SUBSHIFTS OF MULTI-DIMENSIONAL
SHIFTS OF FINITE TYPE

ANTHONY N. QUAS AND PAuL B. TrROwW

ABSTRACT. We show that every shift of finite type X with positive entropy has
proper subshifts of finite type with entropy strictly smaller than the entropy of X,
but with entropy arbitrarily close to the entropy of X. Consequently, X contains an
infinite chain of subshifts of finite type which is strictly decreasing in entropy.

Introduction

For a dynamical system X, one can ask what are the subsystems of X, and
what are the possible values of entropies of subsystems of X7 In the case of a
one-dimensional irreducible shift of finite type, the subshifts of finite type in X
are characterized by the Krieger embedding theorem ([5], Theorem 10.1.1). But
for higher dimensional shifts of finite type, the answers are not known. So we
ask some weaker questions: are there infinitely many subshifts of X, and if so, do
the entropies of those subshifts take on infinitely many values? If the topological
entropy of X is positive, the answer to both these questions is yes. In [4], a related
question of embedding multi-dimensional subshifts is considered.

In §2, we prove the first of these statements using elementary methods (Corollary
2.7). We then prove a stronger result (which implies both statements), using a
theorem due to Ornstein and Weiss on recurrence for stationary random fields.
Given a shift of finite type X, with positive entropy, we show that there exists a
proper subshift of finite type contained in X, with entropy arbitrarily close to and
less than that of X (see Theorem 2.9).

In §3, we discuss continuous, shift-commuting maps (or codes) between higher
dimensional shifts of finite type, and generalize some known results for shifts in one
dimension (Theorem 3.2).

We would like to thank Kathleen Madden for her helpful comments on an earlier
version of this paper.
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1. Background

Let A be a finite set, d € N, and let ¥ = AZ" be the space of all maps Z¢ — A.
Elements of A are called symbols, and points in ¥ can be thought of as infinite
d-dimensional arrays of symbols. We give ¥ the product topology, where A has
the discrete topology. If € ¥ and S C Z%, we let x5 denote the restriction of
x to S. (If S = {a} is a singleton, we simply write z,.) A configuration on S is
amap F : S — A. For any subset X of ¥, a configuration £ : S — A is said
to be allowed for X (or simply allowed) if there exists x € X such that zg = E.
We say that E occurs in z. If B: S — A is any configuration, then we write [B]
for {x € X: g = B}. These sets are also known as cylinder sets. If E and F
are configurations and S and T are disjoint subsets of the domains of E and F
respectively, then the configuration EgFr is the map SUT — A which agrees with
FE on S and with F on T'.

For each a € Z%, the shift map o, : ¥ — ¥ is defined by (0a(z))e = Zcyia-
Clearly, o, is a homeomorphism, and o501, = opo, for alla,b € Z%. Thus Z% acts
on Y by homeomorphisms. A closed, non-empty subset X of ¥ which is invariant
under oy, for all a € Z4, is called a d-dimensional shift space (or simply a shift
space). If Y C X is closed, non-empty and invariant under o, for all a € Z%, we
say that Y is a subshift of X.

The k-cube with lowest corner at the origin is the set A(k) consisting of all
b = (by,...bg) € Z% such that 0 < b; < k, for 1 < i < d. For a € Z9, the set
a + A(k) is the k-cube with lowest corner at a. The 2k — 1-cube centered at the
origin is the set A(2k — 1) consisting of all b = (by,...bg) € Z? such that |b;] < k.
For any S C Z%, the border of S, denoted 0.9, is the set of a € S such that there
exists b in the complement of S with ||a— b|| = 1, where || - || is the usual norm on
R?. The border of an allowed configuration B = x5 is defined to be (B) = zg.

A k-block is an allowed configuration on A(k). We write By (X) for the set of
k-blocks and B(X) for Jy—, Bk(X). Elements of B(X) are called allowed blocks. If
B is a k-block and = € X, we say that B occurs in & with lowest corner at a € Z%
if B(j) = z(a+]j) for j € A(k). When this holds, we will abuse notation and write
B = xapaw). If N > k, we say that B occurs in x5y if there exists a € 74
such that a +A(k) € b+ A(N) and B = zaiak). If E = x(n) is an N-block,
xr € X, we say that B occurs in F if B occurs in z ().

A shift space X is a shift of finite type if there is a finite set S C Z¢ and a
non-empty subset P C A° such that

X = {z €Y : 25,4 € Pfor everya € Z}.

We may think of P as a finite set of allowed finite configurations. X is a matrix shift
if there is a collection of d transition matrices Ay, ... Ay, each indexed by A(X),
such that

X = X(Ay,...Ay) = {x € : Ai(Ta,Tate,) = Lfor alla c Z¢, 1 < i < d}.

where e; is the ¢’th standard basis vector. Any shift of finite type is topologically
conjugate to a matrix shift. A proof of this for the case d = 1 is given in [5], Prop.
2.3.9 (3), and the proof for higher dimensions is similar. For the remainder of this
paper, we will assume that all shifts of finite type are presented as a matrix shifts.
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If X is a shift space, and F is an allowed block for X, then we let X \ F
denote the set of points in X which do not contain an occurrence of E. Formally,
X\ E =X\ Uueza0a([E]). If X\ E # 0, then it is a subshift of X, and if X is a
shift of finite type, so is X \ E.

