, we have



INFINITE PATHS IN A LORENTZ LATTICE GAS MODEL 13

νp(A) > 1
2 . For (ξ, d) ∈ A, consider z0(ξ, d), . . . , zn−1(ξ, d). At most 2ε·n/4ε = n/2

of these points lie in Λr (the factor of 2 arises as a given vertex may be visited twice
by a single infinite path). It follows that for (ξ, d) ∈ A,

1

n

n−1
∑

k=0

|zk(ξ, d)|2

n
>

r2

2n
>

1

32ε
.

We then have

∫

1

n

n−1
∑

k=0

|zk(ξ, d)|2

k
dνp >

∫

1

n

n−1
∑

k=0

|zk(ξ, d)|2

n
dνp >

1

64ε
.

Since ε was arbitrary, it follows that conditional on (ξ, d) belonging to an infinite
path, the Cesáro averages of the expectations of |zk(ξ, d)|2/k converge to ∞. How-
ever since µp(I) > 0, it follows that the Cesáro averages of the expectations on the
whole of C × D converge to ∞. In particular, the expectations of |zk(ξ, d)|2/k are
unbounded. �
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