ENTROPY GAPS AND LOCALLY MAXIMAL ENTROPY
IN 7¢ SUBSHIFTS
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ABSTRACT. In this paper we study the behaviour of the entropy function
of higher dimensional shifts of finite type. We construct a topologically
mixing 7 shift of finite type whose ergodic invariant measures are con-
nected in the d topology and whose entropy function has a strictly local
maximum. We also construct a topologically mixing Z? shift of finite
type X with the property that there is a uniform gap between the topo-
logical entropy of X and the topological entropy of any subshift of X
with stronger mixing properties. Our examples illustrate the necessity
of strong topological mixing hypotheses in existing higher dimensional

representation and embedding theorems.

1. INTRODUCTION

It is well known that higher dimensional symbolic dynamical systems are
much more complicated than their one-dimensional counterparts. Therefore
it is of interest to understand which particular families of higher dimensional
systems have behaviour and properties similar to the one-dimensional sub-
shifts. Here we focus on one specific property that all one dimensional topo-
logically mixing shifts of finite type (SFT) have: that of being a universal
model in both the measure theoretic and topological categories.

We say that a Z¢ SFT Y is a universal model in the measure theoretic
category if given any ergodic non-atomic Z% action (X, u, T) whose measure
theoretic entropy is strictly less than the topological entropy of Y, there is a
shift invariant measure v on Y such that (Y, v, S) is measurably isomorphic
to (X, u,T). In the topological category we say Y is a universal model if

given any SFT X whose topological entropy is strictly less than that of Y
1



2 ANTHONY QUAS AND AYSE A. SAHIN

and whose periodic points can be embedded into the periodic points of Y is
a factor of Y.

For d = 1 Krieger has shown that topologically mixing SFT are universal
models in both categories [5],[6]. In higher dimensions [10] Robinson and
Sahin show that if Y satisfies a strong topological mixing property called the
uniform filling property (UFP), then it is a universal model in the measure
theoretic category. In [7] Lightwood has shown that for d = 2 a SFT Y
is a topological universal model if it is topologically mixing and satisfies
an extension property called square filling. Together these properties imply
that the SF'T has the UFP.

The question we address in this paper is the following: how far can you
weaken the mixing property of the SFT and still get a universal model?
In particular, for the topological category, one can ask the following ques-
tion (originally posed to us by M. Boyle). Let h(Y') denote the topological
entropy of a shift space Y.

Suppose Y s a topologically mizing SFT. Given € > 0, does there exist a
sub-shift of finite type Y' C'Y with the UFP such that h(Y') > h(Y) — €?

We show that the answer is no and that topological mixing alone is not
sufficient for a higher dimensional SF'T to be a topological universal model.
Let M,(Y,S) denote the ergodic, shift invariant Borel probability measures
on Y and for v € M.(Y, S) denote the measure theoretic entropy of (Y, v, S)
by h,(Y). We construct a SFT called the checkerboard island shift X which

has positive entropy, is topologically mixing, does not have the UFP and:

Theorem 1.1. There is a number 0 < hg < h(X) such that if Y C X is a
sub-shift of finite type which has the UFP, then h(Y') < hg.

This theorem is not quite sufficient to provide an obstruction for a measure
theoretic result. In particular, it follows from our proof of Theorem 1.1 that
there are many high entropy measures in M.(X,S). On the other hand,

the following result shows that those measures correspond to a particular
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type of dynamical behaviour and thus X cannot be a universal model in the

measure theoretic category either.

Theorem 1.2. Let X be the checkerboard island shift. Then there is a
number 0 < hg < h(X) such that for any measure p € M(X,S), if (X, S, 1)

is weakly mizing, then h,(X) < hg.

We note that Theorem 1.2 contrasts strongly with results that one obtains
for SFT with stronger mixing properties. If Y has the UFP and dense
periodic points then Y satisfies the variational principle where the supremum
is taken over only measures that are weak mixing, or even K [9]. If Y satisfies
a stronger mixing condition, namely is strongly irreducible, one can drop the
requirement of dense periodic points and prove a variational principle using
Bernoulli measures alone [1].

Finally, in this paper we investigate the existence of strictly local maxima
for the entropy function of subshifts. Our motivation is the proof in [10]
which uses the Burton-Rothstein joinings machinery [2]. A crucial ingredient
in that argument is a Randomization Lemma. This requires that the entropy
function h : M(Y,S) — R given by h(r) = h,(Y) does not have a strictly
local maximum where M,(Y,S) is given the weak* topology. A natural
question to ask is if this can ever happen for a sub-shift Y.

In the one dimensional case it is not possible to have a strictly local
maximum of the entropy function if Y is a topologically mixing SFT. On
the other hand Haydn has shown that it is possible if Y is not required to
be of finite type [4]. In his examples the space of invariant ergodic measures
are disconnected in the weak* topology. Here we use similar techniques
to provide examples of Z¢ sub-shifts with disconnected ergodic invariant
measures and strictly local maxima for the entropy function, d > 2.

The next question then is whether a disconnected set of invariant mea-

sures is necessary for such a result, and we show that it is not. We construct
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examples exhibiting this behaviour in both Z and Z?. Perhaps more signif-
icant is that our higher dimensional example is a SFT.

The organization of the paper is as follows. In the first section we intro-
duce our notation and basic definitions. Section 3 contains the checkerboard
island example. In Section 4 we have the higher dimensional examples whose
entropy functions have strictly local maxima, but have disconnected mea-
sure spaces. Finally in Section 5 we have the one dimensional sub-shift and
higher dimensional SFT with connected measures but local maxima for their

entropy functions.