Let X be a d-dimensional shift space and N a positive integer. Define a map
I'y : X — BN(X)Zd by ('n(z))a = Tnyata(n)- The image of I'y is a subshift
of BN(X)Zd, called the N’th power of X, and denoted X*. Any point z € X
corresponds naturally under T'y to a point # = I'y(z) € XV, and for any a € Z4,
we have T’ Nafiv = 0a.I'y. An allowed k-block E for X corresponds to an allowed
Nk-block for X (which we also denote by E, abusing notation).

The topological entropy of a d-dimensional shift space X is defined to be

) 1
hMX) = klg{)loﬁ log [ B (X)|.

It is easy to verify that h(XY) = Nh(X).
The measure-theoretic entropy of a shift space X with respect to a Z%invariant
measure i is

hu(X) = Tim = 3" —u[B]log (B,

A shift space X is irreducible if for any allowed blocks U and V, there is a point
x € X and disjoint sets of coordinates S and T such that xrg = U and x7 = V.

We make use at many points of the Variational Principle which is stated below.
For a proof of the one-dimensional version, see [8].

Theorem 1.1. Let G = Z% act on a compact topological space X by homeomor-
phisms. Then h(X) = sup,cnr(x) hu(X) where M(X) is the set of G-invariant
measures on X. Further if the action of G is expansive, then the supremum is
attained on a non-empty compact set of measures.

A measure of maximal entropy for X is a shift-invariant measure p such that
hu(X) = h(X). Such measures always exist in the case when X is a shift space as
then the action of Z¢ on X is necessarily expansive.
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2. Positive Entropy and Subshifts

In this section, we show that if X is a shift of finite type, and h(X) > 0, then
X contains infinitely many subshifts of finite type, all of positive entropy. The key
observation for all that follows is contained in the following simple lemma.

Lemma 2.1. Let X be a shift space and let i be an invariant probability measure
for X. IfY is a subshift of X such that h(Y) < h,(X) (or if Y is empty and
0 < h,u(X)), then for any positive integer M, there exist M distinct blocks, all
having the same border, which are not allowed in Y, but are allowed in the support
of i (and hence have positive p-measure).

Proof. First, suppose that Y # (). Let X denote the support of . Then
BY) < hu(X) = h(X) < h(X).

Arguing by contradiction, suppose that there is a positive integer K such that for
any configuration H, which is the border of an allowed block for X, there are at
most K blocks in B(X) \ B(Y) with border H. Since |0(A(n))| < 29n~!, it would
then follow that |B,(X) \ Bn(Y)| < K|A[2" ™", where A is the symbol set for X.
Therefore

_ — d,_d—1
[Bn(X)] = [Bu(Y)| + [Ba(X) \ Ba(Y)] < [Ba(Y)| K JAP ™.
Consequently,

. 1 1 2dnd—1
h(X) < lim 3 log |B,(Y)| + e log K|A| = h(Y),

n—oo

since the limit of the second term in the sum is 0. Since A(Y) < h(X), this is a
contradiction.
The proof for the case Y = () is similar. [J

Lemma 2.2. Let X be a matrix shift of finite type. Let B, C be distinct blocks such
that 0(B) = 0(C). For any N-block E in which C occurs, there is an N-block F
in which B occurs, but C' does not occur, such that O(E) = O(F).

Proof. Put an arbitrary order on A, the symbol set of X. This extends to a
lexicographic order on B,,(X) for any m. Specifically, for d = 2, this is defined
as follows: G < H if there exists a pair r, s such that G,s < H,,, G,; = H,; for
0<j<sand Gjj =H;jfor0<i<rand 0<j<m—1.

Let F be a block in which C' occurs. Assume C < B. Then changing any
occurrence of C' in E to a B (which can be done since 9(B) = 9(C) and X
is a matrix shift of finite type), produces a new block E;, with F < FE;. Since
d(B) = 0(C), we have that 0(E;) = 0(F). If C occurs in Fp, we can repeat
this procedure, to obtain a block Fs, with F; < FE5. So we obtain a sequence
E < Ey < E; < ..., in which no FE; can be repeated and 0(E;) = J(F). Since
there are only finitely many N-blocks, we must eventually reach a block F, = F'in
which C' does not occur. Since F' was obtained from Ej_; by changing a C' to a B,
it follows that B occurs in F. If B < C, then a similar argument, with inequalities
reversed, proves the result. [
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Corollary 2.3. Let X be a shift of finite type. If h(X) > 0, then X contains a
proper subshift of finite type. In particular, X is not minimal.

