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Abstract. We consider generalizations of the pointwise and mean ergodic

theorems to ergodic theorems averaging along different subsequences of the
integers or real numbers.

The Birkhoff and Von Neumann ergodic theorems give conclusions about

convergence of average measurements of systems when the measurements are
made at integer times.

We consider the case when the measurements are made at times a(n) or
(ba(n)c)where the function a(x) is taken from a class of functions called a

Hardy field, and we also assume that |a(x)| goes to infinity slower than some

positive power of x. A special, well-known Hardy field is Hardy’s class of
logarithmico-exponential functions.

The main theme of the paper is to point out that for a function a(x) as

described above, a complete characterization of the ergodic averaging behav-
ior of the sequence (ba(n)c)is possible in terms of the distance of a(x) from

(certain) polynomials.
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1. Introduction

Let (T s)s∈R be a measure preserving flow on the probability space (Ω,B, µ), and
let (an) be a sequence of real numbers. Consider the ergodic averages along the
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sequence (an)

Atf = At((an), f) =
1

t

∑
n≤t

f ◦ T an

We say the sequence (an) is pointwise good, if the following property holds:
for any measure preserving flow (T s)s∈R on any probability space (Ω,B, µ) and
f ∈ L2(Ω), the averages Atf converge a.e. as t→∞.

We say the sequence (an) is norm good if the corresponding convergence in norm
occurs: for any measure preserving flow (T s)s∈R on any probability space (Ω,B, µ)
and f ∈ L2(Ω), the averages Atf converge in L2 norm as t→∞.

In this paper, we consider the case when an = a(n) or an = ba(n)c for some real
valued function a defined for every large enough real number x.

In the case where a(x) is a polynomial with real coefficients, J. Bourgain proved
in a series of papers that (a(n)) and (ba(n)c) are good. That polynomial sequences
are norm good is much simpler to prove, and the proof is essentially Von Neumann’s
method used to prove the mean ergodic theorem combined with Weyl’s estimates
on trigonometric sums. The paper [12] by M. Lacey and the paper [18] by J-P
Thouvenot give simplified accounts of Bourgain’s method.

But what happens for other functions such as a(x) = x3/2 or a(x) = x2 · log x?
In general, what conditions on the function a(x) guarantee that (a(n)) or (ba(n)c)
is (norm) good?

Let us immediately make the following remarks

• There appears to be no simple (say, monotonicity) condition on the deriva-
tives of a(x) that can characterize those a(x) for which (a(n)) or (ba(n)c)
is good.
• In our context, there is no essential difference between the sequences (a(n))

and (ba(n)c) regarding norm convergence. For example, both sequences are
norm good when a(x) = x3/2. The theorems used to prove these facts are
essentially identical.
• There is a fundamental difference between the sequences (a(n)) and (ba(n)c)

for pointwise convergence. For example, the sequence (n3/2) in not good,
while one of our results is that the sequence (bn3/2c) is pointwise good.
• A function a(x) which goes to infinity faster than any polynomial is usually

very difficult to handle. For example, if a(x) = elog4/3 x nobody knows if
the sequence (a(n)) is uniformly distributed mod 1, let alone whether it
is norm good.

Because of the last remark, we make the restriction that our function a(x) is
subpolynomial in the sense that for some positive integer k, the ratio a(x)/xk goes
to 0 as x goes to ∞.

As for the first remark above, recall that the traditional way of specifying con-
ditions for the function a(x) to guarantee that the sequence (a(n)) is uniformly
distributed mod 1 is to give estimates on higher order derivatives of a(x). A
typical example is the classical Fejér-Van der Corput estimates; for a taste, see
Lemma 7.5. Then, for a given function a(x) one has to check these often very com-
plicated conditions. This checking is done in an ad hoc manner, so one checks the
conditions for, say, x3/ log x then for x3/ log log x, then for x3/(log x/ log log x), etc.
Also this checking always involves taking higher order derivatives for each function
a(x). For illustration of this, see [15, Exercises 2.23-25, 3.9-15].
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Our idea to avoid this problem is to consider only a special class of functions
which nevertheless includes a lot of “interesting” functions, and provide simple
conditions which are also easy to check for this class of functions. Specifically, the
conditions for a sequence to be good are that the functions are essentially equal
to polynomials or are sufficiently far away from polynomials. In the case that the
function are essentially equal to polynomials, the claims hold using the results of
Bourgain [6]. In this paper, we provide proofs in the case that the functions are far
from polynomials.

In the next section, we give the precise definition of the class of functions we
consider. To illustrate our ideas here, let us consider a subclass of these functions,
namely the so-called logarithmico-exponential functions of Hardy.

These are all the functions one can get by combining real constants, the variable
x, and the symbols exp, log, ·, +. This class certainly includes all rational functions,
the log and exp functions. But it also includes

√
x since

√
x = exp(1/2 · log x) or

the function

(1.1)
√

2x3 − x2 · log x

log log x · e
√

log x
.

Let us denote the class of logarithmico-exponential functions by L. Once we
restrict the a(x) to be from L, transparent characterizations of functions a(x) for
which both (a(n)) and (ba(n)c) is norm good is possible. Let CQ[x] denote the set
of real constant multiples of rational polynomials.

Theorem A. Suppose a(x) is a logarithmico-exponential function, it is subpoly-
nomial, and a(x)/x → ∞ as x → ∞. Then either of (a(n)) and (ba(n)c) is norm
good if and only if

(1) There exists p ∈ CQ(x) such that a(x)− p(x)→ K; or
(2) For all p ∈ CQ(x), |a(x)− p(x)|/ log x→∞.

The reader now easily checks that if a(x) is any of the functions

xπ, x7/ log x,
√

3 · x5 − log x · log log log x,
√

3x5 − log log x+ x

then (a(n)) and (ba(n)c) are norm good, and if a(x) is any of the functions

√
3x5 −

√
log x · e

√
log log x, x2 ·

√
1 +

log x

x2

then (a(n)) and (ba(n)c) are not norm good. We leave it to the reader to decide
whether (ba(n)c) is norm good if a(x) is the function in (1.1) . . . .

Now the situation for pointwise convergence is more complicated, although again
the distance of the function a(x) from certain polynomials seems to be the key to
deciding whether (ba(n)c) is good. First we have

Theorem B. Suppose a(x) is a logarithmico-exponential function, it is subpoly-
nomial, and a(x)/x → ∞. Then (ba(n)c) is pointwise good for convergence of L2

functions if for all real polynomials p, we have either

(1) a(x)− p(x)→ K; or

(2) for some ε > 0, (a(x) − p(x))/ logq(p)+ε x → ∞, where the exponent q(p)
depends only on the degree ∂p and is given by q(p) = 2∂p+1 − 1.
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So this theorem discusses sufficient conditions for pointwise convergence, and
these conditions are in terms of the distance from all real polynomials while the
conditions for norm convergence were in terms of the distance of a(x) from constant
multiples of rational polynomials.

As for necessary conditions, we have

Theorem C. Suppose a(x) is a logarithmico-exponential function, and that for
some polynomial p ∈ CQ(x) we have

• a(x)− p(x)→∞; and
• for some 0 < ε < 1, a(x)− p(x)/(log x e(log log x)ε)→ 0.

Then (ba(n)c) is pointwise bad.

To highlight one of differences between Theorem C and Theorem A, note that
while

√
3x3 + log x · log log x is norm good, it is not pointwise good.

To address the second problem with Theorem B, the issue is that it does not
say anything about functions which are close to polynomials not in CQ(x). As an

example, take a(x) =
√

2x2 + x + log x. According to Theorem A the sequence
(ba(n)c) is norm good.

In the paper, we address this problem in detail. Since it would be difficult to
describe the results without further definitions, in this introductory section, let us
just make the following remarks

• If a(x) =
√

2x2 + x+ log x then (ba(n)c) is good pointwise;
• For some irrational θ, if a(x) = θx2 + x + log x then (ba(n)c) is not good

pointwise.

These results imply that it is not possible to characterize those a(x) for which
(ba(n)c) is pointwise good in terms of the distance from contant multiples of rational
polynomials. Our results indicate that instead, one should try a characterization
based on the distance from polynomials whose coefficients are well approximated
by rationals. One of the main questions we leave open is the exact description of
this set of polynomials.

2. Definitions and Notation

Definition 2.1. Denote by B the set of germs at +∞ of continuous, real functions
of a real variable x. (A germ is an equivalence class of functions that are identical
for large x.) Endowed with pointwise multiplication and addition B forms a ring.

A subfield of B that is closed under differentiation is called a Hardy field. The
union of all Hardy fields is denoted by U .

On B we define the relation E as follows: a E b iff a(x) ≤ b(x) eventually.
It turns out that every subfield (and hence a Hardy field) is totally ordered by E.

Since each subfield of B has to contain Q, the field of rational numbers, it follows
that if a is in some subfield of B then limx→∞ a(x) exists (possibly equal to ±∞).

The class U is large enough to include the class L of logarithmico-exponential
functions mentioned above. Further, given any Hardy field F , and letting F̄ be a
maximal Hardy field extension of F (by inclusion), it may be shown that L ⊂ F̄ . In
fact, more is true: for example, the function lix =

∫ x
2

1/ log x dx is also an element

of F̄ .
Given two functions f and g belonging to a Hardy field, we write f ≺ g or f � g

respectively if limx→∞ f(x)/g(x) = 0 or limx→∞ f(x)/g(x) <∞.
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Definition 2.2. A function a from U will be called subpolynomial if a(x) ≺ xk for
some k.

Definition 2.3. A function r from U will be called non-polynomial if it is sub-
polynomial and for each k ∈ Z+, either r(x) ≺ xk or r(x) � xk.

Definition 2.4. A sequence (a(n)) of integers will be called universally good for
norm convergence of Lp functions if for each probability measure-preserving system
(Ω,B, µ, T ) and f ∈ Lp(µ),

1

t

∑
n≤t

f ◦ T a(n)

is convergent in Lp. The definition may be extended in the obvious way to flows in
the case where (a(n)) is a sequence of reals.

Definition 2.5. A sequence (a(n)) of integers will be called universally good for
pointwise convergence of Lp functions if for each probability measure-preserving
system (Ω,B, µ, T ) and f ∈ Lp(µ),

1

t

∑
n≤t

f(T a(n)(ω))

is convergent for µ-almost every ω ∈ Ω.

Since we shall mainly be dealing with functions belonging to L2, we shall some-
times use the term pointwise good to mean universally good for pointwise conver-
gence of L2 functions.

We observe that if a sequence is good for pointwise convergence of L∞ functions
then it is automatically good for norm convergence. To prove this, note that if
we write Atf = 1

t

∑
n≤t f ◦ T a(n), then we are trying to prove Atf is Cauchy for

f ∈ L2. Observe that if |g| ≤M , then |Atg| ≤M and by the bounded convergence
theorem, pointwise convergence of Atg implies L2 convergence of Atg. For f ∈ L2,
let f = g + h, where |g| ≤ M and ‖h‖2 < ε. Then ‖Ath‖2 ≤ ε for all t and Atg
is a Cauchy sequence under the L2 norm so it follows that for t and t′ sufficiently
large, ‖Atf −At′f‖2 ≤ 2ε. Since ε is arbitrary, it follows that Atf is Cauchy in L2

as required.
A similar argument shows that a sequence is universally good for norm conver-

gence of L2 functions, if and only if it also it is universally good for norm convergence
of Lp functions (for any 1 ≤ p < ∞). Consequently, we will omit reference to the
space and speak simply of a sequence being universally good for norm convergence
or norm good.

Remark 2.6. One can see that if a sequence is norm good and good for pointwise
convergence of Lp functions, then the limits must agree.

