GENERIC POINTS IN THE CARTESIAN POWERS OF
THE MORSE DYNAMICAL SYSTEM

BY EMMANUEL LESIGNE, ANTHONY QUAS & MATE WIERDL

ABSTRACT. — The symbolic dynamical system associated with the Morse sequence is
strictly ergodic. We describe some topological and metrical properties of the Cartesian
powers of this system, and some of its other self-joinings. Among other things, we show
that non generic points appear in the fourth power of the system, but not in lower
powers. We exhibit various examples and counterexamples related to the property of
weak disjointness of measure preserving dynamical systems.

RESUME (Points génériques dans les puissances cartésiennes du systéme dynamique
de Morse)

Le systeme dynamique symbolique associé a la suite de Morse est strictement er-
godique. Nous décrivons certaines propriétés topologiques et métriques des puissances
cartésiennes de ce systeme, et de certains de ses auto-couplages. Nous montrons en
particulier que des points non génériques apparaissent dans la puissance quatrieéme
du systéme mais n’apparaissent pas dans les puissances inférieures. Nous présentons
divers exemples et contre-exemples illustrant la notion de disjonction faible de systémes
dynamiques mesurés.
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Introduction

In this article, we describe ergodic properties of some self-joinings of the dy-
namical system associated to the Morse sequence. Some of these properties are
relevant to the topological dynamics setting, and some other ones are relevant
to the measurable dynamics setting.

The dynamical system associated to the Morse sequence, called the Morse
dynamical system is a well known and widely studied object. We recall its
definition and some of its basic properties in Section 1. In this section the
classical notions of generic points in dynamical systems and of strict ergodicity
are also recalled.

The Morse dynamical system M is a simple example of a strictly ergodic
dynamical system, probably the simplest example after the ergodic translations
of compact abelian groups. It has been a surprise for us to discover that non
trivial phenomena appear in the genericity properties of points in the Cartesian
powers of M : in the Cartesian square and cube of M every point is generic (for
a measure which of course depends on the point) ; but in the fourth Cartesian
power of M, this is no longer true. We will see that, in a certain sense, there
are a lot of non generic points in the kth Cartesian power of M, when k > 4.



MORSE DYNAMICAL SYSTEM 3

The study of generic points in Cartesian products of dynamical systems is
linked with the notion of weak-disjointness of dynamical systems, that has been
introduced in [3] and [4] and that we recall now.

DEFINITION. — Two probability measure preserving dynamical systems
(X, A, u,T) and (Y,B,v,S) are weakly disjoint if, given any function f
in L?(u) and any function g in L*(v), there exist a set A in A and a set B in
B such that

— n(A) =v(B) =1

N-1
1
— forallx € A and y € B, the sequence < Z f(T") -g(S”y))
N n=0

CONVETGES.

N>0

This notion of weak disjointness is an invariant of isomorphism in the cate-
gory of measurable dynamical systems.

If X and Y are compact metric spaces equipped with their Borel o-algebras
and with Borel probabilities p and v, it can be shown ([4]) that the dynamical
systems (X, A4, u, T) and (Y, B, v, S) are weakly disjoint if and only if the set of
generic points in the Cartesian product (X x Y, T x S) contains a “rectangle”
A x B of full 4 ® v measure.

We say that a dynamical system (X, A, p, T) is self-weakly disjoint (of order
2) if it is weakly disjoint from itself. This notion has an obvious k-fold extension,
for any integer k > 2.

From the study of generic points in the Cartesian powers of the Morse dy-
namical system M, we deduce that this dynamical system is self-weakly disjoint
of orders 2 and 3, but not of order > 4. We prove that M is weakly disjoint
from any ergodic k-fold joining of itself (Corollary 2.13), which implies (due to
a result of [4]) that the Morse dynamical system M is weakly disjoint from any
ergodic dynamical system. We do not know if M is weakly disjoint from any
dynamical system.

On the side of “negative” results we prove that the Cartesian square of M
is not self-weakly disjoint (Corollary 3.6) and we prove that most ergodic self-
joinings of M are not self-weakly disjoint (Theorem 3.7). This provides the
simplest known example of a non self-weakly disjoint ergodic dynamical system
with zero entropy.

We notice here that the Cartesian square of M is not self-weakly disjoint
although it is weakly disjoint from each of its ergodic components (Corol-
lary 2.15).

We give examples of topological dynamical systems in which every point is
generic for some measure and such that this property fails in the Cartesian
square. In the last section of this article we describe the construction of a
dynamical system in which every point is generic for some measure and such
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that this property is preserved in the Cartesian square, but not in the Carte-
sian cube. We claimed that for the Morse dynamical system this property of
genericity is preserved for the cube, but not for the fourth power. We do not
know how to construct examples of dynamical systems for which this genericity
property is preserved exactly till a given order > 4.

The description of M as a two point extension of the dyadic odometer
plays a major role in our study. The convergence results are deduced from the
ergodicity of some cocycles defined on the odometer, the main result here being
Proposition 2.10. In order to prove divergence results, we exhibit a particular
block structure of a family of four points in the odometer (or equivalently four
points in the space M) which give strongly oscillating Birkhoff sums, hence
diverging ergodic averages (see Section 3.1).

1. Reminder of some classical notions
1.1. The Morse sequence. — The (Prouhet-Thue-)Morse sequence
0110100110010110100101 ...

is the sequence u = (uy,)n>0 € {0, 1} defined by one of the following equivalent
rules

= g = 0,Uzn = Un, Usnt1 = 1 — Up ;

— u, = 0 iff there is an even number of 1’s in the base 2 expansion of the

integer n ;

— the sequence begins with a 0 and is a fixed point of the substitution
0—01,1—10;

- (UQn,UQnJrl, e ,Ugn+1_1) = (1 — U, 1-— ULy eeny 1-— Ugnfl) and Uy = 0.

This sequence appears independently in various mathematical works.

In 1851, Prouhet [7] showed that any set of 2™ consecutive integer numbers
can be divided into two subsets such that, for any integer k between 0 and
n — 1, the sum of the k-th powers of the elements of one subset is equal to the
sum of the k-th powers of the elements of the other subset. He noticed that if
we denote by A, resp. B, the set of integers i between 0 and 2" — 1 such that
u; = 0, resp u; = 1, then for all k£ between 0 and n — 1, for all integers m,

STm+i) =3 (m+i)k

i€A i€B
At the beginning of the last century, Thue [8] was looking for a sequence
“without any cube” and exhibited the sequence u. Indeed, it can be verified
that no finite word from u is repeated three times consecutively in .
Morse [6] introduced the sequence wu in his study of recurrence properties of
geodesics on some surface with negative curvature. He was interested in the
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fact that the sequence u is non periodic but minimal : every finite word wich
appears once in u appears infinitely often with bounded gaps.

1.2. The Morse dynamical system. — The procedure which associates
a dynamical system to the Morse sequence u is standard. We consider the
compact space {0, 1} equipped with the shift transformation o. We denote
by K, the closure of the orbit of the Morse sequence u under o:

K, :={o"u : neN}.

K, is a compact metrizable space, invariant under 0. The Morse dynamical
system is (K, o). The ergodic and spectral properties of this dynamical system
have been widely studied by numerous authors including Kakutani, Keane,
Kwiatkowski, Lemanczyck. A list of references can be found in [5].

It is known that the dynamical system (K,,o) is strictly ergodic (that is
minimal and uniquely ergodic). At the level of the sequence w this means that
every word that appears once in u appears in u with a strictly positive asymp-
totic frequency. At the level of the dynamical system (K, o) strict ergodicity
means that there exists on K, a unique o-invariant probability measure whose
support is all of K. This measure will be denoted by v. (A proof of unique
ergodicity of the Morse dynamical system is given at the end of this section.)

