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Abstract: We show that for a generic C1 expanding map T of the unit circle,
there is a unique equilibrium state for − log T ′ that is an S–R–B measure for
T , and whose statistical basin of attraction has Lebesgue measure 1. We also
present some results related to the question of whether a generic C1 expanding
map preserves a σ-finite measure, absolutely continuous with respect to Lebesgue
measure.

1. Introduction

Let Ek denote the set of Ck expanding maps of the unit circle S1 onto itself,
k = 1, 2, . . .. Expanding maps have been widely studied in ergodic theory. In
particular, various cases with k ≥ 2 have been studied by a large number of
authors including Rényi ([17], 1965), Krżyzewski ([9], 1971), Krżyzewski and
Szlenk ([11], 1969). A typical result says that an expanding map with C2 regu-
larity has a unique absolutely continuous invariant measure with strong ergodic
properties. These results have been extended to the case of C1+α expanding
maps of the circle (maps with a Hölder continuous derivative) and even to maps
satisfying weaker regularity conditions. More recently Góra ([5], 1994) proved
results of this type under the Dini condition.

A later result of Krżyzewski ([10], 1979) gave the first indication that the
situation for C1 expanding maps differs from that of the smoother maps. Namely,
he showed that within the set of expanding C1 self-maps of any manifold, the set
of such maps for which there is an absolutely continuous invariant probability
measure, with continuous density bounded away from 0, is meager. (That is,
its complement is generic, i.e., contains a dense Gδ set with respect to the C1

topology.) This theme was taken up by Góra and Schmitt ([4], 1989) who showed
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that there is an example of an expanding C1 map of the circle that has no
absolutely continuous invariant probability measure.

In further studies of C1 expanding maps of the circle by Quas ([15,13,14],
all 1996) maps with respectively more than one absolutely continuous invariant
measure and a non-weak-mixing invariant measure were constructed; and it was
shown that a dense set of C1 expanding maps have a unique absolutely con-
tinuous invariant probability with unbounded density. In [2] (1998), Bruin and
Hawkins constructed an example of an expanding C1 map of the circle with no
σ-finite absolutely continuous invariant measure (finite or infinite). In a more
recent paper of Quas ([16], 1999) it was shown that a generic C1 expanding
map of the circle has no absolutely continuous invariant probability measure.
Our main result shows that despite this result, there is (generically) a singular
invariant probability from which properties of Lebesgue almost every orbit can
be obtained.

Theorem 1. For a generic T ∈ E1, there is a unique equilibrium measure µT
for the potential − log T ′. This T - invariant probability measure has the following
properties:

1. For a set of points S of Lebesgue measure 1, for all f ∈ C0(S1), the averages
1/n

∑n−1
k=0 f(T kx) converge to

∫
f dµT for all x ∈ S.

2. The measure µT is singular with respect to Lebesgue measure.
3. For each non-empty open set U , µT (U) > 0.

In other words, a generic T ∈ E1 possesses a fully supported singular Sinai-
Ruelle-Bowen measure whose statistical basin of attraction has Lebesgue mea-
sure 1.

A natural question is whether the result from [16] may be extended from
probability measures to σ-finite measures; i.e., is it true that generically in E1,
there is no absolutely continuous invariant measure? At the moment, we do not
know the answer, but we include the following trio of results that give some
information about this situation.

Silva [19] introduced a notion of recurrence for a measure with respect to a
non-singular transformation. To define this in our setting, let h be the density of
λ ◦ T−1 with respect to Lebesgue measure (h = dλ ◦ T−1/dλ), and set ωn(x) =∏n
j=1

1
h◦T j . Then ωn > 0 on S1 and

∫
ωndλ = 1, n = 1, 2, . . .. Lebesgue measure

is recurrent for T if the quantity
∑∞
n=1 ωn(x) is infinite for λ-a.e. x ∈ S1. (We

caution the reader that this notion of recurrence is much stronger than Poincaré
recurrence. For example there exist C2 expanding maps of S1 for which Lebesgue
measure is not recurrent in this sense.)

This recurrence property is relevant to the question of the existence of invari-
ant measures as follows. If one can establish that a measure is recurrent for a
non-invertible map, then existence or non-existence of absolutely continuous, σ-
finite invariant measures for the map can be decided using a version of Krieger’s
ratio set (see Hawkins and Silva [6] for a proof of this result).

Theorem 2. For a generic subset of E1, Lebesgue measure is not recurrent.

Recall that a measure µ is locally infinite if µ(I) = ∞ for each open interval
I.
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Theorem 3. For a generic T ∈ E1, any absolutely continuous invariant measure
is locally infinite.

To describe the next result in this direction, let hn(x) be the density of λ◦T−n
with respect to λ: hn(x) = dλ ◦ T−n/dλ(x). Set

Sε,n,a =
{
T ∈ E1:λ{x:hn(x) ∈ [a, 2a]} < ε

}
,

and consider the collection

S =
⋂
ε>0

⋃
n∈N

⋂
a>0

Sε,n,a .

If T ∈ S, we say the densities of λ ◦ T−n have no characteristic scale. This
is because for such a T and for any ε > 0, there exists an n such that for each
a > 0, the set {x:hn(x) ∈ [a, 2a]} has Lebesgue measure less than ε.