In this language, the Birkhoff ergodic theorem states that the sequence of natural
numbers is universally good for pointwise convergence of L1 functions and the
Von Neumann ergodic theorem states that the sequence of natural numbers are
universally good for norm convergence. These theorems also identify the common
limit for a function f as Eµ(f |I), where I is the σ-algebra of measurable T -invariant
subsets of Ω. In particular, if the measure µ is ergodic with respect to T , the limit
is just

∫
f dµ. This motivates the following definition.
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Definition 2.7. A sequence (a(n)) is called ergodic if for each f ∈ L2, the L2-limit
of 1

t

∑
n≤t f ◦ T a(n) is Eµ(f |I).

Definition 2.8. We denote by CQ[x] the set of all real multiples of rational poly-
nomials: CQ[x] = {αp(x) : α ∈ R, p(x) ∈ Q[x]}. Similarly, CA[x] denotes the set
of all real multiples of polynomials with algebraic coefficients.

3. Statement of Results

In this paper, we mostly consider sequences of the form (ba(n)c) where a is
a subpolynomial member of U and conditions for the sequence to be norm and
pointwise good and bad.

The remainder of the paper is organized as follows: In Section 4, a number of
preparatory lemmas including Lemma 3.1 below are proved. Section 5 contains a
key lemma concerning exponential sums which deals with the comparison between
exponential sums containing terms of the form e(a(n)β) and e(ba(n)cβ). Section 6
concerns norm convergence and contains the proofs of Theorem 3.2 and 3.3. Section
7 contains the results establishing pointwise convergence: Theorems 3.4, 3.5 and 3.8,
while Section 8 contains results demonstrating the failure of pointwise convergence:
Theorems 3.6, 3.7 and 3.9. The paper concludes with sections on open problems in
the area and bibliographic notes.

Lemma 3.1. Let a ∈ U be subpolynomial. Then a may be uniquely expressed as
p+ r where p is a polynomial, r is non-polynomial and satisfies r(x) ≺ xs for each
non-zero term csx

s of p.

Theorem 3.2. Let a ∈ U be subpolynomial and satisfy a(x) � x. The sequences
(a(n)) and (ba(n)c) are norm good if and only if

(1) There exists p ∈ CQ(x) such that a(x)− p(x)→ K; or
(2) For all p ∈ CQ(x), |a(x)− p(x)| � log x.

In the latter case, (ba(n)c) is ergodic.

Theorem 3.3. Let a ∈ U be of the form a(x) = cx + r(x) where r(x) ≺ x and
c > 0. Then the sequence (ba(n)c) is norm good if and only if one of the following
holds:

(1) r(x) � log x as x→∞.
(2) c = 1/m;
(3) r(x)→ K as x→∞;

In cases 1 and 2, (ba(n)c) is ergodic.

In the case of a sequence of the form (a(n)) where a(x) = cx+r(x), the conditions
for norm convergence are the same as those in Theorem 3.2.

Theorem 3.4. Let a ∈ U be subpolynomial and have decomposition p+ r. If there
is an ε such that r(x) � xε, then (ba(n)c) is pointwise good and is ergodic.

Theorem 3.5. Let a ∈ U be subpolynomial and have a decomposition p+ r where

∂p = n ≥ 2. If for some ε > 0, r(x) � (log x)2n+1−1+ε then (ba(n)c) is pointwise
good and is ergodic.

In the case of Theorems 3.4 and 3.5, it follows from Theorem 3.2 that the se-
quences are ergodic.
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Theorem 3.6. Let p ∈ CQ(x). Then if 1 ≺ r(x) ≺ log x exp((log log x)m), for
some 0 ≤ m < 1, we have (bp(n) + r(n)c) is pointwise bad.

Theorem 3.7. Let p be a polynomial in CQ(x) whose lowest order term is of degree
k ≥ 3. Then if 1 ≺ r(x) ≺ (log x)m, where m < 2k/(k+ 2), then (bp(n) + r(n)c) is
pointwise bad.

It will be noticed that in the above four results, giving two sufficient conditions
and two necessary conditions for (ba(n)c) to be pointwise good, the sufficient condi-
tions have a different character from the necessary conditions: The sufficient condi-
tions deal with functions which are ‘sufficiently far from any polynomial’, whereas
the necessary conditions deal with functions which are ‘sufficiently far from any
polynomial in CQ(x)’. This contrasts with the situation for norm convergence,
where the necessary and sufficient conditions dealt with ‘distance’ from polynomi-
als in CQ(x). The next two theorems show that this situation is not artificial.

We first need the following definition: A number α is said to be badly approx-
imable by rationals if there exist an m ≥ 2 and a C > 0 such that any rational p/q
satisfies |α−p/q| ≥ C/qm. We note that the numbers which are badly approximable
by rationals form a set of full measure.

Theorem 3.8. Let a ∈ U be subpolynomial, satisfy a(x) � x and have a decompo-
sition p+r where p is a polynomial with the property that the ratio of two of its non-
constant coefficients is badly approximable by rationals (e.g. p ∈ CA[x] \ CQ[x]).
Then (ba(n)c) is pointwise good and is ergodic.

Theorem 3.9. Let p ∈ CQ(x). Then any of the coefficients of p may be perturbed
by an arbitrarily small irrational amount to give a polynomial p̃ such that (bp̃(n) +
log nc) is pointwise bad.

4. Preliminary Lemmas

Lemma 4.1. Suppose a ∈ U satisfies 1 ≺ a(x) ≺ xk. Then there is a δ ≥ 0 such
that for every ε > 0, xδ−ε ≺ a(x) ≺ xδ+ε.

Proof. Set δ = inf{r : a(x) ≺ xr}. �

In establishing sufficient conditions for the sequence (ba(n)c) to be pointwise
good, we will later make use of Van der Corput’s lemma where an estimate is made
in terms of the derivatives of a. In the lemma below, we use the properties of Hardy
fields to control the derivatives of a, where a is a function belonging to a Hardy
field.

Lemma 4.2. Suppose a ≺ b ∈ U are non-polynomial then a′ and b′ are non-
polynomial and a′ ≺ b′. In particular, if xδ−ε ≺ a(x) ≺ xδ+ε for every ε > 0. Then
for each k ∈ N and ε > 0, xδ−k−ε ≺ a(k)(x) ≺ xδ−k+ε.

Proof. First note that if a′ fails to be non-polynomial (i.e. a′(x)/xk converges to a
finite non-zero limit for some k ∈ Z+), then a also fails to be non-polynomial. This
shows that if a ∈ U is non-polynomial, then so is a′.

If a′(x) � b′(x), then integrating, we see that a(x) � b(x) +C for some constant
C. Since a(x) and b(x) are non-polynomial, it follows that a(x) � b(x) which is a
contradiction. It follows that a′(x) ≺ b′(x) as required.

Clearly we can apply the lemma repeatedly to deduce that if xδ−ε ≺ a(x) ≺ xδ+ε
for every ε > 0, then for each k ∈ N and ε > 0, xδ−k−ε ≺ a(k)(x) ≺ xδ−k+ε. �
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Proof of Lemma 3.1. Let a ∈ U be subpolynomial. If a is non-polynomial, the
decomposition is a = 0+a. Otherwise, there exists an n ≥ 0 such that a(x)/xn does
not converge to either 0 or ∞. Since a(x)/xn ∈ U , it follows that the limit l exists
(and is neither 0 nor ∞). Then set b(x) = a(x)− lxn. Clearly b(x) ≺ xn. Iterating
this construction gives the required decomposition. Uniqueness is clear. �

Lemma 4.3. Let h > 0 be fixed and let r ∈ U satisfy r(x) � 1 and define for
sufficiently large x

R(x) =
r−1(x)− r−1(x− h)

r−1(x)
.

(1) If for some a ≥ 1, r(x) � (log x)a, then R(x) � x 1
a−1.

(2) If for some 0 ≤ a < 1, r(x) � log x exp((log log x)a), then we have the
bound R(x) � 1/ exp((log x)a).

Proof. We first deal with the case a = 1 of statement 1. The hypothesis implies that
there exists a C such that for sufficiently large x, r(x) ≤ C log x. Using L’Hôpital’s
rule, we see that xr′(x) ≤ C. Since (log r−1)′(x) = 1/(r−1(x)r′(r−1(x))), we see
that for sufficiently large x, (log r−1)′(x) ≥ 1/C. It follows that r−1(x−h)/r−1(x) ≤
e−h/C giving

r−1(x)− r−1(x− h)

r−1(x)
≥ 1− e−h/C � 1

as required.
To complete the proof of statement 1, we let a > 1 and set s(x) = r(x)1/a. Then

s−1 satisfies (log s−1)′ ≥ 1/C by the above. We note that r−1(x) = s−1(x1/a) so

r−1(x− h)

r−1(x)
=
s−1

(
(x− h)1/a

)
s−1

(
x1/a

)
≤ exp

(
(x− h)1/a − x1/a

C

)
.

We then see

r−1(x)− r−1(x− h)

r−1(x)
≥ 1− exp

(
(x− h)1/a − x1/a

C

)
≥ (x1/a − (x− h)1/a)C ≥ Cx 1

a−1,

where C denotes at each stage a constant which is independent of x (possibly
different constants at different stages of the proof).

To prove statement 2, we note that the case a = 0 follows from the above.
Suppose 0 < a < 1 and set s(x) = r(x)/ exp((log r(x))a) so that s = φ ◦ r, where
φ(x) = x/ exp((log x)a). We note that s(x) � log x so by the first part of the proof,
(log s−1)′ ≥ 1/C. We then argue as above: r−1(x) = s−1(φ(x)) so

r−1(x− h)

r−1(x)
=
s−1 ((x− h)/(exp(log(x− h))a))

s−1 (x/(exp(log x)a))

≤ exp

(
1

C

(
x− h

exp((log(x− h))a)
− x

exp((log x)a)

))
.
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Finally,

r−1(x)− r−1(x− h)

r−1(x)
≥ 1− exp

(
1

C

(
x− h

exp((log(x− h))a)
− x

exp((log x)a)

))
≥
(

x− h
exp((log(x− h))a)

− x

exp((log x)a)

)
C ≥ C

exp((log x)a)
.

�

Lemma 4.4. Let (fn) be a sequence of nonnegative numbers. For ρ ∈ Q with
ρ > 1 denote Iρ = {ρl : l ∈ N}. Suppose that for each ρ ∈ Q with ρ > 1 the averages
1
t

∑
n≤t fn converge to some finite limit as t runs through the sequence Iρ.

Then 1
t

∑
n≤t fn is convergent as t→∞.

Proof. Set Ft = 1
t

∑
n≤t fn and let ρ ∈ Q satisfy ρ > 1. By assumption, 1

t

∑
n≤t fn

is convergent to some finite limit, L say, as t runs through the sequence Iρ.
For an arbitrary t > 1 let l be the positive integer such that ρl−1 ≤ t < ρl. Since

the sequence (fn) is nonnegative, we can estimate

(4.1)
ρl−1

t
Fρl−1 ≤ Ft ≤

ρl

t
Fρl .

We see then that L/ρ ≤ lim inft→∞ Ft ≤ lim supt→∞ Ft ≤ Lρ. If L = 0, then
we have lim inft→∞ Ft = lim supt→∞ Ft = 0 and we are done. Otherwise, we see
that lim supt→∞ Ft/ lim inft→∞ Ft ≤ ρ2. Since ρ can be chosen arbitrarily close to
1, the desired conclusion follows. �

5. A key inequality

In this section, we prove an inequality which will be of key importance in the
later sections where we establish pointwise convergence. We start with a lemma
estimating the Fourier coefficients of certain continuous versions of step functions.

Lemma 5.1 (Vinogradov). Let c, d,∆ be real numbers satisfying

0 < ∆ < 1/2, ∆ ≤ d− c ≤ 1−∆.

