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1 Introduction

For a bi-infinite word & € SZ (where S is a finite non-empty set of symbols),
the block complexity function pe(n) counts the number of distinct subwords
of € of length n. A celebrated result of Morse and Hedlund [6] establishes a
link between the block complexity function pg(n) and periodicity of bi-infinite
words:

Theorem 1 (Morse, Hedlund [6]) Let £ € S be a bi-infinite word. Then
€ is periodic (i.e., there exists a positive integer p such that & = &gy for each
k € Z) if and only if there exists ng € N for which pe(ng) < no.

There have been numerous works aimed at generalizing the Morse-Hedlund
theorem, either in terms of other types of complexity functions, or in the
context of multi-dimensional words (see [1-5,8-10]). For well written and in-
teresting surveys in this direction, we refer the reader to [3] by Cassaigne and
[10] by Tijdeman.

As is the case for 1-dimensional bi-infinite words, there are various ways of
measuring the complexity of d-dimensional infinite words. By a d-dimensional
infinite word we mean a d-dimensional infinite array of symbols £ € SZ°. A d-
dimensional infinite word £ is periodic if there exists a non-zero vector v € Z¢
such that & = &y for all x € Z2. In this case, we say that ¢ is periodic
with period v. Note that we make no assumption about minimality of the
periodicity vector. Perhaps the most natural extension of the block complexity
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function to d-dimensional words £ € S Z% is the rectangular complexity function
N¢(ni,ng, ..., ng) which counts the number of distinct ny X ng X - - - X ng blocks
occurring in . For d = 1, this coincides with the usual block complexity
function pg(n). For d = 2, the following conjecture was made independently
by Nivat [7] on one hand, and Berthé and Vuillon [1] on the other.

Conjecture 2 (Nivat) Let £ € ST If there exist positive integers nq,ny
such that N¢(ni,ne) < ning, then £ is periodic.

To the best of our knowledge, the conjecture remains open. If true, the con-
jecture would turn out to be optimal as there exist aperiodic 2-dimensional
infinite words £ of rectangular complexity Ne(nq,n2) = ninge + 1 (see [2]).
Sanders and Tijdeman [9] established the conjecture in the special case where
ny = 2, and Epifanio, Koskas and Mignosi showed that the conjecture holds
if Ne(ny,n2) < nyng is replaced by Ne(ng, ng) < hlljnan.

We remark that unlike in the case of the Morse-Hedlund Theorem, Nivat’s con-
jecture is not an equivalence; in fact there exist periodic 2-dimensional infinite
words & whose rectangular complexity function does not satisfy Ng(nq,ng) <
ning for any choice of ny,ny (see [1]). Also, the natural extension of Nivat’s
Conjecture to dimension 3 is known to be false: In [8] Sanders and Tijde-
man exhibit the existence of aperiodic 3-dimensional infinite words £ with the
property that N¢(n,n,n) < n3 for all n > 3.

The main result of this paper is to show that Nivat’s Conjecture is true if
Ne(ni,ne) < nyng is replaced by Ng(ng,ng) < 1—16n1712. Thus although our
result is still a much weaker version of the general Nivat Conjecture, it pro-
vides a significant improvement on the constant 1/144 given in [4] as well as a
shorter and somewhat simpler proof. Actually, our result is stated in terms of
a different complexity function Ngl"c(nl, ng,...,nq) of a d-dimensional infinite
word & , that we call the local complezity function. The local complexity func-
tion counts the maximum number of distinct n; X ... X ng blocks occurring in

a 2ny X ... x 2ng4 block.
Clearly for any d-dimensional infinite word ¢ we have
NEIOC(TI,l,’n,Q, .o ,nd) S Ng(’nl, Nng, ... ,nd)

and

Ngoc(nlan% tee ,’I'Ld) < (7’),1 + 1)(77/2 + 1) cee (nd + 1)

For 1-dimensional infinite words £ we show that:

Theorem 3 Let £ € S% be an aperiodic 1-dimensional bi-infinite word. Then



N{£(n) =n+1 for each n € N.
For 2-dimensional infinite words £ we show that:

Theorem 4 Let &€ € SZ° be an aperiodic 2-dimensional infinite word. Then

Né"c(nl,nz) > %nlng for all ny and ny in N.