If v = (vy,) is a sequence of 0’s and 1’s we denote by T the conjugate sequence
7= (1 —wv,). We remark that K, is preserved by this conjugacy.

There is a well known and very useful description of the Morse dynamical
system as a two point extension of the dyadic odometer. In the more gen-
eral setting of ‘g-multiplicative sequences’ this description is explained in, for
example, [2]. Let us recall it in the Morse case.

We denote by Q the topological group of 2-adic integers. It is the set {0, 1}
of sequences of 0’s and 1’s equipped with the product topology making it a
compact space and with the additive law of adding with carry (on the right).
Formally if w = (w;)i<o and w’ = (w})i<o are two elements of Q their sum
w + ' is defined by

Z(w + w2t = Zwﬂi + Zwﬂi :

i>0 i>0 i>0
The Haar probability on the compact Abelian group (€2,+) is the uniform
product probability u := (1/2,1/2)®N which makes the coordinate maps on
Q independent Bernoulli random variables with parameter 1/2. The zero of
the group 2 is the sequence of all zeros, and is denoted by 0. The element
(1,0,0,0,...) of Q will be denoted by 1 and the infinite cyclic group generated
by 1 in 2 will be denoted by Z. Thus Z is the set of sequences of 0’s and 1’s
which are eventually constant. According to this convention, we denote by Z~
the set of sequences which are eventually constant equal to 1, and if k is an
integer we designate also by k the element k1 of 2.



6 EMMANUEL LESIGNE, ANTHONY QUAS & MATE WIERDL

We denote by T the translation by 1 on the group €.
Tw):=w+1(=w+(1,0,0,0,...)).

Since Z is dense in €2, the map T is an ergodic automorphism of the probability
space (€2, u).

We define the Morse cocycle to be the map ¢ from 2 into the group with
two elements Zs = ({0,1}, +) defined by

pw) = Z(w +1); —w; (mod.2).

i>0

This definition makes sense at every point of {2 except for the point —1 :=
(1,1,1,...), because, if w # —1, then, for all large enough i, (w+1); = w;. At
the point —1 we can give ¢ an arbitrary value. Another way to define ¢ is the
following: ¢(w) = 0 or 1 according to whether the length of the initial block
of 1’s in the sequence w is odd or even (if the first digit of w is zero, then the
length is considered to be even). We will use the classical cocycle notation

P w) =3 () = 3 plw + ),
k=0 k=0

if w € Q and n € N. Notice that, for all w outside Z~, we have
o™ (w) = Z(w +n); —w; (mod.2).
i>0
The Morse sequence is given by

n—1

wn =™ (0) = S (k) (mod2),
k=0

and the Morse dynamical system is isomorphic (in the metrical sense, and
almost in the topological sense, cf [2]), to the following skew-product:

Ty : QX Zy—QAx Ly (w,2)— (w+ 1,24+ pw)) .

We can be more precise. Let us denote by K/, the set of elements of K, which
are not preimages of u or w by a power of the shift. We define a map I from
Q) x Zy into {0, 1} by

I(w, 2) = (z, 24 p(w), 2 + P (W), 2+ P (W), ...) .

The map I establishes a one to one bicontinuous correspondence between
(Q\Z) X Zy and K. The map I conjugates the transformations (IoT, = ool)
and it sends the measure v to the product of p with the uniform probability
on Zs.
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1.3. Generic points. — Let X be a compact metric space and T" be a Borel-
measurable transformation of this space. A point z in X is generic in the
dynamical system (X,T) if for all continuous functions f on X, the sequence
of averages % Zﬁ:ol f(T™x) converges. If the point x is generic, there exists a
Borel probability measure A on X such that, for all continuous functions f,

1Nfl
RSN S SEUE

In this case we say that the point x is generic for the measure A. If the
transformation 7" is continuous, any such A is T-invariant.

In the other direction, if a T-invariant probability measure A is given on X,
then we know, by Birkhoff’s ergodic theorem, that A-almost all points of X are
generic. If furthermore the dynamical system (X, T, \) is ergodic, then A-almost
all points of X are generic for A. Lastly, under the hypothesis of continuity of T’
the link between unique ergodicity and genericity can be described as follows:
if (X, T) is uniquely ergodic, then all the points of X are generic for the unique
invariant probability measure ; if all the points of X are generic for a given
measure, then this measure is the unique invariant probability and it is ergodic.

1.4. Uniquely ergodic skew-products. — When we represent the Morse
dynamical system as a two point extension of an odometer, the transformation
we consider is a skew-product with a discontinuous cocycle. But the cocycle
is “Riemann-integrable” and the following proposition gives us a satisfactory
description of unique ergodicity in that case. This proposition, which extends
to the discontinuous case a classical result from [1], is proved in [2] (Proposition
3.1).

Let (G,+) and (H,+) be two compact metrizable Abelian groups, equipped
with their respective Haar probability measures mg and mpy. Let o be an
element of the group G, such that the translation g — g + « is ergodic on
G (hence we know that it is uniquely ergodic). A measurable map p from G
into H is given, and we suppose that the set of discontinuity points of p has
zero measure in G. We denote by T}, the transformation of G x H defined by
T,(g,h) := (9+a, h+p(g)). This transformation preserves the product measure
ma ® myg. In this context, we will call p the cocycle of the skew-product T,.

We denote by U the multiplicative group of complex numbers of modulus
one.

ProroSITION 1.1. — The following assertions are equivalent.

— The measure preserving dynamical system (G x H,mqg @ my,T,) is er-
godic.

— The dynamical system (G x H,T,) is uniquely ergodic.

— In the dynamical system (G x H,T,), every point is generic for the product
measure mag & M.
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— For any non trivial character x of the group H, there does not exist any
measurable function i from G into U such that, for almost all g,

(1.1) xp(g) = (g +a)/v(g) -

— For all non trivial characters x of the group H, for all characters o of
the group G, for all g € G,

N-1 n—1
1
lim — Z o(a)" H xp(g +ka)=0.
N=oo N 77 k=0

A typical application of this proposition is a proof of unique ergodicity of
the Morse dynamical system. Let us consider the two point extension of the
odometer defined by the Morse cocycle. The group Zs has only one non trivial
character and in order to prove that the dynamical system (2 x Zg,T) is
uniquely ergodic, it is enough to prove that the functional equation

(1.2) pw) =Y(w+1) —(w)

has no measurable solution ¥: £ — Zs. The correspondence we described
between the two dynamical systems (K,,o) and (Q x Za,T,) shows that the
unique ergodicity of one of them implies the unique ergodicity of the other.

As an introduction to what follows let us show that the functional equation
(1.2) has no solution. Let us suppose that there exists a measurable solution ).
Then, for all n > 0, we have

(1.3) P (W) = Y(w+2") - P(w) mod2.
In the group Q, we have lim,,_, ;- 2" = 0. Hence (1.3) implies that
(1.4) lim ©®") =0 in probability .

n—-+oo

But it is easy to describe the map ©(2"). We have p*")(w) = 0 iff the block
of consecutive 1’s in the sequence w starting at the index n has odd length. In
other words,

if (w;)isn = 1°0 % %%, with £ >0 then p")(w) = ¢ —1 mod.2.

(We can also write 2™ (wp, wi,ws, . ..) = ©(Wn, Wni1,Wnio,--.).)
We see that, for all n > 0,

u{w PP () = 0} =1/3,

which gives a contradiction to (1.4).
We can summarize the previous argument in a more general proposition.