Let the 1-periodic function φ satisfy φ(α) = 1 for c+∆/2 ≤ α ≤ d−∆/2; φ(α) = 0
for d + ∆/2 ≤ α ≤ 1 + c − ∆/2; and φ is the linear interpolation between these
values on the remainder of the real line.

Then the Fourier series φ(α) = d− c+
∑
|`|≥1 c`e(`α) of φ satisfies

|c`| ≤ 2 min{d− c, 1

|`|
,

1

`2∆
}.

The proof of this lemma is a straightforward (though tedious) computation, and
is safely left for the reader.

Theorem 5.2. Suppose that the numbers t, Q, r, S are all greater than 10 and
r2 ≤ S − 1. Let b(1), b(2), . . . , b(btc) be real numbers. Define U(α) by

(5.1) U(α) =
1

t

∣∣∣∣∣∣
∑
n≤t

e(b(n)α)

∣∣∣∣∣∣ .
Suppose finally that

(5.2) U(α) ≤ 1

r
for each 1/Q ≤ |α| ≤ S.
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Then there is an absolute constant C (< 100) so that for every β with 1/Q ≤
|β| ≤ 1/2 we have

(5.3)

∣∣∣∣∣∣1t
∑
n≤t

e(bb(n)cβ)

∣∣∣∣∣∣ ≤ C
√

log r

r
.

Before embarking upon a proof of the theorem, we first prove a lemma which
will be used in two places giving some estimates based on Fourier analysis.

Lemma 5.3. There exists a constant C such that for any sequence (b(n)) satisfying
the conditions of Theorem 5.2 and any piecewise linear function φ as in Lemma 5.1
with ∆−2 ≤ S − 1 one has for each |β| ≤ 1/2,

(5.4) S(β, φ) < U(β)‖φ‖1 + C ·
(

log ∆−2

r
+ ∆

)
,

where

S(β, φ) =

∣∣∣∣∣∣1t
∑
n≤t

e(βb(n))φ(b(n))

∣∣∣∣∣∣ .
Proof. Since φ is piecewise smooth and continuous, it has an absolutely convergent
Fourier series with coefficients satisfying the conclusions of Lemma 5.1. We have

S(β, φ) =

∣∣∣∣∣∣1t
∑
n≤t

e(b(n)β)
∑
`

c`e(`b(n))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
`

c`
1

t

∑
n≤t

e ((β + `)b(n))

∣∣∣∣∣∣
≤
∑
`

|c`|

∣∣∣∣∣∣1t
∑
n≤t

e ((β + `)b(n))

∣∣∣∣∣∣ =
∑
`

|c`|U(β + `)

≤ |c0|U(β) +
∑

1≤|l|≤∆−2

|c`| · U(β + `) +
∑
|l|>∆−2

|c`|U(β + `).

In the first summation, by (5.2), the U(β+ `) terms may be bounded above by 1/r
and by Lemma 5.1, the |c`| terms may be bounded above by 1/`. In the second
summation, we have the trivial bound U(β+ `) ≤ 1 and |c`| can be bounded above
by 1/(∆`2).

Putting this together, we see

S(β, φ) ≤ ‖φ‖1U(β) +
∑

1≤|l|≤∆−2

1

lr
+

∑
|l|>∆−2

1

∆`2

≤ ‖φ‖1U(β) + C

(
log ∆−2

r
+ ∆

)
This proves the lemma. �

Proof of Theorem 5.2. Let us fix β ∈ [−1/2, 1/2), 1/Q ≤ |β|. We will find a connec-
tion between the sums on the left of the inequalities (5.1) and (5.3) by describing
the location of 〈b(n)〉 1 in the interval [0, 1). Let q be a natural number to be
specified later, and divide the interval [0, 1) into q equal parts. Let us denote
Ij = [(j − 1)/q, j/q), j = 1, 2, . . . , q. We then let φj be the piecewise linear func-
tion described in Lemma 5.1 where c is taken to be (j − 1)/q and d = j/q. The

1Here, 〈x〉 denotes the fractional part of x, that is, 〈x〉 = x− bxc.
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constant ∆ will be chosen later so as to optimize certain upper bounds (and will
in fact be given by 1/r). In particular, we will have ∆ < 1/q. The function φj is
then a smoothed version of the characteristic function of Ij . It can be checked that∑
j φj ≡ 1. Set ψ = φq + φ1. We then have

1

t

∑
n≤t

e(bb(n)cβ) =
∑

1<j<q

1

t

∑
n≤t

e(bb(n)cβ)φj(b(n)) +
1

t

∑
n≤t

e(bb(n)cβ)ψ(b(n)).

Notice that for 1 < j < q we have φj(x) > 0 ⇒ bxc = x − j/q + θ/q, where
|θ| ≤ 2 and therefore, we can write for 1 < j < q,

1

t

∑
n≤t

e(bb(n)cβ)φj(b(n)) =
1

t

∑
n≤t

e(b(n)β − j/qβ + θ/q)φj(b(n))

= e(−j/qβ)
1

t

∑
n≤t

e(b(n)β + θ/q)φj(b(n)).

where θ = θj,n satisfies |θ| ≤ 2.
Now we see∣∣∣∣∣∣1t

∑
n≤t

e(b(n)β + θ/q)φj(b(n))− 1

t

∑
n≤t

e(b(n)β)φj(b(n))

∣∣∣∣∣∣
=

∣∣∣∣∣∣1t
∑
n≤t

e(b(n)β)(1− e(θ/q))φj(b(n))

∣∣∣∣∣∣
≤ C · 2

q
· 1

t

∑
n≤t

φj(b(n)),

where for the inequality, we used the fact that |1− e(γ)| ≤ C|γ|. Since∑
1<j<q

1

t

∑
n≤t

φj(b(n)) ≤ 1

t

∑
n≤t

1 = 1,

we see on adding up the above that∣∣∣∣∣∣1t
∑
n≤t

e(bb(n)cβ)

∣∣∣∣∣∣
≤
∑

1<j<q

∣∣∣∣∣∣1t
∑
n≤t

e(b(n)β)φj(b(n))

∣∣∣∣∣∣+

∣∣∣∣∣∣1t
∑
n≤t

e(bb(n)cβ)ψ(b(n))

∣∣∣∣∣∣+
C

q

≤
∑

1<j<q

S(β, φj) +
1

t

∑
n≤t

ψ(b(n)) +
C

q

≤
∑

1<j<q

S(β, φj) + S(0, ψ) +
C

q
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Using Lemma 5.3, we see that S(β, φj) ≤ 1/qr+C(log ∆−2/r+∆) and S(0, ψ) ≤
2/q + C(log ∆−2/r + ∆). Combining this, we see that∣∣∣∣∣∣1t

∑
n≤t

e(bb(n)cβ)

∣∣∣∣∣∣ ≤ 1

r
+

2

q
+ Cq

(
log ∆−2

r
+ ∆

)
+
C

q
.

Then choosing q to be b
√
r/ log rc and ∆ to be 1/r2, we see that∣∣∣∣∣∣1t
∑
n≤t

e(bb(n)cβ)

∣∣∣∣∣∣ ≤ C
√

log r

r
.

�

6. Norm convergence

We start off with a simple lemma characterizing those sequences a(n) which are
norm good. This lemma appeared as an exercise in [16].

Lemma 6.1. Let (b(n)) be a sequence of real numbers. Then the sequence (b(n)) is
norm good if and only if for each β ∈ R, 1

t

∑
n≤t e(b(n)β) is convergent as t→∞.

In the case where b(n) is an integer sequence, the sequence is ergodic if and only
if

lim
t→∞

1

t

∑
n≤t

e(b(n)β) =

{
1 if β ∈ Z
0 otherwise

In the case where b(n) is an integer sequence, it is clearly sufficient to consider
β belonging to the interval [0, 1).

We give the proof in the case of a sequence of integers. The proof for real numbers
is similar, but uses the Fourier transform on R rather that S1.

Proof. We observe that if T is a measure-preserving transformation of a probability
space (Ω, µ) and f ∈ L2(Ω, µ), then using the spectral theorem,∥∥∥∥∥∥1

t

∑
n≤t

f ◦ T b(n) − 1

t′

t′∑
n=1

f ◦ T b(n)

∥∥∥∥∥∥
2

2

=

〈
1

t

∑
n≤t

f ◦ T b(n) − 1

t′

∑
n≤t′

f ◦ T b(n),
1

t

∑
n≤t

f ◦ T b(n) − 1

t′

∑
n≤t′

f ◦ T b(n)

〉

=

∫ ∣∣∣∣∣∣1t
∑
n≤t

e(b(n)β)− 1

t′

∑
n≤t′

e(b(n)β)

∣∣∣∣∣∣
2

dµf (β),

where µf is the scalar spectral measure of f . Setting

Λt,t′(β) =

∣∣∣∣∣∣1t
∑
n≤t

e(b(n)β)− 1

t′

∑
n≤t′

e(b(n)β)

∣∣∣∣∣∣
2

,

we see that Λt,t′(β) ≤ 1 for each β.
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If (b(n)) has the property that 1
t

∑
n≤t e(b(n)β) is convergent for each β, then

Λt,t′(β) → 0 as t, t′ → ∞. By the bounded convergence theorem, it then follows
that

∥∥∥∥∥∥1

t

∑
n≤t

f ◦ T b(n) − 1

t′

∑
n≤t′

f ◦ T b(n)

∥∥∥∥∥∥
2

2

→ 0 as t, t′ →∞.

as required.
Conversely if for some β, 1

t

∑
n≤t e(b(n)β) is not convergent, then letting T be

the map T (x) = x + β mod 1 of the circle and f(x) = e(x), we see that (b(n)) is
not norm good.

The condition for ergodicity is a consequence of the spectral theorem. �

The bulk of the work in proving Theorem 3.2 is contained in results of Bosher-
nitzan [3] and Niederreiter [14].

Theorem 6.2 ([3]). Let a ∈ U be sub-polynomial. Then the sequence 〈a(n)〉 is
uniformly distributed modulo 1 if and only if for every p ∈ Q[x], we have

lim
x→∞

∣∣∣∣a(x)− p(x)

log x

∣∣∣∣ =∞.

The following is a self-contained version of a theorem which appeared in [14].
The proof resembles that of Theorem 5.2.

Theorem 6.3. If a(n) is a sequence of real numbers with the property that for each
number α 6= 0, 〈αa(n)〉 is uniformly distributed modulo 1, then (ba(n)c) is norm
good and is ergodic.

Proof. Let θ 6∈ Z and 0 < ε < 1 be given. We want to show that for all sufficiently
large t, ∣∣∣∣∣∣1t

∑
n≤t

e(ba(n)cθ)

∣∣∣∣∣∣ < ε.

Let At denote the left hand side of the inequality. We then choose an integer M > 0
such that |e(2θ/M) − 1| < ε/3 and choose δ < ε/6M . Now define φj(x) to be the

function on the circle such that φj takes the value 1 on [ jM + δ, j+1
M − δ], 0 outside

[ jM − δ,
j+1
M + δ] and is linear in between. We note that φ0 + . . .+ φM−1 = 1.