Proof. By recoding, we may assume that X is a matrix shift of finite type. By
Lemma 2.1, there exist two distinct blocks B, C' such that 9(B) = 9(C). It
follows from Lemma 2.2 and compactness of X that X \ C' is nonempty, so X \ C
is a proper subshift of finite type contained in X. [

Lemma 2.4. If X is a shift of finite type, and Y 1is a subshift of X which is not
of finite type, then X contains infinitely many subshifts of finite type.

Proof. Since Y is a proper subshift of X, there is a block B; which is allowed for X
but not for Y. Let Y1 = X \ By. Then Y] is a shift of finite type, since X is one.
Also, X 2 Y] D Y since Y is not a shift of finite type. Repeating this argument,
we obtain an infinite strictly decreasing sequence X 2 Y7 D Yy D ... of subshifts
of finite type contained in X. [

In Corollary 2.13, we will show that every shift of finite type of positive entropy
contains a subshift which is not of finite type.
Definition 1.

Given a k-block B and a point = € X, let f,(B,z) denote the number of oc-
currences of B in (y); that is, the number of points a € A(n — k) such that
Tata(k) = B. A block B is positively recurrent in x if

n(B,
lim inf M

n— oo nd

> 0.

If such an x exists, we say that B is positively recurrent.
It can be shown that a block B is positively recurrent if and only there exists an
ergodic invariant measure p on X such that u[B] > 0.

Lemma 2.5. Let X be a shift space, and let x € X. If C' is a k-block which is
positively recurrent in x, then there exists N € Z% such that for any a € Z¢, there
exists a’ = a (mod NZ?) such that C' occurs in Tar4p(n)-

Proof. For simplicity, we will give the proof for the case d = 2, the proof of the
general case being similar. Arguing by contradiction, suppose that for all N € Z™,
there exists aV = (al’,al’) € Z? such that for any a’ = a¥ (mod NZ?), we have
that C' does not occur in x5/ 4 A (). The condition that C' does not occur in za 4 A (n)
implies that the lowest corner of C' must lie in a horizontal strip of width k£ — 1
below one of the H, or a vertical strip of width k£ — 1 to the left of one of the V.
We consider z,(xy, the N-block of z with lowest corner at the origin. At most
one of the vertical lines of the form V;, and at most one of the horizontal lines of
the form H, can intersect A(IN). The vertical and horizontal strips of width k& — 1
about these lines cover at most 2N (k — 1) of the coordinates of A(N). It follows
that the number of occurrences of C' in () can be at most 2N (k — 1). Since
2NJ(\1;;1)

r. O

— 0 as N — o0, this contradicts the fact that C' is positively recurrent in

If E is a block and a € Z?, we say that E occurs in y € X with lowest corner
in a + NZ% if there exists a’ = a (mod NZ?) such that E occurs in y with lowest
corner at a’.
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Theorem 2.6. Let X be a shift of finite type. If Y is a subshift of X and h(Y') <
h(X) (orif Y is empty and 0 < h(X)), then there exists a shift of finite type Z
such thatY C Z C X and h(Z) > 0.

Proof. We may assume that X is a matrix shift of finite type. Assume that Y
is nonempty, the proof in the case Y = () being similar. Let g be an ergodic
measure of maximal entropy for X, and let X denote the support of p. Then
h(Y) < h(X) = hy(X) = h,(X). By Lemma 2.1, there exist three distinct blocks
B, C and D in B(X)\ B(Y), such that 9(B) = 9(C) = 9(D). We may assume
that C' < B < D, were < is the lexicographic ordering on blocks, as in the proof
of Lemma 2.2. Since C' € B(X) we have p[C] > 0, and it follows from the ergodic
theorem that there exists a point € X in which C is positively recurrent. Let
ai,ay, ...ay« be a complete set of representatives of Z¢/NZ?. By Lemma 2.5, there
exists N € Z1 such that for each a;, there exists a} = a; (mod NZ?) such that C
oceurs in Tarpa(n)- Let zaavy = Ei € B(X). By Lemma 2.2, for each i there
exists a block F;, in which B occurs but C does not, such that 0(E;) = 0(F;). If
E; = Ej, then we can choose F; = F}.

Let W denote the set of points in X in which F; does not occur with lowest
corner in NZ%, for 1 < i < N% Now W may not be shift invariant, but it is
invariant under o, for a € NZ%, and is therefore a subshift of X V. Let

(1) Z' = | oa(W).

aczZd

Clearly Z' is shift-invariant. Since o,(W) = op(W) if a = b (mod NZ9), the
union in (2.1) can be taken over a complete set of representatives of Z?/NZ9, so Z'
is a finite union of closed sets, and therefore closed. Consequently, Z’ is a subshift
of X. Since C occurs in F; for each i, it follows that F; is not an allowed block for
Y,andso Y C W C Z’. If Z' is not a shift of finite type (see Example 1), then by
the proof of Lemma 2.4, there is a shift of finite type Z with Z’ C Z C X and we
show in the final paragraph below that h(Z) > 0. So suppose that Z’ is a shift of
finite type, and let Z = Z'.