It is known that there exist mappings with an infinite invariant measure so
that the above densities hn, when appropriately rescaled, converge in measure
to the invariant density (see Aaronson’s book [1] for examples). One can see that
when T belongs to the class S defined above, this is impossible. Therefore, when
T belongs to S, a natural way of producing an absolutely continuous invariant
measure is lost.

Theorem 4. The set S constructed above is a dense Gδ subset of E1.

In the next section we give some notation and definitions, in Sect. 3 we state
and prove some preliminary lemmas, in Sect. 4 we prove Theorems 1, 2, 3, and
in Sect. 5 we prove Theorem 4.

We would like to thank Miaohua Jiang for helpful conversations and Em-
manuel Lesigne for showing us an example giving insight into the phenomenon
of no characteristic scale.

2. Notation & Definitions

We work on S1 = [0, 1]/ ∼ , where ∼ identifies 0 with 1. The Borel sigma-
algebra is denoted by B. The space of Borel measures on S1 is denoted by M,
with M1 denoting the subspace of probabilities. If T ∈ E1, M1

T denotes the
set of Borel probability measures that are invariant under T . For ν ∈ M1

T , the
measure-theoretic entropy of T with respect to ν is denoted by hν(T ), or hν if
T is understood. For a continuous function f : S1 → R, the pressure of f (with
respect to T ) is given by

PT (f) = sup
ν∈M1

T

{
hν(T ) +

∫
f dν

}
.

An equilibrium state for f is an element µ ∈ M1
T satisfying PT (f) = hµ+

∫
f dµ.

Recall that a Borel measure µ is called a Sinai-Ruelle-Bowen measure for
T ∈ E1 if there exists a subset B of S1 of positive Lebesgue measure such that
for each f ∈ C0(S1) and all x ∈ B,

1
n

n−1∑
k=0

f(T k(x)) →
∫

f dµ.
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The set B is called the statistical basin of attraction of µ.
For each T ∈ E1, T ′ is a continuous function whose absolute value is strictly

larger than 1. Since S1 is connected, E1 decomposes into two disjoint open sub-
sets, the first consisting of those T ’s for which T ′ > 1, the other, those T ’s
for which T ′ < −1. Each of these sets has countably many open components,
corresponding to the maps of degree k (k = 2, 3, . . ., and k = −2,−3, . . ., respec-
tively). In some of our arguments, we want to prove, say, that a subset of E1

with a certain property is generic. We proceed by supposing that T ′ > 1 and the
degree is a fixed but arbitrary integer k > 1, and proving that within the cor-
responding component, the set is generic. Since a practically identical argument
(with only the obvious minor modifications) will hold for T ′ < −1 and k ≤ −2,
and the components partition E1, the general result will follow.

With these conventions in place we set ΨT = Ψ = − log(T ′) < 0.
We define the Perron-Frobenius operator, or transfer operator LT by

LT f(x) =
∑
Ty=x

f(y)
|T ′(y)|

.

For now we do not specify the space containing f or LT f . These will depend
upon the context in which they are being used, and will be designated as needed
in the development.

We repeatedly use the fact (proved in [9]) that for each T ∈ E2, there exists
a unique, absolutely continuous µ ∈ M1

T , whose density is strictly positive and
continuous.

3. Preliminary Lemmas

We state and prove some lemmas that lead to the main results.
Following [7], for each natural number k ≥ 2, let Ek : S1 → S1 denote the

linear expanding map Ek(x) = kx mod 1. For T ∈ E1 of degree k, it is well-
known that Ek is conjugate to T ; that is, there exists a homeomorphism γ of
S1 such that T ◦ γ = γ ◦ Ek. In fact, in general there is more than one such
homeomorphism (although only finitely many). For a degree k map T ∈ E1, we
shall write Conj(T ) for the set of conjugacies between Ek and T .

For our purposes, it will be necessary to study and control the dependence
of the conjugacy on the map T . To do this, we shall exploit the construction
in [7] of such a conjugacy. Specifically, in their construction, they start with a
point p that is fixed by T and use the Markov partition of the circle given by
the intervals whose endpoints are the points of T−1{p}. For our modification,
we need to control the choice of p.

For z ∈ S1, set Uz = {T ∈ E1 : T (z) 6= z}. Note that Uz is a dense open
subset of E1.

Lemma 1. For each z ∈ S1, there is a continuous map
Πz : Uz → Homeo(S1) such that Πz(T ) ∈ Conj(T ) for each T .

In particular, given T ∈ E1 of degree k, there is a neighborhood U of T on
which there is a continuous choice of conjugacies to the map Ek.



Generic C1 Expanding Maps 5

Proof. The proof is essentially that given in the proof of Theorem 2.4.6 in [7].
For a map T ∈ Uz, we choose the fixed point p of T that is the first fixed point
on the circle ‘to the right’ of z. That is, considering the circle to be the set [0, 1),
p is chosen to be the first fixed point to the right of z or if there is none, the first
fixed point to the right of 0. This choice of fixed point determines a conjugacy
Πz(T ). The fixed point may be seen to depend continuously on the map, and so
do its preimages. This allows one to show the required continuity of Πz.

To show that in a neighborhood of any given map T ∈ E1, there is a continuous
family of conjugacies, we argue as follows: Let z be any point not fixed by T ,
then Uz is the required neighborhood and Πz(S) is the continuous choice of
conjugacy for S ∈ Uz.