PROPOSITION 1.2. — Let p be a measurable map from the dyadic odometer
into the group Zs, whose set of discontinuity points has zero measure. If the
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sequence (p(Qn)) does not go to zero in probability, then the dynamical system
(Q x Zs,T,) is uniquely ergodic and for all w € 2,

1 ! (n)
3 _ _1\M(w) | —
lim <N E ( 1) ) 0.

n=0

2. Convergence results

We will denote by ¢(x) := (—1)® the non trivial character of the group Zs. In
order to establish convergence results, we will use several times the following
principle. Given w',w?,...,w" in the odometer Q and zj,zs,..., 2 in the
group Zs, the point (w, 2;)1<;<k is generic in the k-th Cartesian power of the
dynamical system (Q x Zy,T,) if and only if, for any subset S of {1,2,...,k}
and any natural number ¢, the averages

| V-1 L
2.1 — ¢ (n2°) (9
(2.1) ~ nz:% jez;ﬁ ()
converge.

This statement is a direct consequence of the fact that any continuous func-
tion on (2 x Zy)* can be uniformly approximated by linear combinations of
characters of this product group.

Moreover, using Proposition 1.1 we see that a sufficient condition to insure
the convergence of averages (2.1) is that the two point extension of the odometer
defined by the cocycle

OV—Zy, wr Zgo(w—kwj)
JjeSs

is ergodic.

2.1. Cartesian square. — In order to facilitate the understanding of our
method, we begin with the study of generic points in the Cartesian square of
the Morse dynamical system. We recall that the subshift K, is equipped with
the probability measure v. We denote by Id the conjugacy in K.

THEOREM 2.1. — In the Cartesian square of the Morse dynamical system,
every point is generic for some measure.

It is of course impossible for the Cartesian square of a non-trivial dynamical
system to be uniquely ergodic. But, using the representation as a skew-product
we can bring back the problem to the study of a unique ergodicity property.

If v and w are two elements of K, and swapping v and w if necessary, we
are in one of the following three cases:

1. There exists n > 0 such that w = o™ (v).
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2. There exists n > 0 such that w = ¢™().
3. Neither v and w, nor ¥ and w are on the same trajectory in the dynamical
system (K,,0).

In the first case the unique ergodicity of the Morse dynamical system implies
directly that the pair (v, w) is generic for the image of the diagonal measure on
K, x K, by the transformation I'd x ¢™. In the second case the same argument
gives that the pair (v,w) is generic for the image of the diagonal measure on
K, x K, by the transformation Id x o™.

The proof which follows establishes that, in the third case, the pair (v, w)
is generic for a measure which can be described as a relatively independent
joining of two copies of (K, ) above their common factor (€, 1t). Modulo the
isomorphism 7 these joinings are the measures (u ®,0 ) ® m ® m described in
Remark 1, which follows the next Proposition.

PROPOSITION 2.2. — Let w' and w? be two elements of the dyadic odometer
Q such that w' — w? ¢ Z. The four point extension of the odometer defined by
the cocycle

Q—Zy XLy, wr (p(w+w'), plw+w?))

1s ergodic.

Proof. — We use Proposition 1.1. The product group Zs X Zs has three non
trivial characters. We have to show that the three following functional equa-
tions have no solution.

pw+w) =yw+1) —¢(w) mod.2 (i=1,2),

olw+wh) +ow+w?)=vw+1) —(w) mod?2.

The two first equations are the same as (1.2), and we know that they don’t have
any solution. Let us study the third one. We set w® = w? —w!, we define a new
cocycle p by p(w) == p(w) + p(w + w°) and we study the following equivalent
equation :

plw)=9Y(w+1) —Y(w) mod.2.
Following our previous arguments, all that we have to prove is that the sequence
of functions p(2")(w) does not go to zero in p-measure.

Since w® ¢ Z, there are infinitely many positive n such that w?_; = 1 and
w? = 0. For any such n we have the following property : if w € Q is such that
Wno1 =1, w, = 1 and w1 = 0, then o) (W) = 0 and ") (w4 w®) =1
(because (w + w?),, = 0).

Hence there exist infinitely many positive n’s such that

1

plw: 2 (@) =1} 2 <
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Let us denote by m the uniform probability on the two point space Zs. For
each w® € , denote by ;1 ®,,0 it the measure defined on €2 x Q by the integration
formula

[ ) dne nww) = [ flow+e) dutw)

Proof of Theorem 2.1. — Let w!,w? € Q be such that w! — w? ¢ Z. Propo-
sitions 2.2 and 1.1 imply that, for all (w,21,22) € Q X Zy X Zg and for all
continuous functions F' on ) X Zg X Zo,

N-1
Ny Z_: F(wtn, z14¢™ (w+w'), 2240 (w40?)) = / F d(p@mem) .
Applying this to w = 0 and to a function F' which is the product of a character of
the group 2 evaluated at w with a function g of (21, 22), we obtain the following.
For all 21, zo € Zs, for all characters y; and x2 of €2, for all functions g,

N-1

1
VN 2:% (@) xo(w? ) g (24 (@), 2+ e () =

1 N-1

@) Jim 3" (0axe) ©9) (n2+ e wh, 2 + ¢ 0?) =

X1(w1)'X2(w2)'/X1 X2 du~/g d(m®@m) =

/X1®X2®gd((u®wz_w1u)®m®m) .

By density of linear combinations of characters in the space of continuous func-
tions on §2 equipped with the uniform metric, we obtain that, for all continuous
functions G on Q X Q X Zo X Zo

N—-1
. 1 Z n n
Ny = G (! 4 m? a4 (W), 2+ (A) =

/G d((Lt®pz_r ) @M M) .

Notice finally that, via the conjugacy I between the dynamical system (€2 x
Zy,T,) and the Morse dynamical system, the condition w! —w? ¢ Z means
excactly that the sequences v := I(w!, z;) and w := I(w?, 2z3) are such that
neither v and w, nor ¥ and w are on the same trajectory in the Morse dynamical
system.

This ends the study of the third case described after the statement of The-
orem 2.1 and concludes the proof. O
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REMARK 1. — The space €2 X Zs is equiped with the product measure p® m.
The proof of Theorem 2.1 gives us an exhaustive description of the ergodic
invariant probability measures on the Cartesian square of the system (2 x
Zs,T,). These are the measure (4 ®, 0 1) @ m @ m for w® € Q\ Z and the
images of the diagonal measure on (£ x Z2)? by the maps

(W, 2,0, 2") — (w, z,w +n, 2 + gp(")(w))

and
(w,z,w',2") — (w7 zw +n, 2 14+ (p(n)(w)) ,

for n € Z.
The formula

pp@mem= | (u®y p)@mem du(w’) .
Q

is an ergodic disintegration of the product measure on ( x Zz)?.

2.2. Cartesian cube. —

THEOREM 2.3. — In the Cartesian cube of the Morse dynamical system, every
point is generic for some measure.

As in the case of the Cartesian square, it is possible to give a precise de-
scription of the possible limit measures which appear in the Cartesian cube. If
among the three points v, w, z of the Morse dynamical system no pair of them
satisfies condition 1 or 2 stated after Theorem 2.1, then the triplet (v, w, ) is
generic in the dynamical system (Ki7 o X0 X a) for a relatively independent
joining of three copies of (K,,v) above their common factor (€2, u).

Theorem 2.3 is a consequence of the following proposition.

