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Abstract: We show that for a generic C! expanding map T of the unit circle,
there is a unique equilibrium state for —log7” that is an S-R-B measure for
T, and whose statistical basin of attraction has Lebesgue measure 1. We also
present some results related to the question of whether a generic C! expanding
map preserves a o-finite measure, absolutely continuous with respect to Lebesgue
measure.

1. Introduction

Let £ denote the set of C* expanding maps of the unit circle S onto itself,
k = 1,2,.... Expanding maps have been widely studied in ergodic theory. In
particular, various cases with k& > 2 have been studied by a large number of
authors including Rényi ([17], 1965), Krzyzewski ([9], 1971), Krzyzewski and
Szlenk ([11], 1969). A typical result says that an expanding map with C? regu-
larity has a unique absolutely continuous invariant measure with strong ergodic
properties. These results have been extended to the case of C'*® expanding
maps of the circle (maps with a Holder continuous derivative) and even to maps
satisfying weaker regularity conditions. More recently Géra ([5], 1994) proved
results of this type under the Dini condition.

A later result of Krzyzewski ([10], 1979) gave the first indication that the
situation for C' expanding maps differs from that of the smoother maps. Namely,
he showed that within the set of expanding C' self-maps of any manifold, the set
of such maps for which there is an absolutely continuous invariant probability
measure, with continuous density bounded away from 0, is meager. (That is,
its complement is generic, i.e., contains a dense Gs set with respect to the C!
topology.) This theme was taken up by Géra and Schmitt ([4], 1989) who showed

* J. Campbell is partially supported by NSF Grant #DMS-9801602



2 J. T. Campbell, A. Quas

that there is an example of an expanding C' map of the circle that has no
absolutely continuous invariant probability measure.

In further studies of C! expanding maps of the circle by Quas ([15,13,14],
all 1996) maps with respectively more than one absolutely continuous invariant
measure and a non-weak-mixing invariant measure were constructed; and it was
shown that a dense set of C! expanding maps have a unique absolutely con-
tinuous invariant probability with unbounded density. In [2] (1998), Bruin and
Hawkins constructed an example of an expanding C! map of the circle with no
o-finite absolutely continuous invariant measure (finite or infinite). In a more
recent paper of Quas ([16], 1999) it was shown that a generic C! expanding
map of the circle has no absolutely continuous invariant probability measure.
Our main result shows that despite this result, there is (generically) a singular
invariant probability from which properties of Lebesgue almost every orbit can
be obtained.

Theorem 1. For a generic T € £, there is a unique equilibrium measure
for the potential —log T'. This T'- invariant probability measure has the following
properties:

1. For a set of points S of Lebesgue measure 1, for all f € C°(S1), the averages
1/nSp—0 f(T*z) converge to [ fdur for allx € 8.

2. The measure ur s singular with respect to Lebesgue measure.

3. For each non-empty open set U, pur(U) > 0.

In other words, a generic T € E£! possesses a fully supported singular Sinai-
Ruelle-Bowen measure whose statistical basin of attraction has Lebesgue mea-
sure 1.

A natural question is whether the result from [16] may be extended from
probability measures to o-finite measures; i.e., is it true that generically in £*,
there is no absolutely continuous invariant measure? At the moment, we do not
know the answer, but we include the following trio of results that give some
information about this situation.

Silva [19] introduced a notion of recurrence for a measure with respect to a
non-singular transformation. To define this in our setting, let h be the density of
Ao T~1 with respect to Lebesgue measure (h = dX\oT~1/d)), and set wy,(z) =
H;Zl 7= Then w, >0 on S' and [w,d\ =1,n=1,2,.... Lebesgue measure
is recurrent for T if the quantity > ., w,(x) is infinite for M-a.e. z € S1. (We
caution the reader that this notion of recurrence is much stronger than Poincaré
recurrence. For example there exist C? expanding maps of S* for which Lebesgue
measure is not recurrent in this sense.)

This recurrence property is relevant to the question of the existence of invari-
ant measures as follows. If one can establish that a measure is recurrent for a
non-invertible map, then existence or non-existence of absolutely continuous, o-
finite invariant measures for the map can be decided using a version of Krieger’s
ratio set (see Hawkins and Silva [6] for a proof of this result).

Theorem 2. For a generic subset of £', Lebesque measure is not recurrent.

Recall that a measure p is locally infinite if p(I) = oo for each open interval
I.
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Theorem 3. For a generic T € £', any absolutely continuous invariant measure
is locally infinite.

