MAPPINGS OF GROUP SHIFTS
ANTHONY N. QUAS AND PAUL B. TROW

ABSTRACT. A group shift is a proper closed shift-invariant subgroup of lels
where G is a finite group. We consider a class of group shifts in which G is
a finite field and show that mixing is a necessary and sufficient condition on
such a group shift for all codes from it into another group shift to be affine
and all codes from another group shift into it to be affine. As a corollary,
it will follow for G = Z, that two mixing group shifts are topologically
conjugate if and only if they are equal.

1. INTRODUCTION

We consider a class of higher-dimensional shifts of finite type which are groups.
It is known that in general higher-dimensional shifts of finite type are badly
behaved (see for example [13] where it is shown that there is no algorithm to
decide whether a given shift of finite type is empty or not). Very little is known
about the class of all higher-dimensional shifts of finite type. For this reason, it
is of interest to find classes of higher-dimensional shifts for which one can say
something, but with enough generality to include a good range of properties. The
group shifts which we consider do not suffer from the undecidability problems
mentioned earlier (see [6] for an early paper in which properties of algebraic shifts
were considered) and exhibit highly interesting behavior with regard to mixing
properties as was pointed out by Ledrappier in [9].

In [7], Kitchens and Schmidt introduced the class of Markov subgroups. These
are essentially what we are calling Z,-group shifts. They define a Markov sub-

group to be a proper closed shift-invariant subgroup of Zgzz (where the operation
is pointwise addition modulo 2). These are generalizations of the well-known

three-dot system introduced by Ledrappier [9] of all points in ZQZ2 satisfying
&+ &it1,j + & j+1 = 0 for each (4, 7) € 72.

In [7], the algebraic properties of Z,-group shifts are studied using duality
results and are related to their dynamical properties. A key result is that a Z,-
group shift is necessarily of finite type and is the intersection of finitely many
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group shifts of a simple form. We will offer alternative proofs of some of the basic
facts from [7] which are more dynamical in spirit.

Codes (continuous, shift-commuting mappings) between symbolic dynamical
systems have been studied for a number of reasons. First, they are used to clas-
sify systems up to relations such as topological conjugacy or almost topological
conjugacy. Second, they are themselves interesting examples of dynamical sys-
tems. Lastly, they have important applications to information theory. (See [10]
for further references on symbolic dynamical systems and codes). A surjective
code is also known in the literature as a factor map.

In this paper, we consider codes between K-group shifts and show that if ei-
ther the domain or the range of a code is mixing, the code is necessarily affine
(i.e. a group homomorphism plus a constant) - see Theorems 3.2 and 3.3. This
is in sharp contrast to the general case for codes between shifts of finite type,
which can be far from affine. The first result of this type was in [7] (Observa-
tion 4.1), where it was shown that if 6 is a factor map from a Markov subgroup
to the Ledrappier three-dot system with certain ergodicity properties, then 0 is
necessarily a group homomorphism. Kitchens and Schmidt then made a pair of
conjectures, which essentially stated that surjective measurable shift-commuting
mappings of group shifts are affine. In a recent paper [8], they proved the conjec-
ture in what was called the irreducible case, where the mapping was also assumed
to be bijective. The results in this paper are essentially a complete answer to the
continuous versions (i.e. where the maps are assumed to be continuous) of these
conjectures, where in addition no requirements about surjectiveness are made.
Our results also generalize a result of Coven, Hedlund and Rhodes ([2]) concern-
ing the ‘commuting block maps problem’ where they show that the codes of 7"
commuting with a given affine map are themselves affine (see Theorem 3.8).

It follows from Theorem 3.2 that the image under a code of a mixing group
shift in ZIZ,2 (p a prime) must either be a subgroup of the domain or a coset
of such a subgroup. If the map is a conjugacy, then the range must equal the
domain (Corollary 3.7).

We view the fact that codes are affine as a rigidity property: where a weak
condition forces a much stronger condition to hold. Other examples of rigidity
properties occur in [12] and [8]. It appears that rigidity is a phenomenon which
occurs relatively commonly in Z¢ actions, but less often in Z actions. Certainly,
although our examples have some properties in common with one-dimensional
full shifts (see Theorem 2.2), there is no analog of our results for one-dimensional
full shifts.

We would like to thank the referee for a very careful reading and many useful
suggestions and Paul Balister for helpful conversations.

2. BACKGROUND

In this section, we summarize some basic results about symbolic dynamics and
group shifts. Many of the results in this section are versions or minor extensions
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of results contained in [7] but the proofs are mostly new and more dynamical.
We begin with a finite set of symbols K. In this paper, we will assume that K is
a finite field (this assumption is not generally made in symbolic dynamics). The
case K = Z,, the integers modulo a prime p is of particular interest. We form
the set K Zz, consisting of all two dimensional arrays of symbols from K, indexed
by Z2. If € € K% and S C 72, we let £ denote the restriction of ¢ to S. We
call £g a configuration on S.

Let A, denote the set of points (i,5) € Z? such that —n < i,j < n. We
choose a metric on K% in which two points § and 7 are “close” if x, = 4,
for large n (there are many possibilities for such a metric and any will do). In
this metric K%° is a compact space which is homeomorphic to a Cantor set. For
any v € Z?, we define the shift by v to be the map o, : K2 5 K7’ defined by
(05(€))a = €atv, for all a € Z2. Clearly o, is a homeomorphism. This defines a
7Z2-action on K Zz, called the full shift. A subshift is a non-empty closed subset
of K%° which is invariant under all shift maps. Throughout this paper, we will
refer to continuous shift-commuting mappings between subshifts as codes.

Given a finite set A C Z? and a map b from K* to another symbol set T, b
may be used to define a map Fj from KZ* to T% by

Fy(8)i,5 = b(&(i,5)+n)-

The map Fy is clearly a code. If X is a subshift of K Zz, then the image of Fy,
2
restricted to X, is a subshift of TZ.

Definition 1. A map F': SZ° - T s called a block map if there exists a A
such that F is equal to Fy, for some b: S* — T.

By a well-known generalization of a theorem of Curtis, Hedlund and Lyndon,
every code between any two subshifts is a block map ([4]).

Definition 2. A group shift is a proper closed shift-invariant subgroup of e
where G is a finite group.

We will restrict to the special case where G is in fact a finite field.

Definition 3. For a finite field K, a K-group shift is a proper closed shift-
2
invariant subgroup of K%~ (considered as an additive group) which is closed under

scalar multiplication by elements of K. We will write p for the characteristic of
K.

We remark that the above should probably be called a K-module shift, but we
chose the algebraically less daunting K-group shift. In this paper, we will almost
exclusively be considering the case of K-group shifts and not more general group
shifts.

We next show that K2 has a natural structure as a module over the ring £
of Laurent polynomials in two variables over K. Any Laurent polynomial f € £
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can be written as
f= Z a;,; XY,
(’i,j)EPf

where P is a finite subset of Z?, called the shape of f. For £ € K 22, we define
(f&ij= > aribitkjti-

(k:,l)EPf

It is easy to check that with this definition of multiplication, K Z* is a mod-
ule over £. We verify only the property that f(g€) = (fg){. Write f =
2 (ijyep; XY and g =37 e p bij X'Y7. Then

(f(g€)is = Y aki(g8)irk i+

(k,l)GPf

Z a1l Z b, n&itktm,jtitn

(k,l)e Py (m,n)eP,

YD akbmaXFYIX™Y™ | €

(k,l)ePs (m,n)eP,

((f9)€)i,5-

Observe that X¢ = 0(1,0)§ and Y = 0(g,1)§, so that multiplication by X
and Y correspond to applying the horizontal and vertical shifts, respectively.
Consequently, the group shifts are precisely the proper closed submodules of
K2, If M is a submodule of KZ°, then the map M — M defined by ¢ s f€ is a
module homomorphism, and is therefore shift-commuting, since fX = X f and
fY =Y f. We see from the definition that £ — f£ is a block map and it then
follows that f is a code.

We next show that conversely, any K-linear code 6 : K Z* _ K% is given by
multiplication by an element of £. Observe that the map given by £ — (6£)(0,0)
is a continuous linear functional. It follows from uniform continuity that

(08)(0,0) = Z a1k

(k,l)EPf

i,J

for some finite set Py in Z* and constants a;; € K. Let g be the polynomial
Z(k’l) ep; ar X kyl it is easy to see, using the shift-commuting property of 6,
that 0 = g€, so that 0 is given by a polynomial. It follows that any two K-linear
maps KZ° — KZ° commute. If K = Z,, then it is easy to see that any continuous
shift-commuting group homomorphism ZPZZ — szz is actually K-linear, and is
therefore given by a polynomial. Consequently, any two group homomorphisms
commute, for K = Z,. This is no longer true in general if K is a finite extension
of Z,.
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The module structure gives rise immediately to a class of group shifts. For
f € L, define (f)5 ={¢ € KZ%: f¢ = 0}. When it is clear from context, we will
drop the subscript and simply write (f)*. Since gf¢é = 0 for all ¢ € (f)* and
g € L, it follows that (f)~ is the set of points annihilated by the ideal generated
by f, and that (f)* is a submodule of K Z*  Since (f)* is the kernel of f, regarded
as a continuous map on K Zz, it follows that (f)* is closed. In the case where
K = 7, a point ¢ belongs to (f)* if the sum of &i,; over any translation of Py
is zero. Consequently, if we translate Py by any integer vector to obtain a new
finite set Pj/, corresponding to f’ € £, then (f)* = (f')1. It turns out that all
K-group shifts are defined by ideals in £ (not necessarily principal), as we will
prove shortly (Theorem 2.6).