Note that if γ ∈ Conj(T ) and f ∈ C0(S1), then PEk
(f ◦ γ) = PT (f). In-

deed, γ induces a bijection between M1
Ek

and M1
T by ν 7→ ν ◦ γ−1. Then∫

f ◦ γ dν =
∫

f dν ◦ γ−1, and since γ is a measure-theoretic isomorphism,
hν(Ek) = hν◦γ−1(T ). The pressure equality follows.

Lemma 2. For all T ∈ E1, PT (ΨT ) = 0.

Proof. If T ∈ E2, this is well-known as the Ruelle-Ledrappier-Young entropy
formula (see [12]). Given a degree k map T ∈ E1, by Lemma 1, we may find a
neighborhood V of T and a choice of conjugacies γS for all S ∈ V so that the
map S 7→ γS is continuous on V . With these choices, if {Ti} ⊂ E2 and Ti → T in
E1, then ΨTi

◦ γTi
→ ΨT ◦ γT in C0(S1). Since pressure is continuous on C0(S1),

and 0 = PTi
(ΨTi

) = PEk
(ΨTi

◦ γTi
) for all i, it follows by taking limits that

0 = PEk
(ΨT ◦ γT ) = PT (ΨT ).

Corollary 1. If µ is any equilibrium state for ΨT , then µ is non-atomic.

Proof. Let µ be an ergodic equilibrium state; then it must be either purely
atomic, or continuous. If it is purely atomic, then hµ(T ) = 0 and

∫
ΨT dµ < 0,

contradicting P (ΨT ) = 0. The result follows since the equilibrium states form a
convex set, of which the extreme points are the ergodic states.

Lemma 3. The set of T ∈ E1 for which ΨT has a unique equilibrium state is
generic.

The lemma is a version of the Gibbs Phase Rule for the class of expanding
maps of the circle. The original Gibbs Phase Rule for the case of a shift was
proved by Ruelle [18] and Gallavotti and Miracle-Sole [3].

Proof. For any expansive T , there is at least one equilibrium state for each
h ∈ C0(S1) (see Walters [20], p. 224). Since expanding maps are expansive,
every ΨT possesses at least one equilibrium state.

To prove uniqueness for a dense Gδ, we work with equilibrium states for the
map Ek:S1 → S1 given by Ek(x) = kx mod 1.

We now show that the set B of potentials for which there is a unique Ek-
equilibrium state forms a Gδ set. Theorems 4.3.3 and 4.3.5 of [8] characterize
those potentials with unique equilibrium states as the set of f such that for all
g ∈ C0(S1), limt→0(PEk

(f + tg) − PEk
(f))/t exists. For fixed f and g, define

H(t) = (PEk
(f+tg)−PEk

(f))/t. Since the map t 7→ PEk
(f+tg) is convex, H is an
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increasing function. The above limit then exists if and only if lim inft→0+ H(t)−
H(−t) = 0. Hence f has a unique equilibrium state if and only if

lim inf
t→0+

PEk
(f + tg) + PEk

(f − tg)− 2PEk
(f)

t
= 0 for all g ∈ C0(S1). (1)

To show that these f form a Gδ set, we need to show that it is sufficient to
calculate the lim inf for a collection of g belonging only to a countable set. To
this end, let (gn)n∈N be a countable collection of continuous functions that is
dense in C0(S1). We note that∣∣ (PEk

(f + tg) + PEk
(f − tg)− 2PEk

(f)) /t−
(PEk

(f + tgn) + PEk
(f − tgn)− 2PEk

(f)) /t
∣∣ ≤ 2‖g − gn‖∞.

Hence (1) holds if and only if

lim inf
t→0+

(PEk
(f + tgn) + PEk

(f − tgn)− 2PEk
(f))/t = 0 for all n ∈ N.

The set of B of functions f satisfying this condition may be written as⋂
n∈N

⋂
p∈N

⋂
m∈N

⋃
t∈(0, 1

m )

{f : |(PEk
(f + tgn) + PEk

(f − tgn)− 2PEk
(f))/t| < 1/p} ,

which is easily seen to be a Gδ subset of C0.

From Lemma 1, there is a continuous choice of conjugacies for maps in U0.
For a map T ∈ U0, we shall call this choice of conjugacy γT . Letting Φ be the
map U0 → C0(S1) defined by Φ(T ) = ΨT ◦ γT , we see that Φ is continuous. It
follows that Φ−1(B) is a Gδ subset of U0. We now have T ∈ Φ−1(B) if and only
if ΨT ◦ γT has a unique Ek-equilibrium state. Since there is a bijection between
Ek-equilibrium states for ΨT ◦ γT and T -equilibrium states for ΨT , we see that
T ∈ Φ−1(B) if and only if ΨT has a unique T -equilibrium state.

We have established that the set S ⊂ E1 consisting of those T for which ΨT
has a unique equilibrium state, contains a Gδ subset of U0. Since E2 ∩ U0 is a
dense subset of U0 that is contained in S, it follows that S contains a dense Gδ

subset of U0. Since U0 is a dense open subset of E1, we conclude that S contains
a dense Gδ subset of E1.

Set Λ = {T ∈ E1 : there exists a unique equilibrium state for ΨT }.

Lemma 4. Equip Λ with the (relative) C1-topology, and M1 with the (relative)
weak∗-topology. Then M : Λ → M1, given by M(T ) = µT , is continuous.