To describe the next result in this direction, let h,,(z) be the density of AoT' =™
with respect to A: hy () =dAo T~ /d\(x). Set

Sema ={T € EMathy(2) € [a,2a]} < €},

and consider the collection

S=1U N Sene-

e>0neNa>0

If T € S, we say the densities of Ao T™" have no characteristic scale. This
is because for such a T and for any € > 0, there exists an n such that for each
a > 0, the set {x: h,(z) € [a,2a]} has Lebesgue measure less than e.

It is known that there exist mappings with an infinite invariant measure so
that the above densities h,, when appropriately rescaled, converge in measure
to the invariant density (see Aaronson’s book [1] for examples). One can see that
when T belongs to the class S defined above, this is impossible. Therefore, when
T belongs to S, a natural way of producing an absolutely continuous invariant
measure is lost.

Theorem 4. The set S constructed above is a dense G5 subset of E1.

In the next section we give some notation and definitions, in Sect. 3 we state
and prove some preliminary lemmas, in Sect. 4 we prove Theorems 1, 2, 3, and
in Sect. 5 we prove Theorem 4.

We would like to thank Miaohua Jiang for helpful conversations and Em-
manuel Lesigne for showing us an example giving insight into the phenomenon
of no characteristic scale.

2. Notation & Definitions

We work on S = [0,1]/ ~, where ~ identifies 0 with 1. The Borel sigma-
algebra is denoted by B. The space of Borel measures on S' is denoted by 91,
with 9t! denoting the subspace of probabilities. If T € £, 9L, denotes the
set of Borel probability measures that are invariant under 7. For v € L., the
measure-theoretic entropy of T' with respect to v is denoted by h,(T), or h, if
T is understood. For a continuous function f : S' — R, the pressure of f (with
respect to T') is given by

Pr(f) = sup {h(T) + [ fdv}.

An equilibrium state for f is an element p € 9L satisfying Pr(f) = h,+ [ f du.

Recall that a Borel measure pu is called a Sinai-Ruelle-Bowen measure for
T € £ if there exists a subset B of S' of positive Lebesgue measure such that
for each f € CY(S1) and all z € B,

n—1
1

P> SR~ [ fdn

k=0
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The set B is called the statistical basin of attraction of .

For each T € £, T" is a continuous function whose absolute value is strictly
larger than 1. Since S! is connected, £' decomposes into two disjoint open sub-
sets, the first consisting of those T’s for which 7V > 1, the other, those T’s
for which 77 < —1. Each of these sets has countably many open components,
corresponding to the maps of degree k (k = 2,3, ..., and k = —2, -3, ..., respec-
tively). In some of our arguments, we want to prove, say, that a subset of £*
with a certain property is generic. We proceed by supposing that 7/ > 1 and the
degree is a fixed but arbitrary integer £ > 1, and proving that within the cor-
responding component, the set is generic. Since a practically identical argument
(with only the obvious minor modifications) will hold for 7" < —1 and k < —2,
and the components partition £!, the general result will follow.

With these conventions in place we set ¥ =¥ = —log(T") < 0.

We define the Perron-Frobenius operator, or transfer operator Lp by

trf@ = 3 i

Ty=z

For now we do not specify the space containing f or L7 f. These will depend
upon the context in which they are being used, and will be designated as needed
in the development.

We repeatedly use the fact (proved in [9]) that for each T € £2, there exists
a unique, absolutely continuous p € M., whose density is strictly positive and
continuous.

3. Preliminary Lemmas

We state and prove some lemmas that lead to the main results.

Following [7], for each natural number k > 2, let By : S' — S! denote the
linear expanding map Ey(z) = kz mod 1. For T € &' of degree k, it is well-
known that FEj is conjugate to T'; that is, there exists a homeomorphism ~ of
S! such that T o~ = v o Ej. In fact, in general there is more than one such
homeomorphism (although only finitely many). For a degree k map T € £, we
shall write Conj(T') for the set of conjugacies between Ej and T.

For our purposes, it will be necessary to study and control the dependence
of the conjugacy on the map 7. To do this, we shall exploit the construction
in [7] of such a conjugacy. Specifically, in their construction, they start with a
point p that is fixed by T" and use the Markov partition of the circle given by
the intervals whose endpoints are the points of T-!{p}. For our modification,
we need to control the choice of p.

For z € S, set U, = {T € &' : T(z) # z}. Note that U, is a dense open
subset of £1.

