PERCOLATION IN VORONOI TILINGS

P. BALISTER, B. BOLLOBAS, AND A. QUAS

ABSTRACT. We consider a percolation process on a random tiling of R? into Voronoi cells
based on points of a realization of a Poisson process. We prove the existence of a phase
transition as the proportion p of open cells is varied and provide relatively close upper and
lower bounds for the critical probability p..

1. INTRODUCTION

We consider a percolation process on a random tiling of R? (for d > 1) induced by a Poisson
process. Specifically, one takes a Poisson process on R? with density constant and equal
to 1. A realization of the process consists (almost surely) of a countably infinite subset of
R?. For a given realization, the points in it will be called Poisson points. Corresponding to
each Poisson point z, we construct its Voronoi cell which consists of those points of R¢ that
are closer to  than to any other Poisson point. We note that almost surely the realizations
of the Poisson process are discrete so that the Voronoi cells are convex open sets. Since there
are countably many points in a realization of the Poisson process, it is clear that the points
that are equidistant from two or more Poisson points have Lebesgue measure 0 so that the
Voronoi cells form a partition of R? up to sets of measure 0.

One can show that for almost every point of the Poisson process, the Voronoi cells are
bounded and have finitely many (d — 1)-dimensional faces. Two Voronoi cells are said to be
neighbours if they share a (d—1)-dimensional face. A collection of cells is said to be connected
if for any pair of cells, there is a path from one to the other consisting of neighbouring cells
that belong to the collection. Given any collection of cells, its connected components will
(as usual) be called clusters.

Given a parameter p € [0,1], we then define a percolation on the Voronoi cells as follows:
each cell is independently labelled as open with probability p and closed with probability
1 —p. The labelled collection of cells is said to percolate if there is an infinite cluster of open
cells. We call the labelled random division of R? into Voronoi cells the Voronoi percolation
process. It is a common situation when studying percolation that there exists a constant
pe € [0, 1] (the critical probability) so that for p < p,, the probability that there is percolation
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is 0, whereas for p > p., the probability that there is percolation is 1. In the case where
0 < p. < 1, the process is said to have a phase transition.

Straightforward monotonicity and independence arguments show that there exists a critical
probability. Indeed the event that there is percolation is a tail event in the relevant filtration
of g-algebras so that for a given parameter p, percolation occurs with probability 0 or 1. If
p' > p then a coupling argument shows that if there is percolation with probability 1 for
parameter p, then there is percolation with probability 1 for parameter p’. In order to show
that there is a phase transition, it is therefore sufficient to find a lower bound (a number
p_ > 0 such that the system with parameter p_ does not percolate) and an upper bound
(a number p, < 1 so that the system with parameter p, does percolate). In this case, of
course, one sees that p_ < p. < p,.

We are now ready to state the main theorem.

Theorem 1. The Voronoi percolation process in R® for d sufficiently large has a critical
probability p.(d) satisfying

274(9dlogd) ™ < p.(d) < C2-Wdlogd

for a constant C' independent of the dimension.

Two halves of the theorem (the upper and lower bounds) are proved in the next two sections.
The methods, while different, have a key feature in common. Namely, in each case, the proof
proceeds by comparing the Voronoi percolation process with an independent percolation pro-
cess on a lattice. To establish the lower bound, the Voronoi percolation process is compared
with a site percolation process in Z? that can be easily seen not to percolate, whereas to
establish the upper bound, the Voronoi percolation is compared with an oriented percolation
process in Z?, in which percolation has already been established. The key difficulty with an
approach of this type is to establish sufficient independence as it may be seen that in the
Voronoi percolation process, there necessarily exist arbitrarily large Voronoi cells and hence
the process has long-range dependence. In the proof below, we present a surprisingly simple
solution to this difficulty, which we hope will find application in other problems.

For related work, the reader is referred to work of Benjamini and Schramm [2] on conformal
invariance in dimensions 2 and 3, Freedman [3] on Voronoi percolation in the projective
plane, Penrose [4] on connectivity and minimum degree of geometric graphs and Vahidi-Asl
and Wierman [5, 6] on first passage Voronoi percolation in the plane.

2. THE LOWER BOUND

Starting from a Voronoi percolation process on R?, we introduce a site percolation process
on Z2, which we use to prove the absence of percolation in the original Voronoi process. The
72 process fails to have the usual independence between sites, but has instead a dependence
that is of finite range.
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To construct the site percolation process on Z?, we start off with a realization of the Voronoi
process and divide R? into cubes of side R. Each cube corresponds to a vertex in Z? and
two such cubes are adjacent if their closures intersect, which is equivalent to sites being
diagonally adjacent (||.||c-distance 1 apart) in Z<.