Now we have

At =

∣∣∣∣∣∣1t
∑
n≤t

∑
j<M

φj(〈a(n)〉)e(ba(n)cθ)

∣∣∣∣∣∣ .
Since φj(〈a(n)〉) > 0 implies |ba(n)c − (a(n) − j/M)| < 2/M , we see that in this
case, |e(ba(n)cθ)− e((a(n)− j/M)θ)| < ε/3. It follows that we have

At ≤ ε/3 +

∣∣∣∣∣∣1t
∑
n≤t

∑
j<M

φj(〈a(n)〉)e((a(n)− j/M)θ)

∣∣∣∣∣∣ .
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We now approximate the functions φj(x) by trigonometric polynomials ψj(x) =∑
|k|<K bj,ke(kx) in such a way that ‖φj − ψj‖∞ < ε/3M . We then have

At ≤ 2ε/3 +

∣∣∣∣∣∣1t
∑
n≤t

∑
j<M

ψj(〈a(n)〉)e((a(n)− j/M)θ)

∣∣∣∣∣∣
≤ 2ε/3 +

∑
j<M

∑
|k|<K

|bj,k|

∣∣∣∣∣∣1t
∑
n≤t

e((k + θ)a(n))

∣∣∣∣∣∣ .
By hypothesis (since k + θ 6∈ Z), we see that all of the terms inside the absolute
values converge to 0 as t → ∞. Since there are only finitely many such terms, we
conclude that for sufficiently large t, At ≤ ε as required. �

Theorem 6.4. The sequence (a(n)) has the property that for each s ∈ R, and each
f ∈ C([0, 1]× S1),

(6.1)
1

t

∑
n≤t

f(〈a(n)〉, 〈sa(n)〉)

is convergent if and only if the following conditions hold:

(1) (a(n)) and (ba(n)c) are norm good; and
(2) 1

t

∑
n≤t〈a(n)〉 is convergent.

Proof. First suppose that for each s ∈ R and each f ∈ C([0, 1] × S1), the se-
quence 1

t

∑
n≤t f(〈a(n)〉, 〈sa(n)〉) is convergent. Letting f(x, y) = e(y), we see

that f(〈a(n)〉, 〈sa(n)〉) = e(sa(n)) so from Lemma 6.1, we see that a(n) is norm
good. Now taking the function f(x, y) to be f(x, y) = e(−sx)e(y), we see that
f(〈a(n)〉, 〈sa(n)〉) = e(sa(n))e(−s〈a(n)〉) = e(sba(n)c), thus showing that (ba(n)c)
is norm good. To prove the second assertion, we take f(x, y) = x.

For the converse, fix s ∈ R. Define

F =

f ∈ C([0, 1]× S1) :
1

t

∑
n≤t

f(〈a(n)〉, 〈sa(n)〉) is convergent

 .

This is a closed subspace of C([0, 1]×S1). We aim to show that it is all of C([0, 1]×
S1). We first observe that if f(x, y) = e(lx)e(my), then f(〈a(n)〉, 〈sa(n)〉) = e((l+
ms)a(n)) so since (a(n)) is assumed to be norm good, we have f ∈ F . Since linear
combinations of functions of this form are dense in C(S1 × S1), it follows that
C(S1 × S1) ⊂ F .

Since linear combinations of functions of the form g(x)e(my) form a dense subset
of C([0, 1]× S1), it is sufficient to show that all such functions are contained in F .
If g(0) = g(1), this follows from the above.

Fix m ∈ Z and suppose that g and g′ are two functions in C[0, 1] such that
g(0) 6= g(1) and g′(0) 6= g′(1). There then exists a λ 6= 0 such that g(0) + λg′(0) =
g(1)+λg′(1). Since (g(x)+λg′(x))e(my) ∈ C(S1×S1), we see that g(x)e(my) ∈ F
if and only if g′(x)e(my) ∈ F . Accordingly, it is sufficient to show for each m ∈ Z
that there is at least one function g ∈ C([0, 1]) satisfying g(0) 6= g(1) such that
g(x)e(my) ∈ F .
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If ms ∈ Z, then taking g(x) = xe(−msx), we see that g(〈a(n)〉)e(m〈sa(n)〉) =
〈a(n)〉e(−msa(n))e(msa(n)) = 〈a(n)〉. By hypothesis 2, we see that g(x)e(my) ∈
F .

If ms 6∈ Z, then taking g(x) = e(−msx), we see that g(〈a(n)〉)e(m〈sa(n)〉) =
e(−ms〈a(n)〉)e(msa(n)) = e(msba(n)c). By hypothesis 1, it follows that g(x)e(my)
∈ F .

�

Corollary 6.5. Suppose that (a(n)) is norm good. If for each ε > 0, there is a
function g in C([0, 1]) such that |g(0)− g(1)| = 1 and

lim sup
t→∞

1

t

∑
n≤t

|g(〈a(n)〉)| < ε,

then (ba(n)c) is norm good.

Proof. Let s > 0 be fixed. We define F as in the proof of Theorem 6.4. Since (a(n))
is assumed to be norm good, as shown before C(S1×S1) ⊂ F . To show that there
is convergence in (6.1) for all f ∈ C([0, 1]×S1), it is sufficient to show convergence
for functions of the form f(x, y) = g(x)e(my), where |g(0)− g(1)| = 1. Further, if
g(0) = g′(0) and g(1) = g′(1), then (g(x) − g′(x))e(my) ∈ C(S1 × S1), so there is
automatically convergence in (6.1). It follows that if one lets the quantity oscn(s)
be defined by the expression

lim
t→∞

∣∣∣∣∣∣sup
t′>t

∣∣∣∣∣∣1t
∑
n≤t

g(〈a(n)〉)e(m〈sa(n)〉)− 1

t′

∑
n≤t′

g(〈a(n)〉)e(m〈sa(n)〉)

∣∣∣∣∣∣
∣∣∣∣∣∣ ,

then oscn(s) is independent of g provided |g(0) − g(1)| = 1. From the hypothesis
and the triangle inequality, we see that oscn(s) ≤ 2ε for any ε > 0 thus giving
convergence for f of the given form in (6.1). The conclusion then follows from
Theorem 6.4. �

Proof of Theorem 3.2. Suppose first that for all p ∈ Q[x] and c 6= 0, |a(x)−cp(x)| �
log x. Then for α 6= 0 and any p ∈ Q[x], we observe that |αa(x)−p(x)| = |α||a(x)−
1
αp(x)| � log x. By Theorem 6.2, 〈αa(n)〉 is uniformly distributed modulo 1. By
Lemma 6.1, (a(n)) is norm good. To show that (ba(n)c) is norm good, note that
since α is an arbitrary non-zero number, (ba(n)c) is norm good and ergodic by
Theorem 6.3.

Next, consider the case where a(x)−cp(x)→ K. If c 6∈ Q, then a(n) is uniformly
distributed modulo 1, so by choosing appropriate g (0 on [0, 1 − ε] and linearly
increasing to 1 on the remainder of the interval) in Corollary 6.5, to show that
(ba(n)c) is norm good it is sufficient to show that (a(n)) is norm good. Clearly by
Lemma 6.1, a(n) is norm good if and only if cp(n) + K is norm good. However,
for any polynomial q, 1/t

∑
n≤t e(q(n)) is convergent (to 0 if q(x) has an irrational

coefficient of xk for some k > 0 by Weyl’s theorem and because the sequence
is periodic if all the non-constant coefficients of q are rational). It follows that
1/t
∑
n≤t e(β(cp(n) + K)) is convergent for all t so by Lemma 6.1, we see that

(a(n)) and hence (ba(n)c) is norm good.
If c ∈ Q, then since r(x) = a(x)−cp(x) belongs to U , it is eventually monotonic.

It follows that 〈a(n)〉 eventually takes no values in [0, ε] or 〈a(n)〉 eventually takes
no values in [1− ε, 1). It follows that there exists a constant k such that |ba(n)c −
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(a(n)+k)| → 0 so that by Lemma 6.1, (ba(n)c) is norm good if and only if (a(n)) is
norm good. Arguing as above, we see that (a(n)) is norm good and hence (ba(n)c)
is also norm good.

It remains to examine the case 1 ≺ |a(x)− cp(x)| � log x for c 6= 0 and p ∈ Q[x].
By absorbing any denominators into c, we may assume p ∈ Z[x]. Write r(x) =
a(x)− cp(x). We assume that r(x)→∞, but simple modifications would deal with
the case r(x)→ −∞. To demonstrate that (a(n)) is not norm good, we note that
e(a(c)/c) = e(r(x)/c). Since r(x) � log x, we see that the tail dominates the Césaro
averages of e(r(x)/c) showing that the sequence of averages in Lemma 6.1 is not
convergent. It follows that (a(n)) is not norm good as required. It remains to show
that (ba(n)c) is not norm good.

For a large number N , let q = p′(N). Then expanding p(n) in powers of n−N ,
we see that p(N + jq) = p(N) + k(j)q2, where k(j) is an integer-valued function.
Consider the map T : [0, cq2) → [0, cq2) given by T (x) = x + 1 mod cq2. This
preserves the normalized Lebesgue measure on the interval [0, cq2). Let f(x) =
χ[0,3)(x).

Let J be any interval [x, x+ 1) of length 1 in [0, cq2). Let s1 be a number such
that r(s1) + x + cp(N) = 1 (mod cq2) and s2 be the smallest number larger than
s2 such that r(s2) + x + cp(N) = 2 (mod cq2). Then for y ∈ J and a number of
the form N + jq with s1 < N + jq < s2, we see

T ba(N+jq)c(y) = y + ba(N + jq)c mod cq2

= y + bcp(N) + k(j)cq2 + r(N + jq)c mod cq2

= y + cp(N) + r(N + jq)− ζ mod cq2,

where 0 ≤ ζ < 1. It follows that T ba(N+jq)c(y) ∈ [0, 3) so that f(T ba(N+jq)c(y)) = 1.
We see that for y ∈ J ,

1

s2

∑
n≤s2

f(T ba(N+jq)c(y)) ≥
⌊
s2 − s1

qs2

⌋
.

By hypothesis, 1 ≺ r(x) � log x so by Lemma 4.3, there is a C > 0 such that for
any choice of x, (s2 − s1)/s1 ≥ C. We then see

1

Rm

∑
n≤Rm

f(T ba(n)c(y)) ≥ C

q

for each y ∈ J .
Suppose then for a contradiction that (1/Rm)

∑
n≤Rm f ◦ T

ba(n)c is convergent

in L2 to a limit f∗. The limit must be at least C/q on the interval J . But since J
is arbitrary, the limit must be at least C/q everywhere. We rule this out however
because convergence in L2 implies convergence in L1, but ‖f‖1 = 3/(cq2), while
‖f∗‖1 ≥ C/q. Since we would have ‖f‖1 = ‖f∗‖1, taking N large gives a large
value of q and establishes the contradiction. �

We note that the above proof applies verbatim to the case of (a(n)) where a(x) =
cx+ r(x) and r(x) ≺ x.

Proof of Theorem 3.3. Let a(x) = cx+ r(x). If r(x) � log x, then using the results
of Boshernitzan and Niederreiter as above, we see that (ba(n)c) is norm good.
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We now show that we have convergence in norm if c = 1
m and r(x) � log x. We

note the sequence (bn/mc) consists of m 0’s followed by m 1’s etc. By Birkhoff’s
theorem, (bn/mc) is a good averaging sequence for L1 functions. Since r(x) ∈ U ,
it is eventually monotonic. If r(x) is eventually increasing, then we see that the
sequence (bn/m+r(n)c) eventually takes each value at most m times. Since a(n) =
n/m + O(log n), we see that there are at most O(log t) values between 0 and a(t)
which are taken less than m times. The sequences (ba(n)c) and (bn/mc) differ on a
set of density 0 so that for L∞ functions, (ba(n)c) is a good averaging sequence for
pointwise convergence (with convergence to the usual ergodic limit). Since these
functions are dense in L2, it follows that (ba(n)c) is norm good and is ergodic.

If r(x) converges to a finite limit, we argue as in Theorem 3.2 to show that
(ba(n)c) is norm good.

To show that the conditions are necessary and sufficient, it remains to show that
for any c > 0 not of the form 1/m and any function r with 1 ≺ r(x) � log x,
(bcn+ r(n)c) is not norm good.

We deal first with the case c 6∈ Q. Set a(n) = cn+ r(n) where 1 ≺ r(n) � log n.
Then we will show that

1

t

∑
n≤t

e

(
ba(n)c
c

)
is not convergent.