Lemma 1. For each z € S', there is a continuous map
II, : U, — Homeo(S") such that IT,(T) € Conj(T) for each T.

In particular, given T € E' of degree k, there is a neighborhood U of T on
which there is a continuous choice of conjugacies to the map Ej.
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Proof. The proof is essentially that given in the proof of Theorem 2.4.6 in [7].
For a map T € U,, we choose the fixed point p of T" that is the first fixed point
on the circle ‘to the right’ of z. That is, considering the circle to be the set [0, 1),
p is chosen to be the first fixed point to the right of z or if there is none, the first
fixed point to the right of 0. This choice of fixed point determines a conjugacy
IT,(T). The fixed point may be seen to depend continuously on the map, and so
do its preimages. This allows one to show the required continuity of IT,.

To show that in a neighborhood of any given map T € £!, there is a continuous
family of conjugacies, we argue as follows: Let z be any point not fixed by T,
then U, is the required neighborhood and I7,(S) is the continuous choice of
conjugacy for S € U,.

Note that if v € Conj(T) and f € C°(S'), then Pg, (f o~) = Pr(f). In-
deed, v induces a bijection between ﬁﬂ};k and ML by v — v o~y~l Then
Jfondv = [fdvo~y!, and since v is a measure-theoretic isomorphism,
hy(Ey) = hyoy-1(T). The pressure equality follows.

Lemma 2. For all T € &', Pr(¥r) = 0.

Proof. If T € &2, this is well-known as the Ruelle-Ledrappier-Young entropy
formula (see [12]). Given a degree k map T € £, by Lemma 1, we may find a
neighborhood V' of T and a choice of conjugacies g for all S € V so that the
map S +— 7g is continuous on V. With these choices, if {T;} C £? and T; — T in
&Y, then ¥z, oy, — Wy o~yr in CY(S1). Since pressure is continuous on C°(S1),
and 0 = Pr,(¥r,) = Pg, (¥, o yr,) for all ¢, it follows by taking limits that
0 = PEk (WT o ’yT) = PT(WT)

Corollary 1. If u is any equilibrium state for Wr, then p is non-atomic.

Proof. Let u be an ergodic equilibrium state; then it must be either purely
atomic, or continuous. If it is purely atomic, then h,(T) = 0 and [ ¥rdp < 0,
contradicting P(¥r) = 0. The result follows since the equilibrium states form a
convex set, of which the extreme points are the ergodic states.

Lemma 3. The set of T € £' for which Ur has a unique equilibrium state is
generic.

The lemma is a version of the Gibbs Phase Rule for the class of expanding
maps of the circle. The original Gibbs Phase Rule for the case of a shift was
proved by Ruelle [18] and Gallavotti and Miracle-Sole [3].

Proof. For any expansive T, there is at least one equilibrium state for each
h € C°(S') (see Walters [20], p. 224). Since expanding maps are expansive,
every Wp possesses at least one equilibrium state.

To prove uniqueness for a dense G5, we work with equilibrium states for the
map Ej: St — St given by Ey(x) = kx mod 1.

We now show that the set B of potentials for which there is a unique FEj-
equilibrium state forms a G5 set. Theorems 4.3.3 and 4.3.5 of [8] characterize
those potentials with unique equilibrium states as the set of f such that for all
g € C°SY), limy_o(Pg, (f + tg) — Pg,(f))/t exists. For fixed f and g, define
H(t) = (Pg,(f+tg)—Pg,(f))/t. Since the map ¢t — Pg, (f+tg) is convex, H is an
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increasing function. The above limit then exists if and only if lim inf, g+ H(¢) —
H(—t) = 0. Hence f has a unique equilibrium state if and only if

liminf LB +9) + Pr, (f — tg) — 2P, (f)

— 0/ql
m in ; =0 forallge C°(S"). (1)

To show that these f form a Gy set, we need to show that it is sufficient to
calculate the liminf for a collection of g belonging only to a countable set. To

this end, let (g, )nen be a countable collection of continuous functions that is
dense in CY(S'). We note that

| (P, (f +tg) + P, (f — tg) — 2Pp, (f)) /t -
(Pp, (f +tgn) + P, (f = tgn) — 2P, (f)) /t| < 2llg = gnll-
Hence (1) holds if and only if

litmggf(PEk(f +tgn) + Pg, (f —tgn) — 2Pg, (f))/t =0 for all n € N.
The set of B of functions f satisfying this condition may be written as

NN U {f (Pp,(f +tgn) + Pr, (f — tgn) — 2P, (£))/t] < 1/p},

neN peN meN te(O 1
which is easily seen to be a G subset of C°.