PROPOSITION 2.4. — If k is an odd positive number and if w',w?, ... w* are

elements of €, then the two point extension of the odometer defined by the
cocycle

Q—Zsy wr (gp(w+w1)+g0(w+w2)+...+<p(w+wk))

1s ergodic.
How Theorem 2.3 is deduced from Proposition 2.4. — Following the same ar-
guments as in the proof of Theorem 2.1, we just have to prove that, for all

whw? w3 € Q, in the eight point extension of the odometer defined by the

cocycle
O — Zo X Lo X Tig, W +— ((p(w —|—w1)7<p(w + w2)7<p(w + w3))

every point is generic for some measure.
If we consider three elements w', w?, w3 of Q such that one of the differences
w?® — wb (with a # b) is in Z, then we immediately come back to the previous
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study of the generic points in the Cartesian square of the Morse system. If
none of these differences is in Z, then the eight point extension of the odometer
defined by the cocycle

Q= Lo x Ly x Lz, wr (pw+w!),o(w+w?),pw+w?’))

is ergodic.

Indeed we claim that none of the seven functional equations given by Con-
dition (1.1) has a solution. Omne of these claims follows from Proposition 2.4
(applied with k& = 3), three of them follow from Proposition 2.2 and the re-
maining three follow from the ergodicity of the Morse dynamical system (there
are no measurable solutions to equation (1.2)). O

The proof of Proposition 2.4 will be described in several steps.
If n,k € N, with k > 0, we define the finite set €2, by
Qi ={we:w;=01if i<n or i>n+k}
Notice that g  is the interval of integers [0,2%) and that Q, x = 2"Q .

LEMMA 2.5. — Let n,k € N, with k odd. For all w',w?, ..., w" € Q, there
exist w0, wW" € Q21 such that,

k k

Z e (W' +wh) =1 and Z(p@") (wo/ + we) =0.

=1 =1

Proof. — For all w € Q, we have ¢")(w) = ©(Wn,Wni1,Wnia,-..), and this
shows that it is sufficient to prove the lemma in the case when n = 0. We
denote Q1= Qo .

Let us prove by induction on k that, for all w', w?,...,w* € Q, there exist
w®, w0 € Qyp such that,
k k
Z(p(wo—&—we):l and Zcp(wol—&—wé)zo.
=1 =1

The case k = 1 is easy : if w! is given there exists w® € Q; such that
(W +wh)o =0, hence (W’ +wh) =1,
and there exists w” € 5 such that
((wo, +wh)o, (W + w1)1> =(1,0), hence @(w” +w')=0.

Let now k be an odd number > 3, and w!,w?,...,w* € Q. If all the wé are
equal to 0, then we choose w® = 0. If all the wf are equal to 1, then we choose
w® = 1. If there are 0’s and 1’s in the family (w§)1<,<x We choose a = 0 or
o =1 in order to have an odd number &’ of 1’s in the family ((a 4+ w*)o), ., -



14 EMMANUEL LESIGNE, ANTHONY QUAS & MATE WIERDL

Note that & < k. Applying if necessary a permutation to the family (we)l
we can suppose that

<0<k
1 f1<i<kK,

¢ _
(O‘J”")O_{o R <0<k

Using the induction hypothesis, we claim that there exists 3 € 1 1425 such
that

k/
Z(p@) (B+a+uw’)=0.
=1

For ¢ between 1 and k' we have ¢ (ﬁ +a+ wé) =143 (ﬁ +a+ wz). (Be-

cause (B +a+wh)y = 1.)
For ¢ larger than k' (there is an even number of such £’s), ¢ (8 + o +w’) =1.
We set w® = 34 a and we conclude that

k

Zg@(wo—l—we) =1.

(=1

We notice that w® € Qop_1.
Let us choose o/ = 0 or o/ =1 in order to have an odd number &’ of 1’s in
the family ((o/ 4+ w)o) L<r<p- (Here we can have k" = k). Applying if necessary

a permutation to the family (we) we can suppose that

1<0<k

1 if1<e<Kk,

/+ ¢ _
(@ +eDo=30 i<k,

If ¥ < k we can use the induction hypothesis, and if ¥’ = k we can use the
above discussion, in order to claim that there exists 3 € Q4 25_1 such that

k/
Z(p@) B+ +uw)=1.

=1

For ¢ between 1 and &' we have ¢ (' + o +w’) =1+ @ (8 + o' +w*).
For ¢ larger than k' (if there exists one) we have ¢ (3’ + o/ +w*) = 1.
We set w9 = 3’ + o’ and we conclude that

k
Zgﬁ (wol ere) =0.
=1

We notice that w® € Q. Our induction procedure is now complete. O
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k

LEMMA 2.6. — If k is an odd positive number and if w',w?,...,w" are ele-

ments of Q, then, for alln € N,
k

u{w e Zap@n) (w—&—wz) = 1} >4k
=1

Proof. — Let us denote E, := {w e Y oM (w+wh) = 1}. From

Lemma 2.5 (applied to the family (w+w4) we deduce that, for all

1§£§k)
w € Q there exists w® € Q25 such that W +w € E, . This implies that
w(Ey) > 1/card (O, 21)- O

Proof of Proposition 2.4. — Let us denote by p the cocycle
p(w) = p(w+w") +pw+w) + ...+ pw+wh).

Lemma 2.6 tells us that, for all n € N, {p(2”) = 1} > 47%. This of course
implies that the sequence (p(zn)) does not go to zero in probability, and we

conclude by applying Proposition 1.2. O
2.3. Other joinings. — We describe some conditions on a family
(wl,w2,...,wk) of elements of Q under which the conclusion of Proposi-

tion 2.4 is true, even in the case when k is even. The following lemma will
play a similar role to Lemma 2.5.

LEMMA 2.7. — Letw', w?,...,w* € Q and n,j € N, with j > 0. If among the
k finite words (cuf)n<i<n+j, 1 <V <k, one of the possible sequence of 0’s and

1’s appears an odd number of times, then there exists W® € Qy, jior such that
k 1
ng@ ) (wo—l—we) =1.
=1

Proof. — The digits of indices less than n play no role in this statement, and
it is sufficient to give a proof for n = 0. We suppose that among the k finite
words (wf)0<i<j, 1 < ¢ < Kk, one sequence appears an odd number of times.

We use an element of €); in order to translate this particular word to the word
19 =(1,1,...,1). There exists o € §; such that the set

E = {EE {1,...,k} : ((a—i—wé)i)ogiq = 13}
has an odd number of elements. For all ¢ ¢ E at least one 0 appears in the finite
word ((a + wé)i)ogiq' We set €:= 3 ysp¢ (o + w'). Lemma 2.5 implies that
there exists 3 € ;o such that Y, o ¢ (ﬁ +a+ wé) = 1—¢. To see this, note
that if (¢ = 0 and j is even) or if (¢ = 1 and j is odd), we can choose 3 such
that EEEEQO(Qj) (B+a+w) =1;if (e=0and jis odd) or if (e =1 and j is
even), we can choose 3 such that ZZGE Lp(Qj) (ﬁ +a+ wé) =0.
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For all £ outside E, we have (8 + a + w’) = ¢(a + w").
We set w? := a+ 3. We have w® € ;o and Zle ® (wo + we) =1. O

We define a family of characters on €2 by
n—1
Xn:Q—=R/Z, Xn(w) = Z 207w,
i=0
We write d for the distance on the circle R/Z and write d,(z,y) for

d(Xn (@), Xn(y))-
Let k,7 € N and (wl,wz7 . ,wk) be a family of elements of Q. Say that

the family is j-separated at the nth stage if the set of indices {1,2,...,k} can
be divided into two subsets A and B such that A contains an odd number of
elements and such that, for all £ € A and all m € B, d (Xn (we) > Xn (wm)) >
277, Notice that if k is odd this condition is trivially satisfied. Notice also that
this condition of separation is stable under translation.

