Weak-L! Estimates and Ergodic Theorems

Ciprian Demeter and Anthony Quas

ABSTRACT. We prove that for any dynamical system (X, X, m,T), the maxi-

mal operator defined by N*f(z) = sup,, %#{1 <i: f(%”& > %} is almost
everywhere finite for f in the Orlicz class L loglog L(X), extending a result of
Assani [2]. As an application, a weighted return times theorem is also proved.
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1. Introduction

Let T be a measure preserving transformation of a probability space (X, X, m).
We call (X,%,m,T) a dynamical system. The following return times theorem was
proved in [4]:

Theorem 1 (Bourgain). Let 1 < p < oo and let 1/p+1/q = 1. For each dynamical
system (X, X, m,T) and f € LP(X), there is a set Xo C X of full measure, such
that for any other dynamical system (Y, F,u,S) , g € LY(Y) and x € Xy, the limit,

exists for p a.e. y.

One of the most interesting unanswered questions that emerges from this result
is whether or not the fact that f and g lie in dual spaces is in general necessary in
order to have a positive result. Neither of the existing proofs of Theorem 1 gives
any indication on this, since each of them relies on Holder’s inequality.

On the other hand, if (¢S*) is replaced with a sequence (&) of independent
identically distributed random variables such that E(|{1]|) < oo, then the following
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criterion of B. Jamison, S. Orey and W. Pruitt [5] proves to be an excellent tool to
break the duality.

Theorem 2 (Jamison, Orey and Pruitt). Let (ax) be a sequence of positive real
numbers and let N* = sup,, ~#{k : aj,/ Ele a; > 1/n}, then the following are
equivalent:
1. N* < oo;
2. For any i.i.d. sequence of random variables (&) such that E(|¢1]) < oo, defin-
ing a new sequence (E,) of random variables by

En(w) =Y aréel(w)/ Y a,
k=1 k=1

the sequence (E,) converges pointwise almost surely.

Motivated by this criterion, Assani [1] introduced the following maximal function:
given f € L'(X), consider

N @) =sup pr < L0051y

He proved in [2] for f € Llog L(X), N*f € L' and in particular N* f(z) < oo for
a.e. x. Based on this and Theorem 2, the following “duality-breaking” version of
Theorem 1 follows almost immediately:

Corollary 3 (Assani). For each dynamical system (X,3,m,T) and function f
such that [|f|llog" |fldm < oo (i.e. f € LlogL(X)), there is a set Xo C X
of full measure, such that for any sequence (&) of i.i.d. random variables on the
probability space (Q, F, u) with & € LY(Q) and any v € Xo

Tim LS (T w)

k=1
exists for p a.e. w.

Moreover in [1] it is proved that if Theorem 1 is true for p = ¢ = 1, then N* f(x)
must be finite almost everywhere for all f € L*(X). This connection sheds more
light on the importance of the operator N* and motivates its further study.

In the next section we will prove the finiteness of N* for functions in the
larger class Lloglog L. Note that while Assani shows that N*f € L' for f €
Llog L, our result establishes that N*f € LY* for f € LloglogL (i.e. that
sup, tm{xz: N*f(x) > t} < o00) so that while our hypothesis is weaker, so is our
conclusion. Note however that since our conclusion implies that N* f(x) < oo for
almost every z, it is sufficient to imply a corollary like Corollary 3 in the case where
f € Lloglog L.

In a preprint that appeared at around the time this paper was submitted, Assani,
Buczolich, and Mauldin [3] show that there exists an f € L*(X) such that N* f(z) =
oo almost everywhere.
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2. Main results

Throughout this section we will denote the natural logarithm of x by logz and
the weak-L' norm of f by

[f1l1,00 = sup Am{z = [f()] > A}.
A>0

Also, as usual, we denote the ergodic maximal function by f*, where f*(z) =
sup,, |2 377, f(T*z)|. The maximal ergodic theorem asserts that || f*[l1,c0 < [If]l1
for all f € L'(X). The following inequality from [7] turns out to be extremely
useful to our investigation:

Lemma 4. Suppose that for i = 1,2,..., g;(x) is a nonnegative function on a
measure space with Y ||gill1,00 < 1. Set K = Z;’il lgill1,00 log(1/||gill1,00), the
entropy of the sequence (|/gi||1,00). Then || Zfil Gill1,00 < 2(K +2).