Proof. Suppose T0 ∈ Λ is of degree k, Ti ∈ Λ and Ti → T0 in C1. We shall show
that µT0 is the limit of the µTi

. As in Lemma 1, fix a neighborhood V of T0 such
that there is a continuous family of conjugacies γT for T ∈ V .

Suppose that µ is any limit point of the µTi . We shall show that µ = µT0 ,
and this is sufficient, by weak∗-sequential compactness, to show that the original
sequence must converge to µT0 .

Replacing the original sequence with a subsequence if necessary, we suppose
that µTi → µ. Set νi = µTi ◦ γTi and ν = µ ◦ γT0 . Then ν and the νi are all
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Ek−invariant measures on S1. By continuity of the family of conjugacies, we see
that νi → ν in the weak∗-topology. For each i, since νi is an Ek−equilibrium
state for ΨTi

◦ γTi
which by Lemma 2 has pressure 0, we have

0 = hνi
+

∫
ΨTi ◦ γTi dνi.

Since the entropy map is upper semi-continuous, lim suphνi ≤ hν . Since Ti → T0

in C1 and νi → ν we have

0 = lim sup
{
hνi +

∫
ΨTi ◦ γTi dνi

}
≤ hν +

∫
ΨT0 ◦ γT0dν ≤ 0 ,

where the last inequality is true because the pressure is 0. Thus, all of the
inequalities are equalities and ν is an equilibrium state for ΨT0 ◦ γT0 , so that µ
is an equilibrium state for ΨT0 . Since T0 ∈ Λ, there is only one such state. Thus
any limit point of the µTi

is µT0 , the unique equilibrium state for ΨT0 , and the
lemma is proved.

Lemma 5. Λ̃ = {T ∈ Λ : µT is fully supported} is a generic subset of Λ (and
hence of E1).

Proof. From Corollary 1, for each T ∈ Λ, µT must be non-atomic. By Lemma 4,
for a non-empty open interval I ⊂ S1, the map T 7→ µT (I) is continuous on Λ.
Choose any collection {Ii} of non-empty open intervals that forms a countable
basis for the topology of S1. Then Λ̃ =

⋂
i{T ∈ Λ : µT (Ii) > 0}, a Gδ that

contains E2 (and is therefore dense).

4. Proofs of Theorems 1, 2, and 3

Proof (Proof of Theorem 1). Lemma 3 establishes that for T belonging to the
residual set Λ, there is a unique equilibrium state µT for the potential − log T ′.

To prove Statement 1, we use a result of Keller. Any fixed T ∈ E1, together
with the Markov partition for T , forms what Keller [8] calls a continuous e−ψ-
conformal fibred system. He shows ([8], Theorem 6.1.8)1 that in such a system,
for λ-almost every x, the weak∗-limit points of the averages 1

k (δx+ . . .+ δTk−1x)
are contained in the set of measures satisfying hµ +

∫
(− log T ′) dµ ≥ 0. Since

PT (− log T ′) = 0, these measures are precisely the equilibrium states. Hence for
T ∈ Λ, for λ-almost every x, the sequence 1

k (δx + . . . + δTk−1x) has at most one
weak-∗ limit point, namely µT . By weak-∗ sequential compactness, the entire
sequence must converge to µT .

To see that µT must be singular (with respect to λ), we first note that each
T ∈ E1 is a non-singular transformation (with respect to λ). Thus, if µT =
µsi + µac is the decomposition of µT into singular and absolutely continuous
components, the map µT 7→ µT ◦ T−1 preserves µsi and µac, so that µac is
a finite, absolutely continuous T - invariant measure. But we have seen that a

1 In fact the quoted theorem, as stated in the book, contains a mistake, although an irrelevant
one for the present setting. The interested reader may go to http://www.mi.uni-erlangen/˜
keller/publications/equibook.html, where the needed correction to the proof of the theorem is
given.
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generic T ∈ E1 possesses no such invariant measure ([16]); that is, µac = 0. This
proves Statement 2.

Lemma 5 implies that generically, µT is fully supported, showing Statement
3.

This completes the proof of Theorem 1.

Before proving Theorem 2, we state and prove a lemma. There is a reference
to a similar lemma in [2] although we have been unable to find the proof in the
papers cited there. Recall that if T ∈ E2, µT is an absolutely continuous proba-
bility measure with strictly positive Radon-Nikodym derivative ρ = dµT /dλ.

Lemma 6. Suppose T ∈ E2. Then
∫

logLT1 dµT ≥ 0, with equality if and only
if ρ is T−1B-measurable.

Proof. Fix T ∈ E2. In this case, the equilibrium state µT is absolutely continuous.
We write ρ for the density of µT with respect to Lebesgue measure.

Let P denote the Perron-Frobenius operator for T with respect to µT ∈ M1
T .