LEMMA 2.8. — If the family (w',w?,...,w") is j-separated at the (n + j)th
n<i<nti? 1 < ¢ <k, one of the
possible sequences of 0’s and 1’s appears an odd number of times.

stage, then among the k finite words (wf)

Proof. — The parameters k, j and n are fixed. We use the notations A and B
given by the definition of our notion of separation. We denote by A’ (resp. B’)
the set of points x4, (w’) for £ € A (resp. £ € B). The circle is represented
as the unit interval [0,1). The letter h represents an integer between 0 and 27.
Let us consider the collection of dyadic intervals [h277, (h + 1)277) containing
at least one element of A’. These intervals do not contain any element of B’.
Since the cardinality of A is odd, one of these dyadic intervals contains an odd
number of points X+ (we). O

LEMMA 2.9. — If the family (wl,wQ, e ,wk) is j-separated at the (n + j)th
stage, then

k
,u{w e Z(p@n) (w+wf) = 1} > 97 Ik

£=1

Proof. — Let us denote E, := {w cN: Zif:l <p(2") (w —|—w‘3) = 1}. Suppose
that the family (wz) is j-separated at the (n + j)th stage. Then, for all w €
Q, the family (w + wz) is j-separated at the (n + j)th stage and this implies
(Lemma 2.8) that among the k finite words ((w + wz)i)n<i<n+j, 1< ¢<k,one
word appears an odd number of times. From Lemma 2.7, we deduce now that

for all w € Q there exists w® € Qp, j+2k such that WY +w e E,. We conclude
that p (E,) > 1/card (2, j12k)- O
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THEOREM 2.10. — If a finite family (w',w?,... ,w") in Q is j-separated at
the nth stage for a fized j and infinitely many n, then the two point extension
of the odometer defined by the cocycle

Q—Zs, w (p(w+w)+p(w+w?) +...+<p(w—|—wk))
s ergodic.
Proof. — Let us denote by p the cocycle
pw) = p(w+w") +p(w+w?) + ...+ pw+wk) .

Lemma 2.9 tells us that, for infinitely many n, p{p*®") =1} > 27972k The

sequence (,0(2n)) does not go to zero in probability, and we conclude by Propo-
sition 1.2. O

COROLLARY 2.11. — The Morse dynamical system is weakly disjoint from any
of its Cartesian powers.

The proof of this corollary uses the following simple lemma.

LEMMA 2.12. — Let k > 2 and j such that 29 > 2k be fized. For almost
all (wl,wQ,...,wk) € QF, for all W° € Q, the family (wo,wl,wz,...,wk) 18
j-separated at the nth stage for infinitely many n.

Proof. — Consider a collection (by,bs,...,b;) of distinct blocks of 0’s and
1’s with length j and beginning with a 0. For almost all (wl,w2, e ,wk) €
QF, there exist infinitely many n’s such that, for all ¢ between 1 and k,
(WH)n—j<icn = be. For each such (wl,wz,...,wk), for each such n, for all

W € Q, the family (wo, wlw?, ... ,wk) is j-separated at the nth stage. O

Proof of Corollary 2.11. — From Theorem 2.10 and Lemma 2.12, we deduce
that, for any k > 1, there exists a set of full measure € in Q¥ such that, for all
(whw?,...,wk) € Q, for all W € Q and for all subset S of {1,2,...,k} with
at least two elements, the two point extension of the odometer defined by the
cocycle

N =7y, wr (gp(w + w®) + ng(w + we)>
Les
is ergodic. If the set S contains only one element this cocycle is not neces-
sary ergodic, but there is no problem of convergence of ergodic averages (cf
Section 2.1).
We conclude that for all w® € Q and all w® € €, the point (w°,w®))
is generic in the product of the dynamical system (Q x Zy,T,) with its kth

Cartesian power.
O
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COROLLARY 2.13. — The Morse dynamical system is weakly disjoint from any
ergodic k-fold joining of itself.

The proof of this corollary uses the following lemma.

LEMMA 2.14. — Let (wl,wQ, . 7w2k_1) € Q. Let j be a positive integer such
that 27 > 8k. For all ng € N, for all w € Q but finitely many, there exists
n > ng such that the family (w,wl,wz, . ,w%_l) is j-separated at the nth
stage.

Proof. — Let us fix n > 0 and denote by z1,zs,...,Tor_1 the points
X (W), Xn (W?2), . .., Xn(w?*~1) arranged in increasing order on the circle. Let us
define a component to be any maximal subset of {x1,xa, ..., zar_1} of the form
{2e,To1y -y wope ) with d(zers, Tersr1) <277 if 0 < s < t. One of these com-
ponents is such that t+1 is odd. We choose one such component that we denote
by {x¢, xet1,. .. 2ot} If the family (w,wl,wQ, ... ,w%_l) is not j-separated
at the nth stage, then the point x,(w) is inside the arc [z, — 277, 204, + 277].
The length L of this arc satisfies L <277 +2.277 < 2k277 < 1/4.

We conclude that, for all n, there exists an arc I, of length 1/4 such that, if
the family (w,wl, w2, ... ,w%’l) is not j-separated at the nth stage, then the
point x,(w) belongs to I,,.

Notice that, for all n > 0, we have 2x,(w) = xn—1(w). Hence, if x,—1(w)
is known and if we know that x,(w) € I, then the point y,(w) is uniquely
determined.

By iteration, we obtain the following : if x,,(w) is known and if, for all
n > ng the family (w,wl,wz, e ,w%*l) is not j-separated at the nth stage,
then the sequence y,(w) (hence w itself) is uniquely determined. This gives a
proof of Lemma 2.14 because Xn,(w) can take only finitely many values. O

Proof of Corollary 2.13. — Let us fix w!,w?,...,w’ in Q, and j big enough.
By Lemma 2.14 we know that, for all w® outside a countable subset C of 2, the
family (w® w!,...,w") is j-separated at an infinity of stages. For all v ¢ C,
the cocycle

Q—2Z; we (pw+w’)+ow+w)+...+pw+uwh))

is ergodic. This is our first claim.

Now fix w? € C. By the ergodic theorem, there exists a set Z(w®) of zero
measure in €2 such that, for all w ¢ Z(w°), the point (w,0) is generic in the
finite group extension of the odometer defined by the cocycle

QHZ%‘H, W (cp(w+w0),cp(w+w1),...,g0(w+we)) .

This is our second claim.
Let us consider the full measure subset Q' of Q defined by Q\ Q' :=
Usoce Z(w?). If ' € Q" and w € Q then we are in one of the two following
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cases :
w—w'¢gC or W Z(w-—uw').

In these two cases, the averages

‘
(2.2) % > x(n)-c (w(”)(w) +2 e+ wj))
n<N i=1

do converge. (Here x is any character of the odometer, and c(z) := (—1)%).

Indeed, each of these two cases correspond to one of the preceding claims.
This is enough to prove the Corollary since every k-fold joining of the Morse

dynamical system is isomorphic to an extension of the odometer by a finite

product Z5* defined by a cocycle of the form

w (pw+wh), pw+w?), ..., ow+w™) .