We show that Y # Z, by showing that W contains a point in which B occurs.
Let y € X be a point in which some Ej, occurs with lowest corner in NZ?. Let z
be the point obtained by changing all occurrences of F; in y, with lowest corner in
NZ%, to Fy, for 1 <i < N (This can be done, since X is a matrix shift of finite
type, O(E;) = O(F;), and any two such occurrences do not overlap.) Since C' does
not occur in any Fj, but does occur in every E;, we have F; # E;, for all 7,j. It
follows that F; does not occur in z with lowest corner in NZ, for all i, so that
z € W C Z. On the other hand, F} occurs in z, since Ej occurs in y. Since F},
contains a B, it follows that z is not in Y.

Next, we show that Z # X, by showing that x is not in Z. Note that o_,(W)
consists of the set of points in which E; does not occur with lowest corner in a+NZ¢,
for 1 < i < N% By the choice of the blocks E;, for every a € Z%, there is an i
such that F; occurs in = with lowest corner in a + NZ®. It follows that z is not in
o_a(W) for any a € Z%, so x is not in Z.

Finally, we show that h(Z) > 0, by showing that h(W) > 0, where W is consid-
ered as a subshift of X». Note that in X%, the blocks E; and F; correspond to
one-blocks, and W corresponds to the set of points which contain no occurrences of
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E;, for 1 <i < N9 Let E,, be the largest of the F;, in the lexicographic ordering.
By the proof of Lemma 2.2, F,, < F,,, and B occurs in F},,. Now, replace any
single occurrence of B in F,,, with D, to produce a block G. Then 9(F,,) = 9(G)
and we have E; < E,, < F,, < G, for 1 < i < N%. Since E,, € B(X), we have
p[Em] > 0. Tt follows from the ergodic theorem that there is a point y € X% in
which F,, is positively recurrent. Now, replace all occurrences of F; in y with F;,
for 1 <i < N, to obtain a point z € W. Clearly, F,, is positively recurrent in z.
Therefore there is an € > 0 such that for all sufficiently large k, the number of oc-
currences of F,, in zx () is at least e k%. Since G # E; for all i, and 9(G) = 9(Fy,),
any occurrence of Fy, in zj(x) can be replaced with G, and the resulting block is

allowed in W. It follows that By (W) > 2¢¢* for sufficiently large k. Therefore,
h(W) > € log2 > 0. Now, since W C Z, we have h(Z) > 0. O

The reader may wonder why we could not prove Theorem 2.6 by simply letting
Z = X\ C, which is clearly a proper subshift of X. The reason is that X \ C' might
equal Y, which would be the case if for every point x € X, C occurs in x if and
only if B occurs in z. Later, we show that given a pair B, C as in Theorem 2.6,
we can extend B and C to a pair of larger blocks, B and C, with d(B) = 9(C),
such that Y # X \ C (see the remark preceding Corollary 2.13).

Corollary 2.7. Let X be a shift of finite type. If Y is a subshift of X and h(Y') <
h(X) (or if Y is empty and 0 < h(X)), then there exists an infinite chain of
subshifts of finite type (ordered by inclusion) Z;, with Y C Z; € X and h(Z;) > 0
for each 1.

Proof. Assume that Y is non-empty, the proof in the case Y = () being similar. By
Theorem 2.6, there exists a subshift of finite type Z, with Y C Z C X and h(Z) > 0.
Proceeding inductively, suppose that we have found a sequence of subshifts of finite
type Y = 72, C Zy C --- C Z, = X, and h(Z;) > 0 for 2 < i < n. Since
h(Y) < h(X), there exists an i with h(Z;) < h(Z;41). Then we can apply Theorem
2.6 to obtain a subshift of finite type Z’, with Z; C Z' C Z;,1 and h(Z’) > 0. The
corollary now follows by induction. [J

If X is a shift of finite type, and A(X) > 0, then Corollary 2.7 implies that X
contains infinitely many subshifts of finite type, all having positive entropy.

Example 1. We give an example to show that the subshift Z’ constructed in The-
orem 2.6 may not be of finite type. Let X be the full 2-dimensional shift on two
symbols, 0 and 1. Let F and F be two distinct N-blocks whose borders consist of
all 1s.

As in the proof of Theorem 2.6, let W denote the set of points which contain no
occurrence of E with lowest corner in Z2/NZ?. Let

Z' = ] oa(W).

acZ?

Then Z’ is not a shift of finite type. To see this, let a1, as, ..., a2 be a complete
set of representatives for Z?/NZ?. Then for any positive integer M, it is easy to
construct a point yy; with the following properties:

(1) For any a € Z2, yjs contains an occurrence of E with lowest corner in a + NZ?2.

(2) Any two E's in yps occur at a distance at least 2M apart.

(3) All symbols in ;s outside an occurrence of E are 0.
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Then y) is not in Z’' by property (1), but it is easy to see that every M-block
in ys is allowed in Z’. The details are left to the reader. This shows that for each
M, there exists a point, all of whose M-blocks are allowed in Z’, but such that the
point itself does not belong to Z’. Consequently, Z’ is not a shift of finite type.