Set α = c
∫ 1/c

0
e(x) dx. Since c is not the reciprocal of an integer, it follows

that α 6= 0. We now choose ε so as to ensure that for all sufficiently large t,
|s(bt+ εtc)− s(btc)| < |1/(12π)|. Define

Dt =
1

εt

∑
t<n≤t(1+ε)

e

(
ba(n)c
c

)
.

Then we see

Dt =
1

εt

∑
t<n≤t(1+ε)

e(s(n))e

(
−cn+ r(n) mod 1

c

)
=

1

εt

∑
t<n≤t(1+ε)

e(s(n))e
(
−(n+ s(n)) mod 1

c

)
.

Letting U(n) =
∑
j≤n e(−(j + s(j)) mod 1

c ), we get

Dt =
1

εt

∑
t<n≤t(1+ε)

e(s(n))(U(n)− U(n− 1))

=
1

εt

(
e(s(bt+ εtc+ 1))U(bt+ εtc)− e(s(btc+ 1))U(btc)

−
∑

t<n≤t(1+ε)

(
e(s(n+ 1))− e(s(n))

)
U(n)

)
=

1

ε

(U(bt+ εtc)
t+ εt

(1 + ε)e(s(bt+ εtc+ 1))− U(btc)
t

e(s(btc+ 1))
)
−

− 1

ε

∑
t<n≤t(1+ε)

(
e(s(n+ 1))− e(s(n))

)U(n)

n

n

t



18MICHAEL BOSHERNITZAN, GRIGORI KOLESNIK, ANTHONY QUAS, AND MÁTÉ WIERDL

Since n+ s(n) is uniformly distributed modulo 1/c, we see from Boshernitzan’s
result that U(n)/n→ α as n→∞. It follows that

Dt =
α

ε
(e(s(bt+ εtc+ 1))− e(s(btc+ 1))) + αe(s(bt+ εtc+ 1)) + o(1)

− 1

ε

∑
t<n≤t(1+ε)

(e(s(n+ 1))− e(s(n)))α

+
1

ε

∑
t<n≤t(1+ε)

(e(s(n+ 1))− e(s(n)))

(
α− U(n)

n

n

t

)

= αe(s(bt+ εtc+ 1)) +
1

ε

∑
t<n≤t(1+ε)

(e(s(n+ 1))− e(s(n)))

(
α− U(n)

n

n

t

)
+ o(1)

Let t be sufficiently large that |U(n)/n− α| ≤ αε for all n ≥ t. Since n/t < 1 + ε,
we have for all n in the summation∣∣∣∣α− U(n)

n

n

t

∣∣∣∣ ≤ 3εα.

We see also that |e(s(n + 1)) − e(s(n))| ≤ 2π|s(n + 1) − s(n)|. It follows that the
absolute value of the summation is at most 6πα|s(bt + εtc + 1) − s(btc)|. By the
choice of ε, we see

|Dt − αe(s(bt+ εtc+ 1))| < |α|
2

It follows that Dt is not convergent as t→∞. Defining

At =
1

t

∑
n≤t

e

(
ba(n)c
c

)
,

we have

At+εt −
1

1 + ε
At =

ε

1 + ε
Dt

We see that it follows that At is not a convergent sequence (if At had been conver-
gent, then taking limits Dt would be too).

For the second case, we suppose c = p
q . Set a(n) = cn+ r(n) where 1 ≺ r(n) �

log n. Then we show
1

t

∑
n≤t

e

(
ba(n)c
p

)
is not convergent.

Define

C(n) =

n+q−1∑
j=n

e

(
ba(j)c
p

)
Given an interval on which r(x) does not attain any values of the form i/q for
i ∈ Z, we note that ba(j + q)c = ba(j)c + p on this interval, so C(n) is constant
provided n and n+q both lie in the interval. At a point where r(x0) attains a value
i/q however, there is a transition: since p and q are coprime, there exists a unique
0 ≤ m < q such that mp+i is a multiple of q. Terms a(n) with n in the residue class
of m modulo q now have e(ba(n)c/p) differing before and after the transition by a
factor e(1/p). In particular, if n and n′ are values before and after the transition,
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then |C(n)−C(n′)| = |1− e(1/p)|. Since r(x) � log x, by Lemma 4.3 the intervals
between transitions have the property that the ratio of their endpoints is bounded
away from 1 for sufficiently large x. Defining Dt as in the previous lemma, we see
that Dt takes the value C(btc)/q for t such that btc and bt(1 + ε)c stay in the same
interval. The above shows that the sequence Dt is not convergent, so arguing as
before, it follows that the sequence At is not convergent.

�

7. Pointwise convergence: sufficient conditions

We note that in all the theorems which we prove in this section, one conclusion
is that (ba(n)c) is ergodic. We note that in each case, this follows from Remark 2.6
and Theorem 3.2.

The central object of study in this section is the sequence of functions defined
by

Atf(x) =
1

t

∑
n≤t

f(T ba(n)c(x)).

We will make a standing assumption that a(n) is defined for all positive integers.
This does not constitute a loss of generality because the truth of the theorems for a
sequence a(n) is equivalent to the the truth of the theorems for the sequence a′(n)
defined by a′(n) = a(n+ k).

We will first provide a sufficient condition for the above sequence of functions to
be convergent and then establish that the condition holds in the cases of Theorems
3.4, 3.5 and 3.8. In all of these theorems, we will make the assumptions that
a(x) � x, a ∈ U and a(x) is subpolynomial. By Lemma 4.1, it follows for such an
a(x), that there exists a δ ≥ 1 such that for any ε > 0, xδ−ε ≺ a(x) ≺ xδ+ε (and in
the case δ = 1, x ≺ a(x) ≺ x1+ε).

Define

St(α) =
1

t

∣∣∣∣∣∣
∑
n≤t

e(a(n)α)

∣∣∣∣∣∣ .
Theorem 7.1. Let a ∈ U be subpolynomial, satisfying a(x) � x. Let δ be such that
for each ε > 0, xδ−ε ≺ a(x) ≺ xδ+ε. Suppose further that there are constants ε and
C and a decreasing function σ(t) such that

(1) St(α) ≤ σ(t) for all t
1
2−δ ≤ |α| < tε;

(2)
∑∞
n=0(σ(2n))1−ε < C.

Then (ba(n)c) is good for pointwise convergence of L2 functions.

It will be noticed that the sufficient conditions given above for pointwise con-
vergence of L2 functions resemble quantitative versions of the conditions which
appeared in Lemma 6.1 for norm convergence.

The proof of this theorem will proceed by using spectral theory to compare the
desired quantities Atf(ω) with quantities Vtf(ω), which are shown to be pointwise
convergent on a set of full measure. To define Vtf(ω), first let F (t) = a−1(t), (i.e.
the compositional inverse function of a). Then Vtf(ω) is defined by

Vtf(ω) =
1

t

∑
n≤a(t)

F ′(n)f(Tnω).
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The Vt operator is like the At operator with the averaging taken over all times
up to ba(t)c with suitable weights, rather than just over the times occurring in the
sequence a(n).

Lemma 7.2. Suppose a is as in the statement of Theorem 7.1. Then for all f ∈ L1,
Vtf(ω) is pointwise convergent almost everywhere and the limit coincides with the

limit of the Césaro averages of f , 1/n
∑n−1
j=0 f(T jω).

Since we work using spectral theory, we will make use of estimates of the Fourier
transforms of these operators:

Ât(β) =
1

t

∑
n≤t

e(ba(n)cβ); and

V̂t(β) =
1

t

∑
n≤a(t)

F ′(n)e(nβ)

Note that Ât(β) differs from the quantity St(β) which appears in the statement
of Theorem 7.1 as the former is the Fourier transform of the sequence (ba(n)c),
while the latter is the Fourier transform of the sequence a(n). We will use Theorem
5.2 to compare the two.

The following lemmas are combined with the hypotheses in Theorem 7.1 to get
the required spectral estimates.

Lemma 7.3. Let a and δ be as described above. Then for any ε > 0, there is a
constant Cε such that for each β,

|Ât(β)− V̂t(β)| ≤ Cε(t−1 + tδ−1+ε|β|).

We use this lemma to control |Ât(β)− V̂t(β)| for small β. When β is larger, we

show separately that |V̂t(β)| and |Ât(β)| are small.

Lemma 7.4. Let a and δ be as described above. Then for 0 < |β| < 1/2, we have

|V̂t(β)| ≤ Cε|β|−
1
δ−εt−1.

The proof of Theorem 7.1 is then as follows:

Proof of Theorem 7.1. It is clearly sufficient to prove that the theorem holds for
an arbitrary non-negative function f ∈ L2. Let f be non-negative and let ρ ∈ Q
satisfy ρ > 1.

Fix t > 1. We will estimate |Ât(β) − V̂t(β)|. For 0 ≤ |β| ≤ t
1
2−δ, Lemma 7.3

gives us

(7.1) |Ât(β)− V̂t(β)| ≤ Cεtδ−1+ε+ 1
2−δ = Cεt

− 1
2 +ε.

For t
1
2−δ < |β| < 1

2 , from Lemma 7.4, we see

|V̂t(β)| ≤ Cε|β|−
1
δ−εt−1+ε ≤ Cεt−

1
2δ+ ε

2 +εδ.

Since an equation like this is valid for any ε, we see that there is a Cε > 0 such that

(7.2) |V̂t(β)| ≤ Cεt−
1
2δ+ε.

We finish by bounding Ât(β) for t in this range. For this we use Theorem 5.2.

By hypothesis, we know that St(α) ≤ σ(t) for t
1
2−δ < |α| < tε. Letting Q = tδ−

1
2 ,
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S = tε and r = min(
√
S − 1, 1/σ(t)), we apply the theorem to deduce that for

tδ−
1
2 ≤ |β| ≤ 1

2 ,

(7.3) |Ât(β)| ≤ C
√

log r

r
≤ C max

(
σ(t)

1
2−ε, t−

ε
3

)
.

Combining equations (7.1), (7.2) and (7.3), we see that for all β in the range
under consideration (|β| ≤ 1

2 ), we have

(7.4) |Ât(β)− V̂t(β)|2 ≤ max
(
Cεt
−1+ε, Cεt

− 1
δ+ε, Cσ(t)1−ε, t−

2ε
3

)
.

We note that when any of the terms is summed over t taking values in Jρ for
ρ > 1, the sum is bounded above independently of β, where for the σ(t)1−ε term,
we are using ∑

t∈Jρ

σ(t)1−ε ≤ dlog 2/ log ρe
∞∑
n=0

σ(2n)1−ε.

It follows then that
∑
t∈Jρ |Ât(β) − V̂t(β)|2 is bounded above by a constant C

independently of β.
By the spectral theorem, we have∫ ∑

t∈Jρ

|Atf(ω)− Vtf(ω)|2 dµ =

∫ ∑
t∈Jρ

|Ât(β)− V̂t(β)|2 dνf ,

where νf is the spectral measure of f . Since
∫

1 dνf = ‖f‖22, we see that∫ ∑
t∈Jρ

|Atf(ω)− Vtf(ω)|2 dµ ≤ C‖f‖2.

In particular, it follows that for almost every ω, Atf(ω)− Vtf(ω) is convergent
along Jρ to 0. Since by Lemma 7.2, Vtf(ω) is convergent almost everywhere, it
follows that for each ρ > 1, Atf(ω) is convergent for almost every ω along Jρ.
Since there are countably many ρ > 1 in Q, it follows that for a set of ω of full
measure, Atf(ω) is convergent along each Jρ with ρ > 1 in Q. Now by Lemma 4.4,
we see that Atf(ω) is convergent on this set of full measure as required.