Then P(f) =
LT (ρ·f)

ρ . In particular LT (1) = ρP( 1
ρ ). Thus,∫

logLT (1) dµT =
∫

log ρ dµT +
∫

logP(1/ρ) dµT

= −
∫

log(1/ρ) dµT +
∫

logP(1/ρ) dµT

= −
∫
P(log(1/ρ)) dµT +

∫
logP(1/ρ) dµT ,

where the last equality follows because P preserves µT -integrals. It is well-known
that P(·) ◦ T = EµT

(·|T−1B). Since T preserves µT , we may continue the above
calculations as follows:

−
∫
P(log(1/ρ)) dµT +

∫
logP(1/ρ) dµT

= −
∫
P(log(1/ρ)) ◦ T dµT +

∫
logP(1/ρ) ◦ T dµT

= −
∫
EµT

(
log(1/ρ)|T−1B

)
dµT +

∫
log

(
EµT

(1/ρ|T−1B)
)

dµT ≥ 0,

where the last inequality follows from Jensen’s inequality, from which it also fol-
lows that equality holds in the last step if and only if log( 1

ρ ) is T−1B-measurable,
which holds if and only if ρ is T−1B-measurable. This concludes the proof of
Lemma 6.

Proof (Proof of Theorem 2). Since log ωn(x) = −
∑n
j=1 logLT1◦T j(x), by Theo-

rem 1 we have that 1
n log ωn(x) → −

∫
logLT1 dµT for λ-a.e. x ∈ S1 and T ∈ Λ.

If
∫

logLT1 dµT > 0, then for large n, ωn(x) = O(an) for λ-a.e. x, where a is
any number such that −

∫
logLT1 dµT < log a < 0. That is, the sequence ωn(x)

is asymptotically comparable to a geometric sequence, and hence summable (for
λ-a.e. x), so that Lebesgue measure is not recurrent for T.

First we observe that {T :
∫

logLT1 dµT > 0} is open in Λ. To see this, if
T ∈ Λ satisfies

∫
logLT1 dµT > 0 and S ∈ Λ is C1-close to T , then LS1 is

C0-close to LT1. By Lemma 4, µS is weak∗-close to µT , proving the observation.
Thus by Lemma 6, it is sufficient to show that for maps T belonging to a

dense subset of E2 (and hence a dense subset of E1), the invariant density ρT is
not T−1B-measurable.
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Choose T ∈ E2 for which ρT is T−1B-measurable. We shall show that there
is an S ∈ E2 arbitrarily close to T (in the C1 topology) for which ρS is not
S−1B-measurable.

Since ρT is T−1B-measurable, Tx = Ty implies that ρ(x) = ρ(y). Given a
Markov partition for T, we call the atoms of the partition the branches of T. We
shall construct a C2-homeomorphism π : S1 → S1 in such a way that

1. π is arbitrarily (C1-) close to the identity, and
2. The map T̃ = π ◦ T ◦ π−1 has the property that ρT̃ = ρ̃ is not T̃−1B-

measurable.

Establishing Items 1 and 2 will finish the proof.

Suppose for the moment that π is any C2-homeomorphism of the circle, and
T̃ (x̃) = π◦T ◦π−1(x̃). Then ρ̃(x̃) = ρ(π−1x̃)

π′(π−1x̃) , so that ρ̃ will be T̃−1B-measurable

precisely when T̃ (x̃) = T̃ (ỹ) implies that ρ̃(x̃) = ρ̃(ỹ). Suppose x̃ 6= ỹ and
T̃ (x̃) = T̃ (ỹ). Then, since ρ is T−1B-measurable, ρ(π−1ỹ) = ρ(π−1x̃). Hence
ρ̃(x̃) will differ from ρ̃(ỹ) precisely when π′(π−1x̃) 6= π′(π−1ỹ).

Hence, if π is chosen so that π′ is not T−1B-measurable, these terms will be
different. Now we specify that π is a C2-homeomorphism of S1 with the property
that π′ ≡ 1 on one branch of T , and different from 1, yet arbitrarily close to 1,
on the other branches. This completes the proof of Theorem 2.

Proof (Proof of Theorem 3). Suppose that T satisfies the conditions of Theorem
1. We show that in this case, any absolutely continuous invariant measure for T
is locally infinite. Suppose ν is an absolutely continuous invariant measure for T .
Then ν(S1) = ∞. Suppose, for the purpose of obtaining a contradiction, that I is
any open interval with ν(I) < ∞. Let f be any non-negative continuous function
supported on I that is positive on some subinterval of I. Clearly f ∈ L1(ν). By
Birkhoff’s ergodic theorem for an infinite invariant measure, for ν-almost every
x, 1

n (f(x) + . . . + f(Tn−1x)) → 0. This holds in particular on a set of positive
Lebesgue measure. On the other hand, since µT is a Sinai-Ruelle-Bowen measure,
we have for λ-almost every x, 1

n (f(x) + . . . + f(Tn−1x)) →
∫

f dµT . Since f is
strictly positive on a subinterval of I and µT is fully supported, this quantity is
strictly positive. This contradiction completes the proof of the theorem.

5. No Characteristic Scale

In this section we prove that if

Sε,n,a =
{
T ∈ E1:λ{x:Ln1(x) ∈ [a, 2a]} < ε

}
,

and

S =
⋂
ε>0

⋃
n∈N

⋂
a>0

Sε,n,a

then S is a dense Gδ subset of E1.
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Proof (Proof of Theorem 4). We can replace the uncountable intersections in the
definition of S by countable intersections over the rationals without changing the
set. Define

Fn(T ) = λ× λ

{
(x, y):

1
2
≤ LnT1(x)
LnT1(y)

≤ 2
}

.