As a consequence of Theorem 4 we deduce that Ng(ny,nq) > %nan for all
ni,ng € N.

Before proving Theorems 3 and 4 we introduce some notation. Let £ be a one
or two dimensional infinite word. For each point x in Z or Z* we denote by
&x the value of ¢ at x. For a 1-dimensional infinite word £ and integers a < b,
we put £[a,b] = £uar1 - &. Let B(m,n) = {(i,7) : 0 <i<m,0<j<n}
denote the m X n rectangle in Z?. For a 2-dimensional infinite word ¢ and
y = (y1,72) € Z*, we denote by £[y + B(m,n)] the m x n word (or block)
occurring at a point y. More precisely, [y + B(m, n)] is the m xn word defined

by g[y + B(m7 n)]i,j = £y1+i,yz+j for (Zvj) € B(man)

2 Proof of Theorem 3

We will show that if for some n € N, each block or window in £ of size 2n
has fewer than n + 1 distinct subwords of length n, then ¢ is periodic. This
is clearly true in case n = 1. In fact, if each window of size two contains one
distinct subword of length one, it follows that £ is of the form ...,a,a,a,a, ...
for some a € S.

So let ng > 1 be the least positive integer such that each window in £ of size
2ng contains fewer than ng + 1 distinct subwords of length ny. We will show
that ng is a period of ¢, i.e., & = &gyn, for each k € Z, and hence it will follow
that ng is the least period of &.

By minimality of ng there exists a window of £ of size 2(ng — 1) having ng
distinct subwords of length ng — 1. Up to a re-indexing of £ we can suppose
without loss of generality that the subword £[1,2(ng — 1)] = &&a - Eang—2
contains ng distinct subwords of length ny — 1.

Now consider the subword £[0,2ny — 1] of length 2ng. By our assumption it
contains at most ng distinct subwords of length ng, i.e., there exist integers
0 < r < s < ng such that &[r,7 + ny — 1] = £[s, s + ng — 1]. We claim that
r = 0 and s = ng, in other words that

€10,2n0 — 1] = &1 - - - &ng—18061 - - Eno—1-



In fact, if r > 0, then by deleting the last symbol we would have {[r, r+ng—2] =
&[s, s + ng — 2] contradicting that £[1,2(ne — 1)] contains ng distinct subwords
of length ng — 1. Similarly, if s < ng, then by deleting the first symbol we
would obtain a word of length ng — 1 occurring twice in &[1,2(ng — 1)], a
contradiction.

We now claim that & = &x+n, for each k € Z. We prove this only for £ > 0,
but the same argument will apply to £ < 0. Thus far we have deduced that
&k = Ektn, for 0 < k < ng — 1. Suppose, contrary to our claim, that for some
k > no we have & # Ekin,- Let kg > ng be the least such integer with this
property. Then we have

f[ko — TNy + 17 kO + nO] — £k0+1 e gko—l—no—lgkogko—l-l e €k0+n0—1€k0+n0

Wlth §k0 7& £ko+n0'

But by assumption on ng, the word &[ko—no+1, ko+ng| of length 2ng contains
fewer that ng+1 subwords of length ng. Since the prefix of &[kg—mng+1, ko+ng]
of length ny is distinct from the suffix of £[ko — no + 1, ko + no) of length ng, it
follows that there exists integers kg —no+1 <r <s < kg+1 with s —7r < ng
such that £[s, s+mng— 1] = £[r, r +no — 1]. By deleting the last symbol we have
€ls, s +no—2] = &[r, 7 +no — 2]. But by minimality of ky we have that & =
for each 0 <t < ko+np—1, where 0 < [¢t] < ng—1 denotes the equivalence class
of t modulo ngy. Thus we deduce that £[[s], [s]+no—2] = £[[r], [r] + 710 —2], and
[r] # [s]. But this implies the existence of a word of length ng — 1 occurring
twice in £[1,2(ng — 1)], a contradiction. Hence & = &gin, for each k € Z
implying that ¢ is periodic of period ng. This concludes our proof of Theorem 3.

3 Proof of Theorem 4

We may assume that both n; and ny are greater than 16; in fact, if ny < 16

we have N'°°(ny,ny) > N'°°(1,n3) > ng > ™%, where the second inequality

follows from Theorem 3. Set m; = |n;/4| and [; = n; — m;.