2. NOTATION AND BASIC DEFINITIONS

Let A be a finite alphabet and let S = {Sz}5c74 on AZ? denote the usual
shift action. If Y is a closed and shift invariant subset of A%, we call (Y, )
a sub-shift or shift space.

Given a sub-shift (Y, S), a subset R C Z%, and y € Y we denote the
symbols appearing in the locations determined by R in y by y[R]. We
call a € AR a configuration from the shift Y if there is y € Y such that
y[R] = a. For ¥ = (v1,...,vq) € Z%, we let ||| = max|v;|. For subsets
Ry and Ry of Z% we set d(R1, R2) = infyeg, ger, ||V — @||. Finally, we let
B,={7€Z%:0<wv; <n}.

We call Y a shift of finite type (SFT) if there exist s € N and a finite
collection of blocks F C APs such that y € Y if and only if y[Bs + v] ¢ F
for all ¥ € Z4.

There are a variety of filling conditions that have already been discussed
in the literature for Z¢ shifts of finite type. To avoid any confusion we

explicitly state the definitions of the conditions we will be using here.

Definition 2.1. A shift space (Y,S) is topologically mizing if for all finite
subsets Ry, Ry C 7%, there exists an £ > 0 such that for all ¥ € Z* such that
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d(R1, Ry + ¥) > ¥, for all y1,y2 € Y there exists a point y €Y such that
y[Ri] =wp[R1]  and  y[Ro+ 0] = yo[R2 + 7]

Definition 2.2. A shift space (Y, S) is strongly irreducible (SI) if there ezists
I > 0 such that if Ry, Ry C 7% are finite subsets such that d(Ry, Rg) > | then
for all y1,y2 € Y there is a point y € Y such that

y[Ri] =wn[R1]  and  y[Re] = yo[Ral.

Definition 2.3. A SFT (Y, S) has the uniform filling property (UFP) with
filling length | > 0 if for all points y1,y2 € Y and all rectangles R C 7% there
is a point y € Y such that

y[Rl =wi[R]  and  y[Bi(R)°] = ya2[By(R)],
where Bj(R) is the || - ||co neighborhood of R of size l.

Topological mixing is the weakest of the three properties. In particular,
there are non-trivial shifts of finite type (i.e. shifts not consisting of a single
fixed point) that are topologically mixing but have topological entropy zero.
On the other hand non-trivial shifts of finite type with the UFP necessarily
have positive entropy. It is clear that if a SFT is SI then it also has the
UFP. While all known examples of shifts with the UFP are also SI, it is not
clear whether the implication holds in general.

We shall consider two different topologies on M(Y, S). One is the classi-
cal weak* topology, and the other is the d topology. To define the d metric
we let P = {p, : a € A} denote the time zero partition of Y and P; and P,
the partitions on Y x Y whose atoms are of the form {p, x Y : a € A} and
{Y X p, : a € A} respectively. Then for u,v € M.(Y,S) we set

d(p,v) = inf y(P1AP3)
0!

where the infimum is taken over all joinings of (Y, u,S) and (Y,v,S). The
d topology is stronger than the weak* topology (cf [11]). It follows that d

connectedness implies weak* connectedness.
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We shall say that a measure p € M.(Y,S) is a strictly local maximum
of the entropy function if there exists a weak*-neighbourhood O of y in
M(Y, S) such that h,(Y) < h,(Y) for every v € O and there exists a
B € Mc(Y,S) with hy(Y) > hy(Y).

3. THE CHECKERBOARD ISLAND SYSTEM

We start with an alphabet A consisting of the following symbols:
ANHNANBEENL R Z O

FIGURE 1. The alphabet of the sub-shift

We first obtain a Z? SFT X by letting the set of allowable 2 x 2 configura-
tions be exactly those contained in the configuration shown below in Figure

2.

NENENEEE A\ A 7177
NN ININ AN Z 77 7] 7
N EYZEB DN
NEE A7
s~ = =\|7|~ NEED 777
N —{=\|~ NN 77
~ == | ==+ ~ 7
<< -~ = =
7 N= = == < —~
2|7 N= = /IN[\ v N
N NEE AENINZAR
AEEENNNINITZAREE AN NS
A2 NGNS
A NNEEEE

FIGURE 2. A typical configuration

We call the checkerboard regions islands. From the legal 2 x 2 configu-
rations, the reader will see that if a square has a horizontal and a vertical
neighbour that are shaded checkerboard symbols, then the square itself is
forced to contain a checkerboard symbol. From this, it follows that any con-
nected patch of checkerboard symbols is forced to to be rectangular (possibly
with one or more infinite sides). Since the top left and bottom right corners

(if they exist) are forced to be light grey, while the top right and bottom
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left corners are forced to be dark grey, we see that any finite length edge of
an island is forced to have even length.

We claim that each checkerboard island with finite length edges is forced
to have a neighbourhood consisting of arrows and lines in the particular
arrangement that appears in Figure 2. As an illustration, we show in the
case of a 6 X 6 checkerboard how the rules force the neighbourhood of the
island to be as shown above.