From Lemma 1, there is a continuous choice of conjugacies for maps in Uy.
For a map T € Uy, we shall call this choice of conjugacy vyr. Letting @ be the
map Uy — C°(S?) defined by &(T) = Wz o yr, we see that @ is continuous. It
follows that @~1(B) is a G5 subset of Uy. We now have T' € ¢~1(B) if and only
if U o ypr has a unique Ej-equilibrium state. Since there is a bijection between
E-equilibrium states for Y7 o yp and T-equilibrium states for ¥, we see that
T € &~1(B) if and only if ¥ has a unique T-equilibrium state.

We have established that the set S C £' consisting of those 7' for which ¥y
has a unique equilibrium state, contains a Gs subset of Upy. Since £2 N Uy is a
dense subset of Uy that is contained in S, it follows that S contains a dense G
subset of Uj. Since Uy is a dense open subset of £!, we conclude that S contains
a dense G subset of EL.

Set A = {T € £ : there exists a unique equilibrium state for ¥r}.

Lemma 4. Equip A with the (relative) C*-topology, and IM* with the (relative)
weak* -topology. Then M : A — I, given by M(T) = ur, is continuous.

Proof. Suppose Ty € A is of degree k, T; € A and T; — T in C'. We shall show
that pr, is the limit of the pr,. As in Lemma 1, fix a neighborhood V' of Tj such
that there is a continuous family of conjugacies vy for T € V.

Suppose that p is any limit point of the pr,. We shall show that u = pr,,
and this is sufficient, by weak*-sequential compactness, to show that the original
sequence must converge to pr,.

Replacing the original sequence with a subsequence if necessary, we suppose
that pur, — w. Set v; = pr, oyr, and v = poyp,. Then v and the v; are all
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Ej,—invariant measures on S'. By continuity of the family of conjugacies, we see
that v; — v in the weak*-topology. For each ¢, since v; is an Ey—equilibrium
state for ¥, o yr, which by Lemma 2 has pressure 0, we have

0= hl,i + /WTZ o T; dl/7

Since the entropy map is upper semi-continuous, limsup h,,, < h,,. Since T; — Tj
in C! and v; — v we have

0 =limsup {hy, + [ W1, o y7, dv; }
S hl/ + IWTO OrYTodV S 0)

where the last inequality is true because the pressure is 0. Thus, all of the
inequalities are equalities and v is an equilibrium state for ¥z, o yz,, so that p
is an equilibrium state for ¥r,. Since T € A, there is only one such state. Thus
any limit point of the ur, is pr,, the unique equilibrium state for ¥, , and the
lemma is proved.

Lemma 5. A = {T € A : pris fully supported} is a generic subset of A (and
hence of E).

Proof. From Corollary 1, for each T' € A, up must be non-atomic. By Lemma 4,
for a non-empty open interval I C S*, the map T + ur(I) is continuous on A.
Choose any collection {I;} of non-empty open intervals that forms a countable
basis for the topology of S*. Then A = N AT € A : pr(I;) > 0}, a G5 that
contains £2 (and is therefore dense).

4. Proofs of Theorems 1, 2, and 3

Proof (Proof of Theorem 1). Lemma 3 establishes that for T belonging to the
residual set A, there is a unique equilibrium state pr for the potential —logT”.

To prove Statement 1, we use a result of Keller. Any fixed T € &', together
with the Markov partition for T', forms what Keller [8] calls a continuous e~¥ -
conformal fibred system. He shows ([8], Theorem 6.1.8)* that in such a system,
for A-almost every z, the weak*-limit points of the averages %(535 +. o+ 0re-1y)
are contained in the set of measures satisfying h, + [(—logT”)dp > 0. Since
Pr(—logT’) = 0, these measures are precisely the equilibrium states. Hence for
T € A, for M\-almost every z, the sequence %(éw + ...+ dpr-1,) has at most one
weak-* limit point, namely ur. By weak-x sequential compactness, the entire
sequence must converge to pr.

To see that ppr must be singular (with respect to A), we first note that each
T € &' is a non-singular transformation (with respect to \). Thus, if ur =
Ihsi + Mac 18 the decomposition of pr into singular and absolutely continuous
components, the map ppr — pr o T~1 preserves jig; and pge, so that pig. is
a finite, absolutely continuous T- invariant measure. But we have seen that a

1 In fact the quoted theorem, as stated in the book, contains a mistake, although an irrelevant
one for the present setting. The interested reader may go to http://www.mi.uni-erlangen/~
keller /publications/equibook.html, where the needed correction to the proof of the theorem is
given.
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generic T' € ' possesses no such invariant measure ([16]); that is, pq. = 0. This
proves Statement 2.