We prove the theorem using a series of lemmas. The proof will be by contra-
diction. Let & € SZ be a 2-dimensional infinite word and suppose that for
some n; and ng, Nﬁloc(nl,ng) < nyng/16. We will show that £ is necessarily
periodic. A simple but crucial observation is the following.

Lemma 5 If N{(ny,n;) < niny/16, then for z = (21,2,) € 72, there exists
a vector v.= (vy,ve) with |v;| < m; such that €[z + B(ly,ls)] = &z + v +
B(li,lo)] = &[z — v + B(l1,12)]-



PROOF. Consider the n; x ny blocks &[y + B(ni,ng)] with y = (y1,v2)
satisfying z; — m; < y; < z;. Since there are (1 + mq)(1 + mz) > nin2/16
such blocks, there must exist distinct points y and y’ of this form such that
Ely + B(ni,ng)] = €]y’ + B(ny,ne)]- Let v=y —y'. If x € z+ B(ly, 1), we
see that x € y + B(ny,n2) Ny’ + B(ny,ny). Using the first of these and the
fact that

Ely + B(ni,n9)] = €[y — v+ B(ny, ng)], we see that &_y = &. Similarly, using
the second, we see that &y = &-

We have shown that for each location z in Z2, there exists a vector v with
|v;] < m; such that the I; X Iy word occurring at z is the same as the I; X [y
word appearing at z+v. In this case, we call the vector v an actual translation
vector of the l; X ls word occurring at z.

Now let W be any [; x l; word occurring in . Since W occurs at some location
z € 72, there is an actual translation vector v for the given occurrence of W
at z. It follows that if x and x + v lie in B(ly,l2), then W, = Wy,y. Such a
vector v (with |v;| < m;) is called a potential translation vector of W.

Thus each I, xIy word W that appears in £ has at least one potential translation
vector. In addition, for each occurrence of the word, a non-empty subset of
the potential translation vectors of the word are actual translation vectors of
the specific occurrence of the word.

We divide the proof of the Theorem 4 into two main cases:

Case 1 There exists an [; X [ word in ¢ all of whose potential translation
vectors are collinear.

Case 2 Every [; x [y word in £ has two non-collinear potential translation
vectors.

We deal first with Case 1. In this case we shall show that ¢ contains a bi-
infinite strip in which there is periodicity. We will derive a contradiction by
showing that the boundary of the periodic region cannot exist.

Let W be an [ x I3 word all of whose potential translation vectors are collinear.
Let h be a potential translation vector. We will assume without loss of gener-
ality that the coordinates of h are positive and hy/l; > hy/ls. In fact, if both
hy and hy are negative, we replace h by —h. If h; and hs are of opposite signs,
then we obtain the desired h by reflecting ¢ across the appropriate coordinate
axis to obtain a 2-dimensional word & which is periodic if and only if £ is
periodic. Finally if hy/ly > hy/l; then we obtain the desired h by reflecting &
across the line y = .



We now fix an occurrence of the word W at some point x € Z?, and write
W = £[B] for some I; X I rectangular block B C Z2. Then for some positive
rational ¢, we have that th is the actual translation vector for the occurrence
of W at x so that W occurs at x 4 th. Similarly, the actual translation vector
for W at x+th is a rational multiple of h so that W occurs at x+ (¢t + s)h for
some s. Inductively, we see that the word W is repeated, possibly irregularly
spaced, along the bi-infinite line {x + th: ¢t € R} as shown in Figure 1.

Fig. 1. Copies of W along a line

For v € 7Z? we define the line L, = {{,4m : t € R} N Z?. Consider the ‘band
region’ W' = £[B'] of W as illustrated in Figure 2 where B’ C B consists of
those points v € B such that the line L, does not hit the lower edge of B
further than [;/3 from the lower left corner or the upper edge of B further
than [;/3 from the upper right corner. Note that since hy/l; > hy/ls, the
‘upper boundary line’ (resp. ‘lower boundary line’) of W' intersects the left
(resp. right) edge of W more than ly/3 > my away from the lower left (resp.
upper right) corner of W. In particular if &, and &, are on opposite sides of
the band region W', then |v;| > my or |va| > mo.

Since the width of W is [y — 1, it follows that for each v € B’, the horizontal
projection of the intersection Ly N W' has length at least 2{;/3—1 > 2m; — 1.