Note that the three-dot system described earlier is just (1+ X +Y)* C 7,7
As was noted in [7] and developed in [1], the group shifts satisfy an interesting
generalization of the ordinary expansiveness property.

Definition 4. A direction v = (m,n) in 7Z* (assumed to have the property that
hef(m,n) = 1) is called an expansive direction for M if there is a t > 0 such
that the configuration of & on Li(v) determines the whole point £, where L;(v) =
{z € Z?: d(z,{2v: z € R}) <t} is a strip of width 2t about the line parallel to v
through 0.

Definition 5. If f is a Laurent polynomial in L, the convex hull of f, C(f)
is defined to be the convexr hull of the set of (i,j) such that f has a non-zero
coefficient of X'Y7.

Definition 6. If f is a Laurent polynomial in L with two or more non-zero
coefficients, f is called collinear if C(f) has empty interior.

A polynomial is therefore collinear if and only if it is of the form X*Y7h where
h is a polynomial in a single monomial X™Y™ (where m and n are assumed to
be coprime). In this case, we call the vector (m,n) the direction of f. It will
turn out that it is the collinear polynomials which cause problems later on.

Let £y denote the set of Laurent polynomials which have no collinear factors
(i.e. Lo is the set of Laurent polynomials, each of whose irreducible factors
has the property that the interior of its shape is non-empty). Results from [7],
Proposition 2.11, and [6], Theorem 2.4 can be used to prove that f € Lo if and
only if ()~ is mixing of order two, which in this case is equivalent to oy, ,, being
mixing in every direction (m,n).

If v is a vector in Z? (where we assume the coordinates are coprime), a com-
plementary vector is a vector u such that u and v generate Z? i.e. such that area
of the parallelogram with vertices 0, u, v and u 4+ v is 1. Such vectors always
exist.

Definition 7. If f € £ and v is an expansive direction for (f), then the height

of f above the direction v is defined as follows: Let u be a complementary vector.

The points in C(f) may be expressed in terms of u and v. The height of f (above
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v), bty (f) is defined to the difference between the mazimum coefficient of u and
the minimum coefficient of u of points in C(f). A strip in the v direction of
height h is then given by Sp(v) = {zv+yu: z € Z,0 <y < h}.

Note that the height is independent of the particular complementary vector
chosen as any two complementary vectors differ up to orientation by a multiple
of v. In [7], this was called the width, but here we want to emphasize that the
height is in a direction complementary to v so are calling it the height above v.

Note also that with this definition, ht,(fg) = ht,(f) + ht,(g). In particular,
ht,(f¥) = k - ht,(f). It may also be verified that C(fg) = C(f) + C(g) where
the sum is the usual set of all sums of each element of C(f) with each element
of C(g).

Theorem 2.1. A direction is expansive for (f)* if and only if it is not parallel
to a face of C(f).

Theorem 2.2. If v is an expansive direction for (f)1, then letting S be given
by Shy, (5)(v), any configuration on S may be uniquely extended to give a point of
(f)*. All points of (f)* arise in this way. The map o, on (f)* is then conjugate
to a one-dimensional full shift on a finite set of symbols.

Theorems 2.1 and 2.2 are straightforward generalizations of results proved in
[7]. We illustrate them with an example which captures the essence of the proofs.

Example Consider the three-dot system and the direction v = (1,1). A comple-
mentary vector is u = (1,0). The Laurent polynomial is f =1+ X +Y so C(f)
is the convex hull of (0,0), (1,0) and (1,1). Expressed in terms of u and v, these
points are Ou + Ov, 1u + Ov and —1u + 1v. We see therefore that the difference
between the maximum and minimum u coefficient is 2, so the height of the Lau-
rent polynomial above the (1,1) direction is 2. Since (1,1) is not parallel to any
face of C(f), the system is expansive in this direction. By Theorem 2.2, there is
a strip of height 2 in the (1,1) direction such that a point ¢ € {1+ X + Y)t is
uniquely determined by {|s. This is illustrated below.

— o
- O %
O =
—_ =

- O

-+ O O

O =

It is clear that the symbol marked with a % is determined to be a 0 by the

requirement that it along with the two Os on the row below must add to 0

modulo 2. Similarly, the whole diagonal above the given strip is determined. This
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procedure may then be iterated to fill in the NW corner of the plane. Likewise,
the symbol marked t is determined by the requirement that it should sum with
the 0 and the 1 in the column immediately to the left to 0 modulo 2, so the
symbol marked t has to be replaced by a 1. This process allows the entire point
to be determined. Since each translate of the original shape is used to determine
the value of some symbol, it follows that the resulting point is in (1 + X + Y)L.
Conversely, given ¢ € (1+ X +Y)*, then the restriction {|s determines a unique
point in (14 X 4+ Y)*. This point then has to be equal to &.

We next prove some facts about ideals in £ and their duals. We begin by
defining (f1, f2,..., fn) to be the ideal in £ generated by f1, f2,..., fn. For any

ideal I, It is defined to be {¢ € ZPZQ: f€ =0 for each f € I}. We note that

(f1rs far ey Fu) T = (f1)T 0 (f2) N0 (f)

To see this, note that if ¢ € (fi,f2,..., fa)", then f;6 = 0 for each i so
€ € N;{fi)*. Conversely, if £ € ,{f;)*, then ¢ is annihilated by anything
in (f1, f2,---, fn) 50 we see & € (f1, f2,--, fa)™

Since L is a unique factorization domain, the highest common factor of two
polynomials f and g, denoted hcf(f, g), exists.

Theorem 2.3. Suppose f1,..., fn are Laurent polynomials in L and hef(f1,.. .,
fn) = 1. Then (f1, fo,---, fa)* is a finite set.

Note that this is a version of Lemma 2.5 in [7].

Proof. First, note that (fi, fo,---,fn) = (Y*f1,Y*fo, ..., YEf,) as Y is a unit
in £. We may therefore assume that fi,...,f, contain only positive powers
of Y. Similarly, we assume that they contain only positive powers of X. We
regard fi,..., fn as members of K(X)[Y], the set of polynomials in Y whose
coefficients are rational polynomials in X. Since K(X) is a field, and f1,..., fr
are coprime, there are members ay,...,a, of K(X)[Y] such that a1 f; +...+
an fn = 1. Multiplying this equation through by the least common multiple of all
the denominators of the a; (which consist only of polynomials in X), we conclude
that there exist polynomials bq,...,b, in K[X,Y] such that by f1+...+b,fn =g
where g is a polynomial in X alone. We conclude that g € (f1, f2, ..., fan). Now,
given £ € (f1, f2,--.,fn)T, we have g¢ = 0. Since g is a polynomial in X, it
follows that the entries of £ satisfy a recurrence relation in each horizontal strip.
Since K is finite, there is a number n such that all solutions to the recurrence
relation are periodic with period a factor of n. In particular, X™¢ = . Similarly,
there exists a number m such that Y™¢ = £. Clearly, there are only finitely many
& with this property (at most |K|™"). O

Theorem 2.4. If fi,..., fn € L are such that hef(f;, f;) = 1, for each i < j,
then letting f = fifa .- fn, ()t = ()T + (fo)t +...+ (Ffu)t.
The proof which we give of this consists partly of a proof taken from [7], Lemma
2.4.
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Proof. It is clearly sufficient to establish the claim in the case n = 2. Consider
the map 0: (f1)* — (f1)* given by 8(¢) = fo£. This may be seen to be finite-
to-one as the kernel of 8 is (f;)L N (f2)*, which by Theorem 2.3 is a finite
set. By Theorem 2.2, # may be considered to be a finite-to-one map from a one-
dimensional full shift to itself. By a theorem of Hedlund [4] (Theorem 5.13), such
a map is surjective. It follows then that 6 is surjective as a map (f1)* — (f1)*.
Now, given & € (fif2)*, we have fof € (fi)*. Let n € (fi)* be such that
8(n) = fan = f2£. Now, € =7+ (£ —n) and we note that £ — 7 € (f2)* because
f2(€ —n) = f26 — fon = 0. This shows that £ € (fi)* + (f2)' as required. [

If A and B are two subgroups of KZZ, then we will say that B is a finite
extension of A if A C B and the index of A in B, B: A is finite.

Theorem 2.5. If fi,..., fn be Laurent polynomials and d = hef(f1,. .., fn) then
(fiy---s fa)t is a finite extension of (d)*.