�

Proof of Lemma 7.2. Let f ∈ L1. Then Vtf(ω) is defined as 1
t

∑
j<a(t) F

′(j)f(T jω).

Replacing t by F (n), we see that establishing convergence of Vtf(ω) as t → ∞ is

equivalent to establishing convergence of 1
F (n)

∑n−1
j=0 F

′(j)f(T jω) as n→∞.

This will be a consequence of Birkhoff’s theorem which states that for points
ω belonging to a set of full measure, 1/n

∑n−1
i=0 f(T iω) is convergent. Let ω be

any such point and let α be the limit of the sequence. Write fn = f(Tn(ω)) and

αn = 1
n

∑n−1
i=0 fi so that αn → α as n → ∞. Write cn = F ′(n) and note that for

sufficiently large n, cn is a decreasing sequence of numbers converging to 0. Let
ε > 0 be given and let K be chosen so that |αn − α| < ε for n ≥ K and (cn)n≥K is
a decreasing sequence converging to 0.

Write Cm =
∑m−1
n=0 cn and note that F (m)→∞ and Cm/F (m)→ 1 as m→∞.

In order to establish the claim, it is then sufficient to establish convergence of the
modified sequence 1

Cm

∑m−1
n=0 cnf(Tnω).
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By summation by parts, we see

1

Cm

m−1∑
n=0

cnfn =
1

Cm

(
mcm−1αm +

m−1∑
n=1

n(cn−1 − cn)αn

)
.

Applying this to the case where fn ≡ 1, we see

(7.5) 1 =
1

Cm

(
mcm−1 +

m−1∑
n=1

n(cn−1 − cn)

)
.

Combining these two equations, we get∣∣∣∣∣ 1

Cm

m−1∑
n=0

cnfn − α

∣∣∣∣∣
=

1

Cm

∣∣∣∣∣mcm−1(αm − α) +

m−1∑
n=0

n(cn−1 − cn)(αn − α)

∣∣∣∣∣
≤ 1

Cm

∣∣∣∣∣
K−1∑
n=0

n(cn−1 − cn)(αn − α)

∣∣∣∣∣+ ε
1

Cm

∣∣∣∣∣mcm−1 +

m−1∑
n=K

n(cn−1 − cn)

∣∣∣∣∣
Taking the limit as m→∞, we see that the first term converges to 0 and by (7.5),
the second term converges to ε giving

lim sup
m→∞

∣∣∣∣∣ 1

Cm

m−1∑
n=0

cnfn − α

∣∣∣∣∣ ≤ ε.
Since ε is arbitrary we see that 1/Cm

∑m−1
n=0 cnfn is convergent to the same limit

as the Césaro averages 1/m
∑m−1
n=0 f(Tnω). �

Proof of Lemma 7.3. For simplicity, we will make the assumption that a(0) = 0 and
a is increasing on [0,∞) . This will ensure that the inverse function F (x) is defined
on [0,∞) also. Since the initial terms do not affect the convergence or otherwise of
ergodic averages and the Hardy field assumption only governs the behavior of a on
a neighborhood of ∞, this does not entail a loss of generality.

We need to show that∣∣∣∣∣∣
∑
n≤t

e(ba(n)cβ)−
∑
n≤a(t)

F ′(n)e(nβ)

∣∣∣∣∣∣ ≤ C(1 + tδ+ε|β|).

Since δ ≥ 1 and |e(ba(n)cβ)− e(a(n)β)| ≤ Cβ, it is sufficient to show

(7.6)

∣∣∣∣∣∣
∑
n≤t

e(a(n)β)−
∑
n≤a(t)

F ′(n)e(nβ)

∣∣∣∣∣∣ ≤ C(1 + tδ+ε|β|).

We then observe by the change of variables formula, setting u = F (x) that∫ t

0

e(βa(u)) du =

∫ a(t)

0

F ′(x)e(βx) dx.

To show (7.6), it is therefore sufficient to bound the difference between the sums and
the integrals. We observe that if n ≤ u < n+ 1, then |F ′(u)e(βu)− F ′(n)e(βn)| ≤
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|F ′(u)− F ′(n)|+ |F ′(n)||e(βu)− e(βn)|. It follows that∣∣∣∣∣∣
∑
n≤a(t)

F ′(n)e(nβ)−
∫ a(t)

0

F ′(x)e(βx) dx

∣∣∣∣∣∣
≤ C +

∑
n≤a(t)

|F ′(n+ 1)− F ′(n)|+ C|β|
∑
n≤a(t)

|F ′(n)|

≤ C + C|β|F (a(t))| = C(1 + βt).

Similarly, for n ≤ x < n+ 1, |e(βa(x))− e(βa(n))| ≤ C|β| supn≤x<n+1 a
′(x) so we

see ∣∣∣∣∣∣
∑
n≤t

e(βa(n))−
∫ t

0

e(βa(u)) du

∣∣∣∣∣∣ ≤ C|β|a(t).

Combining the above gives the desired proof. �

Proof of Lemma 7.4. We begin by noting the following properties of F (x):

(1) F (x)→∞ as x approaches ∞;
(2) For sufficiently large x, F is convex down and is twice continuously differ-

entiable. In particular F ′(x) decreases to 0 as x approaches ∞ and F ′′(x)
is negative;

(3) For some constant C, xF ′(x) ≤ CF (x); This property is a consequence of
the first two.

(4) x
1
δ−ε ≺ F (x) ≺ x 1

δ+ε for each ε > 0.

From property 4, we see that it is sufficient to prove

(7.7) |
∑
n≤t

F ′(n)e(nβ)| ≤ C · F (1/|β|).

We can assume that |β| ≥ 1/tδ, since the above estimate is nontrivial only in this
case. To ease our notation, we introduce, for s ≥ 1,

Gs(β) =
∑
n≤s

e(nβ); and

Ws(β) =
∑
n≤s

F ′(n)e(nβ).

Using the fact that the numbers e(β), e(2β), . . . , e(bscβ) form a geometric progres-
sion and the estimate |1− e(β)| ≥ 2|β| (which is valid for |β| ≤ 1/2), we obtain

(7.8) |Gs(β)| ≤ 1

|β|
.

Let s satisfy 1 ≤ s ≤ t and estimate

|Wt(β)| ≤ |Ws(β)|+ |Wt(β)−Ws(β)|.

We trivially have

|Ws(β)| ≤ C · F (s).

Next, we will show that

(7.9) |Wt(β)−Ws(β)| ≤ CF ′(s) · 1

|β|
.
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Choosing s = 1/|β|, by property 3, the last two estimates above imply the one in
(7.7).

The inequality in (7.9) is obtained using summation by parts:

|Wt(β)−Ws(β)|

=

∣∣∣∣∣∣
∑

bsc<n≤t

F ′(n)e(nβ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

bsc<n≤t

F ′(n) (Gn(β)−Gn−1(β))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

bsc<n≤btc

(F ′(n)− F ′(n+ 1))Gn(β) + F ′ (btc)Gt(β)− F ′ (bsc+ 1)Gs(β)

∣∣∣∣∣∣
using the inequality in (7.8) and property 2,

≤
∑

bsc<n≤btc

(F ′(n)− F ′(n+ 1))
1

|β|
+ F ′ (btc) 1

|β|
+ F ′ (bsc+ 1)

1

|β|

= 2F ′ (bsc+ 1)
1

|β|
≤ 2F ′(s)

1

|β|
,

where in the last inequality we again used that F ′(x) is decreasing. �

We will now use a lemma of Van der Corput to show that the hypotheses of
Theorem 7.1 are satisfied under the hypotheses of Theorems 3.4 and 3.5, thus
proving these theorems.

Lemma 7.5 (Van der Corput [20]). Let Y,X, ` be integers. Suppose that Y < X,
` ≥ 2 and set s = 2`. Suppose that the real function b is `-times differentiable in
the interval [Y,X] and |b(`)| ≥ % in [Y,X], where % is a positive number.

Then, letting

R =
1

X − Y

∣∣∣b(`−1)(X)− b(`−1)(Y )
∣∣∣ ,

we have∣∣∣∣∣∣
∑

Y≤n≤X

e(b(n))

∣∣∣∣∣∣ ≤
≤ 21(X − Y )

((
R2

%

)1/(s−2)

+

(
1

%(X − Y )`

)2/s

+

(
R

%(X − Y )

)2/s
)
.

We now use the lemma to prove Theorems 3.4 and 3.5. In these proofs, we will
use the symbol C to denote an upper bound which is independent of X and α in
the specified range.

Proof of Theorem 3.4. Since r ∈ U is sub-polynomial, it follows by Lemma 4.1 that
there exists a δ > 0 such that for all ε > 0, xδ−ε ≺ r(x) ≺ xδ+ε. Since r is assumed
to be non-polynomial, it follows by Lemma 4.2 that xδ−k−ε ≺ r(k) ≺ xδ−k+ε.
Choose l > max(1 + δ, ∂p) so that a(l) = r(l). We then apply Van der Corput’s
Lemma to b(n) = αa(n) with X = t, Y = t1−τ and s = 2l. For sufficiently
large x, we have xδ−ε < a(x) < xδ+ε. We then compute R ≤ Cb(l−1)(t1−τ )/t ≤
αCt−(1−τ)(l−(1+δ)+ε)−1 and ρ ≥ αCt−(l−δ)−ε. If we replaced τ and ε with 0, R2/ρ
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would be given by Cαt−(l−δ), so in particular, choosing sufficiently small τ and ε
(independently of t and α), we see that for sufficiently large t (independently of α),
R2/ρ ≤ Cαt−1.

Similarly, we see that 1/(ρ(X − Y )l) ≤ C/(αtδ−ε) where C only depends on ε.
Finally, taking again ε and τ to be 0, we would be able to estimate the term

R/(ρ(X − Y )) above by C/t. So for small positive values of ε and τ , we see that
R/(ρ(X − Y )) ≤ C/

√
t.

Putting this together, we see that for sufficiently small ε and τ and for sufficiently
large t, we have∣∣∣∣∣∣1t

∑
n≤t

e(αa(n))

∣∣∣∣∣∣ ≤ t1−τ

t
+ C

(α
t

) 1
s−2

+ C

(
1

αtδ−ε

) 2
s

+ C

(
1√
t

) 2
s

,

where the first term comes from the trivial estimate |e(αa(n))| ≤ 1 for n ≤ t1−τ .
We therefore see that there is a ε > 0 such that for sufficiently large t and α lying
between t−δ+

1
2 and t

1
2 , ∣∣∣∣∣∣1t

∑
n≤t

e(αa(n))

∣∣∣∣∣∣ ≤ C

tε
.

It is then clear that the sequence a(n) satisfies the hypotheses of Theorem 7.1 so
we see that (ba(n)c) is a good sequence for pointwise convergence of L2 functions
as claimed. �

Proof of Theorem 3.5. Suppose a(x) = p(x) + r(x) where p(x) is a polynomial of

degree n ≥ 2 and r(x) is non-polynomial satisfying r(x) � (log x)2n+1−1+η. We
may assume that r(x) ≺ xε for each ε > 0 as if not, the conclusion follows from
Theorem 3.4. We make two applications of Van der Corput’s lemma: one with
l = n and one with l = n + 1 to give control of the quantity St(α) appearing in
Theorem 7.1 in two distinct ranges of α. As above, let b(x) = αa(x).