Given that this is the full extent of the checkerboard region, the adjacency
rules force a northeast diagonal line to be placed in the square above the top
left corner. The square northwest of the top left corner is forced to contain
a northwest arrow. This is repeated at the other corners, with the directions
modified appropriately. It is then easy to check that the placement of the
corner diagonal lines and arrows forces the extended configuration on an

8 x 8 region to be the one shown below in Figure 3:

NN AV N7

MEATATE
ARARAR]

AINLELY L LY LS

FIGURE 3. 8 x 8 region forced by a 6 x 6 checkerboard

The arrows and lines now force the placement of unique arrows and lines
in their neighbouring locations, finally extending the checkerboard to the
configuration on the 12 x 12 region to be as shown below in Figure 4.

Finally, next to the places where the diagonal lines meet, the allowed con-
figurations force blank symbols to be placed. This then propagates around
the shape forcing a collar of blank symbols. The final configuration is shown
below in Figure 5.

We call the above forced neighbourhood the shadow of the island, and we
note that even though the shift is of finite type, the adjacency rules force the

shadow size to grow linearly in the dimension of the checkerboard island. A
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NEEER A\ A2~
NN YN NN 7 7] 7] 7
NN IS AR N 7] 7] 7]
NE 7|7
Nz = =N
< ==
N = BN
N3 N
AN [ [y NS
REEENNTINZENRE
AVaaNaN; NENEE

FIGURE 4. 12 x 12 region forced by a 6 x 6 checkerboard

NENER FarArarar;
NNIN NN VN2 7] 7] 7
NNV M AN 7 2] 7
NE 7|7
~ = =\|7
— = ==
7 NJ= L N
an: N
AEENNINNNZERE
AEEENNINZANRE
AVaVaava NERNEE

FIGURE 5. 14 x 14 region forced by a 6 x 6 checkerboard

finite configuration a from X is called a safe configuration if all the islands
occurring in a have the property that their shadows are also contained in a.

Since we require X to be a sub-shift it also contains the limit of se-
quences of configurations in X with larger and larger checkerboards. These
are configurations which contain infinite checkerboard islands. There are
various types of these with one or both of the dimensions being infinite
(where this can mean either singly- or doubly-infinite). We note that each of
these infinite checkerboards with the exception of the finite by singly-infinite
checkerboard determines the entire configuration. Two such configurations
are schematically illustrated in Figure 6. Note that the shadow of the first
fills a half plane, whereas the shadow of the second fills the entire plane. We

observe for future reference that the maximum number of infinite islands in
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FIGURE 6. Two configurations containing infinite checkerboards

a single point of X is two (as any greater number would necessarily have
the property that their shadows overlap).
For notational convenience we let Z denote those elements of X which

contain an infinite island, and F denote the complement of Z.
Lemma 3.1. X is topologically mizing.

Proof. The result follows from two observations. If R C Z¢ is finite, then
there is a finite set R D R such that for all r1 € X, there exists a x9 € F
such that 21[R] = z2[R] and z2[R] is a safe configuration.

Given two safe configurations a € A®1 and b € A®2 from X it is clear
that if ¥ € Z2¢ is such that Ry N (R + ¥) = 0, then there is € X with
z[R1] = a and z[Ry + 7] = b.

[l

We next extend the SFT by replacing the light checkerboard symbol with
200 distinct light checkerboard symbols and the dark checkerboard sym-
bol similarly. The adjacency restrictions remain as before, except now the
checkerboards alternate between light and dark symbols each of which may
taken from any one of the 200 symbols of the respective color. We call the
new system X the checkerboard island system.

Let C C X denote the sub-shift of X consisting of the two infinite checker-
board configurations covering the entire plane, and let C C X be the con-
figurations obtained by the various colorings of the two configurations in C.

The proofs of both Theorem 1.1 and 1.2 rely on the following lemma.
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Lemma 3.2. h(X) = log 200.

Proof. We note that C is a sub-shift of X with topological entropy log 200.
Thus it follows that h(X) > log 200.

If we can prove that h,(X) < log 200, for every ergodic v € M.(X,S),
then the usual variational principle will give h(X) < log 200.

Given such a measure v, note that since the set of configurations C is
a shift invariant set v(C) is either 0 or 1. If ¥(C) = 1 then since h(C) =
log 200, by the usual variational principle we have h,(X) < log 200.

Suppose now that v(C) = 0. Letting A be the event that the origin is at
the corner of an infinite island, we see that this event occurs at most finitely
many times in any point of X. Hence, by the Poincaré Recurrence Theorem
we have v(A) = 0. It follows that v(Z) = 0.

Then for v a.e. configuration Z € X the density of the checkerboard
symbols is at most % To see this note that any checkerboard island occurring
in Z is accompanied by its shadow, which occupies at least as many cells as
the island itself.

Let P denote the time zero partition on X. Define < to be the lexico-
graphic ordering on Z? and set B =\/;_5S ~Y(P). We note that for 7 € X,
the symbols occurring in Z at locations preceding the origin horizontally and
vertically determine whether Z[0] is a checkerboard symbol or not. If it is a
checkerboard symbol then I,,(P|B)(Z) < log 200. If not, then it follows from
the size of the alphabet of X that I, (P|B)(Z) < log 13. Hence integrating

the information function we have

— 1
(1) hy(X) = /I,,(P|B)(E) dv(T) <log13 + 3 log 200 < log 200.
O

As a corollary of the above proof we have the following key proposition.
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Proposition 3.3. There ezists hog < h(X) such that if v € Mc(X,S) and

v(C) =0 then h,(X) < hyp.

Proof. Set hg = %log 200 + log 13, and the result follows from equation (1)

in the proof of Lemma 3.2 above. U
We can now prove both Theorems 1.1 and 1.2.