This is a version of Lemma 2.6 of [7]. We remark that if I is a finite extension
of (d)*, then the expanding directions for I+ are the same as those for (d)=.

Proof. We observe that since d divides each f;, we have (d)* is contained in
{fi,..-, fa)t. We see that the image under d of (fi,..., f.)" is a subset of
(fi/d,..., fn/d)*. Clearly the kernel of the map d is (d)*, so by the fundamen-

tal theorem of group homomorphisms, (f1, ..., f,)*/{d)* is isomorphic to a sub-
group of (fi/d,..., fn/d)*. Since d = hef(f1,..., fa), hef(f1/d, ..., fu/d) = 1,
so by Theorem 2.3, (f1/d, ..., f./d)" is finite. This proves the theorem. O

Theorem 2.6. If M is a K-group shift, then there exists a finite set of Laurent
polynomials fi,..., fn € L such that M = (f1,..., fo)*.

This is a version of Theorem 2.1 of [7].

We note that in the above situation, the set of expansive directions for M is
equal to the set of expansive directions for (d)*, where d = hcf(fy,..., f,) and
so the set of non-expansive directions is finite. It also follows from this that M
is a subshift of finite type, as the condition that a point ¢ lies in (f1,...)" is
checkable by looking at a finite region.

Proof. Let G,, be the set of all configurations on A,, of points in M. Since M is a
proper subshift of K%°, there is an ng such that A, is a proper subset of K%wo.
By the K-linearity properties of M, G, is a vector subspace over K of K=,
Now let G,» be the annihilator of G, in KA, G,* = {# € L(K?, K): 6(¢) =
0 for all £ € G,,}. By well-known properties of finite-dimensional vector spaces,
we have G, = G, where G-+ = {¢ € K*~: 0(¢) =0 for all § € G, }. Each
linear map in G,,* corresponds to a Laurent polynomial in £ and let I, be the
ideal generated by these Laurent polynomials. Since Gt may be embedded as a
subspace of Gn+1L, we see that I, C I,,11. Also, we see that M C I,* for each
n. Next, let d = hef({g: ¢ € UIn}). To see that d exists, note that there is a
non-trivial ¢ € I, so that there are finitely many possibilities for d: the factors
8



of g. Clearly hef(I,) is a decreasing sequence of Laurent polynomials. Now there
exists an n; such that hef(I,,) = d.

It follows by Theorem 2.5 that I,,* is a finite extension of (d)*~. But now,
since the I,* form a decreasing sequence, I,*: (d)* is eventually constant. It
then follows that InL is eventually constant: Inl = In2L for all n > ng. Let
It = I,,,*. We already know that M C I*+. Conversely, given £ € I+, we have
¢ € I,* for each n and so 0(€|,) = 0 for each § € G,,*. So since G,*+ = G,,,
we see that |z, € G,. Thus we see £ is the limit of points in M, so since M is
closed, we have £ € M.

O

We remark that the above establishes the one-to-one correspondence between
K-group shifts and ideals of K[X*! Y*!] as demonstrated in the case of Z,-
group shifts in [7] and explained further in [14].

3. RESULTS

In this section, the main results of the paper are stated. The proofs are then
deferred until Section 5.

Definition 8. A map 0 between a K-group shift and a K'-group shift will be
called affine if it can be written 6(€); ; = L(£); ; + ¢, where L is a continuous
shift-commuting group homomorphism and c € K'.

We note that in what follows all group homomorphisms of group shifts will be
continuous and shift-commuting.

It is emphasized that the definition of affine differs to some extent from the
usual definition (where the map is required to be linear plus a constant), as the
homomorphism is not required to be K-linear, but merely additive. As mentioned
in the previous section however, if K = Z,, then any group homomorphism from
a K2° to KZ* is K-linear: a code L : Z%z — Z%z is a homomorphism if and only
if it can be written as L(§) = r{ for some Laurent polynomial r € £. We observe
also that any group homomorphism from one Z,-group shift to another may
be extended (non-uniquely) to give a group homomorphism from szz to Z,,Zz.
Since this is Z,-linear, it follows that the original homomorphism must also have
been Z,-linear. In the following lemma, we identify the homomorphisms of K z*
where K is a finite field of characteristic p. As before, it follows by extending the
homomorphisms to maps from K Z* to KZ* that all group homomorphisms from
one K-group shift to another have the same structure of being linear combinations
of Frobenius automorphisms.

Lemma 3.1. Let K be a finite field of characteristic p. A shift-commuting map
0 from K Z* 1o K2° is a shift-commuting group homomorphism if and only if it
is a linear combination of maps of the form 7" o o(; j), where T is the Frobenius
map defined by T: KZ* Kzz, T(&)i; = &7
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We are now in a position to state the main theorems.

Theorem 3.2. Suppose f € Lo(K). Then any code 8 from (f)% into any K'-
group shift is affine.

We note that the restrictions on the range can be relaxed without altering the
proof. What is necessary is that the range is a compact zero-dimensional Abelian
group with a rational expansive direction in common with (f )Jlg In the case of a
K'-group shift, this is automatic as by Theorems 2.6,2.5 and 2.1, all but finitely
many directions are expansive.

The assumption that the domain is the annihilator of a principal ideal is crucial
here. If the domain is the annihilator of a non-principal ideal, then this is a finite
extension of a principal ideal and the code can be defined independently on each
component showing that the conclusion fails.

Theorem 3.3. Suppose f € Lo(K'), g € L(K) and let 0 be a code from (g)%
into (f)%:. Then 0 is affine.

As in the previous theorem, the assumption that the domain is the annihilator
of a principal ideal is crucial (for the same reason). One could however relax the
hypotheses on the range to require instead that the range is a finite extension of
the annihilator of an ideal (f) for some f € Lo(K').

The assumption that f € L is equivalent to (f)' being mixing, by simple
generalizations of [7], Proposition 2.11, and [6]. We are also able to say something
about the case of Laurent polynomials with a factor which is collinear.

Theorem 3.4. Suppose f € L(K). Write f = fog where fo € Lo(K) and g
consists of factors g1 ...gn each of which is collinear such that C(g;) and C(g;)
are non-parallel for i # j. Then if M is any K'-group shift and 0 is a code from
(f)* into M satisfying 6(0) = 0, then

O +E+n" +...+0")=0(E)+0(E)+6(n") +...+0(n"),
for any €' and €2 in (fo)* and n in (g;)*.
Theorem 3.5. Suppose f € L\ Lo. Then there is a code 0: (f)* — (f)* which

is not affine.

Corollary 3.6. Suppose that 6 is a shift-commuting map between a K-group
shift M and a K'-group shift M', where K and K' have different characteristics.
If M = (f)% where f € Lo(K) or M' = (f')%, where f' € Lo(K') then 6 is a
constant mapping.

Corollary 3.7. Suppose f € Lo(Z,). If 6: <f>2',, — M is a code, M a Z,-group

shift, then the image of 0 is a coset of a subgroup of (f)*. If (f)* is topologically
conjugate to (g)t, then (f)* = (g)* and f and g are equal up to a multiplicative
unit.

This corollary certainly does not hold for more general fields K because if v is
any Z,-homomorphism of K, then applying v pointwise to points of (f)1 gives
10



a continuous shift commuting homomorphism whose image is (y(f))*. However
if f has coefficients in K \ Z,, then typically (f)* # (v(f))*.

As a consequence of Theorem 3.2, we can generalize a theorem of Hedlund,
Coven, Rhodes ([2], Theorem 3.5), which was proven for the case p = 2.

Theorem 3.8. Suppose that f : Z% — Z% is an affine code which is not a
conjugacy. If 0 : ZIZJ — ZZZ, is any code which commutes with f, then 0 is affine.

Theorem 3.2 has implications for the automorphism group of (f)*. A (dynam-
ical) automorphism is an invertible code from a subshift to itself. By Theorem
3.2, any automorphism of (f)1, f € Ly, is of the form L+c, where L is a group
isomorphism and c is a constant point in KZ°. Let Aut((f)1) denote the group
of automorphisms of (f)1. Let Z denote the subgroup of Aut({f)*) consisting of
group isomorphisms and 7 the subgroup consisting of those pointwise rotations
z + = + ¢ which are automorphisms of {f)*. Clearly, L + c maps (f) to itself
if and only if f(c) = 0, and if there exists a non-zero ¢ with this property, then it
holds for every constant point. Therefore, if f(1) # 0 then 7 contains only the
identity and Aut((f)1) = Z, and if f(1) = 0 then 7 is isomorphic to K. It can
be shown that Aut((f)1) is a semi-direct product of Z and 7 ([3], Sect. 6.5).

If K = Z,, then by the remarks in Section 2, any element of Z is given by a
polynomial, and therefore Z is Abelian. It is easy to see that L € Z commutes
with every element of 7 if and only if L(1) = 1 or 7 consists just of the identity.
For K = Zs, one of these conditions holds for every L € 7.