Since the copies of W are spaced out at horizontal intervals of at most mq, it
follows that for v € B’ and x € L,, there is a copy of W containing x and
x+ h. Since h is a potential translation vector of W, it follows that £&x = &xin.

Thus the union of all lines L, with v € B’ defines an infinite band region (or
strip) £[Qw] parallel to h on which ¢ is periodic with period h, and such that
if £, and &, are on opposite sides of the strip, then |vi| > m; or |vy| > mo.

WI

Fig. 2. ‘Band region’ of the word W



We note that although we were assuming that all potential translation vectors
of W are parallel to h, the existence of the band )y, as above follows from
the weaker assumption that there exists an occurrence of W at some point
v € Z* and that all actual translation vectors of W for each occurrence of W
at a point z € L, are parallel to h. We will use this fact in the proof of the
following lemma:

Lemma 6 Let Q C 72 be an infinite strip (possibly unbordered) parallel to
h with the property that the restriction of £ to Q is periodic with period h
and such that if & and &,y are on opposite sides of 2, then |vi| > my or
|vg| > ma. Then & is periodic with period Mh for some M.

PROOF. If Q) = 72, then £ is periodic with period h. Otherwise, there exists
a closest line L' to Q, parallel to h and not contained in 2. Now if the restriction
of £ to L' is periodic with period h, then we can adjoin L’ to €2 to form a wider
band parallel to h satisfying the hypothesis of the lemma. Otherwise, if the
restriction of £ to L’ is not periodic with period h, it follows that there exists
some z' € L' such that & # & .n. In this case, let V be the I; x I word
occurring at z’' and hence containing both &, and &y, and let v/ = (v}, v})
be an actual translation vector for this occurrence of V. It follows that v’ is
parallel to h. In fact, if v’ is not parallel to h then the condition on the width
of the band implies that either z’' + v’ and z’ + h + v’ are both in Q, or 2’ — v/
and z'+h — v’ are both in . Either way this contradicts our assumption that
&xr # &z on- Moreover this argument applies to each translate of V' along the
boundary of €2, that is for each occurrence of V' along the boundary of €2, all
actual translation vectors of V' are parallel to h.

Thus as to W we associated an infinite strip (Qy satisfying the hypothesis of
the lemma, we associate to V' an infinite strip {2y, parallel to h overlapping €2
and satisfying the hypothesis of the lemma. By a repetition of this construction
we see that each line L, is eventually contained in such a strip, that is for
each v € Z?, there exists a multiple th of h with integer coefficients bounded
by m; and mgy such that the restriction of ¢ to L, is periodic with period th.
Since there are finitely many such ¢, we may take the least common multiple.
Hence, ¢ is periodic with period Mh for some M.

Our proof of Theorem 4 in Case 1 now follows from Lemma 6.

We next consider Case 2 in which each I; x Iy block has two non-collinear
potential translation vectors. In this case we will show that for each Iy x Iy
word, there is a suitable subword which is the restriction of a doubly peri-
odic configuration of the entire lattice. We then study the way that these fit
together to deduce that all of ¢ is doubly periodic.



We start with some definitions. Let A be a non-empty subset of Z?, and P
a non-empty set of vectors in Z?. In general we assume that P contains at
least two non-collinear vectors, although unless explicitly stated, some of what
follows does not require this assumption. We denote the integer linear span of
P by lin(P). Let W denote £[A]. We say W is locally P-periodic if whenever
x and y belong to A and differ by a vector v belonging to P, then & = &,.
We say W is globally P-periodic if whenever x and y belong A and differ by
a vector v belonging to lin(P), then & = &.

We make use of the following lemma several times.

Lemma 7 Let A C 7%, and put W = &[A]. Let P be a non-empty set of
vectors in Z* and Q C P. Suppose that W is locally P-periodic and globally
Q-periodic. Suppose further that for all v.€ P\ Q and x € A, there ezists
x' € x + lin(Q) such that both X' and x' + v are in A. Then W is globally
P-periodic.

PROOF. We need to show that for all x,y € A such that
Y =X+ €V +€Vay+ ...+ €V + W,

where ¢; € {1,-1}, vi € P\ Q and w € lin(Q), that & = &,. We prove this
by induction on k. The result is clear if k¥ = 0, that is in case y = x+ w, since
W is assumed to be globally ()-periodic.