Lemma 5 implies that generically, pr is fully supported, showing Statement
3

This completes the proof of Theorem 1.

Before proving Theorem 2, we state and prove a lemma. There is a reference
to a similar lemma in [2] although we have been unable to find the proof in the
papers cited there. Recall that if T € £2, up is an absolutely continuous proba-
bility measure with strictly positive Radon-Nikodym derivative p = dur/dA.

Lemma 6. Suppose T € £2. Then [log Lor1ldur > 0, with equality if and only
if p is T~ B-measurable.

Proof. Fix T € £2. In this case, the equilibrium state p is absolutely continuous.
We write p for the density of ur with respect to Lebesgue measure.
Let P denote the Perron-Frobenius operator for T' with respect to ur € 9.

Then P(f) :%. In particular L(1) = pP(%). Thus,

/logET(Il) dpr = [logpdur + [log P(1/p) dur

= — [log(1/p) dur + [log P(1/p) dur
= — [P(log(1/p)) dur + [log P(1/p) dpur

where the last equality follows because P preserves pp-integrals. It is well-known
that P(-) o T' = E,,.(-|T~'B). Since T preserves ur, we may continue the above
calculations as follows:

— [ P(log(1/p)) dur + [log P(1/p) dur
= — [ P(log(1/p)) o Tdur + [log P(1/p) o T dpr
= — [ Ey, (log(1/p)|T~'B) dur + [log (., (1/p|T'B)) dpr > 0,

where the last inequality follows from Jensen’s inequality, from which it also fol-
lows that equality holds in the last step if and only if 1og(%) is T~ B-measurable,
which holds if and only if p is T~!B-measurable. This concludes the proof of
Lemma 6.

Proof (Proof of Theorem 2). Since logw,, () = — Z?:1 log L710T (x), by Theo-
rem 1 we have that %logwn(x) — — [log Lyrldur for \-ae. x € Stand T € A.
If [log LrLldur > 0, then for large n, w,(z) = O(a™) for M-a.e. z, where a is
any number such that — [log L71 dur < loga < 0. That is, the sequence wy, ()
is asymptotically comparable to a geometric sequence, and hence summable (for
A-a.e. x), so that Lebesgue measure is not recurrent for T.

First we observe that {1 : [log LrL1dur > 0} is open in A. To see this, if
T € A satisfies flog Lrldur > 0 and S € A is Cl-close to T, then Lg1 is
CO-close to L71. By Lemma 4, 15 is weak*-close to jir, proving the observation.

Thus by Lemma 6, it is sufficient to show that for maps 7' belonging to a
dense subset of £2 (and hence a dense subset of £!), the invariant density pr is
not T~ B-measurable.
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Choose T € £? for which pr is T~ B-measurable. We shall show that there
is an S € £2 arbitrarily close to T (in the C! topology) for which pg is not
S~1B-measurable.

Since pr is T~!B-measurable, Tx = Ty implies that p(z) = p(y). Given a
Markov partition for T, we call the atoms of the partition the branches of T. We
shall construct a C2-homeomorphism 7 : S — S in such a way that

1. 7 is arbitrarily (C!-) close to the identity, and
2. The map 7' = mo T o w~! has the property that p; = p is not T~ 'B-
measurable.

Establishing Items 1 and 2 will finish the proof.

Suppose for the moment that 7 is any C2-homeomorphism of the circle, and

T(i) = moTor 1 (Z). Then p(F) = L_ll?) , so that j will be T~'B-measurable

/(7
precisely when T'(Z) = T(§) implies that p(Z) = p(§). Suppose & # § and
T(&) = T(j). Then, since p is T~'B-measurable, p(7~§) = p(7~'Z). Hence
p(%) will differ from p(3) precisely when 7/(7=1%) # 7' (7~ 17).

Hence, if 7 is chosen so that 7’ is not T~ !B-measurable, these terms will be
different. Now we specify that 7 is a C?-homeomorphism of S* with the property
that 7 = 1 on one branch of T', and different from 1, yet arbitrarily close to 1,
on the other branches. This completes the proof of Theorem 2.