In what follows, we work for simplicity in the two-dimensional case (d = 2). All
of the material generalizes in a straightforward manner to higher dimensions. We
will show that by using recurrence arguments due to Ornstein and Weiss that we
may control the entropy of X \ C' and hence create a sequence of such subshifts of
X of finite type with entropy close to X.

Proposition 2.8. FEvery shift space X contains an entropy minimal subshift Y
with the property that h(Y') = h(X).

Proof. Let By, Bs,... be a list of all possible finite blocks listed in order of in-
creasing size. Set Xo = X and inductively set

X - { Xn-1\Bn ifh(X,-1\Bn)=nh(Xn-1)
" X1 otherwise.

Then X, is a decreasing sequence of compact shift-invariant subsets of X. It
follows that the limit Y = ()~ , X,, is also a compact shift-invariant subset of X.
Since topological entropy is upper semi-continuous for shift spaces (see [5]) and
h(X,) = h(X), it follows that h(Y) = h(X). To show that Y is entropy minimal,
suppose for a contradiction that Y has a proper subshift of equal entropy. Then
there certainly exists a block B such that [B]NY # () and h(Y \ B) = h(Y).
The block B must occur in the list as B,, for some n and since (} # [B]NY C
[B] N X,,, we conclude that [B] N X,, # (. It follows from the definition of X,
that h(X,—1 \ Bn) < h(X,—1) from which we deduce a contradiction as follows:
h(Y \ By,) < h(Xn-1\ Bn) < h(X,-1) = h(X). The entropy minimality of ¥
follows. [

Note: It is not known whether the space Y constructed above is itself necessarily
a shift of finite type.

Theorem 2.9. Let X be a subshift of finite type with positive topological entropy.
Then for all € > 0, there exists a proper subshift Y of X which is also a subshift of
finite type with the property that h(X) —e < h(Y) < h(X).

We make use in the proof of the theorem of three key results. The first is the
Variational Principle, Theorem 1.1.

The second key result is due to Ornstein and Weiss ([6]) and gives a characteri-
zation of measure-theoretic entropy in terms of return time.

The return time of the (centered) central 2k — 1-block of z, 25 (9j,_1) is defined
to be

Ry (z) = inf{n > 0: 25(9,_1) occurs in T55,,_1), other than at 0}.

Theorem 2.10. (Ornstein and Weiss) If u is an ergodic stationary random field,
then ilo R
lim 298 k@)

oo (2k—1)7 1 (X)

for p-almost every x.
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The final result is a lemma due to Burton and Steif giving an important property
of measures of maximal entropy for subshifts of finite type. The proof is in [1], where
it is stated for a special class of shifts of finite type. The proof however applies
verbatim in the general setting.

Lemma 2.11. (Burton and Steif) If p is a measure of maximal entropy for a
matriz shift, then for any finite set G C Z<¢, the conditional distribution of . on G
given the configuration on 0G is p-a.s. uniform over all configurations on G which
extend the configuration on 0G.

The following lemma is then central in the proof of Theorem 2.9.

Lemma 2.12. If u is an ergodic invariant measure on X and B is a configuration
on A(2n — 1) such that p[B] > 0, then there exists a configuration B on A(2N — 1)
for some N > n extending B (in the sense that B|Z\(2n—1) = B) such that
(i) (B> 0 o
(i) If D = Bxaon—1)\A@2n-1)PA@m) and E = Bxon_1)\A@2n—1)Ea@n—1) are any two
configurations (not necessarily dzstmct) on A(2N — 1) which agree with B on
A@2N — 1)\ A(2n — 1), then if E and D occur in x € ¥, then they either occur

at the same point a € Z¢ or they occur at two points a,b € Z¢ with the property
that |a —bljec = N +n — 1.

The following figure illustrates the closest that two blocks, D and E, as described
in the lemma above may occur in a single point x of X. The small squares are the
central 2n — 1-blocks of D and E.

Figure 1. Two padded blocks with minimum separation

Proof. Let € be less than p[B]/8. Since p is an ergodic invariant measure on X,
Theorem 2.10 applies so that

lim dlog Ry (x)

koo (2k—1)4 1 (X)

for p-almost every x. It follows that for almost every x, there exists an n(z) such
that for k > n(z), dlog Ry(z)/(2k — 1)? > h,(X)/2. This may be rewritten

h(2k — 1)d) _

log Ri(x) > exp ( 5

In particular, there exists an m(z) > n(z) such that log Ri(z) > 10k for each
k > m(x). Letting m(x) be the minimum such number, the function m(x) becomes
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measurable and integer-valued. It follows that there exists an M such that m(z) <
M for x belonging to a set of measure at least 1 —e. Write S for {z: m(x) < M}.
The complement of this set has measure at most e.