A cube C in R?¢ (or the corresponding vertex in Z¢) is said to be open if either

(1) there exists a point € C such that Bg/s(x) contains no point of the underlying
Poisson process; or

(2) there exists a curve 7 in Bg/6(C) such that v(0) € 0C, v(1) € 0Bgss(C), and (1)
belongs to an open Voronoi cell for all ¢ € [0, 1].

Lemma 2. The openness of a cube C' is determined by the restriction of the Poisson process
to BR/Q(C)

Proof. The cube C'is open if (1) holds or if (2’) holds, where (2’) is the condition that (1)
fails but (2) holds.

Clearly condition (1) is dependent on the restriction of the Poisson process to Bg/(C). It is
sufficient to show that (2’) is dependent on the restriction of the Poisson process to Bg/2(C).
Given that (1) fails, every point of Bg/s(C) is within R/3 of a point of the Poisson process.
The Voronoi cells restricted to Bg/6(C) are therefore determined by the restriction of the

Poisson process to Br/s(C). This information is sufficient to determine whether or not (2’)
holds. O

It follows from Lemma 2 that openness of two sites in the Z? process are independent provided
that they are not (diagonally) adjacent.

Lemma 3. The probability of percolation in the Z¢ process defined above is bounded below
by the probability of percolation in the Voronoi process.

Proof. Given a configuration of Voronoi cells with an infinite open cluster, there is an un-
bounded curve 7 in R? such that 7(t) lies in the cluster for all t. If y(t) € C N C’, then C
and C’ are adjacent. Also if y(t) € C then C satisfies condition (2) above so it is open in
the Z2 process. The lemma follows. 0

Hence to show that the Voronoi process does not percolate, it is sufficient to show that the
site process does not percolate.

Lemma 4. Let p be the probability that a given cube of side R is open. If p < 97¢ then there
is almost surely no percolation in the 7Z¢ process and hence no percolation in the Voronoi
Process.

Proof. Let Z, be the number of cubes accessible from the origin in n steps but not in n — 1
steps. We bound Z,, above stochastically by a process Y,, by including each time not only
the open cube, but also its 3¢ — 1 neighbors.
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Accordingly, we see that Yj is 3¢ with probability p and 0 with probability 1 — p. Clearly,

34y,

Yoy < Z 34X,

i=1
where the X; are independent identically distributed 0—1 random variables with X; = 1 with
probability p. Taking expectations, we see EY,; < 9% EY,. It follows the probability that
there is a path of length n decays (exponentially) to 0 and hence there is almost surely no
percolation in the Z? process. (l

We now turn to showing that the probability that a cube is open is less than 97%. Let the
density of open points of the Poisson process be given by p = 27¢/(9dlogd). Let ry be the
radius of a d-dimensional sphere of volume 1 (so that ry = (d/2)!Y/¢/\/m ~ \/d/2me). Set
R = Tddl'l.

Lemma 5. Let Ay be the event that each point in Bgr/2(C) has a point of the Poisson process
within rq¢(4dlog d)/?. Then P(A$) = o(979).

Proof. Let x € Bg/2(C). The probability that = has no point of the Poisson process within
ra(3dlogd)'/¢ is given by exp(—3dlogd) = d=3¢. Let ¢ = r4((4dlogd)'/? — (3dlogd)/¢) =
O(1/+/d). Now take an e-net of points x covering Bg/»(C) (this can be achieved with at
most (2R/(e/+v/d) + 1) points). The probability that there is a point of the e-net with no
point of the Poisson process within r4(3dlogd)/¢ is bounded above by (2Rv/d/e+1)%d—3¢ =
O(d2.6d73)d — 0(97‘1).

Given that each point of the e-net has a point within 74(3d log d)'/¢, it follows that each point
of Bg/2(C) has a point within r4(3dlogd)'/¢ + € = ry(4dlogd)'/?. Hence P(A$) = o(9 %) as
required. 0

We observe that given that A; holds, each Voronoi cell has radius bounded above by
ra(4dlogd)/¢ and hence diameter bounded above by 2r4(4dlogd)'/¢. We also note that
rq(4dlogd)/? = o(R) as d — oo so condition (1) holds with probability o(9~¢).

Lemma 6. Let Ay be the event that each Voronoi cell in Brjg(C) has at most 24(8dlog d)

neighbors and Let Az be the event that there are at most 2(2R)? Voronoi cells intersecting
O0C. Then P(AS) = 0(97¢9) and P(AS) = o(97%).