Proof. (of Theorem 1.1) Suppose Y is a sub-shift of finite type of X that
satisfies the UFP with filling length [. Suppose that there is a point y € Y
which contains a checkerboard island with at least one of its side lengths
r > 2l. Then any checkerboard configuration of shape s = {(0,n) : 0 <
n < r — 1} is a configuration from Y. Let a be one such configuration and
place two copies of a, one in location Ry = 0 + s and the other in location
Ry = (21 4+ 1,0) + s. Since a is a configuration from Y and the copies are
placed at a distance 2! away we can use the UFP to conclude that there
exists y € Y such that y[R;] = a and y[Ry] = a.

On the other hand, since Ry and Rj are in opposite parity locations, each
checkerboard configuration must be part of a safe configuration in y. By
construction, however, the shadows in the safe configuration are of width at
least 5 > 1, so the shadows of the two safe regions must intersect. But then
y cannot be in X.

Thus for any sub-shift of finite type Y of X with the UFP, if u € M(Y,S)
then p(C) = 0. Then by Proposition 3.3 we have h,(Y) = hy(X) < ho <
h(X). O

Proof. (of Theorem 1.2).

Suppose that v € M(X, S) is a weak mixing measure. Since v is ergodic
v(C) is either 0 or 1. If the former holds, the result follows by Proposition
3.3. If the latter holds we use the underlying checkerboard structure of the

configurations in C to define the function
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NNEEEER A\A| A A2~
SINNINN VPN Z 7] 7 7]~
NINN NV VIEN 2 7| 7] ~ NEE A\~
NEE A7~ NNZEIEWNY
NNZE N7~ ~ 2
N == ~ =N/~ < —~
<< i~ = =
< << == / N
/== — =\ ANy N
77N~ — NN A NEE
A NENE
AN IS NN Y
A2 DN N IS N Y
aVaravavans NSRS

FIGURE 7. System with two measures of maximal entropy

) —1 if y[0] is a light checkerboard symbol
y =

1 otherwise

which is an eigenfunction for (X, S,v) with eigenvalue (—1,—1). This con-

tradicts our weak mixing assumption. [l

We note that by changing the system so that instead of checkerboards,
each of the central rectangles consists of symbols of a single shade of grey
(either light or dark grey), one recovers a mixing system with exactly two er-
godic measures of maximal entropy. This is illustrated in Figure 7. Although
it is not strongly irreducible, the example seems to us to be somewhat in

the spirit of the example of Burton and Steif [3].

4. LOCAL MAXIMA FOR THE ENTROPY FUNCTION I: DISCONNECTED

INVARIANT MEASURES

Here we consider examples with alphabet
A= {_n*a_nf + 17 7_17071727"' ,’I’L+}

with n_,ny € Nand n_ < ny. We denote the subset of A consisting of neg-
ative symbols only by A_ and the positive symbols only by A . Informally,

our idea is to construct subshifts whose configurations consist of rectangles
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of only positive or negative symbols in a sea of 0’s. We obtain a family
of sub-shifts by varying the distance regions of signed integers have to be
separated from one another. We use 0 as a neutral symbol to separate such
regions. The details are given below.

For R C 7% welet OR = (Ugc(_1,11a R+7)\R. Fory € A% and R = By+7
for some k € N and © € Z? we say y[R] is a negative island if y[R] C A® and
y[OR] = {0}9F. A positive island is defined similarly.

Given a function f : N> — N, we define the subshift (Y7, S) in the follow-
ing way. A point y € A%’ is in Yy if each negative (positive) symbol belongs
to a negative (positive) island and for any pair of islands y[R1], y[Ra] we

have

d(R1, Ry) > f(r1,m2)

where R; = B,, + v; for v; € 7% and i = 1,2.

For a sub-shift Y from this family of examples, M.(Y,S) has two disjoint
subsets M} (Y, S) and M_ (Y, S), the measures concentrated only on (A+)Zd
and (A_)%" respectively. Since ((A4)%",S) is the full shift on ny symbols,
the entropy function has no strictly local maxima on M (Y,S). Further,
the measure puy which weights each positive symbol exactly by i is the
measure of maximal entropy on M7 (Y, S). Similarly for M_ (Y, S) and the
corresponding measure p—. In addition, hy, (Y) = log(ny) > log(n_) =
hu (Y). We write C;. for {y € Y: y[0] € Ay} and define C_ similarly.

We now show that whether p_ is a strictly local maximum for the entropy

function depends on the behaviour of the function f.

Proposition 4.1. Suppose f(m1,mg) = F(max(mi,m2)).
If h_m@ = 0 then M.(Y},S) is connected and p_ is not a strictly local

mazimum for the entropy function on Mc(Ys,S) in the weak® topology.

Proof. We first argue that the entropy function has no strictly local maxi-
mum. For a fixed m € N we define a measure vy, € Mc({+,—,0}%",S) in

the following way. Divide the integer lattice into translates of B,, separated
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by collars of width F(m) in both directions. Build a word z € {+, —, O}Zd
by placing 0’s in the collars separating the translates of B, and by placing
the symbol — in every row of B,,’s except every k* one, starting at the
origin. In every k** row place the symbol +. We let
1
Vm = Pl 1_;62135 S

where P C 7% is the fundamental domain of z. The measure v, is shift
invariant and ergodic.