Corollary 3.9. The automorphism group of (f)*, f € Lo is Abelian if either
(i) K = Z, and f(1) # 0 (in which case Aut({f)*) =TI), or (ii) K = Zs.

By contrast, the automorphism group of a strongly irreducible shift of finite
type contains any finite group as a subgroup (see [15], Theorem 2.3, and [11]). T.
Ward has shown that the only automorphisms of the three-dot system are shift
maps, and so Aut({f)1) = Z* ([15], Theorem 3.2). Before we prove the main
theorem, we need to state and prove some auxiliary results.

Proof of Lemma 3.1. Clearly if the map 6 is a linear combination of powers of
maps of the form 7" o 0(; ;), then 6 is a group homomorphism. Conversely, since
6 is a block map, we see that 6(£)o,o is determined by {4, for some n. Regarding
K as a vector space over Z,, let a basis be given by a1,...aq where d = [K: Z,].
Letting e(i) be the point in K% with a 1 at position (i,) and Os elsewhere,
we see that 6(§)o,0 = Z(i’j)eA" 0(¢&;, ;™). Since 6 is a group homomorphism,
it follows that the map /) K — K given by (29 (a) = 0(a - el#))g, is a
group homomorphism. The result will then follow if we establish that any group
endomorphism of K is a linear combination of powers of the Frobenius map
7(a) = aP. Regarding 7 as a Z,-linear map of the vector space K (over Z,), we
see that 7¢ = 1. Taking K-linear combinations of the 7" for 0 < n < d, one
can show the powers are independent so that there are |K |d such combinations,
all giving rise to distinct Z,-linear homomorphisms from K to K. However, a
11



homomorphism from K to K is determined by the images of a1, ..., aq. It follows
that there are |K|? such homomorphisms and the proof is complete. O

4. MIXING IN (f)+

We need to show some mixing results in spaces of the form (f*)*, for an
irreducible Laurent polynomial f € £y and k& > 0. We will assume throughout
this section that (1,0) is an expansive direction for f. This condition will always
hold in the cases where the theorems are to be applied by a simplification made
at the start of the proof of the main theorem.

By the remarks following Definition 7, C(f*) = kC(f), so that the sides of
C(f*) are parallel to those of C(f). Therefore (1,0) is an expansive direction for
(f*)*. Setting h = ht(;,0)(f), we have ht(f*) = kh. (We will omit the subscript
for direction in ht(f¥) in this section, as it is assumed to be (1,0).) We will use
the notation S(f*) to represent the strip She(sk) associated to ( f*)* by Theorem
2.2. Let S(f*)* denote the points (i,j) € S(f*) for which i > 0.

Since (1,0) is an expansive direction for (), Py has a unique highest point ¢s
and a unique lowest point b;. By multiplying f by some X*Y”7, which translates
P; by (i,7), we can assume that by lies on the z-axis, ty lies on the line y = h
(just above S(f)), and that the leftmost point (or points) of Py lies on the y axis.
Let L; be the line in Z* containing the side of C(f) incident with ¢; that is the
leftmost of the two and let e be the other extreme point of this side. Then we
have that f* also has a unique highest point ¢ ¢+ given by kty, kL; is the line
containing the side of C(f*) adjacent to ¢, and key is the other extreme point
of this side.

The (upper) shadow of S(f*)T is the set of points in S(f*)*, together with all
points (i, j) € Z2, j > kh which are on or to the right of L;.

Let L, be the line in Z? parallel to L; which passes immediately to the left of
L,.

We consider the collection Cr(f*) of points in (f*)* for which ¢; ; = 0 for all
(i,5) € S(f5)*.

Lemma 4.1. Let k > d > 0. If £ € Cr(f*), then & ; = 0 for any (i,j) in the
shadow of S(f*¥)*. For any q € L}, there erists a point & € Cr(f*) such that
(f%€)qa, # 0.

Note that in the case k = 1, for which (f°)* = {0}, the second statement is
simply that for each ¢ on L}, there is a point £ € Cr(f) such that &, # 0.

Proof. By translating C(f*) to the right, along the line y = kh, and using the
fact that &; ; = 0 for all (4,7) € S(f*)*, we see that &; x, = 0 for all points in the
shadow belonging to the horizontal line y = kh. This in turn forces & xp+1 =0
for points on y = kh +1 in the shadow. Continuing this way, we see that z; ; = 0
for all (7,7) in the shadow.

Let v denote the vector from ¢y to the closest integral point of the line L,
below t;. Then we can write ey = ty + mv for some m > 1. Let L be a line in
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72 parallel to L;. We then show that given an (f*)1-configuration ¢ to the right
of L (exclusive), ¢ may be extended in |K|*™ ways to give a (f*)*-configuration
to the right of L (inclusive). In order to be an extension to the larger region, the
point must satisfy for each u € L a recurrence relation of the form

a’Oé.u + a1£u+v +...+ akm§u+kmv = ¢u(§)a

where ¢,,(£) is a linear combination of the terms of £ to the right of L and a and
akm are non-zero. In particular, given a point ¢ on L, §g,&4+v,---»&q+(km—1)v
may be assigned arbitrarily. The recurrence relation may then be used to deter-
mine the values of £ on the remainder of L.

We now consider extending an (f*)!-configuration consisting entirely of zeros
to the right of the line Lj. A similar analysis to that above shows that an
extension belongs to (f%)* if it satisfies a recurrence relation with dm + 1 terms.

In particular the configuration may be extended in |K|?™ ways to give an (f%)*-
configuration.
We deduce that by setting £, = 1,§440 = &g420 = -+ = §i(km—1)0 = 0,

we can get an extension of £ to the region to the right of L; inclusive which
satisfies (f%¢)q—at, # 0. This configuration may then inductively be extended
as described above to give a point £ € Cr(f*) satisfying the conditions of the
lemma. O

The following definition is given in [7] (Definition 1.5).

Definition 9. Two sets E,F C 7? are independent in (f)* if for any (f)*-
configuration np on F, there is a point £ € (f)* such that g = np and g is the
configuration of all zeros.

By additivity, if two sets are independent, then any (f)!-configurations on
E and F can occur in a single point. If (f)! is mixing, which means that f
has no collinear factors, then any two finite sets sufficiently far apart in Z? are
independent. However, if F or F are infinite, then it is more difficult to determine
whether they are independent.

Definition 10. A direction w = (m,n) will be called an internal direction for f
if for sufficiently small positive s, ty + sw lies in the interior of C(f).

Given an internal direction w, the line through the origin parallel to w will be
called L,,. By a boz, we mean a rectangular subset of Z? with sides parallel to
the coordinate axes.

Theorem 4.2. Let f be an irreducible Laurent polynomial in Lo which is expan-
sive in the (1,0) direction and let k > 0. For any a > 0, and internal direction
w, there is an | > 0 such that for any box A of size a x k-ht(f), positioned above
S(f*) at least l to the left of the line through 0 parallel to w, A is independent in
(F)r of S(f*)+.

The content of the theorem is illustrated in Figure 1. Note that since the
height of A is equal to ht(f¥), the height of S(f*), any configuration on A is an
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or

FIGURE 2. H boxes of size a X kh

( f)J-—conﬁguration. We denote the set of all configurations on the a x kh box
([0,a — 1] x [0,kh — 1]) N Z? by K**k*. The reader may find it helpful when
reading the proof to consider the case k = 1, which is somewhat simpler than
the general case.

Proof of Theorem 4.2. Let kh = ht( fk) and let y be an arbitrary positive integer.
Consider a tower (parallel to w) of H overlapping boxes of size a x kh in successive
rows positioned adjacent to L,, at heights y, y+1, ..., y+H—1 as shown in Figure
2. We denote these boxes by Ay, ... Ay, g_1. Assume that the lower left corner
of A; has coordinates (z(j),j). Let V; denote the possible configurations on the
jth box which occur for points in Cr(f¥); that is V; = {&a,: £ € Cr(f*)}, for
y < j <y+ H —1. Each set Vj is clearly closed under addition and under scalar
multiplication by elements of K so each V; forms a vector space over K. Since
the boxes are of the same size, there is a natural notion of adding configurations
on two of them (i.e. we treat all of them as subsets of a single copy of K*kh).
14



We will show that for large enough H (independent of y), the vector space sum
Vy 4+ Vyt1+ ...+ Vyirm—_1 consists of the set of all configurations in Koaoxkh The
result will then follow fairly easily.

To show this, we suppose for a contradiction that V,4+Vy41+4.. .4V, m_1is not
all of K*k" Then as in Theorem 2.6, there exists a non-trivial K-linear map on
K*kh which vanishes on Vy+Vys1+...+Vy1g_1. This linear map corresponds
to a Laurent polynomial g € £, with vanishing coefficients for monomials X*Y’
with (7, 7) outside [0,a — 1] X [0,kh — 1]. We will show that the existence of g
implies that for some d < k, there is a right infinite strip of height slightly less
than H on which f9¢ vanishes for all ¢ € Cr(f*). (When k = 1, £ itself vanishes).
For large enough H, this will contradict Lemma 4.1.