Thus if we want to prove the weak disjointness with the Morse dynamical
system, we just have to test the convergence on characters of the products of
groups, and we find expressions of the form (2.2). O

COROLLARY 2.15. — The Cartesian square of the Morse dynamical system is
weakly disjoint from all its ergodic components. More precisely, for any ergodic
invariant probability measure A on the dynamical system (K, X K,,o X o) the
measure preserving systems (K, X K,,v @ v,0 X ) and (K, X Ky, \,0 X 0)
are weakly disjoint.

Proof. — As before we use the desciption of the Morse dynamical system as a
two point extension of the odometer. The description of the ergodic invariant
measures A on the Cartesian square is given in Remark 1. Either the system
((Q X Za)*, N\, T, x Tw) is isomorphic to the Morse dynamical system, or the
measure \ is of the form (u ®, 0 p) ® m ® m, with w® € Q. In the first
situation, the weak disjointness property is already known. In order to prove
this property in the second situation, it is sufficient to prove that for all w° € (2,
there exists a subset Qs of Q x  of full measure, such that, for all w! € Q and
all (w?,w?) € Qa, the cocycle

Q= 7y, ws (gp(w—i—wl)—i—go(w—i—wl +w?) —|—<p(w+w2)+g0(w+w3))

is ergodic. We claim that, for all w® € Q there exists a subset Qs of Q x Q
of full measure such that for all w! € Q and all (w? w3) € Q, the family
(Wl w! + WP w2, w?) is infinitely often 6-separated. The result then follows by
Theorem 2.10.

Let us prove the claim. We will distinguish two cases. Let us suppose first
that the sequence w® contains infinitely many blocks of 4 consecutive 0’s. Let
(n;) be an increasing sequence of integers such that w? =0 if n; —4 <i < n;.
For all w and all j, we have

d (Xn, (W), Xn, (w + %)) < 1/8.
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Now fix n > 1. If w? = (w?);>0 and w?® = (w});>0 are such that (w2_,,w2_;) =
(0,1) and (w3 _5,wd_1) = (0,0), then d (xn(w?), xn(w?)) > 1/4. We call Q,

n—

the set of pairs (w?,w?) such that, for infinitely many j, we have
d (Xn, (0°), Xn; (W?)) > 1/4.

This set Qs has full g ® p-measure. If w! € Q and if (wW?,w3) € Q,
then, for infinitely many n, we have d (Xn(w),xn(w + wo)) < 1/8, and
d (Xn(wz), Xn(w3)) > 1/4, which implies that the family (w!,w® 4+ w° w? w?)
is 4-separated at the nth stage. This proves our claim in the first case.

Let us consider the other case. We have d(xn(w®), xn(0)) > 1/16 eventually.
We call now €, the set of all pairs (w?,w3) such that, for infinitely many n’s,
d(xn(W?), xn(w?)) < 1/32. This set Qs has full g ® p-measure. Moreover if
w! € Q and if (w?,w?) € Qy, then the family (w!,w! + w® w?, w?) is infinitely
often 6-separated. This proves our claim in the second case. O

3. Divergence results

3.1. Construction of diverging averages. — We want to show now that
in the Cartesian product of four copies of the Morse dynamical system some
points are not generic. We need to consider some families of elements of
which do not satisfy the separation property described in the previous section.
We define, for each positive integer a, four words on the letters 0 and 1:

Xi(a) := 017000 ,

Xsz(a) := 0707100,
Xs3(a) := 0717100,
X4(a) :=0%0"010° .
REMARK 2. — (This remark is not used in the sequel of the article but it

is useful to understand the link with the notion of separation.) Denote by
b := 3a + 2 the length of the words X;. We see that, when a is large the points
Xb(X1) and xp(X2) are near on the circle and the same goes for the points
Xbo(X3) and xp(X4). More precisely, if Wy, 1 < ¢ < 4, are finite words (on the
letters 0 and 1) of the same length b’ and if wl, 1 < ¢ < 4, are elements of 2 such
that w’ = W, Xy ..., then the family {w!, w? w3 w*} is not 2a + 1-separated at
the (b + b')th stage.

We define also words Yy(a), £ = 1,2,3,4, by
Yy(a) = X,(a)1°t2 .

These words Y, have been chosen in such a way that they cannot overlap
(without coincidence) in an infinite sequence of 0’s and 1’s. That is to say, if
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i,7 € {1,2, 3,4}, it is not possible to find three words m, m’ and m”, of positive
length, such that

Yi(a) =mm’ and Yj(a) =m'm”

Let (ax)r>1 be a fixed sequence of positive integers. Almost every element w
of Q can be written in a unique way in the form

(31) w = WlYgl(al)Wngz,(ag)...Wkng(ak)...

where indices ¢ are in {1,2,3,4} and the Wj’s are words of 0’s and 1’s, of
minimal length. We’ll call such a writing the standard description of w. Because
of the non overlapping property, we have the following claim.

Cram 1. — If (3.1) is the standard description of an element of , and if
(¢}.) is any sequence of indices in {1,2,3,4}, then
W1Yg/1 (al)WQYg/z (ag) . VV]CYg;t (ak) N

1s the standard description of an element of ).

As a consequence of this claim we have the following lemma.
Let o be a permutation of {1,2,3,4}. We define a transformation U of Q
by the following rule: if (3.1) is the standard description of w then

U(w) = lea(gl)(al)WQYa(b)(ag) e WkYg(ék)(ak) e .

LEMMA 3.1. — The transformation U, defined on a measurable set of full mea-
sure, is bijective, bimeasurable and measure preserving.

Let us consider now four elements of 2 which can be written

= Wi 1 X, (@)W1 2Xa,2)(a2) - Wi x X (ag) - -

( )
= W21 X1y (a1)Wo 2 Xy2,2)(az) ... Wap Xoa iy (ar) ...,
( )

) (
= W31 X3,1)(a1)W32Xy3,2)(a2) ... W3 x Xy, (ar) - ..
) (

= Wi 1 Xoa1)(a1)WiaoXeu2)(a2) .. Wap Xoapy(ar) ...

We suppose that the length my, of the word Wy, does not depend on ¢, and
that, for each k, the four words Wy, £ = 1,2,3,4, are two pairs of identical
words (or four identical words). We suppose also that, for each k, the four
indices £(j, k), j = 1,2,3,4, are pairwise distinct, so that they describe exactly
the set {1,2,3,4}. Finally, we suppose that

22*‘“ <1
k>1 8

Let us denote by ¢ the non trivial character of Zs, c¢(z) = (—1)".
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LEMMA 3.2. — The sequence
1 N-1
= 2 e (P W) + 6™ (?) + e (W) + o (W)
n=0
does not converge.

Proof. — A sketch of the proof is the following : if we look at the words
(X¢(a)) as integer numbers written in base 2 and if we denote by S(n) the sum
of the digits of n written in base 2, then we can see the number S (X;(a)) +
S (X2(a)) + S (X3(a)) + S (X4(a)) is odd, but for the great majority of n's,
the number S (n+ X1(a)) + S (n+ Xa(a)) + S (n+ X3(a)) + S (n + X4(a)) is
even. The fact that the words (X(a)) begin and finish with long sequences of
0’s implies that this “local” information (the position of the blocks (Xy(a)) in
w?) is preserved when we add infinite sequences.
Let us go into more detail. We set

k—1
Cp 1= mk+Z(mj+3aj+2), dip = cp +ag, ep:=di—+ag,
j=1
and
k
Ny = > (m; + 3a; +2)
j=1

(In the sequences w’, the first “a-block” of the kth word X lies between indices
cr and dj — 1, the second “a-block” of the kth word X lies between indices dy,
and e — 1, the last “a-block” lies between indices e + 2 and N — 1.)