First with l = n, we see that a(l−1)(x) = cx+ d+ r(l−1)(x) for constants c and d
so taking Y =

√
t and X = t, that R ≤ CαA for a constant A independent of t and

α. Also, a(l) = c+ r(l)(x) so that ρ ≥ Cα. For t−n+ 1
2 ≤ |α| ≤ (log t)−(2n−2)− η2 , we

have as in Theorem 3.4∣∣∣∣∣∣1t
∑
n≤t

e(αa(n))

∣∣∣∣∣∣ ≤
√
t

t
+ Cα1/(2n−2) + C

(
1

αtn

)1/2n−1

+ Ct−1/2n−1

≤ C(log t)−1−η′ ,

where η′ = η/(2n+1 − 4).
With l = n+ 1, we have a(l−1)(x) = c+ r(n)(x) and a(l)(x) = r(n+1)(x). Setting

X = t and Y = t1−τ , we get R ≤ αCr(n)(t1−τ )/t and ρ = αr(n+1)(t). Using
Lemma 4.2, we see that R2/ρ ≤ Cαt−n−1+3ε+nτ . Letting τ and ε be small, we get
R2/ρ ≤ Cαt−n. Also,(

1

ρ(X − Y )l

)2/2l

≤ C
(

1

αr(n+1)(t)tn+1

)1/2n

.

Since r(x) � (log x)2n+1−1+η, it follows from an application of Lemma 4.2 that

r(n+1)(x) � (log x)2n+1−2+η/xn+1.
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If |α| ≥ (log t)−2n+2−η/2, then we see(
1

ρ(X − Y )l

)2/2l

≤ C
(

1

(log t)2n+η/2

)1/2n

.

Finally, the term (R/(ρ(X − Y )))1/2n is bounded above by a negative power of t
so we see that for (log t)−2n+2−η/2 ≤ |α| ≤ t,∣∣∣∣∣∣1t

∑
n≤t

e(αa(n))

∣∣∣∣∣∣ ≤ C(log t)−1−η/2n+1

.

It may then be verified that the sequence a(n) satisfies the conditions of Theorem
7.1 completing the proof of the theorem. �

We finish this section with the proof of Theorem 3.8. We first quote Weyl’s
inequality (see [21]).

Lemma 7.6. Suppose that hcf(b, q) = 1. and |α − b/q| < 1/q2. Let p(x) =
αxk + α1x

k−1 + . . .+ αk. Then∣∣∣∣∣∣
∑
n≤t

e(p(n))

∣∣∣∣∣∣ ≤ Ct1+ε(q−1 + t−1 + qt−k)1/K ,

where K = 2k−1 and the constant C depends only on ε and k.

We extend this to the case where rather than the rational approximation of the
leading coefficient, one considers the rational approximation of any of the non-
constant coefficients.

Theorem 7.7. Let p(x) = akx
k + ak−1x

k−1 + . . .+ a1x+ a0. If for some 0 < σ <

2−k
2

, there is an l with 1 ≤ l ≤ k such that there is a rational approximation pl/ql
to al such that |al − pl/ql| < 1/(tl−σql) and ql > tσ, then for each ε > 0, there is a
constant C (dependent only on k and ε) such that∣∣∣∣∣

t∑
n=1

e(p(n))

∣∣∣∣∣ ≤ Ct1+ε−η,

where η = σ/(12k · 2k2)

Proof. Set αi = 2k(l−i)σ. For each i > l, there is a rational approximation pi/qi
to ai satisfying |ai − pi/qi| < 1/(ti−αiqi) and qi < ti−αi by Dirichlet’s criterion.
We note that ql > tαl and take j to be the largest index for which the inequality
qj > tαj holds. If j = k, then the theorem holds trivially by Lemma 7.6 so we
assume that j < k. For i > j, we therefore have qi ≤ tαi , whereas for j, we have
tαj < qj < tj−αj . Writing Q = qj+1 · · · qk, we see that Q < tαj+1+...+αk < t2αj+1 .

We observe also αj − 2jαj+1 > αj/2 so that qj/Q
j > tαj/2.

Using Dirichlet’s criterion again, there is a rational approximation c/d to Qjaj
satisfying d ≤ tj−αj and

(7.10)
∣∣∣Qjaj − c

d

∣∣∣ ≤ 1

tj−αjd
.

Dividing through by Qj , we see that |aj − c/(Qjd)| ≤ 1/(tj−αjQjd). By the choice

of qj , we conclude that Qjd ≥ qj , so that tαj/2 < d < tj−αj .
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We now modify the polynomial p(n) to give a polynomial p′(n), where the coef-
ficients of ni for i > j are replaced by their rational approximations:

p′(x) = pk/qkx
k + . . .+ pj+1/qj+1x

j+1 + ajx
j + . . . a0.

For M between t1−η and t, set A′(M) =
∑
n≤M e(p′(n)) We then bound |A′(M)|

by splitting the sum into residue classes modulo Q and applying Lemma 7.6. Write
p′(x) = p0(x) + p1(x), where p0(x) consists of the terms of degree greater than j
(the perturbed terms) and p1(x) consists of the remaining terms. Then e(p0(n)) is
periodic with period Q so we see that

A′(M) =
∑
n≤M

e(p′(n)) =

Q−1∑
r=0

e(p0(r))
∑

Qs+r≤M

e(p1(Qs+ r)).

Note that the leading coefficient of p1(Qs+ r) as a polynomial in s is Qjaj . From
(7.10), we see that that we can apply Lemma 7.6 to conclude that there is a constant
C depending on ε > 0 and j such that

|A′(M)| ≤ CQ(M/Q)1+ε(d−1 + (M/Q)−1 + d(Q/M)j)1/2j−1

≤ Ct1+ε
(
t−αj/2 + t2αj+1+η−1tj−αj (t1−η−2αj+1)−j

)1/2j−1

= Ct1+ε
(
t−αj/2 + t−αj+jη+2jαj+1

)1/2j−1

≤ Ct1+ε
(
t−αj/2 + t−αj/2+αj/6

)1/2j−1

≤ Ct1+ε−αj/(3·2j−1)

Now, we write p(x) = p′(x)+∆(x), where ∆(x) = (ak−pk/qk)xk+ . . .+(aj+1−
pj+1/qj+1)xj+1. We observe that |∆(n)−∆(n−1)| ≤ Ctj/tj+1−αj+1 = Ct−(1−αj+1).
We then estimate∣∣∣∣∣∣

∑
n≤t

e(p(n))

∣∣∣∣∣∣ ≤ t1−η +

∣∣∣∣∣
t∑

n=t1−η

e(p′(n))e(∆(n))

∣∣∣∣∣
= t1−η +

∣∣∣∣∣
t∑

n=t1−η

(A′(n+ 1)−A′(n))e(∆(n))

∣∣∣∣∣ .
Using summation by parts, we have∣∣∣∣∣

t∑
n=t1−η

(A′(n+ 1)−A′(n))e(∆(n))

∣∣∣∣∣
≤ |A′(t)|+ |A′(t1−η)|+

t∑
n=t1−η

|A′(n)||(e(∆(n+ 1))− e(∆(n))|

≤ Ct1+ε−αj/2j + Ctt−(1−αj+1)t1+ε−αj/(3·2j−1)

≤ Ct1+ε+αj+1−αj/(3·2j−1)

≤ Ct1+ε−αj+1/12 ≤ Ct1+ε−η.

This completes the proof. �

We use this to prove the following general lemma.
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Lemma 7.8. Suppose that p(x) is a polynomial of degree k ≥ 2 with the property
that two of its non-constant coefficients have a ratio which is badly approximable
by rationals. Then there exist a σ > 0, an η > 0 and a C > 0 such that for
t−k+1/2 < |β| < tσ

1

t

∑
n≤t

e(βp(n)) ≤ Ct−η.

Proof. Suppose α = ai/aj is badly approximable by rationals. That is there exists
D and m ≥ 2 such that |α−p/q| ≥ D/qm for all rationals p/q. Let σ < 1/(3m+4).
Then we show that for β in the range t−σ < |β| < tσ, one of the coefficients of
βp(n) satisfies the conditions of Theorem 7.7 above. Let t−σ < β < tσ. We use
Dirichlet’s criterion to approximate βai and βaj as∣∣∣∣βai − p

q

∣∣∣∣ < 1

ti−σq∣∣∣βaj − c

d

∣∣∣ < 1

tj−σd
,

where q < ti−σ and d < tj−σ. The range of β ensures that c and p are non-zero.
We show that either q > tσ or d > tσ. Suppose for a contradiction that q ≤ tσ and
d ≤ tσ. It then follows that p ≤ Ct2σ and c ≤ Ct2σ.

From the above equations, we see that

dp

cq

(
1− 1

qti−σ

)
/

(
1 +

1

dtj−σ

)
< α <

dp

cq

(
1 +

1

qti−σ

)
/

(
1− 1

dtj−σ

)
.

In particular, we see that ∣∣∣∣α− dp

cq

∣∣∣∣ ≤ dp

t1−σ

giving dp/t1−σ > D(cq)−m by the badly approximable condition on α. We then see
that D < t(3m+4)σ−1 which is a contradiction for sufficiently large t. By Theorem
7.7, for t−σ < |β| < tσ, the conclusion of the lemma holds for such t, and hence by
choosing a sufficiently large C for all t.

On the other hand, if t−k+1/2 < |β| ≤ t−σ, then we apply Van der Corput’s
lemma (Lemma 7.5) with l = k to βp(x) to show that a similar equation holds
(with a different value of η). Taking the minimum of these values of η, we see that
the lemma holds for β satisfying t−k+1/2 < |β| < tσ. �

Finally, we apply this to prove Theorem 3.8 as follows:

Proof of Theorem 3.8. Suppose p(x) is as in the statement of the theorem and
r(x) ≺ x. If r(x) � 1 or r(x) � (log x)n for sufficiently large n, then it follows from
Theorem 3.5 that bp(n)+r(n)c is good for pointwise convergence of L2 functions. To
prove the theorem, it is therefore necessary to consider the case 1 ≺ r(x) ≺ (log x)a.
As usual, we consider the case in which r(x) is increasing, the decreasing case being
similar. We can apply Lemma 7.8 to the polynomial p(n) giving C, σ and η such
that

(7.11)
∑
n≤t

e(βp(n)) ≤ Ct1−η

for all t and t−k+1/2 < |β| < tσ. We will denote the left side of the inequality by
A(t).
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We note that ∣∣∣∣∣
t∑

n=1

e(βa(n))

∣∣∣∣∣ ≤ t1/2 +

∣∣∣∣∣
t∑

n=t1/2

e(βa(n))

∣∣∣∣∣
We next partition the sum according to the value of r(n) in a grid of width t−η/2

and use the previous lemma to estimate the above sum. Let xs be the first integer
for which r(xs) > s/tη/2, s0 = tη/2r(t1/2) and s1 = tη/2r(t). Letting β satisfy
t−k+1/2 < |β| < tmin(η/4,σ), we have∣∣∣∣∣∣

∑
n≤t

e(βa(n))

∣∣∣∣∣∣ ≤ t1/2 +
∑

s0≤s<s1

∣∣∣∣∣∣
∑

xs<n≤xs+1

e(β(p(n) + r(n)))

∣∣∣∣∣∣
≤ Ct1−η/4 +

∑
s0≤s<s1

∣∣∣∣∣∣
∑

xs<n≤xs+1

e(βp(n))

∣∣∣∣∣∣ ,
where the second inequality follows from the fact that for n ∈ (xs, xs+1], |e(β(p(n)+
r(n)))− e(β(p(n) + s/tη/2))| ≤ C|β|/tη/2 ≤ Ct−η/4. Since

∑
xs<n≤xs+1

e(βp(n)) =

A(xs+1)−A(xs), we see from (7.11) that |
∑
xs<n≤xs+1

e(βp(n))| ≤ Ct1−η for each

t. It then follows that∣∣∣∣∣∣
∑
n≤t

e(βa(n))

∣∣∣∣∣∣ ≤ Ct1−η/4 + Ctη/2r(t)t1−η ≤ Ct1−η/4.