Recall from Section 2 that we can regard g as a map (f¥)* — (f*)1, where
9(€)i,; is determined by the values of &;ym j+n for 0 <m < a and 0 < n < kh.
Then given & € Cr(f*), we have (98)(2(j),j) = 0 for y < j < y+ H, corresponding
to the lower left corners of the boxes A; . Note however that it follows from
the definition of Cr(f*) that omo(Cr(f*)) C Cr(f*) for m > 0. Therefore
Er;4m € Vj for m > 0, and 50 (gom 08)4(j),; = 0 for y < j < y + H. However
(90m,08)2(j),; = (9€)a(j)+m,; SO we see that (g€); ; = 0 on the set R; defined by

Ry ={(i,j): y<j<y+H, i=>z(j)}
(see Figure 3). Also, (f*€);; = 0 (for all i,j), since ¢ is by assumption in (f¥)*.

Since f is irreducible, we have hcf(g, f¥) = f¢ for some d < k. Since ht(g) <
kh — 1, f*¥ cannot divide g, and so d < k. Write g = fg’ where hcf(g, f) = 1,
and hence hcf(g’, f¥~9) = 1. From the proof of Theorem 2.3, we see that there
exist @ and b in £ with the property that af*~¢+bg' is a polynomial p in positive
powers of X alone. Since f and g are assumed to have only positive powers of X
and Y, we see also that a and b may be chosen to have only positive powers of
X and Y. Now af* +bg = pfd. Since (g€);; = 0 for (i,j) € Ry and £ € Cr(f*),
it follows that (bg&); ; = 0 provided (%,5) + P, C Ry. In particular, we deduce
that there is a § > 0 (depending on the polynomial b and the slope of w) so that
(bg€)s,; = 0 for (¢,7) € Ry where

Ry ={(4,j):y<j<y+H-6andi>z(j)+6}

(see Figure 3). Further as we need a bound independent of y, we note that
there are only finitely many choices of the polynomial g and hence only finitely
many different b and so only finitely many different §. We will take § to be the
maximum of all of these. Note that the § is independent of H so we may assume
that H is chosen to be larger than § so that Ry is non-empty.

With this definition, we see that (pf?);; = 0 for £ € Cr(f*) and (i,5) € R,
as pf? = bg + af*.

Write p = Z,Ic\l:m cx X*, where m > 0 is the smallest non-zero coefficient. Again
in order to get a bound independent of y, we let my the maximum such number
taken over all the finite set of all possible polynomials g. Then since (pf3¢ )ij =0
for (i,7) € Ry, we have Z,ﬁim ck(£4€)itk,; = 0, so that the jth row of f9¢ satisfies
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R,

S(f)*

FIGURE 3. The region Ry where (af* + bg)¢ vanishes

a recurrence relation from coordinates (i +m,j) to (i + M, j). It follows that
(f%€)i+m,; is determined by the values of (f2€)itm+1,j,- - -, (F4€)itar,j, However
as the line y = j intersects the shadow of S(f)", it follows from Theorem 4.1 that
( fdg)i’j = 0 for all sufficiently large ¢ so using the recurrence relation inductively
from right to left, we see that (f9¢);; = 0 for (i,j) € Ry satisfying i > z(j) +
d + mg. This fact imposes an upper bound on the number H, as follows. Let yg
be the height of the top row of Ra, yo =y + H — § — 1 and define the subset T’
of Ry by T = {(¢,50): ¢ > x(yo) + I + mo}.

This is the strip of height 1 at the top of Ry, to the right of z(yo) +J +myo (see
Figure 4). Let H be sufficiently large to ensure that (z(yo) + 0 + mo,yo) + kt
lies to the left of the line L, described in Lemma 4.1. The larger the value of
y, the smaller H must be to ensure this because L,, lies to the left of L;. This
means that we can choose an H which is sufficient for all positive y. Now, let ¢
be the point on L} at height yo+dh. Then ¢ —dts lies in T. By Lemma 4.1, there
exists a point £ € Cgr(f*) such that (f?€)g—q¢, # 0. This contradicts the fact
that (f4€);; = 0 for (i,j) € T. It follows that for sufficiently large H (chosen
independently of y), the vector space sum V, + V41 + ...+ V11 consists of
the set of all configurations in K®**h,

We now deduce the statement of the theorem as follows: Given a configuration
n € K***h n may be expressed as n¥ + ...+ n¥TH~1 where n/ € V;. Now, let
¢’ be a configuration in Cr(f*) having configuration 7/ on A;. Then the point
am(j)_z(y),j_yg has the configuration 1’ on A,. Since & € Cgr(f*), it follows
from the expansiveness of the horizontal direction for ( f)l that &7 is equal to 0
on a cone containing the positive = axis. In particular, there is an [y depending
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FIGURE 4. The subset T of Ry which extends to the left of L;

on z(j) —z(y) and j —y such that o,(j)_4(y),j—y&’ is equal to 0 on the part of the
strip with x coordinates to the right of ly. Taking the maximum of these [y over
the finite set of vectors (z(j) — z(y),j — v), for y < j < y + H, gives a number
[ such that for each j, am(j),z(y),j,yﬁj is equal to 0 on the part of the strip with
x coordinates to the right of I. (Note that [ too can be chosen independently
of y as there are only a finite number of finite sets (z(j) — (), — ¥)y<j<y+H
as y runs over the positive integers.) Now summing the Jz(j),z(y),j,yﬁj gives a
configuration { which agrees with 7 on A, and which is equal to 0 at all points
of the strip with & coordinates to the right of I. In particular, forming ¢ gives
a point of Cr(f*) with the desired configuration on a box at height y, [ to the
left of the line L,,. O

5. PROOF OF THE MAIN RESULTS

In this section, we give a proof of the main results, Theorems 3.2 and 3.3.
We first state and prove a key lemma.

Lemma 5.1. Suppose M and M’ are respectively K- and K'-group shifts which
are expansive in the (1,0) direction. Let 6 be a code from M to M’ satisfying
6(0) = 0. In this case a point in M is determined by its configuration on a
horizontal strip S of some height h. There exists a length W such that for any
i0, if € € M is identically zero on {(i,j) € S: 1 > ig} and n € M is identically
zero on {(i,7) € S:i < ig + W}, then 0(E+n) =6(§) +6(n).

Note that the condition that M’ is a K’-group shift is more than what is needed
here. In fact, the proofs all work under the condition that the range is a compact
17



Abelian zero-dimensional group with (1,0) as an expansive direction. This also
applies to the results which follow. This would give rise to the strengthening of
Theorem 3.2 mentioned earlier.

Proof. Since M' is expansive in the (1, 0) direction, there is a strip S’ of height h’
such that a point in M’ is uniquely determined by its configuration on S’. (Note
that if M’ is not given by (f’)* for some polynomial f, it may not be the case
that each configuration on S’ gives rise to a point of M’). Let V; be the part of
S’ with z coordinate i: V; = {(¢,7): 0 < j < h’'}. Since 6 is given by a block
map, there is a box B such that the configuration of £ on B determines 6(§)y,.
Since S is an expansive strip for M, the M-configuration of £ on B is determined
by the M-configuration of £ on a finite subset A of S (which we assume to be a
box). Let W be the width of this box and m be the leftmost z-coordinate of A
(so the rightmost z-coordinate of A is m + W — 1).

Now for any g, let £ and 7 be as in the statement of the lemma. Then for any
k, the configuration of 8(§ +7) on Vj is determined by the configuration of £ + 7
on A+ (k,0). If m+k < ip, then A+ (k,0) is contained in {(i,5) € S: i < ip+W}
so that (§+1)Aa+(k,0) = Ea+(k,0)- In this case, 8(§+n)v, = 0(&)v;, and 8(n)y;, = 0.

If m+k > i then A+(k,0) is contained in {(i,) € S: 4 > o} 50 (§4+M)a+(k,0) =
NA+(k,0)- In this case, (£ +n)v, = 0(n)v;, and 8(§)y, = 0.

Putting these together, we see that for each k, (£ + n)v, = 0(&)v,, + 0(n)v,.-
This implies that (¢ + n)s: = 0(&)s: + 0(n)s. As M’ is a group, 0(§) + 6(n)
belongs to M’ and so we see that 6(§ + 1) and 6(£) + 6(n) are two points of M’
which agree on S’. But since points in M’ are determined by their configurations
on S’, we see that 0(§ +n) = 6(§) + 6(n) as required. O

Next, we will state and prove a special case of the main theorem. The general
case will be deduced from this below.

Theorem 5.2. Let f be an irreducible polynomial in Lo(K) and M be a K'-group
shift such that (1,0) is an ezpansive direction for (f)5% and M. Letk > 1. If0 is
a code from (f*)% to M satisfying 6(0) = 0, then 0 is a group homomorphism.