We then construct p € M(Yy,S) by replacing each — symbol with an
independently chosen element of A_, and replacing each + symbol with an
independently chosen element of Ay. The symbol 0 remains as is. The

measure y will also be shift invariant and ergodic. Further we will have that

hu(Yy) = p(Cy)logny + p(C-)logn—
= pu(Cy)logng + (1 — p(Cy) — p(0)) log n—

=logn_ + u(Cy)(logny —logn_) — u(0)logn_.

Since u(0) < (M +1)?— 1 = O(F(m)/m), by choosing m large enough

m

we can guarantee that

hu(Ys) > logn_.

Since pu— and p can be joined perfectly on the regions inside the negative

squares, we have
- 1
d(u-, p) <  + O(F(m)/m)

Again, by choosing m and k large enough we can make this distance arbi-
trarily small. In particular, it is clear that p_ is not a measure of locally
maximal entropy.

We now argue that M. (YF, S) is connected in the d topology. First notice
that any d-neighbourhood of p_ and p, contains an ergodic measure y for

which £(0) > 0. We can construct such a measure using the technique used
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above, without alternating the sign of the symbols every kth row. It now
suffices to show that any p € M.(Ys,S) with the property that ;(0) > 0
can be continuously deformed in the d topology into the measure &g, the
point mass supported on the fixed point of all 0’s.

Given such a p, form the product measure ji = uXx M onY = Y; %[0, 1]22,
where A is the restriction of Lebesgue measure to the unit square. Define a
family of measurable maps ®, : ¥ — Ys by the following rule: ®,.((y,z)s)
is equal to 0 if yz is in an island y[B,, + 4] and max{z[w] : W € By} <,
and is yy otherwise. Note that this is a family of measurable maps which
gradually turn the islands into blocks of 0’s. Since A is Bernoulli and hence
weakly mixing, it follows that z is ergodic with respect to S x S on Y. Thus
pr = fio ®,. 71 is an ergodic measure on Y;.

We now let 9(r) = u,.. We can check that this function is d-continuous

by using the natural joining of p, and p, given by v(A x B) = i(®,~1(4)N

&, ~1(B)). It is clear that ¢(0) = u and (1) = do. O
Proposition 4.2. Ifli_m@ > 0 then M.(Y,S) is disconnected and p— is

a strictly local mazimum for the entropy function.

Proof. Let p € M,(Y,S) be such that u(0) > 0 and u(C_) > 0. There is

% > (. Thus any island of shape

a B > 0 such that for all m we have
B,, is surrounded by a collar of 0’s of width at least Sm. Using the ergodic

theorem we can then conclude that

(2) 1(0) > Bu(C-).

Suppose that p is in a weak*® neighbourhood of u_ so that u(C_) >
1/(1 + B). Suppose further that u(0) > 0. Then by (2) we must have
1(0) > /(14 B). This gives a contradiction as we have two disjoint sets
whose measures sum to more than 1.

This shows that all sufficiently small weak* neighbourhoods of p_ in
M(Ys,S) are entirely contained in M7 (Yy,S). Since p_ is the unique

measure of maximal entropy in M (Y,.S), we see that it is indeed a local
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maximum of the entropy function on M, (Y%, S). Clearly since 4 has higher

entropy, p_ is a strictly local maximum. ([l

5. LOCAL MAXIMA FOR THE ENTROPY FUNCTION II: CONNECTED

INVARIANT MEASURES

We have seen that there exist examples of mixing higher dimensional shift
spaces where the set of invariant measures is disconnected and the entropy
function has a strictly local maximum. In this section we show that it is
possible to have strictly local maxima of the entropy function even when the
invariant measures are connected in the d metric. In two dimensions it is

possible even when the shift is a mixing SFT.

5.1. The ribbon shift: a mixing two dimensional example of finite
type. To construct the ribbon shift X we use our usual alphabet and four

new symbols. Let A ={-n_,..., -1}, A, ={1,...,ny} with
(3) 2<n_< ny.

and set A= A_U A, U{—,\,1,"}. X will be a subshift of A%’

Informally, to define X we will use the symbols —,\, (1,\\) to con-
struct infinite horizontal (vertical) ribbons of constant height (width) in a
sea of negative symbols. The ribbons can bend using the N\, (X for vertical
ribbons). Each horizontal (vertical) ribbon will have a fixed but arbitrary
height (width). When a horizontal and vertical ribbon intersect they will
do so in a rectangular region full of positive symbols. In particular, ribbons
may not change direction in a region of positive symbols. An example of
a configuration from X is shown below in Figure 8. Note that the blank
spaces between ribbons are filled with negative symbols.

In spite of the fact that the ribbons are required to each keep a constant
height or width (which may be arbitrarily large) X is a shift of finite type.
We define X formally by specifying that all the allowable 2 X 2 configurations

are those which arise in the configuration shown in Figure 8. It is easy to
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T T1T171
LT EEREN
ML
TTTT
—f+[+]+ +HH[H[FHPN
—{F+]+ + [+ [+ [N
B v e r A
i DOUN
RS

FIGURE 8. Ribbon example

check that these rules force the horizontal (vertical) ribbons to be of constant
height (width) and to go in an essentially horizontal (vertical) direction. A
pair of same direction ribbons are separated from each other by at least a
distance of one. Each time a ribbon changes direction, it must stay in that
direction for at least one more step.

As in the checkerboard example, the positive symbols are forced by the
finite type rules to occur in rectangular patches. Any patch of positive
symbols is forced to be surrounded by by s on the top and bottom and —s
on the left and right.