Proof. Since we showed above that P(AS) = 0(979), it is enough to show that P(A4S N A;)
and P(A5 N A;) are both 0(97¢). From the above observation, it follows that if z € Bg/6(C)
is a point of the Poisson process, all points of the Poisson process whose Voronoi cells are
adjacent to the Voronoi cell of z are at a distance at most 274(4dlogd)/¢ from z. We see
that the number of adjacent Voronoi cells is bounded above by the number of points of
the Poisson process in a 2r4(4dlogd)'/? neighborhood of z. Letting A = 2¢(4dlogd), the
probability that the number of neighbors is greater than 2A is bounded above by P(X > 2A)
where X is a Poisson random variable with mean A. A straightforward calculation shows
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that P(X > 2A) < 2P(X = [2A]) < 2(e/4)* < 2(e/4)?". Accordingly for each point of
the Poisson process, the probability that it has more than 2A neighbors is bounded above
by 2(e/4)?". By a similar argument there are at most 2(2R)? points of the Poisson process
in Bg/(C) with probability at least 1 — 2(e/4)2®? 5o the probability that A; holds and
some cell has more than 2A neighbors is bounded above by 2(e/4)2B? + 4(2R)4(e/4)%". Tt
follows that P(AS N A;) = 0(97%) and hence P(A4S5) = 0(97¢). Similarly, if A; holds then the

number of cells meeting OC is bounded by the number of points of the Poisson process inside
Bp/2(C), which is bounded by 2(2R)? with probability 1 — o(9%). O

Lemma 7. Let A be the event that the cube C of side R is open. Then P(A) = 0o(979).

Proof. By the previous two lemmas, we may restrict our attention to configurations belonging
to A; N Ay N As. Since by the earlier observation in this case all cells have diameter bounded
above by 2r4(4dlog d)'/¢, Condition (1) fails automatically. For condition (2) to hold, there
needs to be a path of open Voronoi cells consisting of at least (R/6)/(2rs(4dlogd)'/?) tiles.
We estimate that (R/6)/(2rq(4dlogd)*/?) > d*!/30. It follows that P(4) is bounded above
by the probability that there exists a path of open tiles of length d'-! /30 starting from 9C.

Writing F for the expected value of the number of open paths of length d'-!/30 times the
indicator function of A; N Ay N As,

24(8dlogd)\* '

E<202R)* | ——=—+ = O(d*(8/9)*"/3%) = 0(97%).

< 2R (Gaorieg ) (@#4(8/9)""/) = of9)

Since the expected value is an upper bound for the probability of existence, we see that
P(AN AN Ay N A;z) = 0(97%) and hence P(A) = 0(97%) as required. O

3. THE UPPER BOUND

We shall bound the probability of the Voronoi process percolating by comparing it with an
oriented percolation process in N?. However, to get the necessary independence, we shall use
three dimensions in the construction.

Assume that d > 3 and fix three of the dimensions. For S,,S,, S, C R, denote by Lg, s, s,
the ‘cylinder’ set of points with first coordinate lying in S,, second coordinate lying in S,,
third coordinate lying in S,, and all other coordinates unrestricted.

Lemma 8. Assume d is sufficiently large. Then the volume of the sphere B,,(0) lying in
the region Liss.1),[0,00),0,00) 18 bounded below by some constant ¢ > 0 independently of d and
0 for all § with 0 < § < 1.

Proof. The volume of the specified region is given exactly by

1 5+1
L G o0 g
§
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Since § + 1 < 2 we can bound this below by

1 _
(3= /3 )0

However r2 ~ d/2me, so this is bounded below by (1 — O(1/d))~"/? which is bounded
below by a constant ¢ > 0 independently of d and §. O

Lemma 9. Assume the density of open points is p and let 0 < n < 1. Let P be a fixed point
i B = L[—ZU’O)’[OATd)’[OAT'd) U L[0’47‘d)’[—277a0)’[0,47'd) U L[0,47‘d),[0,47‘d),[—27h0)' Then with probabzlzty at
least 1 — [4rq/n] exp(—2nipc) there is a sequence Py, ..., P, of points with n < [4rq/n],
Py = P, P; an open point of the process lying in Ligg.,) 0,4rs)[04rq) fOr 0 < i < n, and
Py € Ligry—25,8r4),[0,4r4),/0,4ra), With d(P;, Piy1) < 2nrg fori=0,...,n — 1.