Proof. Let the box A be a subset of S(f*) as in the proof of Lemma 5.1. Pick
two distinct internal directions wy and wg with wg lying to the left of wy in
C(f*). Let Lz, be the line parallel to wy, touching the right side of A and Lg be
the line parallel to wg touching the left side of A. Then by Theorem 4.2, there
is a length I, so that if a translate of A is at least I1, to the right of Ly then it
is independent of the subset Sz, of S(f*) consisting of A and everything to the
left of A. Similarly, there is a length [ so that if a translate of A is at least Ip
to the left of Ly then it is independent of the subset S of S(f*) consisting of A
and everything to the right. By the geometry of the lines Lz, and Lg (see Figure
5), for all sufficiently large y, there is an z so that the translate A’ = A + (z,y)
of A is simultaneously at least [r to the left of Ly and at least I, to the right
of L. It follows that this translate is independent of both of the semi-infinite
strips discussed above.
18
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FIGURE 5. A’ is independent of S and Sf.

By the discussion in Lemma 5.1, we know that the configuration of a point
¢ in (f*)* on A’ determines 6(¢),,. Now, let § be the block map sending the
configuration of £ on A’ to 6(€),,,. We show that 6 is linear as follows: Let ¢
and ¢y be two configurations on A’. By independence, there are points £ and 7
of {f*)+ which restricted to A’ are c; and cy respectively, but which are 0 on Sy,
and Sg respectively.

By Lemma 5.1, we see that 8(§ + n) = 6(¢) + 6(n), but this implies that
6(c1 +c2) = 0(c1) +0(c2) so the block map defining 6 is a group homomorphism.
It then clearly follows that 6 is a homomorphism as required. O

To prove the main theorem, we need a way of combining the above results on
spaces of the form (f*)+ for an irreducible f € £. Given a polynomial f, we can
essentially uniquely (up to units) decompose f as a product ffl R Y S N,
where the f, are irreducible, pairwise coprime and belong to £y, and the gg are
collinear with distinct directions dg. Note that in general, the gg are not pow-
ers of a single irreducible polynomial, but rather the product of all the collinear
polynomials in the irreducible decomposition of f in direction dg. Since the
terms in the decomposition are pairwise coprime, we observe by Theorem 2.4,
that (f)* = (Ffi)L + ... 4+ (fE)E 4+ (gnr1)t + oo+ (gnim)t. We know that
any code is linear when restricted to any of the non-collinear components. We
then need to know how to combine the components. The essential idea is simple:
given configurations c!,...,c"t™ on a box above the strip, use independence to
find points in the respective spaces extending the given configurations which have
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large stretches of zeros in S(f). Then use Lemma 5.1 to arrive at the desired
conclusion.

Theorem 5.3. Suppose f € L and (1,0) is an expansive direction for (f)*.
Write f = f& ... f*n g1 ... Gnim as above. Suppose that 0 is a code from (f)%
into a K'-group shift M satisfying 6(0) = 0 for which (1,0) is an expansive
direction. Then if € € (f¥)L for1 < a <n and €P € (gg)* forn < B <n+m
then

O +...+ €)= 0(E") +... +0(E"™).

Proof. In this proof, we will use the index o when working with non-collinear
polynomials and 3 when working with collinear polynomials. Let g, = f*« for
1 < a <n. Let A beaboxin S(f) as in Lemma 5.1. For each factor g4, let B, be
a box in S(g,) such that the (g,)*-configuration of a point £ on B, determines
the (ga)*-configuration on A.

As in the proof of Theorem 5.2, we choose directions w$ and w¢ for each
factor (g,)" and we make the additional assumption that the ranges of direc-
tions are disjoint for the different & and do not include any of the directions dg
corresponding to the collinear directions.

Let y be any height greater than the maximum of the y, (the vertical transla-
tions of the boxes found in the proof of Theorem 5.2 applied to the (g,)*). We
will fix y later. Let the translate B, + (Za,Yon) of B, have the property that
the translate is independent of B, and the part of the strip lying to the right;
and is also independent of B, and the part of the strip lying to the left. Letting
Ao = By — (24,0), we see by translating that B, + (0,y) is independent of A,
and the part of the strip lying to the right; and is also independent of A, and
the part of the strip lying to the left.

Write l, = —zo + (W — 1) and 74 = —z,, where W is as in Lemma 5.1.
Then given any (g,)*-configuration ¢ on A + (0,y), there are points £* and n®
extending ¢® which are respectively zero on the strip S(f) to the right of r,, and
to the left of [,,.

For each factor gg, (n < 8 < n+m) given any (gg)'-configuration ¢® on A, let
7 be an extension of ¢ to a point in (gg)L. Then since gg is collinear, modifying
7 to be 0 off the diagonals parallel to dg which intersect A gives a new point of
<g,g>J-, which for notational convenience we denote both by £¢# and #?. Clearly,
there are lg and rg such that &7 is zero on S(f) to the right of r5 and 7° is zero
on S(f) to the left of Iz just as for the non-collinear factors. The only difference
is that here rg > lg but rg — lg is a positive number depending only on ht(f)
and the slope of dg.

Since the directions from the box A to the distinguished parts of S(f) for each
component (g, or gg) belong to disjoint intervals, as y becomes large, we see
that the parts of the interval become arbitrarily far apart. In particular, for
sufficiently large v, there is a transitive ordering on the subscripts 1,...,n +m
where a < b means max(r,,l,) < min(ry,lp) — W.
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This enables us to finish the proof as follows: We establish that if v; < ... < v
and ¢ is a (g,,)1-configuration on A + (0,y) for s = 1...k then

(1) B+ + ...+ ) =0(c") +0(c + ...+ ),

where @ is the block map defining §. This will clearly imply by induction that @
satisfies the linearity property in the statement of the theorem and hence that 6
does too.

To establish (1), we let £7* be a configuration extending ¢ which is 0 on the
part of S(f) to the right of r,, and for s = 2, ..., k, we let n”* be the configuration
extending ¢ which is 0 to the left of [,,. Since r,, < I,, — W for each s, we
see that £ and 12 + ... 4+ n7* satisfy the conditions of Lemma 5.1 and (1) is
proved.

This completes the proof of the theorem. O

To simplify the proof of the main theorem, we will use a change of basis, by
means of which we can assume that (1, 0) is an expansive direction for (f)* and all
group subshifts contained in it. Let {v,u} be an integral basis for Z?, and define
a lattice isomorphism of Z? by L(z,y) = zu + yv. Now define 7 : K% — K%
by (7€)i; = &r(i,j)- Clearly, m is a linear homeomorphism. While it is not
shift-commuting, it is easy to check that 7o, = op-1(,)m. Given this, we see
that if  is a code, then the continuous map 6’ = wfx ! is shift-commuting.
The linear map L induces an isomorphism on the polynomial ring £, by defining
L(X'Y7) = XUY? if L(,§) = (/,4'), and extending linearly. Since L preserves
collinearity of points, it follows that L maps Lo to itself. A simple computation
on polynomials of the form X®YJ shows that L='fr = «f for any f € L. Tt
follows that 7((f)1) = (L=1f)*, and more generally 7 takes group shifts to
group shifts. By the preceding discussion, if # maps (f)* into M, then # maps
(L71f)L to the group shift 7(M). Clearly, 8 is a homomorphism if and only if
¢ is, and v is an expansive direction for (f)* if and only if L=!(v) = (1,0) is
expansive for (L71f)L.

Proof of Theorem 8.2. Suppose @ is a code from (f)* to M. Then clearly defining
#(¢) = 6(£) —6(0) gives a second shift-commuting map from (f)+ to M such that
#(0) = 0. It is clear that 6 is affine if and only if ¢ is a homomorphism. We will
therefore assume that (0) = 0 and show in the proof that 6 is a homomorphism.

Write f = ffl ri_, ... f*r where the f, are irreducible and belong to £,. We
observe that all of the (f,**)1 and M are expansive in all but finitely many
directions. We will therefore take v = (m,n) to be a direction in which all
( fak“)J- and M are expansive, where the m and n are chosen to be coprime. Set
L(z,y) = zu+yv, where u is a complementary vector. Let 7 : (f)1 — (L7(f))*
be the map defined in the remarks prior to the proof. Write L~!(f) = f/,
L™ Y(fs) = f, and (M) = M’'. By the remarks above, f' € Lo, and the induced
map 0’ = 7 ~! which maps (f’) into M’ is a code.
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Now (1,0) = [~1(v) is an expansive direction for each (f/)* and M’. We now
see from Theorems 5.3 and 5.2 that #' is a homomorphism and hence 6 is also a

homomorphism as required.
O

Proof of Theorem 8.4. By the observation above, without loss of generality, one
may assume that (1,0) is an expansive direction for (f)* and M. The result
follows from Theorems 5.3 and 3.2. O