Finally, there are exceptional configurations in which there is one or more
infinite block of positive or negative symbols, or one infinite ribbon (either
horizontal or vertical). These arise as limits of points with finite blocks of

positive and negative symbols.
Lemma 5.1. X is topologically mizing.

Proof. Fix a k > 0. We consider the problem of placing two configurations
on By in a single point of X. The obstruction to doing this is the positions
and dimensions of the horizontal and vertical ribbons leaving the boundaries
of the blocks. A pair of horizontal ribbons may not intersect unless they are
of the same width and similarly for vertical ribbons. So we need enough

room for the ribbons leaving the boundary of the first block to move out of
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the way to accommodate the ribbons leaving the second block. Note that
the horizontal ribbons have slope between 0 and —%, thus if ¥ € Z? is such
that ||7]| > 4k and z1,z2 € X, then there is a point z € X agreeing with
a = z1[Byg] and b = z9[By, + v]. This is illustrated below in Figure 9 O

FIGURE 9. The ribbon system is topologically mixing

We define two subsets of the alphabet A consisting of the symbols forming
horizontal and vertical ribbons respectively: H = AL U {—,\} and V =
AL U{1,\}. We define Cy tobe {z € X: z[0] € H} and define Cy similarly.
The sets C— and C are as defined above, the configurations in which the
origin is respectively negative and positive.

The following lemma is a technical result that we need in our argument.
Lemma 5.2. Let p € M(X,S). Then
(4) p(Cy) < §u(Cr)p(Cv).

In fact, a more careful argument can show that the factor of % is unnec-

essary but the weaker estimate is sufficient for our purposes.

Proof. We begin by arguing that if we let
1

= —(xou(@) +...+ Xy (8@ )

A(o,n)XCy (2)
then for py-a.e. x € X
(5) Awxey(z) = lim Agnxoy(z) = w(Ch).

Since S(®V) is a measure preserving transformation the above averages con-

verge for p-almost every x and clearly the limit A.xc, (z) is S (0:1)_invariant.
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Since |Ajgn X0 (T) — Ajo,n)XCx (800 g)| < 1 we have that A.xc, is also
S(1.9) invariant. It now follows by ergodicity that A,xc, is almost every-
where a constant. Integrating then shows that A.xc, () = u(Crx) almost
everywhere.

Arguing similarly we have that for a.e. x € X if we let

1
Amoyxe, (&) = = (xoy (@) + -+ Xy (S™0(@)))
then
(6) nh_)nc}o A(n,O)XCV (x) = :U‘(CV)'

To obtain the estimate in (4) we will count the proportion of positive
symbols that occur in z[B,] for typical points x € X. Recall that these
symbols must belong to the intersection of horizontal and vertical ribbons
intersecting inside z[B,]. It will thus suffice to count the possible number
of such intersections.

We note that for p-a.e. x € X given an € > 0 we can choose m(z) large
enough so that for all n > m we have A, 0)xcy (2) < (1 + €)u(Cy) and
AmyXxcy(®) < (1+€)u(Ch). Choose mg such that for z belonging to a set
of measure 1 —¢, m(z) < my. We fix such an = and an n > mg and consider
z[By).

Since the vertical ribbons can bend to the left, the vertical ribbons in z[By]
hit the 2 axis anywhere along 4, = {7 € 7Z?: 0 < v; < 3n/2}. Similarly,
horizontal ribbons hit the y axis on A, = {7 : v1 = 0,0 < v < 3n/2}. By
our choice of n, the number of points in x[A}] that are contained in vertical
ribbons is at most 324(Cy)(1+¢). Similarly, the number of points in z[A,]
that are contained in horizontal ribbons is at most 2 u(Cg)(1 + €).

Since the vertical ribbons have a constant width, and the horizontal rib-
bons have a constant height and must intersect in a rectangular region we see
that the set of points belonging both to a horizontal ribbon in z[B,] and to
a vertical ribbon in z[B,] is of cardinality at most 92 u(Cy ) u(Crr) (1 + €).
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Thus the number of positive symbols in z[B,] has the same upper bound
and since n is arbitrarily large and e is arbitrary, we see that (4) holds, as
required.

O

As before we let - and uy denote the maximal entropy Bernoulli mea-

sures on A_ and A, respectively.

Proposition 5.3. The measure p_ € M.(X,S) is a strictly local mazimum

for the entropy function on M.(X,S) with the weak* topology.

Proof. Let p € M((X,S) and let ¢ > 0 be arbitrary. Using the ergodic
theorem choose n such that for z belonging to a set of u measure at least

1 — ¢, we have

- (1 —€)u(Cy)n? < #{# € By, : 8%(z) € Cy'} < (1 + €)u(Cy)n?
(1 —€)u(Cr)n? < #{7 € B, : 8%(z) € Cxr} < (1 + €)u(Crr)n?

Also from Lemma 5.2 we can guarantee that
(8) #{7 € By, : 8%(z) € C1} < 3u(Cyv)u(Cr)n?.

Together (7) and (8) imply that for such a point z
#{V € By : §%(x) € C_} < (1—(1—€)u(Cv) —(1—€)u(Crr)+3u(Cy )u(Crr) ) .

We can now estimate h,(X) by counting the number of different config-
urations possible for Ugcp, S%(x) for the set of points z satisfying (7) and
(8).

We first consider the vertical ribbons. Since there are exactly two po-
sitions that a vertical ribbon can occupy in a row once its position in the
previous row is known, the number of configurations of the vertical ribbons
in z[B,] is bounded above by 2(T9#(OV)n* - Gimilarly, the total number of
configurations of the horizontal ribbons is less than 2(1+6x(Cr )n?