Figure 2. Arrangement of B

Consider the arrangement of blocks shown in Figure 2. The (smaller) central
block is a centered square of side 2n — 1 placed at the origin and the surrounding
(marker) squares are of side 2M — 1 with centers at aj, ag, . ..as. The surrounding
larger squares are separated by distances greater than 2n — 1. The frame containing
all of the squares is the subset ' = A(2N — 1) of Z2. The frame is constructed so
as to ensure that 2N < 10M. We will call the central part the core

Now forming

A=[BIN [ oa(8) = [BI\ (U aai<sc>> ,

we see that p(A) > 0. We let x be any point in A and set B = x|p. The block B
now has the property that none of its marker squares are repeated within B. We
then show that this set has the required properties. By elementary measure theory,
for almost all z € A, the set B as defined above has positive measure so we can
ensure that (i) is satisfied.

To show that (ii) is satisfied, suppose that D and E are two configurations as in
the statement of the lemma. Suppose also that they occur in a point x at positions
a and b with 0 < |]a — b|lec < N 4+ n + 1. It follows that in z, the core of D
overlaps the frame of E. We will then show that this contradicts the recurrence
properties of points in A. To establish the contradiction, we distinguish three modes
of overlapping of D and E as follows:

Case (1): The corner of the frame of E lies within the core of D;

Case (2): The corners of the frame of E lie outside the core of D, but the core
of D is not entirely contained within the frame of F;

Case (3): The core of D lies entirely within the frame of E.
These possibilities are illustrated in Figures 3(1), 3(2) and 3(3).
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Figure 3(1). Figure 3(2). Figure 3(3)

We will show that in each of these cases, the intersection is such that there is a
marker square of E entirely contained within the frame of D, but not intersecting
the core of D. This will provide the required contradiction.

In cases (1) and (2), we assume (without loss of generality) that the top of F lies
above the bottom of the core of D and the left side of E lies to the left of the right
of the core of D. This is as shown in Figure 4. The top left middle marker square
of E is then completely contained within the frame of D, but does not intersect the
core of D.

o] ]
mlin
]

|| ||

Figure 4.

The case (3) is similar. A typical configuration is shown in Figure 5. Here
(assuming again that the top left corner of F lies in the top left quadrant of D), we
see that both of the marker squares lying in the top left quadrant of E are entirely
within the frame of D. Since the gap between the marker squares is greater than
2n — 1, it follows that at least one of them does not intersect the core of D.

L

Figure 5.
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The marker square in question now occurs twice in D with neither occurrence
overlapping the core. It follows that the marker square in question occurs twice in
B and this gives the required contradiction. [J

Proof of Theorem 2.9. Let X be a subshift of finite type with positive topological
entropy. Then by Proposition 2.8, X has a subshift Xy with the property that
h(Xp) = h(X) and that Xy is entropy minimal. That is if Y is any proper subshift
of Xy, then h(Y) < h(Xp) = h(X).

Since any subshift is expansive, it follows that the set of measures of maximal
entropy is a non-empty compact convex set. Let p be any ergodic measure of
maximal entropy on Xy. Then g may also be regarded as an invariant measure
on X. It is also a measure of maximal entropy on X. The support of p is X¢ (as
otherwise the support of 41 is a subshift of X of entropy at least h,(Xo) = h(Xo)
by the variational principle).

Now by Lemma 2.1, since h,(Xo) > 0, there exist n-blocks B and C of positive
measure with the property that 0B = JC and p[B] > 0. We now apply Lemma
2.12 to get an extension B of B with the _required properties. We then define
C = BA(QN 1M\A2n-1)Ca(2n—1)- The block C is an allowed N-block because all the

adjacent pairs outside the core are allowed as they occur in B the adjacent pairs in
C consisting of one symbol from the core and one from outside the core are allowed
as they occur in B (because 0B = 0C'); and the adjacent pairs in the core of C are
allowed as they occur in C. Since B = dC and C is an allowed block, it follows
from Lemma 2.11 that u[C] = u[B] > 0.

Next, we show that X \ Cis non-empty. We note that now if we take a configu-
ration x in X and replace Cs with BS then we no longer have the difficulty which
was present in the context of Lemma 2.2. Changing a C to a B cannot produce
any new Cs because if it did, the new C would have to overlap the core of the
replacement B which contradicts Lemma 2.12. It follows that we can take a point
z € X and simultaneously replace all C blocks by B blocks to get a new point
2’ € X with no Cs, but Bs in each of the places where C previously occurred. It
follows that X \ C' is non-empty.

This argument can be modified to show that Xg \ C is non-empty as follows:
Since the support of ;1 is X, for every x € Xo we have pu[z|zo5_1)] > 0 for each
k. By Lemma 2.11, replacing the Cs by Bs in T|x(26—1) gives a point 2’ such that
plr'|x26—1)] > 0. Since p is concentrated on X, it follows that 2’ € Xj.

Since u[C] > 0, Xy \ C is a proper subshift of X,. It follows from the entropy
minimality of X, that h(X,\ C) < h(X).

We now seek a lower bound for the entropy of X \ C and will then produce
a subshift of finite type which is a proper subshift of X which has the required
entropy properties. We will use in this part certain properties of measure-theoretic
entropy. The relevant material is contained (in the one-dimensional case) in [8].
The proofs are the same in higher dimensions.