This clearly satisfies the conditions of Theorem 7.1, completing the proof of the
theorem. �

8. Pointwise convergence: necessary conditions

We recall from [17] that necessary and sufficient conditions for a sequence (a(n))
to be good for pointwise convergence of Lp functions are:

(1) For each measure-preserving transformation of the probability space Ω,
there exists a dense subset of Lp(Ω) on which there is convergence;

(2) There exists a weak(p, p) maximal inequality of the form: For each measure-
preserving system (Ω,B, µ, T ), there exists a K such that

(8.1) µ{ω : M∗f(ω) > λ} ≤
K‖f‖pp
λp

,

where M∗f(ω) = supt≥1

∣∣∣ 1t ∑n≤t f(T a(n)ω)
∣∣∣.

In particular, the constantK in the maximal inequality satisfies for each measure-
preserving system and each function f ∈ Lp,

(8.2) K ≥ λpµ{ω : M∗f(ω) > λ}
‖f‖pp

To establish necessary conditions, we show that if the function a differs from a
rational polynomial by a function which grows too slowly, then (8.1) does not hold.

Proof of Theorem 3.7. Let p = cq be a constant multiple of a polynomial with
integer coefficients whose lowest degree term is of order k ≥ 3. Let 1 ≺ r(x) �
(log x)m where m < 2k/(k + 2). For any integer N (which we may assume to be
large), consider the system T (y) = y+1 mod cNk and the function f(y) = χ[0,2](y).
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Then ‖f‖22 = 2/(cNk). We assume as before that r(x) is increasing (the case where
r(x) is decreasing being similar) and observe that q(jN) ≡ 0 (mod Nk). Given
y ∈ [0, cNk), let s1 be the first real number such that y+r(s1) = 1 (mod cNk) and
s2 be the first real number beyond s1 such that y+r(s2) ≡ 2 (mod cNk). For y > 2
and sufficiently large N , we have s1 = r−1(cNk−y+1) and s2 = r−1(cNk−y+2).
We then have y + a(Nj) mod cNk ∈ [1, 2] for s1 ≤ Nj ≤ s2 so T ba(Nj)c(y) ∈ [0, 2]
for s1 ≤ Nj ≤ s2. It follows that

M∗f(y) ≥ 1

s2

⌊
s2 − s1

N

⌋
.

Using Lemma 4.3 for N large, we see that there is a constant κ > 0 such that for
all but a small set of y,

M∗f(y) ≥ κ(cNk)
1
m−1

N
.

Taking λ = κ(cNk)
1
m−1/N , we see that µ{y : M∗f(y) ≥ λ} is close to 1 for large

N . From (8.2), we see that

K ≥ CN2k( 1
m−1)−2

2/(cNk)
= CN

2k
m−(k+2).

Since m < 2k/(k + 2), we see that the exponent is positive, so that there does not
exist a finite constant K in the maximal inequality.

This completes the proof of the theorem. �

In the proof of Theorem 3.6, we will need to make use of the following result
which is a compilation of results which appeared in [7] (Theorems 2 and 5 and
Lemma 6)

Theorem 8.1. Suppose that q ∈ Z[x] is a polynomial of degree n > 1. If for any
prime p, the range of q modulo p is not all of the residue classes of p, then the
cardinality of the range of q modulo p is at most αp+O(p1/2), where α = 1− 1/n!.

We will also make use of the following result from the book of Lidl and Nieder-
reiter ([15], Corollary 7.5).

Theorem 8.2. Let q ∈ Z[x] be a polynomial of degree n > 1. If p ≡ 1 (mod n),
then the range of q modulo p is not all of the residue classes of p.

Proof of Theorem 3.6. Let p(x) = cq(x), where q(x) ∈ Z[x]. Let p1, p2, . . . be the
sequence of primes congruent to 1 modulo n. Let 1−1/n! < β < 1. By Theorems 8.2
and 8.1, the range of q(n) mod pi has cardinality less than βpi for sufficiently large
i. Forming PN = p1p2 · · · pN , we see that the range of q(n) mod PN has cardinality
less that βNPN . We will then use this in the construction of the maximal function
showing that the constant in (8.2) is unbounded.

Let RN be the range of q(n) mod PN and consider the system T (y) = y +
1 mod cPN . Set S =

⋃
j∈RN [cj − 1, cj + 1), S′ =

⋃
j∈RN [cj, cj + 1) and f(y) =

χS(y). We then recall that we are considering the case a(x) = p(x) + r(x), where
1 ≺ r(x) � log x(log log x)m. We consider the case where r(x) is (eventually)
increasing, the case where r(x) is decreasing being similar. As above, let y be any
point in [0, cPN ). Let s1 be the first real number such that y+r(s1) ≡ 1 (mod cPN )
and s2 be the first real number beyond s1 such that y+ r(s2) ≡ 2 (mod cPN ). We
then have that y + p(n) + r(n) mod cPN ∈ S′ for s1 < n < s2 so T ba(n)c(x) ∈ S
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for s1 < n < s2. It follows that M∗f(y) ≥ (s2 − s1)/s2 ≥ C/ exp((logPN )m) by
Lemma 4.3. Also, ‖f‖22 ≤ 2|RN |/PN ≤ CβN so we see that the constant in (8.2)
satisfies

K ≥ C

βN exp(2(logPN )m)

By the prime number theorem for arithmetic progressions [11] (Corollary 1, Ch.
IX, §3), we see that logPN ≤ CN logN . Since m < 1, we see that the denominator
converges to 0 as N approaches ∞ so we then see that there is no constant as
required. �

Proof of Theorem 3.9. Let p ∈ CQ[x] be of degree n > 1. Then let 1 ≤ m ≤ n.
Write p(x) = cq(x) where q ∈ Q[x]. We will perturb inductively the xm coefficient
of p so as to give a strictly irrational polynomial p̃ which differs from p only in the
xm coefficient and by an arbitrarily small amount, but for which the badness of
(bp̃(n) + log nc) for L2 functions persists. Write p = p0.

Suppose that we have found a sequence of perturbations p1, p2, . . . , pk ∈ cQ[x]
along with numbers n0 < n1 < . . . < nk−1 satisfying the following properties:

(1) bpi+1(n) + log nc = bpi(n) + log nc for 1 ≤ n ≤ ni;
(2) For i < k, there exists a measure-preserving system Ωi, a function fi and a

constant λi such that

(8.3)
λ2
iµ{ω : sup1≤t<ni 1/t

∑
n≤t fi(T

bpi(n)+lognc(ω)) > λi}
‖fi‖22

≥ i.

(3) Writing the xm coefficient of pi as cai/bi, we have 0 < ai+1/bi+1 − ai/bi ≤
e−bi and ai+1/bi+1 − ai/bi < (ai/bi − ai−1/bi−1)/2.

Then we inductively extend the sequence as follows: Since pk ∈ cQ[x], by the
proof of Theorem 3.6, there exists a system Ωk, a function fk and a constant λk
such that

λ2
kµ{ω : M∗fk(ω) > λk}

‖fk‖22
> i.

By the monotone convergence theorem, there is an nk > nk−1 such that

(8.4)
λ2
iµ{ω : sup1<t<nk

1/t
∑
n≤t fk(T bpk(n)+lognc(ω)) > λk}
‖fk‖22

≥ k.

Since the fractional parts of pk(n) + log n for n ≤ nk have a maximum value which
is strictly less than 1 (1− εk, say), it follows that increasing the xm coefficient of pk
by a sufficiently small amount (which we can assume to be less than εk/(2(nk)m))
one can find a polynomial pk+1 ∈ cQ[x] satisfying conditions 1, 2 and 3.

We then take a limit of these polynomials to get a polynomial p̃. The control
of the amount of the increment of the xm coefficient ensures that bp̃(n) + log nc =
bpi(n) + log nc for n ≤ ni. It follows from equation (8.4) that there is no maximal
inequality for (bp̃(n) + log nc).

We note that condition 3 implies that the xm coefficient of p̃ is given by a number
cα where α is transcendental. This completes the inductive step and hence the proof
of the theorem. �
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9. Notes on Lp, p > 1

Here we just state the “Lp” analogs of Theorems 3.4, 3.5 and 3.8. The proofs
easily obtained by interpolating between the L2 bounds and the trivial L1 bound
for At − Vt (cf. (7.4)).

Theorem 9.1. Let a ∈ U be subpolynomial and have decomposition p+ r. If there
is an ε such that r(x) � xε, then (ba(n)c) is pointwise good for Lp for every p > 1.

Theorem 9.2. Let a ∈ U be subpolynomial and have a decomposition p+ r where
∂p = n ≥ 2. If for every positive m, r(x) � (log x)m then (ba(n)c) is pointwise
good for Lp for every p > 1.

Theorem 9.3. Let a ∈ U be subpolynomial, satisfy a(x) � x and have a decompo-
sition p+r where p is a polynomial with the property that the ratio of two of its non-
constant coefficients is badly approximable by rationals (e.g. p ∈ CA[x] \ CQ[x]).
Then (ba(n)c) is pointwise good for Lp for every p > 1.

10. Open problems

Question 10.1. Is the sequence (n2 + blog2 nc) a good sequence for pointwise con-
vergence?

Question 10.2. In this question, we consider the structure of set of ‘bad pertur-
bations’ of a polynomial. Let p(x) be a real polynomial of degree at least 2.

(1) (Disk of convergence) Suppose that r1(x) and r2(x) belong to a Hardy field
and 1 ≺ r1(x) ≺ r2(x) ≺ x. If bp(n) + r1(n)c is good for pointwise conver-
gence, does it follow that bp(n) + r2(n)c is good for pointwise convergence?

(2) (Radius of convergence) Does there exist an r∗(x) � 1 belonging to a Hardy
field so that if 1 ≺ r(x) ≺ r∗(x), then bp(n) + r(n)c is bad for pointwise
convergence, whereas if r∗(x) ≺ r(x) ≺ x then bp(n) + r(n)c is good for
pointwise convergence. (Note that the case r∗(x) = 1 corresponds to radius
of convergence 0: the entire neighborhood of p(x) is good for pointwise
convergence).

(3) (Uniform upper bound on radii) Does there exist a q such that if r(x) belongs
to a Hardy field and (log x)q ≺ r(x) ≺ x then bp(n) + r(n)c is good for
pointwise convergence?

Question 10.3. Let a(x) be from a Hardy field and assume the sequence (a(n)) is
good for pointwise convergence. Is a(x) necessarily a polynomial?

Let us point out that it is known that (nδ) is bad for pointwise convergence for

any nonzero rational number δ (cf. [19]), but it is not known if (n
√

2) is bad. On
the other hand, [10, Theorem 2.16] can be used to show that if a(x) is from a Hardy
field, and it satisfies a(x) → ∞ but a(x)/xε → 0 for every positive ε, then a(x) is
not good for pointwise convergence.

Question 10.4. Is (bπx2 + x+ log xc) good for pointwise convergence?

11. Notes

Announcement of results: Some of the results in the present paper were
announced in [5], but the results on almost everywhere convergence have
been greatly extended.
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Polynomial sequences: Bourgain’s main paper is [6]. In it he proves that
polynomials and their integer parts are good for Lp, p > 1. It is unknown
what happens for p = 1.

Logarithmico-exponential functions: The book of Hardy [9] is a wonder-
ful read.

Hardy fields: All the background material as well as further references can
be found in [1, 2].

Hardy fields and uniform distribution: The main motivation to formu-
late all our theorems in terms of Hardy fields comes from [3].√
n is bad: is proved in [19] using Bourgain’s entropy method. An elemen-
tary, simple proof can be found in [10].

Estimates on trigonometric sums: Our idea to tie estimates on trigono-
metric sums along a real sequence to estimates on trigonometric sums along
the integer part of the sequence is based on [8].

Good → integer part is good: The fact that if (an) is pointwise good then
(banc) is also pointwise good is proved in [4] and, independently, in [13].
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