We can now prove our main result.

Theorem 5. For each dynamical system (X, %, m,T) and each f € Lloglog L(X)
(that is f satisfying [ |f|log¥ log" |f|dm < o0), N*f(z) < oo for a.e. .

Proof. It is enough to consider f positive. Making use of the fact that f(x)
o2 2ixa; (z), where A; = {z: 2071 < f(z) <2} fori > 2 and A = {z: f(x)
2}, it easily follows that for each n,

<
<

k;E oo n2t o) )
L T o g < LSS v @) <3 200 (),
=1 k=1 =1

We will show that the last term in the above inequality is finite a.e. by proving
that its L1 . norm is finite. Let M = > 2"m(4,) < 2|f|1 and let g;(x) =
21(xa,)*(x)/M. By the maximal ergodic theorem, we see

< 2’m(AZ) _ 2’m(AZ)
b =T TS 2vm(A,)

||92|

so that Y. [|gill1,.0 < 1. Based on Lemma 4, it will be sufficient to prove that
Yoo Ngill00 log(1/11gill1,00) < o0. It is quickly seen that this condition is equiva-
lent to establishing that Y ;o 2m(A;)log(1/(2'm(4;))) < oco.

Here and in the future the summation only runs over the indices i for which
m(A;) > 0. Consider now S; = {i : 2'm(4;) < 1/i*} and Sy = {i : 2'm(4;) >
1/i?}. Now

Z 2iHXAi

1€Sy

1 oo
log () < log(j%)/4% < oo
o {Fcal ) < 2080/
since ¥ (t) = tlog (1) is increasing on [0,1/e]. On the other hand

. 1 ; .
> 2l iog (o) <2 5 2lhalhlogi < o0
i€Ss X4l i€Ss

since f € Lloglog L(X). This ends the proof. O
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Corollary 6. For each dynamical system (X,%,m,T) and non-negative function
f € Lloglog L(X), there is a set Xo C X of full measure, such that for any sequence
(€x) of i.i.d. random variables on the probability space (2, F, ) with & € LY(Q)
and any x € X

1 n
lim — ) F
Jim =) f(TH )6 (w)
k=1
exists for p a.e. w.

There does not seem to be better way of exploiting Lemma 4 in order to extend
even more the class of functions for which N* f is almost everywhere finite. More-
over, as we show in the following proposition, the inequality in Lemma 4 is sharp
up to a constant. We note that a more general version of this proposition appears
in work of Kalton [6]

Proposition 7. Given positive numbers ay, . .., a, which sum to 1, there exist func-
tions gu,.... gn with ||gill1,00 = a; such that g1 +... gnll1,0c = §(2+K) 3 |lgs
where K is the entropy of the sequence (a;).

1,005

Proof. For each 4, let & be a random variable taking the value 1/n with probability
(1 — a;)" ta;. Moreover, the &;’s will be chosen to be independent. One can then
check that P(§; > A\) < a;/A while P(§; > 1 — ¢) = a; for € small enough, so that

€ill1,00 = @i

We see that
> 1—a;)" !
E(6) = X_jla(n)
= — ii -loga; > —a;loga;.
Similarly, we see that
2 — 1 n—1 — 1
E(fi)zai;ﬁ(l—ai) gai;ﬁghu.

In particular, setting 2 = &; + ... + &,, we see that E(Z) > K but Var(Z) < 2.
Using Tchebychev’s inequality, we see that
Var(E)
-~
If K > 4, we have P(Z > K/2) > % so that the weak-L! norm exceeds K/4, which
in turn exceeds (K + 2)/6. If K < 4, take f to be any function of weak L! norm

1 and let f, = a,f, so that || full1,00 = an. Then Y f; = f, so that | > fill1,c0 =
1> 3(K +2)Y || fill1,00- This completes the proof of the proposition. O

P(E>K-2)>P(|E-EE)|<2)>1 z%.