Putting this together and using the fact that € is arbitrary, we have
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hu(X) <logn— + 3u(Cv)u(Cr)logn_n4
— (u(Cv) + u(Cr))(logn— —log 2).

Note that if

3u(Cv)u(Ch) log(n—ny) < (u(Cv) + u(Cr))(logn— — log 2)

then h,(X) < logn_. Since n_ was assumed to be greater than 2, there
exists an 77 > 0 such that if 4(Cy’) < nand u(Cr) < n, then h,(X) <logn_.

The above argument shows that p_ is a local maximum for the entropy
function on M(X, S). Since clearly h, (X) > h,_(X) we have that p_ is

a strictly local maximum for the entropy function. O

We introduce some new terminology which will be useful in the following
argument. We call a measure y € M(X, S) horizontally well supported if it
is supported only on configurations with infinitely many horizontal ribbons.
We make a similar definition for vertically well supported measures. If a
measure is both horizontally and vertically well supported we call it well

supported.
Proposition 5.4. The space M(X, S) is connected in the d topology.

Proof. Arguing in a manner similar to Proposition 4.1 it is easy to see that
any measure in M_ (X, .S) can be continuously deformed into the measure
d_, the point mass on the fixed point consisting of all —1s. Similarly, any
measure u € M7 (X, S) can be deformed into d,, the measure supported on
the point consisting of all +1s.

In addition, any d neighbourhood of &, must contain a well supported
measure v. To construct such a measure let v, be the measure supported on
the periodic configurations in X where the horizontal (vertical) ribbons all
of height (width) k are regularly spaced (with a gap of say 2 between two

ribbons) and do not have any bends, and the intersection of a horizontal
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and a vertical ribbon is a region which containing only the symbol +1. As
k is allowed to grow, it is clear that d(vg,dy) will tend to 0.

Further, an argument identical to that in Proposition 4.1 will show that
any well supported measure in M.(X,S) can be deformed continuously in
the d topology into a well supported measure p with the property that the
only negative symbol it sees is —1.

To prove the connectedness of M.(X,S) it now suffices to show that
any such measure u can be continuously deformed into the point mass J_.
Namely, we need to find a way to continuously erase the ribbons from the
support of u. Here we cannot argue as in Proposition 4.1: if we randomly
start replacing arrow symbols with the symbol —1 we will obtain configu-
rations that are not in X. Instead, we develop a scheme for labelling the
ribbons which will allow us to erase entire ribbons a few at a time. We give
the details of this for the horizontal ribbons only.

We can impose a natural ordering on the horizontal ribbons in each x € X
by calling the first horizontal ribbon lying above the origin the Oth ribbon.
For n € Z if n > 0 (n < 0) the nth ribbon is then the nth ribbon above
(below) the Oth ribbon. Using this ordering on the ribbons we now construct

a new subshift with alphabet

{_17T7\} U {(17t)7 T ’(n+7t)7 (_)7t)7 (\nt): te [07 1]}

and consisting of configurations from X whose horizontal ribbons have been
labelled by a number from [0, 1].

We then define a map ® from X x [0, 1)% into the new subshift by mapping
(z,w) to a point in the new subshift by labelling the symbols from the nth
horizontal ribbon in z by w[n]. ®(X x [0,1]) = X then consists of all
configurations in the new subshift such that for all n € Z, the symbols in

the nth ribbon all have the same label.
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We set 1 = (1 x A%) o ®~!. Assuming for the moment that i is ergodic
and invariant we define maps G,: X — X by

,

&[4, 5)] if 2[(¢,5)] € {-1L,1,\}

G = m(2[(49)]) if 2[(5)] € (A U{=,N\3) x (7,1])
-1 £2[(4,5)] € {=,\J x [0,7]
T if [(4,7)] € Ay x [0,7],

\

where 7 applied to a labelled element (s,t) in the extended alphabet is
defined to be s. The effect of the map is to delete all horizontal ribbons
with labels that are less than r leaving —1 for symbols outside vertical
ribbons and 1 for symbols inside vertical ribbons. As before, we see that the
measures i given by u, = fio G; ! form a d-continuous family of ergodic
measures with ug = p and ;. The measure p; is an ergodic invariant
vertically well supported measure. The configurations in the support of uq
do not contain any horizontal ribbons do not contain any negative symbols
apart from —1.

Constructing a similar function for vertical ribbons, we can deform the
original well supported measure p into §_ in a d-continuous manner. It now
remains to prove that i is ergodic and shift-invariant.

We first argue that ji is a shift invariant measure as follows. Since we
now have a shift action on three different spaces: X, X , and [0, 1]% we will
distinguish between the one and two dimensional actions by writing S? for
shifts of X and X and S™ for shifts of [0, 1]%.

Since @ is a bi-measurable bijection, we see that sets of the form A=
®(A x R), where A C X and R C [0,1]% are measurable, generate the o-
algebra on X. It thus suffices to show that (S7(A)) = ji(A) for such a set
A, and 7 € 72.

Define

A, ={z € A: the Oth ribbon in & becomes the nth ribbon in S?(z)}.
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Observe that

S”(A) = | ®(5"(4n) x S"R).
nez

Since the sets A, partition A and p and M are invariant measures for S?

and S™ respectively, we see that

= 10®(S7(A) x ST'R) =Y p(S7(An))NE(ST"R)
neZ nez

=D u(An)N*(R) = w(A)N(R) = i A).
neZ

Thus, [ is invariant.