Proof. Assume first that P € L{_2;0),(0,4ry),[0,4ry)- Using Lemma 8 with § = 1 we see that
with probability 1 — exp(—29n%pc) there is an open point within distance 2nry of P with
z-coordinate between 2n and 47 more than for P and the changes in y and z coordinate of
the right signs to keep these coordinates between 0 and 4r;. Repeating this process at most
[4r4/1]—1 times we get a point inside Lig,,—an,sry),/0,4r4),0,4ro)- BY taking one more point using
a suitable choice of § in Lemma 8 if necessary, we can get the last point with xz-coordinate in
[8r4 — 2n,8ry) and we are done. The probability of failure is at most n exp(—29n¢pc) where
n < [4rg/n]. For the cases when P € Ligar,),[~21,0),00,4ra) OF L[04ry),[0,4r4),[—20,0) We take the
first step in the y or z direction and the remaining steps in the z direction as above. O

Lemma 10. There exists a constant C such that for p > C 2-%/d logd the Voronoi process
with open point density p has infinite clusters with probability 1.

Proof. We now construct a site percolation in N? which has less chance of percolating than
the original Voronoi percolation. Each vertex (x,y) € N? will correspond to a region

Byy,» = B+ (8rqz,8rqy’,8rq7’)
= L[Srdz—2n,81’dz),[STdy’,8rdy’+41’d),[81’dz’,Ssz’+4'rd)
UL[Srdz,Srdm+4rd),[8rdy’—2n,8rdy’),[8rdz’,8rdz’+4rd)
UL[Srdz,Srdx+4rd),[81‘dy’,8rdy’+4'rd),[81'dz’ —2n,8r42")
where B is the region defined in the statement of Lemma 9 and ¢/ = ¢/(z,y), 2’ = 2/(z,y) are

integers to be determined with ¢’ + 2’ = y. An edge from (z,y) to (z + 1,y) will correspond
to the region

Lw+,y’,z’ = L[8rdz,8rd:v+8rd),[87'dy’,8rdy’+4rd),[8rdz’,8rdz’+4rd)-
An edge from (z,y) to (z,y + 1) will correspond to one of the regions

Lx,y"*‘,z' — L[Srdz,Srdz—i—ler),[STdy’,81'dy’+8rd),[8rdz’,8rdz’+4rd)
or

Lfﬂ,y' 2t = L[Brdm787‘dw+47"d)7[Srdy’,87‘dy’+4rd),[8rdz’,8rdz'+8rd) .
We shall call these regions links. Note that regardless of the choices of 4 or 2/, the links
corresponding to non-incident edges in N? are disjoint, separated by a distance of at least
4rq and B, . borders each of the links Lg+ 4 o1, Ly o+ 1, and L

VL N
1:7y 7Z
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The idea is to identify sites (z,y) of N? with regions of the form B, , .- and bonds of N? with
links joining these regions. A bond will be open if we can construct a sequence of points P;
along the corresponding link as in Lemma 9. We shall choose v/ = ¢/(z,y) and 2’ = 2/(z,y)
so as to ensure that certain links are well separated. This will give us independence of the
corresponding bonds in N2,

We now construct the process on N? by induction on the level k =z +y. Fork=z =y =0,
set ' =y’ = 0 and pick an open point Py of the Poisson process in By . Since this region
has infinite volume for d > 3, this will be possible with probability 1. Now suppose for all z, y
with  + y = k we have defined y/(z,y) and 2/(z,y) and open points of the Poisson process
P,y € By, . Declare the edge (z,y) to (z 4+ 1,y) in N? to be open if there is a sequence of
points P, , = Py, Py,..., P, in Lg+ v as in Lemma 9 and the spheres with diameters P; P
do not contain any closed points of the Poisson process for : = 0,...,n — 1. If B, is itself an
open point of the Poisson process then this last condition ensures that any point on the line
joining P; to Py, is closer to an open point than a closed point, and hence this line passes
through open Voronoi cells only. Thus the Voronoi cells centered on Py and P, lie in the same
connected component of open cells and P, € By11,,,». Moreover, the event that this edge is
open depends only on the restriction of the Poisson process to By, (Ly+ 4 .1) U By, (PoPr).
Define d,, = 1 if y'(x — 1,y + 1) = ¥/(,y), otherwise define d,, = 0. Declare the edge from
(z,y) to (x,y + 1) open if we can find a similar sequence of points in L, -+ ./ (if 0py = 1)
or L, .+ (if 85, = 0). The choice of d,, ensures that the link used does not meet the link
Lz 1)+ y/(z—1,y+1),2/(z—1,y+1)- Hence the links used corresponding to distinct (z,y) at level k
are always separated by a distance of at least 4ry > 2nr;.