Remark 8. Note that although f € LloglogL is sufficient to guarantee that
N*f < oo almost everywhere, there are functions f outside Lloglog L(X), for
which N*f(x) < oo for a.e. z. In particular, it is easy to construct functions
outside Lloglog L for which the entropy computed in Theorem 5.

Further, if we are willing to restrict the system, we see that no condition on the
distribution of f can guarantee the divergence of N*f(z). Specifically, Lemma 1
of [1] guarantees that whenever T*f are independent random variables (take for
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example (X,%,m,T) to be a Bernoulli shift and f to depend only on the first
coordinate), then N*f(x) < oo for a.e. x.

Another consequence of Theorem 5 is the following weighted version of Theo-
rem 3.

Theorem 9. For each dynamical system (X, %, m,T) and f € L*(X), there is a set
Xo C X of full measure, such that for any sequence (&) of i.i.d. random variables
on the probability space (2, F, p) with & € L*(Q) and any = € X,

lim ——— " =0
dim e sToan ; f(TF)e(w)
for p a.e. w.
The proof will be based on the following relative of Theorem 5. Define L* f(z) =
sup,, ~#{1 <i: o) > 1

iloglogi — n

Lemma 10. For each dynamical system (X, X, m,T) and each f € L1(X), L*f(z) <
oo for a.e. x.

Proof. As usual, we can assume f is positive. Fix an n € N. Using the fact that
fz) <352, 204, () we get that

k o Pi >
Lii<k: kfl“(TIOg)k_ )< 530D () £ 13 pila)' @)

1=1 k=1
where p; is the largest integer such that p;(loglogp;) < n2t. Letting ¢: (1,00) — R
be the increasing function ¢(x) = zloglogz, we see that p; < ¢~ 1(n2%). We
claim that there exists a C' > 0 such that p; < C7 Tog 7+1) for all i,n € N. To see
this, we check the existence of a C' such that ¢=1(2%) < O —2

2 < ¢(C for all x > 0. Hence

log(m 1y OF equivalently

L)
log(xz+1)

Liqei ST 1 o~ 2 .

Based on Lemma 4 and on the maximal ergodic theorem, it suffices to prove that

Yool — (210!?;11”)1) log (%O&Z‘ﬂ‘;) < 00. By splitting the sum in two parts depend-

%él?fﬂl)l < %2 and reasoning like in the proof Theorem 5, it

easily follows that the sum from above is finite. O

ing on whether or not

Proof of Theorem 9. It suffices to assume that both f and &; are positive. Ac-

cording to the previous lemma, let X the subset of full measure of X containing

all the points x for which L* f(z) < co. For a fixed x € X denote wy := f(T"x)

and also Wy, := kloglog k. The argument of Jamison, Orey and Pruitt from [5] can

be extended with really no essential changes to this case, to conclude that since
sgpnﬁ{l <i: W > n}<oo,

(2

1
i el =
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for p a.e. w. O

Remark 11. Tt is not known whether in Theorem 9 the weight nloglogn can be
replaced with a smaller one, like nloglog log n, much less with n. Any improvement
on this weight will necessarily have behind it an extension of the result of Theorem 5
to a larger Orlicz class.

Remark 12. Tt would be interesting to find the largest Orlicz class that would
guarantee that N* f(z) < oo almost everywhere. The above establishes that such
an Orlicz class would contain Lloglog L and the recent preprint

A careful examination of the proof of [3] demonstrates that in any Orlicz class
with an essentially smaller weight than the class L logloglog L, there exists a func-
tion f such that N*f(xz) = oo almost everywhere.

In particular, these two results demonstrate that the largest Orlicz class that
would guarantee that N* f(z) < oo almost everywhere lies between L loglog L and
Llogloglog L.
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