To this end, let S = Unezan—1)0- a([B] U [C]). We then define two partitions

of Xy as follows: P; = {[i{jnS¢:i € AYU{S} and P, = {[B],[C], (X \ ([BJU[C]))}
Then we see that P = P; V Py is a generating partition as follows: If we know
which element of P each of o,(z) lies in for a running over A(2N — 1), then we
know zo. To see this, note that if z( lies inside the core of a C' or B occurrence,
then knowing the element of the Py partition which the centralized copy of x lies
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in tells us whether it is in a B or a C' and this allows us to determine the value
of z9. If 2y does not lie inside the core of a C' or B occurrence, then knowing the
element of the P; partition in which x lies tells us the value of x¢. It follows that
the partition P generates the Borel o-algebra of X(. Putting this together, we have

h(X) (Xo0) = hu(Xo) = hu(Xo, P1V P2)

h
< hu(Xo, P1) + Hyu(P2|P1)
< hy(Xo, Pr) + Hp(P2).

This yields h,(Xo, P1) = h(X) —H,(Ps). Write 6 for the map sending X, to Xo\C
by replacing each occurrence of C' with a B (simultaneously). Then we see that
0 is a conjugacy between the systems (Xo, \/,cz2 0aP1, 1) and (X \ C,B,juob™)
where B is the Borel g-algebra of X; \ C. It follows that

Now let € > 0 be given. Since H,,(Ps) = —2u[C]log(u[C]) — (1 — 2u[C]) log(1 —
2u[C]), we may ensure that H,(P2) < e if we can ensure that C' has arbitrarily
small measure. But C had the property that any two occurrences must be at
least N +n + 1 apart, so it follows that u[C] < (N + n 4 1)~2. In particular by
ensuring that N is sufficiently large, H,(P2) may be made less than e. We now
have h(X) — e < h(X \ C) < h(X). There exists a decreasing sequence of subshifts
Y,, of X which are shifts of finite type and satisfy X, \ C = Mo, Y,. It is then
known (see [5], prop. 4-4-6) that h(Y,) — h(Xo\ C). In particular, there exists an
n such that k(X \ C) < h(Y,,) < h(X). This completes the proof. [

Remark With C and B defined as above, changing a C to a B in a configuration
x neither creates nor destroys any existing Cs. Formally if C occurs in z with left
corner at a and if y is the corresponding point with C replaced by B, then for each
b € 72\ {a}, z has a C at b if and only if y has a C at b.

Corollary 2.13.
If X is a shift of finite type and h(X) > 0, then X has a subshift Y which is not

of finite type.

Proof. Let C and B be as in Theorem 2.9. Then let Y be the subset of X consisting
of those points of X in which C' occurs at most once. Then Y is shift-invariant,
non-empty (it contains X \ C) and is closed (since the limit of points containing
no more than one C' contains no more than one C). To see that Y is not of finite
type, observe that for each N, there is a point  of X containing exactly two C’S,
separated by at least N (this follows from the above remark). Then all N-blocks
in x are allowed N-blocks in Y, but x does not belong to Y. [
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3. Factor Maps and Diamonds

In this section we discuss continuous, shift-commuting maps between shift spaces,
and generalize some known results for one-dimensional shifts (see [4], Chapters
8-10).

Suppose that X and Y are d-dimensional shift spaces. Let k be a positive integer,
and g : Bar—1(X) — B1(Y) a map on finite blocks. A sliding block code (or simply
a code) is a map f : X — Y defined by f(7)a = g(Tapas—1)) for z € X. If
k = 0, we say that f is a one-block code.

By an easy generalization of the Curtis-Hedlund-Lyndon Theorem, any contin-
uwous map f : X — Y such that fo, = oaf, for all a € Z%, is a sliding block
code for some k (see [5], Theorem 6.2.9 for a proof in dimension one). Any sliding
block code can be recoded to a one-block map; that is, there is a shift space X, a
one-block code f: X — Y and a conjugacy o : X — X such that fa = f. See [5],
Prop. 1.5.12 for a proof in dimension one. A surjective code is also known in the
literature as a factor map.

If f: X — Y is acode between shift spaces, a diamond for f is a pair of points
x,y € X such that there is a finite subset S C Z9, with f(z) = f(y) and zs # ys,
Ta = Ya for a € Z%\ S. If no such pair exists, we say that f has no diamonds. If
X is a shift of finite type and f is a one-block code, this definition is equivalent to
saying that there is a pair of allowed blocks B # C, with 9(B) = 9(C), such that

f(B) = f(C).
Proposition 3.1. (see [5], Theorem 8.1.16). Let f : X — Y be a code, where X is
an irreducible shift of finite type. If f is countable-to-one, then it has no diamonds.