The openness of the edges in N? is dependent on the choice of the P,, which will depend
on the open points of the Poisson process in the links at previous levels, and on the closed
points in the nrg-neighborhoods of these links. Conditional on these choices two edges from
level k to level k+ 1 are however independent provided they start from different points (z, y)
at level k. This is due to the fact that the corresponding regions they depend on are disjoint.

Now choose P,, and y' and 2’ at level k + 1 according to the following rules.

e If (x —1,y) € N? is accessible from the origin in the N? percolation process and if the
edge (z — 1,y) to (z,y) is open, choose P, , to be the P, of the sequence of points
chosen for this edge above. Define y'(z,y) = ¢'(z — 1,y) and 2/'(z,y) = 2'(x — 1,y)
so that P, , € B, 1.

e Otherwise, if (z,y — 1) is accessible from the origin and if the edge (z,y — 1) to
(z,y) is open, choose P, , to be the P, of the sequence of points chosen for this edge.
Define ¢/'(z,y) = ¢/ (z,y — 1) + 0zy—1 and 2'(z,y) = 2'(z,y — 1) + 1 — &1 so that
Pw,y S Bz,y’,z’-

e If neither of the above conditions holds, choose P, ,, y'(z,y), and 2/(z,y) arbitrarily
so that P, , € B, . is an open point of the Poisson process and y' + 2’ = y.

It is clear that if the N2 process percolates then the Voronoi process also percolates since we
can join up the sequences of points Py,..., P, from each edge in an infinite path in N? to
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get a sequence of open connected Voronoi cells. It remains to show that the N? process can
be compared with an independent process which we know does percolate.

In the N? process the edges from (x,y) to (r + 1,y) and (z,y + 1) are both open with
conditional probability at least 1 — 2[4ry/n](exp(—29n¢pc) + n?) regardless of the state of
the edges at previous levels. Here n? bounds the probability of a closed point lying in a
sphere with diameter P;P; ;.

The edges from level k to k + 1 are independent from distinct starting points, so the whole
process dominates an oriented site percolation with sites open independently with probability
p=1—2[4ry/n](exp(—2%n%pc) + n¢). It is known [1] that there exists a critical probability
pe < 0.7491 for this process, above which the origin lies in an infinite cluster with positive
probability. However, this implies that Py is in an infinite cluster of open Voronoi cells
with positive probability. Since the set of configurations with an infinite open cluster is
shift-invariant, the Ergodic theorem implies that there is almost surely some infinite open
cluster. It therefore remains to find values of p for which p > p..

Define 1 by % = (1 —p.)/(32r4) < 1. Then for large d, 2[4r4/n] < 16r; and p > p. provided
exp(—29npc) < n¢. This holds provided

p> 2741 —p.) e 32rg1og((32r4) /(1 — pe)).

Since rq ~ y/d/2me this holds provided
p>C27%dlogd

for some constant C' > 0 independent of d. O

REFERENCES

[1] P. Balister, B. Bollobés, and A. Stacey. Improved upper bounds for the critical probability of oriented
percolation in two dimensions. Random Structures and Algorithms, 4:573-589, 1994.

[2] I. Benjamini and O. Schramm. Conformal invariance of Voronoi percolation. Comm. Math. Phys.,
197(1):75-107, 1998.

[3] M. H. Freedman. Percolation on the projective plane. Math. Res. Lett., 4(6):889-894, 1997.

[4] M. D. Penrose. On k-connectivity for a geometric random graph. Random Structures Algorithms,
15(2):145-164, 1999.

[5] M. Q. Vahidi-Asl and J. C. Wierman. First-passage percolation on the Voronof tessellation and Delaunay
triangulation. In Random graphs ’87 (Poznan, 1987), pages 341-359. Wiley, Chichester, 1990.

[6] M. Q. Vahidi-Asl and J. C. Wierman. Upper and lower bounds for the route length of first-passage
percolation in Voronoi tessellations. Bull. Iranian Math. Soc., 19(1):15-28, 1993.

(P. Balister and A. Quas) DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEM-
pHIS, TN 38152-3240



PERCOLATION IN VORONOI TILINGS 9

(B. Bollobds) DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF MEMPHIS, MEMPHIS, TN
38152-3240 AND TRINITY COLLEGE, CAMBRIDGE

E-mail address, P. Balister: balistep@msci.memphis.edu
E-mail address, B. Bollobas: bollobas@msci.memphis.edu

E-mail address, A. Quas: aquas@memphis.edu