Proof of Theorem 3.3. Suppose g € L and f € Ly and let 6 be a code from <g)J-
into (f)+. As in Theorem 3.2, we may assume that #(0) = 0. Now g may be
factorized into the product of a polynomials in £y and a collection of collinear
factors as in the statement of Theorem 3.4. Applying Theorems 3.4 and 3.2, we
see that it is sufficient to verify that if h is collinear, then any code from (h)*
to (f) is constant. Let h be any collinear Laurent polynomial (with direction
d = (m, n) say). Then there exists a k such that g j)1xa = & ; for each £ € (h)*.
Clearly 6(¢) must satisfy the same periodicity condition (i.e. (£) must belong to
(Xmkynk _1)1). Since f has no collinear factors, it is coprime to X™Fy "k — 1
so by Theorem 2.3, (f)* N (X™*Y™ — 1)+ is a finite set. It follows that 6 ((h)")
is a finite set. We therefore have that  is a shift-commuting mapping from (h)~*
to a finite set. If we consider any expansive direction (i.e. any direction not
parallel to d) for (h)*, then we see that the shift in this direction is topologically
conjugate to a Bernoulli shift. Since a Bernoulli shift is mixing, its factors are
also mixing, but the only finite mixing systems are systems with one point, so
we see that § maps (h)® to a constant as required. O

Proof of Theorem 3.5. Suppose that f € £\ Ly. We then construct a map from
(f)* to (f)* which is not affine. If f & Ly, then f has a factor g which is a
polynomial in a single variable X™Y™. Write f = gh. It may be checked that
h maps (f)* onto (g)1. It is therefore sufficient to construct a map from (g)*
to itself which is not affine. To do this, we work as follows. For simplicity, we
make the assumption that g is a polynomial in X. This does not entail a loss of
generality as was shown in Theorem 3.2.

The polynomial g = Y, a; X" corresponds to the one-dimensional recurrence
relation Y., aipkt+; = 0 for all k € Z. The solutions of this recurrence relation
form a finite set 0 = p°,..., pN 1. If ¢ € (g)*, then the rows of ¢ are solutions of
this recurrence relation. Conversely given any point £ whose rows are solutions
of the recurrence relation, we have £ € (g)~.

We can therefore define a map from (g)* to itself by specifying what happens
to the rows as long as the map commutes with the horizontal shift.

We note that o1,0(pg) = po. We then define a map as follows: Suppose the
point & has rows p,; for j € Z. Then we define ¢(£) to be the point with rows
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pn;, where n’; is defined by

j_

’ 0 if mnj—1 =0or UIES] =0
n; otherwise.

The point ¢(£) is therefore defined by setting the jth row equal to py if either the
j — 1st row or the j + 1st row of £ is pg and equal to the jth row of ¢ otherwise.
One can then see that ¢ does indeed commute with both the horizontal and
vertical shifts (that ¢ commutes with the horizontal shift follows from the fact
that pg is fixed by the horizontal shift). Also, ¢(0) = 0. We see that ¢ is not a
homomorphism as follows: Let the configuration £° have even rows equal to p;
and odd rows are equal to pg and a second configuration £° have odd rows equal
to p1 and even rows equal to pg. Then £° + £° is the point all of whose rows are
pr 50 (€9 +€°) = €° + €2, but $(£°) = 0 and (¢°) = 0. So setting 6(¢) = ¢(he)

gives the required shift-commuting mapping which is not a homomorphism. [

Proof of Corollary 3.6. From Theorems 3.2 and 3.3, we see that § must be an
affine map between M and M'. As above, setting ¢(§) = 6(§) — 0(0) gives a ho-
momorphism from M to M'. If the characteristic of M is p and the characteristic
of M’ is g, then there exists a positive integer n such that n = 1 (mod p) and
n =0 (mod ¢). Then we observe

n times n times
A

b€ =dETETr 1D =0E 1 oE) ... 196 =0.
This completes the proof. O

Proof of Corollary 3.7. Suppose that f € Lg over Z,, and that 6 : (f)* — M
is a code. By Theorem 3.2, § = L + ¢, where L is homomorphism. By the
discussion in Section 2, L is given by a polynomial € £. Clearly, L maps (f)*
into itself, so the image is a subgroup of (f)*, and the image of 6 is a coset. If
6 is a topological conjugacy from (f)* to (g)*, then it follows from the previous
statement that (g)~ C (f)*. Since #~! is a code, we must have (f)* C (g)*, so
(f)* = (g)*. Therefore (f) = (g), so f = g up to multiplication by a unit. [

Proof of Theorem 3.8. We first suppose that f is a linear map, so we can assume
that f is a Laurent polynomial in one variable, X. Now, f and 6 extend to codes
on szz, by applying them to each row of a point, and clearly these maps commute
with each other. Let f =y — f, which is a Laurent polynomial in two variables.
Since f is not a conjugacy, it has at least two non-zero terms. It follows that any
factor of f is non-collinear, so f € Ly. Let £ € (f)*. Then f(&£) = 09,1(£). Since
6 commutes with oo 1y and f, we see f(0(£)) = 0(f(£)) = 0(00,1(£)) = 00,1(8())
so 0(€) € (f)* and 6 maps (f)* into itself. By Theorem 3.2, 4 is affine.

If f is affine, say f = g + ¢ where g is linear, we can reduce to the previous
case as follows. If g(c) = 0, then one shows that g commutes with A6k, where
h sends £ to & + c. Therefore h~10h is affine, and so 6 is affine. If g(c) # 0, then
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it can be shown that (g + ¢)"? = g"? where g"(c) = ¢, and therefore § commutes
with ¢g"P, which is linear. The details are left to the reader. O

6. THE CASE OF COLLINEAR FACTORS

In the case where (f)1 ~ (g)*, but f and g are not assumed to belong to Lo,
it is still possible to say a considerable amount about any topological conjugacy,
however some questions remain open. In this section, we prove a necessary con-
dition for (f)* to be topologically conjugate to (g) and give some examples of
systems which are and are not topologically conjugate.

Theorem 6.1. Suppose f, f' € L over Z,. If 6 is a topological conjugacy from
(f)* to (f')*, then f = fog and f' = fog' where fo € Lo and g,g' have only
collinear factors. Let the factorization of g into collinear factors with distinct
directions be given by g = g1 - - - gn, with directions di,...,d,. We then have the
following conclusions:

(1) the factorization of ¢’ into collinear factors with distinct directions is
given by g’ = g4 - - - g), where g} is collinear with direction d; and C(g;) is
equal to C(g}) up to translation;

(2) (fo)* N {ga)" = (fo)" N{gi)"* for each i;

(3) For any 1 <i; <ip <...<ir <n, we have

0 ((9i)" N {(gi)™ NN {gi)T) = (g Nlgl,) ™ NN {gh,)

We can re-express the conclusion of the above theorem as a set of necessary
conditions for two group shifts (f)~ and (f’)' to be topologically conjugate.
They are Conditions 1, 2 and 3, where the first two conditions are just Conclusions
1 and 2 of Theorem 6.1 and the other condition is the following:

3. Forany 1 <11 <13 <...< i <n, we have

(9i)™ 0 {gia)™ NN ga )™ 2 (gl ) N {gl,) T NNl ),

where A ~ B means that there is a shift-commuting bijection between A and B.

Note that in the case kK = 1, this condition amounts to the requirement that
for each ¢, the solutions of the recurrence relation corresponding to g; have the
same set of periods as the solutions of the recurrence relation corresponding to
gi. For k > 1, the sets in question are finite by Theorem 2.3, so in this case, the
requirement is that the finite sets may be put in bijection so that related points
have the same set of periods. In either case, we see that Condition 3 is finitely
checkable. Clearly this also applies to the other conditions. Unfortunately, we
do not know whether these necessary conditions are also sufficient.

Proof of Theorem 6.1. As previously, we make the assumption (without loss of

generality) that 6(0) = 0. From [7], we know that the directions d; are precisely

the directions in which (f)* is not directionally mixing. Since these directions

are preserved under topological conjugacy, we see that g’ has a factorization as
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claimed. To show that C(g;) is equal to C(g;) up to translation, we use the one-
dimensional topological entropy of a subset of (f)1. Let v be a complementary
direction to d;. Since points of (g;)* satisfy a one-dimensional recurrence relation
in the direction d;, there exists a period ¢ such that if £ € (g;)*, then 044, (¢) = €.
Let A={¢ € (f)‘:0.a,(¢) =€} and B={n € (f)\: 01a,(n) = n}. Then since
g; and g; are the only factors of f and f’ in direction d;, it follows that A and
B are finite extensions of (g;)* and (g/)*. It is clear that §(A) = B since @ is a
topological conjugacy. The directional topological entropies of A and B in the v
direction are given by ht,(g;) log |K| and ht,(g}) log | K| respectively. Since these
are equal, conclusion 1 follows.

To show conclusions 2 and 3, we first demonstrate that 8((g;)%) C (g!)*. Let ¢’
be such that € {g})* implies o4/4,(1) = 1. Let T be the least common multiple
of t and t'. Let b’ = f’/g. be the product of all the factors of f’ apart from g;.
It follows that A’ has no collinear factor in the direction d;. Write d; = (m;, n;).