Now suppose k > 1 and the result holds for £ — 1. Suppose x,y € A as above.
Without loss of generality we can assume that €, = +1; in fact, if ¢, = —1,
then we consider the equation X =y — €;vy — €3Vy — ... — €V — W.

By hypothesis, there exists x' € x 4 lin(Q) such that both x" and x’ 4 vy are
in A. Hence

fx = gx’ = fx’+Vk
since W is globally Q-periodic and locally P-periodic. Since x and x’ differ by
a vector in lin(Q), we can write

Yy = (Xl + Vk) +€vy+ -+ €_1Vk-1 t WI

for some w' € lin(Q) and apply our induction hypothesis to deduce that
&y = & 4vi.- Hence & = & as required.

Henceforth we will assume that P consists of a finite collection of vectors
v = (v, v2) with |v;| < m;, of which at least two are non-collinear.



Lemma 8 Suppose the r1 X ro word W = &[A] (where r1 > 13 and ry > 15— 1
orry > 1y — 1 and ro > 1ly) is locally P-periodic, where P contains two non-
collinear vectors u,v from two adjacent quadrants (where a vector parallel
to a coordinate azis is considered to belong to both of the quadrants that it
separates). Then

(1) W contains a fundamental domain for any lattice generated by a non-
collinear subset of P;
(2) W is globally P-periodic;

PROOF.

To see the first claim, note that for any non-collinear pair of vectors in P, the
lattice that they generate has a fundamental domain of width at most 2m; —1
and height at most 2msy. They also have a (possibly different) fundamental
domain of width at most 2m, and height at most 2ms — 1. Any superset of
this collection of vectors generates a finer lattice, whose fundamental domain
is therefore a subset of this fundamental domain.

Let P, u and v be as in the statement of the lemma and set @ = {u,v}. We
assume without loss of generality that u and v are in the first and second
quadrants. We further assume that r;y > 3m; — 1 and r, > 3mo

We will show below that W is globally @-periodic. If |P| = 2, we will be
done. Otherwise, we recall that any 2m; — 1 X 2msy subword of W contains a
fundamental domain for the lattice generated by Q. Hence given w € P \ @,
one can choose a subword A’ so that A" UA +w C A and A’ contains a
fundamental domain for the lattice generated by (). This will allow us to
conclude the proof of the lemma by applying Lemma 7.

To see that W is Q-globally periodic, we argue as follows. For each x € A, we
define a graph on the vertex set Vi = (x + 1in(Q)) N A where two vertices are
joined by an edge if they differ by u or v. We need to show that these graphs
are connected. Fix an x € A. We define the rung through y € V; to be the
set {y +nv: n € Z,y +nv € A}. By convexity of A, the rungs are connected.
To show that the graph is connected it is sufficient to show that the rungs all
lie in the same component. Since the rungs are linearly ordered and there can
only be edges between consecutive rungs, it is therefore sufficient to show that
if a rung is not connected to any rung below itself, then it is the bottom rung
and similarly for the top rungs.

Let R be a rung which we assume is not connected to any rung below. Let
A denote the convex hull of A and R be the part of the line in R? through
R parallel to v that is contained within the boundaries of A. Set T' = {z €

A:z—u € A}. The part of R lying in T must be shorter than v (otherwise



R

S

Fig. 3. The bottom rung

there would necessarily be a point in R N 7', which would be connected to a
lower rung). This is illustrated in Figure 3. It follows that points in R N T
have z-coordinates less than u; + |v;| < u; + my and y-coordinates less than
ug+v9 < ug+ms. In particular, points in R—kunA for £ > 1 have coordinates
bounded above by m; and my, so that given any point in R — ku N A, it is
possible to repeatedly add u until it hits R. This contradicts the assumption
that R was not connected to any rung below and completes the proof.

Lemma 9 Suppose the r1 X o word W (wherery > 11 —1 andry > 1o —1) is
locally P-periodic, where all vectors in P lie in a pair of opposite quadrants.
Then there is a subword W' of W such that

(1) W' contains a fundamental domain for any lattice generated by a non-
collinear subset of P;

(2) W' is globally P-periodic;

(8) W' contains the (|r1/2],|r2/2]) entry of W.