Clearly, Fn(T ) < ε2 implies that for all positive a, the measure of the set of
points with LnT1(x) ∈ [a, 2a] is less than ε. Letting Rε,n = {T :Fn(T ) < ε2}, it
is clear that Rε,n ⊂

⋂
a>0 Sε,n,a. Conversely, for fixed x, let a1 = LnT1(x)/2 and

a2 = 2a1. If T ∈
⋂
a>0 Sε2/2,n,a, then for each x, by considering ∪2

i=1{y:LnT1(y) ∈
[ai, 2ai]} we have

λ{y:LnT1(y) ∈ [LnT1(x)/2, 2LnT1(x)]} < ε2 .

By Fubini’s theorem, we see that Fn(T ) ≤ ε2 so that T ∈ Rε,n. It follows that

S =
⋂
ε>0

⋃
n∈N

⋂
a>0

Sε,n,a =
⋂
ε>0

⋃
n∈N

Rε,n.

We shall show that Fn: E1 → R is an upper semi-continuous map so that S is
a Gδ set. To prove this, suppose that Fn(T ) < α. We have

λ× λ
({

(x, y): L
n
1(x)

Ln1(y) ∈ [ 12 , 2]
})

=

limk→∞ λ× λ
({

(x, y): L
n
1(x)

Ln1(y) ∈ [ 12 −
1
k , 2 + 1

k ]
})

.

One can therefore find a k such that λ × λ({(x, y):LnT1(x)/LnT1(y) ∈ [1/2 −
1/k, 2 + 1/k]}) < α. Since the map Φ: E1 → C0(S1 × S1) given by Φ(T )(x, y) =
LnT1(x)/LnT1(y) is continuous (with the C1 and C0-topologies on the respective
spaces), there exists a neighborhood U of T such that if T̃ ∈ U , then ‖Φ(T ) −
Φ(T̃ )‖ < 1/k. It follows that if T̃ ∈ U , then Fn(T̃ ) < α, proving the upper
semi-continuity of Fn.

It then remains to demonstrate the density of S. To do this, we shall es-
tablish that for any ε > 0, any T0 ∈ E2 and any neighborhood U of T0 (in
the C1 topology), there is a T ∈ U and an n ∈ N such that for each a,
λ{x:Ln1(x) ∈ [a, 2a]} < ε. This will be accomplished by conjugating T0 us-
ing a homeomorphism constructed via a cocycle.

We shall therefore assume ε > 0, T0 ∈ E2 and δ > 0 are given. Let η > 0 be
such that (1 + η)/(1− η) < 1 + δ. Then we also have (1− η)/(1 + η) > 1− δ.

Since T0 belongs to E2, T0 preserves an absolutely continuous invariant prob-
ability measure, µ, with a strictly positive continuous density, ρ. Let m be such
that 1

m ≤ ρ(x) ≤ m for all x. Let T̄0:X → X be a natural extension of
T0:S1 → S1 preserving the measure µ̄. From [21], µ̄ is Bernoulli, so we may
find a non-trivial independent partition P = {A0, A1} of X. Write p for µ̄(A0)
and q for µ̄(A1). We then define a function Ḡ0 on X as follows:

Ḡ0(x) =
{

1 + ηq if x ∈ A0

1− ηp if x ∈ A1.
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Let n > 0 be an integer. We then form the multiplicative cocycle Ḡ
(n)
0 defined

by
Ḡ

(n)
0 (x) = Ḡ0(x)Ḡ0(T̄0x) . . . G0(T̄n−1

0 x).

The function Ḡ
(n)
0 takes on the value vk = (1 + ηq)k(1 − ηp)n−k on a set of

measure
(

n
k

)
pkqn−k.

Let K ∈ N be the least integer so that(
1 + ηq

1− ηp

)K
> 2m2.

Since vk+1/vk =
(

1+ηq
1−ηp

)
, for each a there are at most K values taken by Ḡ

(n)
0

in [a, 2m2a].
We then have the estimate

µ̄{x: Ḡ(n)
0 (x) ∈ [a, 2m2a]} ≤ K max

{k:vk∈[a,2m2a]}

(
n
k

)
pkqn−k.

Since for the values of k in the range over which the maximum is taken have
the property that vk ≥ a, we see

aµ̄{x: Ḡ(n)
0 (x) ∈ [a, 2m2a]} ≤ K max{k:vk∈[a,2m2a]}

(
n
k

)
vkp

kqn−k

= K max0≤k≤n

(
n
k

)
(p + ηpq)k(q − ηpq)n−k < CK√

n
,

where C is a constant that depends only on the values of p and q.
Now fix an n so that aµ̄({x: Ḡ(n)

0 (x) ∈ [a, 2m2a]}) < ε/4 for all a. It will
turn out that an inequality of this type will be what is needed for the conjugate
map to have the desired property. At this point, the function Ḡ

(n)
0 is defined not

on the circle, but on the natural extension space. We shall apply a conditional
expectation and approximation argument to Ḡ

(n)
0 to obtain a function on the

circle as needed.
Let Q be a Markov partition for T0 consisting of intervals. There exists a k

such that
∨k−1
s=0 T−s0 Q consists of intervals of length less than δ. Denote these

intervals by Ij and write Īj for π−1Ij , where π denotes the natural projection
from the natural extension (X, T̄0, µ̄) to (S1, T0, µ).

Write ρ̄ = ρ◦π and define the natural extension of λ, λ̄ by λ̄(A) =
∫
A
(1/ρ̄) dµ̄.