Proof (Proof of Theorem 3). Suppose that T satisfies the conditions of Theorem
1. We show that in this case, any absolutely continuous invariant measure for T’
is locally infinite. Suppose v is an absolutely continuous invariant measure for 7.
Then v(S') = oo. Suppose, for the purpose of obtaining a contradiction, that I is
any open interval with v(I) < co. Let f be any non-negative continuous function
supported on I that is positive on some subinterval of I. Clearly f € L'(v). By
Birkhoff’s ergodic theorem for an infinite invariant measure, for v-almost every
z, L(f(z) + ...+ f(IT" 'z)) — 0. This holds in particular on a set of positive
Lebesgue measure. On the other hand, since pp is a Sinai-Ruelle-Bowen measure,
we have for A-almost every z, L(f(z)+ ...+ f(T" 'z)) — [ fdur. Since f is
strictly positive on a subinterval of I and pr is fully supported, this quantity is

strictly positive. This contradiction completes the proof of the theorem.

5. No Characteristic Scale
In this section we prove that if
Sena={T € EMa: L"1(z) € [a,2a]} < €},

and

s=1U [ Sena

e>0neNa>0

then S is a dense G subset of EL.
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Proof (Proof of Theorem /). We can replace the uncountable intersections in the
definition of S by countable intersections over the rationals without changing the
set. Define

1 L01(x) }
F (T)=Xx XS (z,y): = < =L <2%.
0 =2 {203

Clearly, F,,(T) < €? implies that for all positive a, the measure of the set of
points with £21(z) € [a,2a] is less than e. Letting R.,, = {T: F,,(T) < €2}, it
is clear that R, C (1,50 Se,n,a- Conversely, for fixed z, let ay = L31(x)/2 and
ag =2a1. I T € (50 Se2/2,n,q- then for each z, by considering U7_, {y: L}1(y) €
[ai,2a;]} we have

a>0

My: £31(y) € [£31(2)/2,2051(2)]} < €.

By Fubini’s theorem, we see that F,(T) < €2 so that T' € R, ,. It follows that

S=A U N Srn=NU Ren

e>0neN a>0 e>0neN

We shall show that F,,: €' — R is an upper semi-continuous map so that S is
a Gy set. To prove this, suppose that F,,(T) < «. We have

A XA ({(amy): L ¢ [%,2]}) -
limg oo A X A ({(x,y) i:igzg €lz-%2+ %]}) :

One can therefore find a k such that A x A({(z,y): Lh1(x)/L31(y) € [1/2 —
1/k,2 + 1/k]}) < a. Since the map @: 1 — CO(S! x S) given by &(T)(x,y) =
L£21(z)/L31(y) is continuous (with the C! and C%-topologies on the respective
spaces), there exists a neighborhood U of T such that if 7 € U, then ||(T) —
@(T)H < 1/k. Tt follows that if T € U, then Fn(T) < «, proving the upper
semi-continuity of F,.

It then remains to demonstrate the density of S. To do this, we shall es-
tablish that for any € > 0, any Ty € £? and any neighborhood U of T (in
the C! topology), there is a T € U and an n € N such that for each a,
Maz: L1 (z) € [a,2a]} < e. This will be accomplished by conjugating Ty us-
ing a homeomorphism constructed via a cocycle.

We shall therefore assume € > 0, Ty € £2 and § > 0 are given. Let > 0 be
such that (14 n)/(1 —n) <1+ 0. Then we also have (1 —n)/(1+n) >1—2¢.

Since Tj belongs to £2, Ty preserves an absolutely continuous invariant prob-
ability measure, p, with a strictly positive continuous density, p. Let m be such
that % < p(x) < m for all x. Let Tp: X — X be a natural extension of
Tp: S' — S! preserving the measure fi. From [21], i is Bernoulli, so we may
find a non-trivial independent partition P = {Ag, A1} of X. Write p for f(Ap)
and g for fi(A;). We then define a function G on X as follows:

. _J1l+ngifze A
Go(w){l—npifxeAl.
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Let n > 0 be an integer. We then form the multiplicative cocycle G‘é") defined
by
G (z) = Go(2)Go(Tox) . .. Go(Ty '),
The function G{"takes on the value vy = (1 + ng)¥(1 — np)"~* on a set of
measure n) kgn—k
)P4 .
Let K € N be the least integer so that
K
1
(51) > o,
L—mnp

1+nq
1-np

Since vgt1/vE = ( ), for each a there are at most K values taken by G(()")

in [a, 2m?2a).
We then have the estimate

- 2 W)t
N{xGO (.Z‘) S [Cl,2m CL}} < K{k:vkg[lfé(mza]} <k’> pa ’

Since for the values of k in the range over which the maximum is taken have
the property that vi > a, we see

_ ~(n n n—
CL,LL{I‘Z GE) )(I) € [a7 2m2a]} < Kmax{k:vke[anQa]} <I€> Ukpkq K

n —
= K maxo<y<n (k) (p +npa)*(q = mpa)" ™ < =,

where C' is a constant that depends only on the values of p and q.