To show ergodicity of the measure we show, as in the Bernoulli setting,
that any invariant set has measure equal to the square of its measure. As-
sume that A is an invariant subset of X with 0 < i(4) = o < 1. Write
A = ®(E) where E is a measurable subset of X x [0, 1]%. Then of course we
have u x A2(E) = ji(A). Write E, = m2(E N ({z} x [0,1]%)) for the fibre of
E over z.

By Fubini’s theorem, \*(E,) depends in a measurable way on z and
[ A%(E,) du(z) = a. By the invariance of A we have that Egs, = S*®) E,,
where n(z, ¥') measures the relative difference in the numbering of the bands
between x and S%z. It follows that A?(Egs,) = A*(E;) so that by ergodicity,
ME,) = a for a.e. .

Consider cylinder sets of the form

C= U W x L.
WeWwn,
where W, is the collection of cylinder sets on the central 2n + 1 x 2n + 1
block and each Ly is an open set in [0,1]% whose characteristic function
depends only on the the central 2n 4+ 1 coordinates. Fix € > 0 and choose
C as above with the property that u x A*(CAE) < e. Since the Ly are
approximations for the sets E, which all have measure o and [0,1)% is a
continuous measure space, we can choose the Ly such that ALy = « for

each W e W,.
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Let C = ®(C) and @; = (t,t). We will show that as ¢ — oo we have
A(C NS~ (C)) — o2, Since (AN S%A) = (AN A) = a, this will show
that a = o? as desired.

To this end, for a given t, partition X into subsets Di on which the
number of the central ribbon in the 2n + 1 x 2n + 1 square centered at (0, 0)
differs from the number of the central ribbon in the 2n + 1 x 2n + 1 square
centered at (¢,t) by exactly k. Write E,tc’W,W, =D NW N S~*W’ and note
that these sets form a partition of X as k runs over Z and W and W’ run
over W,,. Furthermore,

pCNS™C) = Y a(®W x Lw) NS~ (®(W' x Lyy)))
ww’

= Y ME(BLww x (Lw x S™FLy)))
kE,W,W!

= Y w(EL )N (Lw x S7FLyy).
EW,W!

Since AZ is a Bernoulli measure, for k > 2n we have (L x S™* Ly) = o2.
On the other hand, ,u(Uanch) is the probability that there are less than
2n ribbons between the lower box centered at the origin and the upper box
centered at (¢,t), and so for sufficiently large ¢ this quantity is arbitrarily
small. It follows that for large ¢, ,&(é nS—o C’) approaches o? as claimed,
completing the proof.

O

5.2. A one dimensional example. Here we construct an example of a
one-dimensional subshift with the property that its entropy function has
a strictly local maximum. Unlike Haydn’s example [4] the set of ergodic
invariant measures in this example is d-connected. To define the example,
we introduce the function f(z) = 1/z(1 — z) and we use our usual alphabet

A=A UA_, where as before n_ < ny. The rules for the subshift X are:

(1) legal words consist of alternating blocks of negative symbols and

blocks of positive symbols separated by blocks of Os;
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(2) in any contiguous substring containing both positive and negative
symbols, the density of neutral symbols (pg) is required to be at least
max(f(p_), f(p+)), where p_ and p, are respectively the densities

of negative and positive symbols in the substring.

As before we will show:

Proposition 5.5. The measure p_ is a strictly local maximum for the en-

tropy function on M.(X,S), and M.(X, S) is connected in the d topology.

Proof. To show that u_ is a strictly local maximum of the entropy function,
fix § > 0 and let u be any ergodic measure with the property that 1 — ¢ <
p— < 1. Write p = 1—p_. We will demonstrate that provided ¢ is sufficiently
small, h(u) < logn_. We will estimate this entropy by covering a large part
of the space with words of some length and counting the number of words
needed. Let € > 0 be given. Using the ergodic theorem, we see that there
is a length R with the property that with probability greater than 1 — e,
the density of non-negative symbols is between p/2 and 2p. Since we have
po > (1 —2p),/p+, we have py < (2p/(1 — 2p))? < 5p? for sufficiently small
p. We now are able to estimate the number of words of this form as follows:

A frame consists of alternating blocks of +s and —s with 0s between. We
can estimate the number of frames by noting that the frame is determined
by boundaries between the blocks. Since the total number of + elements is
bounded by 5p?R, it follows that the number of endpoints of boundaries is

at most 20p?’R. The number of frames is therefore bounded above by

(B)+ () +-+ (aopr) -

For small p, this is bounded above by 2 <20§2 R)'
Given a frame, we can form a word by replacing +s by any of the n,
positive elements and —s by any of the n_ negative elements. Since there

are at most 5p? R positive elements and at most (1 — £)R negative elements,
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we see that the total number of configurations of this type is bounded by
We therefore get the estimate that
h(p) < (1 —p/2)logn_ + 5p>Rlogn + 20p*(—logp?).

Since the subtracted terms are of order p, while the terms added on are of
strictly lower order, we see that for small p > 0, there is a strict decrease
in entropy. Since the positive measure has strictly greater entropy than the
negative measure as before, we see that the negative measure is a strictly
local maximum of the entropy function.

To show that M. (X, S) is a d-connected set we argue as before that there

is a d-continuous path connecting an arbitrary measure y to the measure

concentrated on the fixed point ...0000.... The argument is exactly parallel
to the case in the proof of Proposition 4.1 and we omit the details. (I
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