We then calculate∫
Īj

Ḡ
(n)
0 ◦ T̄ i0 dλ̄ =

∫
χĪj

ρ̄
· Ḡ(n)

0 ◦ T̄ i0 dµ̄.

Since T̄0 is mixing, we see that

lim
i→∞

∫
Īj

Ḡ
(n)
0 ◦ T̄ i0 dλ̄ =

∫ χĪj

ρ̄ dµ̄
∫

Ḡ
(n)
0 dµ̄

= λ̄(Īj)
(∫

Ḡ0 dµ̄
)n

= λ(Ij),
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where we used the fact that P is an independent partition to get the second
equality.

We recall that n is chosen so that

µ̄({x: Ḡ(n)
0 (x) ∈ [a, 2m2a]}) < ε/(4a), (2)

for each a > 0. We now choose an i0 such that for i ≥ i0,∣∣∣∣∣
∫
Īj

Ḡ
(n)
0 ◦ T̄ i0 dλ̄− λ(Ij)

∣∣∣∣∣ < δ
3λ(Ij), (3)

for each j.
We now show that similar inequalities persist for functions Ḡ(n) if Ḡ is chosen

to be an appropriate perturbation of Ḡ0.
It is useful to note that because the values taken by Ḡ

(n)
0 are in the range

[(1− ηp)n, (1 + ηq)n], the inequality (2) holds trivially for a outside this range.
We define N to be a subset of L1(µ̄) as follows and equip it with the L1

subspace topology:

N = {Ḡ: 1− ηp ≤ Ḡ ≤ 1 + ηq; ‖Ḡ− Ḡ0‖1 < ζ}.

Since composition with T̄ is an isometry on L1(µ̄), and because N consists of
bounded functions, the map from N to L1 given by Ḡ 7→ Ḡ(n) is continuous.
Clearly, for Ḡ ∈ N , the values taken by Ḡ(n) are in the range [(1−ηp)n, (1+ηq)n].
By choosing ζ appropriately small, we can ensure that |Ḡ(n)−Ḡ

(n)
0 | < (1−ηp)n/2

on a set of measure at least 1 − ε/(8(1 + ηq)n). For a given a in the range
[(1− ηp)n/2m2, (1 + ηq)n], let a1 = a/2 and a2 = 2a. Then

{x: Ḡ(n)(x) ∈ [a, 2m2a]} ⊂
{x: Ḡ(n)

0 (x) ∈ [a1, 2m2a1]} ∪ {x: Ḡ(n)
0 (x) ∈ [a, 2m2a]}

∪{x: Ḡ(n)
0 (x) ∈ [a2, 2m2a2]} ∪ {x: |Ḡ(n)

0 (x)− Ḡ(n)(x)| > (1− ηp)n/2}.

We shall denote the four sets on the right-hand side by A1, A2, A3 and
A4 respectively. By our previous estimates on Ḡ

(n)
0 we have µ̄(A1) < ε/(2a),

µ̄(A2) < ε/(4a) and µ̄(A3) < ε/(4a2) < ε/(8a). We chose ζ above to ensure that
µ̄(A4) < ε/(8(1 + ηq)n) < ε/(8a), so that

µ̄({x: Ḡ(n)(x) ∈ [a, 2m2a]}) < ε/a

for each a in the range [(1 − ηp)n/(2m2), (1 + ηq)n]. As before, the inequality
holds trivially for a outside this range, so we have established that for sufficiently
small ζ, a similar inequality to (2) persists for all a and functions Ḡ(n), if Ḡ is
chosen from N .

Since ∫
Īj

|Ḡ(n)
0 ◦ T̄ i0 − Ḡ(n) ◦ T̄ i0| dλ̄ ≤

∫
|Ḡ(n)

0 ◦ T̄ i0 − Ḡ(n) ◦ T̄ i0| dλ̄

≤ m
∫
|Ḡ(n)

0 ◦ T̄ i0 − Ḡ(n) ◦ T̄ i0| dµ̄,
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we see that provided ζ is sufficiently small, (3) holds for Ḡ ∈ N .
We have therefore shown that there exists a ζ > 0 such that for Ḡ ∈ N ,

µ̄({x: Ḡ(n)(x) ∈ [a, 2m2a]}) < ε/a for each a, and (4)∣∣∣∫Īj
Ḡ(n)(x) ◦ T̄ i0 dλ̄− λ(Ij)

∣∣∣ < δ
3λ(Ij) for each j, and i ≥ i0. (5)

We note that since T̄0:X → X is a natural extension of T0:S1 → S1,
the σ-algebras T̄ k0 π−1BS1 increase to BX . It follows that Eµ̄(Ḡ0 | T̄ i0π−1BS1)
converges to Ḡ0 in L1. By the monotonicity of conditional expectation, these
functions also satisfy the inequality 1 − ηp ≤ Eµ̄(Ḡ0 | T̄ i0π−1BS1) ≤ 1 + ηq. It
follows that for sufficiently large i ≥ i0, (i0 as above), (4) and (5) are satis-
fied with Eµ̄(Ḡ0 | T̄ i0π−1BS1) in place of Ḡ . Fix some such i and write Ḡ1 for
Eµ̄(Ḡ0 | T̄ i0π−1BS1).