PROOF. By symmetry, we may assume that all vectors in P lie in the first or
third quadrants. Since the definitions are unaffected if the vectors are negated,
we may further assume that all vectors in P lie in the first quadrant.

If P contains two vectors with the same z-coordinate, denote them by u and
v and set @) = {u, v}. Assume that u is steeper than v. Remove the top left
and bottom right m; X (mg — 1) subregions of A to form a region A’. Since the
y coordinates of u and v are positive, their difference h is at most my — 1. If
X,y € A’ where y is a distance h vertically above x, then we see that either
x — v or X + u lies in A’. Call this point z so that & = &, = &. We then see
that W' = £[A’] is globally Q-periodic. This situation is illustrated in Figure
4.

We see that [m; —1,2my — 1) x [my — 1,2my — 1) N Z? contains a fundamental

domain for the lattice so that given x € A’, there exists w € lin(Q) such that
x =x+w € [m;—1,2m; —1) X [mg—1,2my — 1) N Z2. For any vector z € P,

10



Fig. 4. Connectedness if two vectors agree on a coordinate

we can check that x’ +z € A’, hence the lemma follows from Lemma 7. We
can deal with the case where u and v have the same y-coordinate similarly.
Thus we have proved the lemma in the case that any two vectors in P have
the same x or y coordinates.

Next, assume all vectors in P have different z and y coordinates, let Q = {u, v}
where the slope of u is greater than the slope of v. Define L; to be the line
through (r; — u; — vy, —1) and (r; — uy,ve — 1); Ly through (ry — uy, vy — 1)
and (ry,v; +ve — 1); L3 through (—1,73 — ug — ve) and (u; — 1,72 — v5); and
L, through (u; — 1,79 —vs) and (uy +ug — 1,73). Define A’ to be the subregion
of A formed by removing points lying on or below L; and L, and points lying
on or above L3 and L. This is illustrated in Figure 5.

L

Ls
A
L

Ly

Fig. 5. The region A’

To see that £[A'] is globally Q-periodic, we argue as in Lemma 8 by considering
rungs in lattices. Let L be the line lying a displacement u above L;. Suppose
that R is a non-empty rung lying above L containing a point of A’. This is
illustrated in Figure 6. By construction, we see that there is an element x of
R such that x —u € A’ so that R is connected to the rung below.

Let T be the parallelogram with vertices 0, u, v and u+v and let w € P\ Q.
Since u, v and w have distinct z and y coordinates, we have u; + vy + w; <
3myi — 2 < ry and similarly us 4+ vy + we < r5. We note from this that v + w
is strictly above and to the left of the intersection of L; and Ls. Similarly,
u + w is below and to the right of the intersection of L3 and L4. Accordingly,
we conclude that all four vertices of T'+ w lie in A’. Since T is a fundamental
domain for the lattice generated by (), we see that the conditions of Lemma 7

11



Fig. 6. A rung above L is connected to the rung below

are satisfied and the restriction of £ to A’ is globally P-periodic. This completes
the proof.

Applying Lemmas 8 and 9, we see that for any [; x Iy word W occurring on a
region A in &, there is a subregion A’ containing the central point of A and a
globally doubly periodic 7y € S and such that £[A’] = na[A'].

Next, consider two adjacent [, x [y blocks, A; and As. Let P; denote the set
of potential translation vectors of £[A;] and let Al be the subregion of A;
on which ¢ is globally P;-periodic. Let 7; be the infinite globally P;-periodic
configuration determined by the restriction of £ to A]. Finally, write A for
A1 N A5 and note that on A, ¢ is locally P, U Pp-periodic. By the lemmas, there
is a subregion A’ of A on which £ is globally P; U P-periodic. Let n be the
infinite globally P; U P,-periodic word agreeing with £ on A’. Since A’ N A4
necessarily contains a fundamental domain for the lattice generated by P;, we
see that n; = n and similarly, 17, = 1. We conclude that the 7, is the same for
all I; x I, regions in Z?. We denote this unique doubly periodic word by 7.

For each I; x Iy region A in Z?, there is a subregion A’ such that £[A'] = n[A/].
Given x € 72, let A be an I, x [, region centered at x. Since x € A’, it follows
that & = nx. Since x was arbitrary, it follows that & = 1 so that & is doubly
periodic as required.
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