Proof. We may assume that f is a one-block code. Suppose f has a diamond,
so that there is a pair of allowed k-blocks B,C, with 9(B) = 0(C), such that
f(B) = f(C). Since X is irreducible, there exists a point in which B occurs
infinitely often, in non-overlapping coordinates. Since the block B can be replaced
by C' wherever it occurs, and f(B) = f(C), we obtain an uncountable collection
in f~'(y). O

For one-dimensional shift spaces (not necessarily shifts of finite type), the con-
verse is true, and in fact f must be uniformly finite-to-one ([5], Theorem 8.1.16).
But for higher dimensional shifts, the converse is false. For example, if X is the
three-dot system (see [3] for a definition), and f collapses all points in X to a single
fixed point, then f is uncountable-to-one, since X is uncountable. However, f has
no diamonds, since no two distinct N-blocks for X can have the same border.

Theorem 3.2. (see [5], Theorem 8.1.16). Let X be a shift of finite type, Y be
a shift space and f : X — Y be a surjective code. If f has no diamonds, then
h(X) = h(Y). If X is entropy minimal, the converse holds.

Proof. We may assume that f is a one-block code. Suppose that f has no diamonds.
Let Ax denote the alphabet of X. Then for any B € B (Y), we have |f~1(B)| <
|.AX\2dkd_1, since |O(A(k))] < 29k%! and no two preimages of B can share the
same border. It follows that

1By (X)| < [Ax 2+ |Br(Y).

Therefore
d

1 - 2 1
£ l0g [Bi(X)| < 15 log IAx |27 |BL(Y)| = T log | Ax| + 7 log [Bi(Y)].
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Since 2%1og | Ax| is constant, the first term in the sum on the right tends to 0
as k — oo, and so h(X) = h(Y).

Now assume that X is an entropy minimal shift of finite type. Suppose f has a
diamond B, C, where B and C are N-blocks. Then f restricts to a map X\C — Y,
and we claim that the restriction is still onto. To see this, observe that if f(z) = y,
and we change any occurrence of C' in x to B, the resulting point still maps to y.
Let y € Y. Since f is surjective, there exists z € f~1(y). Now, following the proof
of Lemma 2.2, for any positive integer N we may replace all occurrences of C' in
Txan—1) With B, so that the resulting point oV € f~1(y), and x/—\N(QNil) contains
no occurrences of C. Now, by compactness, choose a limit point 2’ of the sequence
2™, Then 2/ € X \ C and f(2') = y. Therefore f|x\¢ is surjective.

It follows that A(X \ C) > h(Y). Since X is entropy minimal, we have h(X) >
h(X \ C) = h(Y). Therefore, h(Y V) < h(XN\ C) < h(XY), and so h(Y) < h(X).
O

If f: X — Y is a surjective, entropy preserving code (i.e. h(X) = h(Y)), and v
is a measure of maximal entropy for Y, then there exists an invariant measure p for
X such that fu = v, where f is the induced map on measures (see [2], Theorem
1.1). Tt is easy to see that p is a measure of maximal entropy for X. Consequently,
an entropy preserving code is measure preserving for some measures of maximal
entropy for X and Y. If X and Y are one-dimensional irreducible shifts of finite
type, they have unique measures of maximal entropy, which are preserved by f
([7land [2]). But in higher dimensions there may be more than one measure of
maximal entropy ([1]).

Lemma 3.3. Let X be a shift of finite type, Y be a shift space and f : X — Y
be a surjective code. Suppose that'Y is entropy minimal, f has no diamonds and
h(X) = h(Y). Then f is onto.

Proof. Assume that f is a one-block code. We have h(X) = h(f(X)), by Theorem
3.2. Therefore h(f(X)) = h(Y). Since Y is entropy minimal, we must have
f(X)=Y. O

The following is a generalization of [5], Corollary 8.1.20], in which f having no
diamonds replaces f being finite-to-one.

Theorem 3.4. Let f : X — Y be a code between entropy minimal shifts of finite
type. Then any two of the following statements implies the third.

(1) f has no diamonds.

(2) f is surjective.

(3) h(X) = h(Y).

Proof. The fact that (1) and (2) implies (3), and that (2) and (3) imply (1), follows
from Theorem 3.2. That (1) and (3) imply (2) follows from Lemma 3.3. O

Sliding block codes are important in the classification of shifts of finite type up
to finite equivalence (see [5], Section 8.3). Two shift spaces are finitely equivalent
if there is a shift of finite type which is a common finite-to-one extension of both
of them ([5], Def. 8.3.1). It is known that one-dimensional shifts of finite type are
finitely equivalent if and only if they have the same entropy ([5], Theorem 8.3.7). In
higher dimensions this is false: for example, no infinite zero-entropy shift of finite
type, such as the three-dot system, can be finitely equivalent to a shift consisting
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of a finite periodic orbit. So we ask, under what conditions are two shift spaces
finitely equivalent? We can define a weaker equivalence relation by saying that two
shift spaces X7 and X5 are equal-entropy equivalent if there is a shift of finite type
W and surjective codes ¢ : W — X; and ¢2 : W — Xs which preserve entropy.
We conclude by asking the following question: if X; and X5 are shifts of finite type,
with A(X;) = h(X3), are they equal-entropy equivalent?

7.

8
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