Now fix an n so that aﬂ({x:@én) (x) € [a,2m?a]}) < €/4 for all a. It will
turn out that an inequality of this type will be what is needed for the conjugate

map to have the desired property. At this point, the function (_?én)is defined not
on the circle, but on the natural extension space. We shall apply a conditional
expectation and approximation argument to G'(()")to obtain a function on the
circle as needed.

Let @ be a Markov partition for T consisting of intervals. There exists a k
such that \/]:;é T5,°Q consists of intervals of length less than 0. Denote these
intervals by I; and write I; for _ﬂ_ll j, where m denotes the natural projection
from the natural extension (X, Tp, 1) to (S*, Ty, ).

Write p = por and define the natural extension of A, A by A(4) = [,(1/p) dfi.

We then calculate

/ GO o Ti 4 = /L’ LG o T i
Since T} is mixing, we see that
lim [ G oTidh= [*Ldn [ G d

1—00 I; p
J
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where we used the fact that P is an independent partition to get the second
equality.
We recall that n is chosen so that

i({z: G{(x) € [a,2m2a]}) < ¢/(4a), (2)

for each a > 0. We now choose an iy such that for ¢ > ig,

/ G o T dh — MI;)| < SA(I), (3)
I
for each j.

We now show that similar inequalities persist for functions G(™) if G is chosen
to be an appropriate perturbation of Gj.

It is useful to note that because the values taken by G’(()") are in the range
[(1—np)™, (1 4+ ng)™], the inequality (2) holds trivially for a outside this range.

We define N to be a subset of L!(i1) as follows and equip it with the L!
subspace topology:

N={G:1-np<G<1+ng |G- Gol: <}

Since composition with T is an isometry on L'(fi), and because N consists of
bounded functions, the map from N to L' given by G — G is continuous.
Clearly, for G' € N, the values taken by G are in the range [(1—np)™, (1+n1q)"].
By choosing ¢ appropriately small, we can ensure that |G —C_?én)| < (1—mp)™/2
on a set of measure at least 1 — ¢/(8(1 + ng)™). For a given a in the range
[(1 —np)™/2m?, (14 nq)"], let a1 = a/2 and ap = 2a. Then

{z: G (x) € [a,2m?a]} C
{z: Gén) (z) € [a1,2m?a;]} U {z: C_?(()n)(x) € [a,2m?a]}
U{a: G\ (z) € [as, 2m2ay)} U {a: |G (2) — G™ (2)| > (1 — np)"/2}.

We shall denote the four sets on the right-hand side by A;, A, Az and
Ay respectively. By our previous estimates on Gg")we have fi(A1) < €/(2a),
i(Asz) < €/(4a) and [i(As) < €/(4az) < €/(8a). We chose ( above to ensure that
f(Ag) < €/(8(14+nq)") < €/(8a), so that

a({z: G™(z) € [a,2m3a]}) < ¢/a

for each a in the range [(1 — np)™/(2m?), (1 + nq)"]. As before, the inequality
holds trivially for a outside this range, so we have established that for sufficiently
small ¢, a similar inequality to (2) persists for all a and functions G if G is
chosen from N.

Since

/ﬂ@@oﬁ_@mui%ﬂ < [IG™ o Ti — G o Ti| d
jj

<m [|G" o Tg — G o T§| df,
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we see that provided ( is sufficiently small, (3) holds for G € N.
We have therefore shown that there exists a ¢ > 0 such that for G € N,

i({z: G (x) € [a,2m?a]}) < €/a for each a, and (4)
‘ffj GO () o Td dX — MI;)| < $A(I;) for each j, and i > io. (5)

We note that since Tj: X — X is a natural extension of Ty:S' — S1,
the o-algebras Tim1Bg: increase to Bx. It follows that E;(Go|Timr 'Bst1)
converges to Gy in L'. By the monotonicity of conditional expectation, these
functions also satisfy the inequality 1 — np < Ez(Go | Tim 'Bs1) < 1+ nq. It
follows that for sufficiently large i > ig, (ip as above), (4) and (5) are satis-
fied with E;(Go |Tin~'Bg1) in place of G . Fix some such i and write Gy for
[EQ(GO | 1187‘('_1;351).