Let £ € {(g;)*. Then 6(¢) € (f')* = (W) + (g})*. Write (¢) as n' +n* where
n' € (h')L and n? € (g})*. Since org4,(£) = &, it follows that oz, (6(£)) = 6(€).
We have also or4,(n?) = n? so it follows that or4,(n') = n'. In particular
nt € (XTmiyTni — 1)+ N (W)L, By Theorem 2.3, this is a finite set consisting
of points m,...mg for some S > 0. We can therefore write for a general (,
0(¢) = mp(c) + #(¢) where ¢(¢) € (gi)=. We recall that a point belongs to (g;)*-
if and only if its diagonals in the direction d; are solutions of the recurrence
relation corresponding to g;. We can therefore define new points & in (g;)* by
requiring that £ is equal to £ on the diagonals which pass within & of the origin
and equal to 0 outside. Then we have (&) = m, + ¢(&k). We know that the
m; are periodic in the v direction: there exists an R such that og,(7;) = 7
for all j. As 6 is defined by a block map and 6(0) was assumed to be 0, we
see that lim, o 0nRy(mn, + #(&k)) is the O configuration. It follows that m,, =
—1limy 500 Onro (¢(€k))- Since ¢(&x) € (gi), we see that m,, € (g;)*. It follows
that (¢x) € (g!)* and since the limit of these is (), it follows that 8(&) € (g})*.

Conclusion 3 now follows easily: Given & € (g;,)X N ... N {g;, )+, 0(€) is seen
to be a member of each of (g; )*, ..., (gj,)". In particular,

0 ((gi) N {gix) - NN {gin)) S g )N (gl NN (gl )t

Applying the argument for 6! gives the containment in the opposite direction.
The same argument shows that 6 ({fo)* N (g:)*) = (f)+N{g)~. We showed in
Theorem 3.2 that the restriction of 8 to (fo) is a homomorphism so in particular
if £ € (fo) N {g:)*, then 6(&) € (fo)* N (gi)*. It follows that (fo)* N (gi)* 2
(fo)*N{g;)*. Asbefore, the reverse conclusion also holds showing that conclusion

2 holds.
O

We continue this section with the study of a number of examples with collinear
factors and examine the existence or non-existence of topological conjugacies.
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We will consider examples in which f has a factor which is a polynomial in X
and possibly an irreducible part also.

Example 1 Working over Z-222, let fi =1+X+X3and fo =1+ X2+
X3. As noted above, points in (f;)* are solutions of the recurrence relation
&ij +&+1,5 + &ivs; = 0. Each row is then a solution of the recurrence relation
Ty = Tp—2 + Tn—3 and the rows may be chosen independently. We are then able
to analyze the structure of the set of solutions of this recurrence relation: As it
is a third order recurrence relation, the solution is determined by x(, x; and zs.
If these are taken all to be 0, then it is clear that the solution is z,, = 0 for all n.
If they are taken to be 1,0 and 0, then we see the solution is

Toz1Z2 ... = 10010111001011100...

This solution is periodic with period 7 and clearly may be extended to negative
values of n also. Translating the sequence gives all 7 possible configurations of 1s
and Os (apart from 0,0,0) on zg, 1 and z5. We see therefore that points of (f; )+
are made up of arbitrary configurations of eight possible rows: pp = ...000...,
p1 = ...100..., and p, = o0, _1p1 for n between 2 and 7, where the crucial
point about these rows is that o(pg) = po and the other seven rows form a single
periodic orbit under o.

Points of (f,)* are also made up of arbitrary configurations of 8 possible rows:
P06, - - -y P, Where again pf, ... p} form a periodic orbit and it is assumed that they
are numbered in such a way that o(p}) = pj,, for i <7 and o(p%) = p}. There is
then a topological conjugacy between (f1)* and (f2)* given by sending the row
pi to p.. This conjugacy is clearly not a homomorphism (as otherwise (f;)* and
(f2)* would be equal).

What was important in establishing the topological conjugacy in the above
example was showing that the periodic orbit structure of the sets of solutions of
the two recurrence relations corresponding to f; and f; were the same. It may
be asked whether any two irreducible polynomials of the same degree necessarily
have the same periodic orbit structure. The following example shows that this is
not the case.

Example 2 Let gy = 1+ X2 and gy = 2+ X + X2 over Z3. Then solutions of
the recurrence relation corresponding to g; form 3 periodic orbits: one of period
1 and two of period 4; while solutions of the recurrence relation corresponding
to go form 2 periodic orbits: one of period 1 and one of period 8. It is then clear
that no topological conjugacy can exist between (g1)* and (g.)* as (g1)* has
points with horizontal periods 1 and 4, whereas (g»)* has points with horizontal
periods 1 and 8.

We now give a more complicated example based on Example 1 of polynomials
g1 and go which have a common factor in £y such that (i) and (go)* are
topologically conjugate.

Example 3 Let fi; and fo be as in Example 1. Let h = fifa+Y, g1 = hf1
and g = hf;. We will then establish that (g;)* and (g;)* are topologically
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conjugate. We first note that A is irreducible: h is of height 1. If A is a product,
then it is a product of a polynomial of height 1 with a polynomial of height 0.
Clearly h has no factors which are polynomials in X alone so it is irreducible.

We also see that hef(h, f1) = hef(h, f2) = 1. The additional feature which will
be of importance for us is that 1 can be written as a linear combination of A and
f1 or of h and f, as follows: 1 = Y ~'h — Y ~1f; fo. We established in Theorem
2.4 that (g1)* = (f1)* + (h)* and (g2)* = (f2)* + (h)*. The above fact allows
us to deduce that these sums are direct sums as follows: If £ € (f1)-N(h)*, then
h€ =0 and f1£ = 0, so any L-linear combination of A and f; annihilates £ also.
In particular 1£ = 0.

We have shown that (g1)* = (f1)* @ (h)* and (g2)* = (f2)1 @ (h)*. Since we
showed in Example 1 that (f;)* and (f2)* are topologically conjugate, it follows
that (g;)1 and (g2)* are topologically conjugate.

Our next example shows that even if (f1)* and (f2)* are topologically conju-
gate, it need not follow that (hf;)* and (hf,)* are topologically conjugate.

Example 4 Let f; and f, be as in Example 1. Let h =1+ X + X3+ Y. Asin
the previous example, we see that (f;)* N (k) = {0}. The same does not hold
for (f2h)*. The reader may check that in addition to the point consisting of all
0s, there are seven additional points in (f2)* N (h)*. These points are translates
of the following point:

0100111010
1001110100
0 011101001
0111010011
1110100111

By Theorem 6.1, we see that (hf;)* and (hf:)" are not topologically conjugate.

Example 5 Let hy = (1+ X + X3)(1+Y +Y3) and hy = (1 + X2+ X3)(1 +
Y2 4+ Y?3). We check that the necessary conditions for (h;)* and (h2)* to be
topologically conjugate are satisfied as follows: Condition 1 is clearly satisfied in
this case. Condition 2 is vacuous as there is no non-collinear part. To see that
Condition 3 is satisfied, we note that the periodic data for the two systems is the
same as the map F(§);; = £ 4, ; is a bijection between the two systems (not
shift-commuting) which leaves all periods of periodic points unaffected. (It may
in fact be verified that each of (1 + X + X3)1 N (1+Y + V3L and (1 + X2+
X3+ N{1+Y2+Y3)* have 10 periodic orbits with a 7 x 7 fundamental domain,
3 periodic orbits with a 7 x 1 fundamental domain and 1 fixed point.)

We are unable to determine as yet whether (hi)® and (hs)"’ are topologically
conjugate. One strategy would be to find a shift-commuting bijection between
the periodic points (the existence of such a bijection is guaranteed by the above
observations) and to attempt to extend this to a conjugacy of the whole system.
It seems however that this approach may not succeed as a result of Kim and
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Roush [5] gave an example of a permutation of a finite set of periodic points of
a full shift which cannot be extended to a shift-commuting bijection.

7. OPEN PROBLEMS AND FUTURE DIRECTIONS

We mention here three areas in the paper which appear to merit further at-
tention.

e We considered in Section 6 the case where (f) is not mixing. We found
necessary conditions for two such group shifts to be isomorphic. Are
they also sufficient? If not, is it possible to give a set of necessary and
sufficient conditions? Is it decidable whether two non-mixing group shifts
(f)* and (f')* are isomorphic? For a more concrete question, are (h;)*
and (hp)' in Example 5 topologically conjugate?

e In this paper, we have been working only with the two-dimensional case
of subgroups of K Z® _We note that Theorem 2.3 depends crucially on the
dimension. In the case where f is an irreducible polynomial in Lg, this
means that the only proper translation-invariant subgroups of (f)* are
finite. This condition is the irreducibility condition in [8] and it fails in
higher-dimensional systems. As a result, there is an essential difference
both in our results and in the results of Kitchens and Schmidt between
the case of two dimensions and the case of higher dimensions. We hope
to address the question of group shifts in dimensions greater than 2 in a
later paper.

e It would be interesting to know about the structure of the automorphism
group of a group shift in general: in particular, is it finitely generated?
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