STEP 1. — Let n be an integer, with 0 < n < 2%, whose dyadic expansion is
n= Zﬁvzko_l n;2t. If, for all j between 1 and k, we have

(3.2) (ni)e;<i<a; # 1%,

(3.3) (ni)d;<i<e; # 1% and (ni)q,<i<e; 7 0%,

and

(3.4) (Mi)e;+2<i<n; # 17,

then

4 +oco 4

Z P (W) = ZZ(L‘/ +n)—wi =k mod2.

=1 i=0 /=1
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This statement can be verified along the following lines. First notice that,
since n < 2N% and since wf\,ﬁmkﬂ = 0, we have (w“rn)i = wf ifi > Ng+mpg1.
Then, we see directly from the definition of the w’’s that

Ni+mp41

Z Zw =k mod.2.
1=0 =1

(Indeed, for all j, the words Wy,;, 1 < ¢ < 4 are pairwise identical and
4
> 8(Xy(ay)) is odd.)
=1
It then remains to verify that
Ny+mpi1
Z Zw +n ; is even .
=0 =1

We begin by studying the case k = 1. Permuting the w? if necessary, we can
suppose that £(j,1) = j, 1 < j < 4.

Because the initial words of length d; = mj + a; of the sequences Wt are
pairwise identical, we have

17 4
E g w +n ; is even .
i=0 (=1

By condition (3.2), there is no carry at rank d; in the addition of w’ with n.
Hence, if d; <i < e; =my + 2a; we have
(W' +n); = (W +n); and (W? +n); = (W +n); .

Due to condition (3.3), there is a carry at rank e; in the addition of w! or w?
with n, but no carry at rank e; in the addition of w? or w* with n.

Looking at the words X; and X5, and using the fact that there is a carry at
rank e; in the addition of w! with n and no carry at rank e; in the addition of
w? with n, we observe that

(W'+n)i=(W*4n); if eg<i<N =e +a+2.

Looking at the words X3 and X4, and using the fact that there is a carry at
rank e; in the addition of w? with n and no carry at rank e; in the addition of
w?* with n, we observe that

(w3+n)i = (w4—|—n)i if eg<i<Ni=e +a1+2.
We have proved that

Ni—1 4

ZZw —|—n-1seven.

i=0 (=1
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Furthermore, by condition (3.4), we know that there is no carry at rank N;
in the addition of w’ with n, 1 < ¢ < 4. This means that when we begin the
addition of w? with n at the level of the block Wy 2, there is no trace of the
previous calculations and the story described along the first Ny digits repeats
identically for the digits between indices Ny and N2 — 1. And so on, and so
forth. .. This concludes the first step.

STEP 2. — If ZZ:; 27% < L then the sequence

2~ Nk Z_ c(Zgo(”)(wt))

n=0
does not converge.

The proportion of numbers n between 0 and 2V* — 1 which do not satisfy
one of the conditions (3.2), (3.3) and (3.4) is less than Zle 4-27% . Hence we
deduce from Step 1 that

k
2N,€ Z (Z o™ (w ) —(-DF < 224,2—@7’ )

n<2Nk =1

This is enough to justify Step 2, and Lemma 3.2 is proved. O

3.2. Cartesian fourth power. —

THEOREM 3.3. — Let A be a measurable subset of the subshift K,, with positive

v-measure. There exist four elements v',v?,v3, v* of A such that the sequence

] M-l
I Z (vé—kvi—l—vfb—kvi)
n=0

does not converge.

COROLLARY 3.4. — Letk > 4. The Morse dynamical system is not self-weakly
disjoint of order k. In particular, in the kth Cartesian power of the Morse
dynamical system, there exist non generic points.

Proof of Theorem 3.3. — Using our representation of the Morse dynamical
system as a two point extension of the odometer (Q,+), it is sufficient to
prove that, for all measurable subsets B of {2, with positive p-measure, there

exist four elements w', w?, w3, w?* of B such that the sequence

5 Z (# @) + 0™ W) + 6™ W) + e ()

does not converge.
Let B C Q be given, with positive measure. If W is a finite word on the
letters 0 and 1, we denote by Cy the cylinder set of all sequences in 2 which
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begin by the word W. Since u(B) > 0 there exist a finite word W such that
w(BNCw)/p(Cw) > 3/4. We will use Lemma 3.1 restricted to Cy. Replacing
B by BN Cy, we suppose now that B C Cyy.

Let us fix a sequence (ay) such that 8 ), ., 27% < 1. Almost every element
w of Cyy can be written in a unique way in the form

W = WW1Y121 (al)WQYVKQ (ag) [N Wknk (ak) SR

where indices ¢ are in {1,2,3,4} and the Wj’s are words of 0’s and 1’s, of
minimal length. We fix a circular permutation o of {1,2, 3,4} and we consider
the transformation U of Cy defined by

U(WWlYgl(al)...Wkng(ak).. ) WW1 gl)(al) WkYa(Zk)(ak)--- .
The transformation U preserves the conditional probability p (-|Cw ), and since

p(B|Cw) > 3/4, we have BN U Y(B)NU~2(B)NU3(B) # 0. But Lemma
3.2 tells us that, for almost all w € Cyy the sequence

(n) (n) () (772 () (773
~ Z () @) + ¢ U )) + ™ U2 w) + " (U ()))
does not converge.
This concludes the proof of the Theorem. O

3.3. Cartesian square of the Cartesian square. — The following result
is a reinforcement of Theorem 3.3.

THEOREM 3.5. — Let A be a measurable subset of K, x K,, with positive vQu-
measure. There exist two elements (v, v?) and (v3,v%) of A such that the
sequence

N-1
1
N Z c(v}l—l—v?l—i—vi—f—vi)
n=0
does not converge.

COROLLARY 3.6. — The Cartesian square of the Morse dynamical system is
not self-weakly disjoint.

Proof of Theorem 3.5. — Using our representation of the Morse dynamical
system as a two point extension of the odometer (§2,+), it is sufficient to
prove that, for all measurable subsets B of 2 x ), with positive u ® p-measure,
there exist two elements (w!,w?) and (w3, w?*) of B such that the sequence

N Z (# @) + 0™ W) + 6™ (W) + o ()

does not converge.
Let B C Q x Q be given, with positive measure. If W is a finite word
on the letters 0 and 1, we denote by Cy, the cylinder set of all sequences in
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Q which begin with the word W. Since p ® u(B) > 0 there exist two finite
words Wi and Wy of the same length L such that u ® p (BN (Cw, X Cw,)) >
11 ® p(Cw, x Cwy,). We fix such words Wi and W, and replacing B by
BN (Cw, x Cw,), we suppose now that B C Cy, x Cy,.

With respect to the product measure p ® ,u|CW1 x Cy,» the coordinate maps

Cw, XCW2—>{O,1}2, (wl,wz)H(w},w§)7 1> L,

are independent random variables. Thus for all positive integers a, for all pairs
of numbers £ and ¢’ between 1 and 4 and for almost every element (w!,w?) of
Cyw, x Cw, the word (Yy(a), Yy (a)) appears infinitely often in (w!,w?). (Here
we consider a finite block from the sequence (w!,w?) as a word on four letters.)
We are going to mark the simultaneous appearance of distinct words Yy in the
sequences w' and w?.

Let us fix a sequence (ay) such that 8", ;2% < 1.

For almost every element (w!,w?) of Cyy, x Cyy, there exists a description
of the form

(3.5) w' = WiW1 1Yy 1) (a1) W2 Yo 2)(a2) ... Wik Yo (ak) - ..