Now Ḡ1 ◦ T̄ i0 = Eµ̄(Ḡ0 ◦ T̄ i0|π−1BS1) so we see that Ḡ1 ◦ T̄ i0 may be written
as g1 ◦ π for some B-measurable function g1 on the circle. Since C0(S1) is dense
in L1(S1,B, µ), it follows that there exists a continuous function g2 such that
‖g1 − g2‖1 is arbitrarily small. Since ‖Ḡ1 − g2 ◦ π ◦ T̄−i0 ‖1 = ‖g1 − g2‖1, we see
that g2 may be chosen so that g2 ◦ π ◦ T̄−i0 lies in N .

Equations (4) and (5) now yield∣∣∣∫Ij
g
(n)
2 dλ− λ(Ij)

∣∣∣ < δ
3λ(Ij) for each j; and

µ({x: g(n)
2 (x) ∈ [a, 2m2a]}) < ε/a for each a > 0.

From the first equation, we see that 1− δ
3 <

∫
g
(n)
2 dλ < 1 + δ

3 , so finally we
rescale g2 (i.e. multiply by a constant, that will, by our above estimates, be very
close to 1) to obtain a function g that satisfies

∫
g(n) dλ = 1. We then have the

inequalities

∣∣∣∫Ij
g(n) dλ− λ(Ij)

∣∣∣ < δλ(Ij) for each j; and (6)

µ({x: g(n)(x) ∈ [a, 2m2a]}) < 2ε/a for each a > 0. (7)

Set θ(x) =
∫ x
0

g(n)(t) dt and let T (x) = θ ◦ T0 ◦ θ−1(x). Then from the above,
and since each interval Ij has length less than δ, it may be verified that |θ(x)−
x| < 2δ, and supx∈S1 |T (x) − T0(x)| < (C + 4)δ, where C = maxx∈S1 |T ′0(x)|.
Hence this quantity can be made arbitrarily small by choosing δ sufficiently
small. Also, differentiating, we see

T ′(x) = T ′0(θ
−1x) θ

′(T0(θ
−1x))

θ′(θ−1x)

= T ′0(θ
−1x) g

(n)(T0(θ
−1x))

g(n)(θ−1x)

= T ′0(θ
−1x) g(T

n
0 (θ−1x))
g(θ−1x) .

Since g is uniformly close to 1 and T ′0 is uniformly continuous, we see that
supx∈S1 |T ′(x)− T ′0(x)| can also be made arbitrarily small by controlling δ and
η. This shows that T can be chosen arbitrarily close to T0 in the C1 norm.
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It remains to verify that T has the property that there exists an n such
that for each a, λ{x:Ln1(x) ∈ [a, 2a]} < ε. Since T is conjugate to T0, there
is also a conjugacy relation between their Perron-Frobenius operators given by
LT = Lθ ◦ LT0 ◦ Lθ

−1, where Lθf(x) = f(θ−1(x))/θ′(θ−1x).
Since T0 is a C2 expanding map, we have that LnT0

1 converges uniformly to
ρ. It follows that LnT1 converges uniformly to Lθρ(x) = ρ(θ−1x)/θ′(θ−1x). We
then estimate

λ({x:
ρ(θ−1x)

g(n)(θ−1x)
∈ [a, 2a]}) ≤ λ({x: 1

g(n)(θ−1x)
∈ [ am , 2ma]})

= λ({x: g(n)(θ−1x) ∈ [ 1
2ma , ma ]}).

But we see that {x: g(n)(θ−1x) ∈ [ 1
2ma , ma ]} = θ({y: g(n)(y) ∈ [ 1

2ma , ma ]}).
Using this, we get

λ({x:
ρ(θ−1x)

g(n)(θ−1x)
∈ [a, 2a]}) ≤ λ ◦ θ({y: g(n)(y) ∈ [ 1

2ma , ma ]})

=
∫
{y:g(n)(y)∈[

1
2ma , ma ]} g(n)(y) dλ

< m
a λ({y: g(n)(y) ∈ [ 1

2ma , ma ]})
< 4m3ε,

where we have used (7) with a replaced by 1
2ma . This completes the proof.

6. Conclusion

Few methods are known for detecting the presence of invariant measures for gen-
eral non-invertible mappings. With regard to the specific question of whether a
generic C1 expanding map has a σ-finite absolutely continuous invariant mea-
sure, the known methods to try would include inducing, rescaling densities of
finite measures and taking a limit, or establishing the recurrence property de-
fined earlier. Our results may be seen as establishing that the known methods
will fail. Here is why.

Since we show (Theorem 3) that any infinite invariant measure is locally
infinite, any set of finite measure to perform an inducing construction would
necessarily be irregular. It seems unlikely that such a set could be constructed
in the uniform way required to prove existence of a σ-finite measure for a generic
set of maps in E1.

To exploit rescaling, one typically attempts to rescale the sequence of densities
of λ ◦T−n in order to obtain a limit. Theorem 4 suggests that such an approach
would probably not work.

If one can establish that a measure is recurrent (in the sense defined in the
introduction) for a non-invertible map, then existence or non-existence of abso-
lutely continuous, σ-finite invariant measures for the map can be decided using
a version of Krieger’s ratio set (see Hawkins and Silva [6] for a proof of this
result). Theorem 2 indicates that this approach will fail in the context of generic
C1 expanding maps.
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