Now G o T} = Ez(Go o Tg|m~'Bs,) so we see that G o Tji may be written
as g1 o for some B-measurable function g; on the circle. Since C°(S?) is dense
in L1(SY, B, i), it follows that there exists a continuous function g such that
lg1 — gall1 is arbitrarily small. Since |G} — go o7 o Ty |1 = [|g1 — gall1, we see
that go may be chosen so that go o7 o To_i lies in N.

Equations (4) and (5) now yield

‘ Jy 87 dx A(Ij)‘ < $(I;) for cach j;  and
p({z: g (z) € [a,2m2a]}) < €/a for each a > 0.

n

From the first equation, we see that 1 — g < [ g5 VAN <1+ g, so finally we
rescale g2 (i.e. multiply by a constant, that will, by our above estimates, be very
close to 1) to obtain a function g that satisfies fg(”) d\ = 1. We then have the
inequalities

‘ Jy, 9™ dx = X(I)| < 6A(Z;) for each j; and 6)
p({x: g™ (z) € [a,2m3a]}) < 2¢/a for each a > 0. (7)

Set 0(z) = [ g™ (t)dt and let T(z) = 6 0 Ty 0§~ *(z). Then from the above,
and since each interval I; has length less than §, it may be verified that [(x) —
x| < 20, and sup,eg [T(z) — To(x)| < (C + 4)d, where C' = maxyeg, |T5(x)|.
Hence this quantity can be made arbitrarily small by choosing ¢ sufficiently
small. Also, differentiating, we see

1,00 (To(6 '
T'(x) = T30 e) gty
_ (") (Ty(0~ 1
= TH(6~ ) st
_ T 1z
— Té(@ IQC) g(g(ze(*lm) ) .
Since g¢ is uniformly close to 1 and T is uniformly continuous, we see that
sup,cg1 |T"(z) — Tj(z)| can also be made arbitrarily small by controlling ¢ and
7n. This shows that T can be chosen arbitrarily close to Ty in the C! norm.
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It remains to verify that T has the property that there exists an n such
that for each a, A{z: L"1(z) € [a,2a]} < e. Since T is conjugate to Tp, there
is also a conjugacy relation between their Perron-Frobenius operators given by
L1 =LooLry, oLy ", where Lof(z) = f(0~1(x))/0' (0 x).

Since Tp is a C? expanding map, we have that L7, 1 converges uniformly to
p. It follows that L1 converges uniformly to Lop(x) = p(0~1z)/0'(§71x). We
then estimate

A p(0~'z)

(1) © [a,2a]}) < AM{#: orzy € [35,2mal})

= M{z: g™ (0712) € [575, 21D

2ma’ a

But we see that {z:¢™ (0~ 'z) ¢ [271“17%]} = 0{y: 9" (y) € [, 2]}).
Using this, we get

p(0~ )
IR

€ [a,2a]}) < Ao b({y:9"(y) € [ga- 21})

_ (n)
f{y:gwy)e[ﬁ,%]}g (y) dA

< 2A{y: 9" () € [3ma: 21})
< 4Am3e,

where we have used (7) with a replaced by ﬁ This completes the proof.

6. Conclusion

Few methods are known for detecting the presence of invariant measures for gen-
eral non-invertible mappings. With regard to the specific question of whether a
generic C! expanding map has a o-finite absolutely continuous invariant mea-
sure, the known methods to try would include inducing, rescaling densities of
finite measures and taking a limit, or establishing the recurrence property de-
fined earlier. Our results may be seen as establishing that the known methods
will fail. Here is why.

Since we show (Theorem 3) that any infinite invariant measure is locally
infinite, any set of finite measure to perform an inducing construction would
necessarily be irregular. It seems unlikely that such a set could be constructed
in the uniform way required to prove existence of a o-finite measure for a generic
set of maps in £1.

To exploit rescaling, one typically attempts to rescale the sequence of densities
of AoT™™ in order to obtain a limit. Theorem 4 suggests that such an approach
would probably not work.

If one can establish that a measure is recurrent (in the sense defined in the
introduction) for a non-invertible map, then existence or non-existence of abso-
lutely continuous, o-finite invariant measures for the map can be decided using
a version of Krieger’s ratio set (see Hawkins and Silva [6] for a proof of this
result). Theorem 2 indicates that this approach will fail in the context of generic
C! expanding maps.
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