(3.6) w® = WoWa1Yy2,1)(a1)Wa2Ye2,2)(a2) . .. Wa i Yo (ak) - ..
where, for each k > 1, the two indices £(j, k) are distinct in {1,2,3,4} and the
words Wy, and Wy, have the same length, which is chosen to be minimal.

Denote by P the set of pairs (¢1,43) of two distinct numbers between 1 and
4, and fix a one to one map o from P into itself such that if (¢3,44) = o (1, l2),
then the four numbers ¢;, 1 < j <4, describe the set {1,2,3,4}.

We define a transformation U of Cyy, x Cyw,, by the following rule : if a pair
(wl,w?) € Cw, x Cw, is given by the description (3.5) and (3.6) we set, for
each k > 1,

(£(3,k), €(4, k) = o (£(1, k), £(2,k))
and
Uw!,w?) = (w3, w?),
where
w? = WiWi1Yy31)(a1) W2 Yo 2)(a2) ... Wik Yo (ak) - ..

wt = WaWa 1Y) (a1)Wa 2 Yo ) (az) .. W kYo (ak) - - -
The transformation U preserves the conditional probability u®u (-|Cw, x Cw,)
and, since u® u (B|Cw, x Cw,) > 1/2, we have BNU~(B) # (. But Lemma
3.2 tells us that, for almost all (w!,w?) € Cw, x Cwy,, if (w3, w?) = U(w!,w?),
then the sequence

N-1

1

3 2 e (PN + M) + ¢ W) + ¢ ()
n=0
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does not converge.
We have proved that this is possible with (w',w?), (w?,w*) € B, and this
concludes the proof of the Theorem. O

3.4. Ergodic components of the Cartesian square. — We know (Corol-
lary 2.15), that the Cartesian square of the Morse dynamical system is weakly
disjoint from its ergodic components. This implies that almost all pairs of
these ergodic components are weakly disjoint. We will see now that almost
all of these ergodic components are not self-weakly disjoint. It will provide
us the simplest known example of an ergodic dynamical system which is not
self-weakly disjoint : a four point extension of the odometer.

Recall (from Remark 1) that the ergodic components of the Cartesian square
of the Morse dynamical system can be described in the following way. An
element § of Q\Z is fixed and plays the role of a parameter. The space is
Q X Zy X Zg equipped with the product of the uniform probability measures,
and the transformation 7’ 5 is defined by

(W, 2,2") = (W+ 1,2+ p(w), 2 +o(w+9)) .

THEOREM 3.7. — For any § € Q\Z such that liminf d,(5,0) = 0 and any
subset B C Q) of positive measure, there exist w and w' in B such that the
sequence

N-1

1

2 e (#M) + e (w+8) + 6 (W) + ¢ (! +9))
n=0

does not converge.
For such a §, the dynamical system (Q X Zg X Zo,T},5) is not self-weakly
disjoint.

Proof. — Let d be as in the statement of the theorem. Since liminf d,,(4,0) = 0,
there exist n; such that xp,,(d) tends to 0. We can extract a subsequence for
which the convergence is monotonic. We will assume that the convergence is
from the right as if not, —9 defines the same system and does indeed have
convergence from the right.

Given this, it follows that in the sequence §, we can find arbitrarily long
strings of the form 1000...0. Fix n;, — oo such that ), 27" < 1/32. Induc-
tively choose an increasing sequence of integers

a1,1,01,2,--- ,a1722n,1 ,A2,15 - - - ,a2)22n2 yaus

such that the block in ¢ of length 2n; starting from a; ; is of the form 1000...0.

We call the block of length 2n; starting from a; ; in a string w an -block. If
an i-block in a point w is of the form n; 1’s followed by n; 0’s, we say it is of
type 1, while if it is of the form n; + 1 1’s followed by n; — 1 0’s, it is of type
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2. Note that since there are 22" i-blocks in a string w, it follows that almost
every w contains i-blocks of type 1 or 2 for infinitely many 4.

Define as before a measure-preserving involution 8,, from € to itself, which
given a point w, for each ¢ > n finds the first i-block of type 1 or 2 (if there is
one) and replaces it by the i-block of the other type.

If B C Q is a set of positive measure, as before we can find n > 1 and w € B
such that ' = 6, (w) also belongs to B with infinitely many blocks changed.
Let these blocks start at a; and be of length 2n; (this sequence of lengths will
in general be a subsequence of the original sequence n;).

We claim that for these w and w’, the averages in the statement of the
theorem do not converge. The proof is essentially the same as that in Lemma
3.2

We note that the four points w,w’,w + § and w’ + ¢ have lots of blocks of
the form below and are pairwise identical outside these blocks:

11111110000000
11111111000000
?70000001000000
?70000000100000

These blocks have the property that when a number n is added to the points,
for most configurations of n within the block (a proportion 1 — 6(27 ")), the
rotated block has an even number of 1’s and is pairwise identical outside,
whereas it started with an odd number of 1’s. A typical picture after a number
n large enough to perturb within the block has been added is:

10110001101011
10110000011011
11110001101011
11110000011011

Here the number n was of the form 01110000101011 inside the block illus-
trated. The effect of this, exactly as in Lemma 3.2, is that for ‘most’ n up to
20i+2ni  the value of the summand in the statement of the theorem is (—1)%.
This completes the proof of the theorem.

O

3.5. Final Remarks and Questions. — As a consequence of the results in
this section, we see that there exist uniquely ergodic dynamical systems with
the property that their squares contain non-generic points. Specifically, we
have constructed uniquely ergodic dynamical systems (X,T) such that there
exist points (z,y) in X x X and continuous functions f: X x X — R such that
1n(f(z,y) + ...+ f(IT™ 1z, T" 1y)) is non-convergent.

Define a uniquely ergodic dynamical system (X,7) to be non-generic of
order n if in the nth power, there exist non-generic points, but in all smaller
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powers, every point is generic for some measure. In this language, we have
shown that almost all ergodic self-joinings of two copies of the Morse system
are non-generic of order 2. The Morse system itself is non-generic of order 4.

It is possible to give an example based on the above that is non-generic of
order 3. Specifically, let (w!,w? w3 w*) be a non-generic point in the fourth
power of the Morse system. Write —1/3 for the point 101010. .. in the odometer
and —2/3 for 010101... (these points are (—1)(3)~! and (—2)(3)~! in the set
of 2-adic integers respectively). Let ¢ be any point of the odometer such that
d(Xn(¢ +1/3), xn(w?)) is uniformly bounded away from 0 for all n, |i| < 3,
and j < 4. Then form a two point extension of the odometer by the cocycle
(W) = plwtwh) +p(w+w?) +o(w+w?) +p(w+wh) +e(w+C) +p(w+(—1/3).

We can show as before that this extension is uniquely ergodic. Further it is
not hard to show that each point in the square of the system is generic. To see
this, one has to consider the vector V = (w!,w? w3, w* (,¢ — 1/3) and one of
its translates V' = (w! +n,w? +n,w3 +n,0r +n,(+n,( —1/3+n). Provided
that n ¢ Z, there exists j such that the family of 12 points of the odometer
defined by V' and V' is j-separated at infinitely many stages (see section 2.1).

However, one can check that ((0,0),(—1/3,0),(—2/3,0)) € (Q x Zy)* is a
non-generic point in the cube of the system by the same arguments as presented
previously.

It seems that it is impossible using the specific constructions in this pa-
per to find systems that are non-generic of any order above 4. We ask for a
construction of a system that is non-generic of any given order.
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