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Abstract. We prove that for any dynamical system (X, Σ, m, T ), the maxi-

mal operator defined by N∗f(x) = supn
1
n

#{1 ≤ i :
f(T ix)

i
≥ 1

n
} is almost

everywhere finite for f in the Orlicz class L log log L(X), extending a result of

Assani [2]. As an application, a weighted return times theorem is also proved.
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1. Introduction

Let T be a measure preserving transformation of a probability space (X,Σ,m).
We call (X,Σ,m, T ) a dynamical system. The following return times theorem was
proved in [4]:

Theorem 1 (Bourgain). Let 1 ≤ p ≤ ∞ and let 1/p+1/q = 1. For each dynamical
system (X,Σ,m, T ) and f ∈ Lp(X), there is a set X0 ⊂ X of full measure, such
that for any other dynamical system (Y,F , µ, S) , g ∈ Lq(Y ) and x ∈ X0, the limit,

lim
n→∞

1
n

n∑
k=1

f(T kx)g(Sky),

exists for µ a.e. y.

One of the most interesting unanswered questions that emerges from this result
is whether or not the fact that f and g lie in dual spaces is in general necessary in
order to have a positive result. Neither of the existing proofs of Theorem 1 gives
any indication on this, since each of them relies on Hölder’s inequality.

On the other hand, if (gSk) is replaced with a sequence (ξk) of independent
identically distributed random variables such that E(|ξ1|) <∞, then the following
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criterion of B. Jamison, S. Orey and W. Pruitt [5] proves to be an excellent tool to
break the duality.

Theorem 2 (Jamison, Orey and Pruitt). Let (ak) be a sequence of positive real
numbers and let N∗ = supn

1
n#{k : ak/

∑k
i=1 ai ≥ 1/n}, then the following are

equivalent:

1. N∗ <∞;
2. For any i.i.d. sequence of random variables (ξk) such that E(|ξ1|) <∞, defin-

ing a new sequence (Ξn) of random variables by

Ξn(ω) =
n∑

k=1

akξk(ω)/
n∑

k=1

ak,

the sequence (Ξn) converges pointwise almost surely.

Motivated by this criterion, Assani [1] introduced the following maximal function:
given f ∈ L1(X), consider

N∗f(x) = sup
n

1
n

#{1 ≤ i :
f(T ix)

i
≥ 1
n
}.

He proved in [2] for f ∈ L logL(X), N∗f ∈ L1 and in particular N∗f(x) < ∞ for
a.e. x. Based on this and Theorem 2, the following “duality-breaking” version of
Theorem 1 follows almost immediately:

Corollary 3 (Assani). For each dynamical system (X,Σ,m, T ) and function f
such that

∫
|f | log+ |f | dm < ∞ (i.e. f ∈ L logL(X)), there is a set X0 ⊂ X

of full measure, such that for any sequence (ξk) of i.i.d. random variables on the
probability space (Ω,F , µ) with ξ1 ∈ L1(Ω) and any x ∈ X0

lim
n→∞

1
n

n∑
k=1

f(T kx)ξk(ω)

exists for µ a.e. ω.

Moreover in [1] it is proved that if Theorem 1 is true for p = q = 1, then N∗f(x)
must be finite almost everywhere for all f ∈ L1(X). This connection sheds more
light on the importance of the operator N∗ and motivates its further study.

In the next section we will prove the finiteness of N∗ for functions in the
larger class L log logL. Note that while Assani shows that N∗f ∈ L1 for f ∈
L logL, our result establishes that N∗f ∈ L1,∞ for f ∈ L log logL (i.e. that
supt tm{x : N∗f(x) > t} < ∞) so that while our hypothesis is weaker, so is our
conclusion. Note however that since our conclusion implies that N∗f(x) < ∞ for
almost every x, it is sufficient to imply a corollary like Corollary 3 in the case where
f ∈ L log logL.

In a preprint that appeared at around the time this paper was submitted, Assani,
Buczolich, and Mauldin [3] show that there exists an f ∈ L1(X) such thatN∗f(x) =
∞ almost everywhere.
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2. Main results

Throughout this section we will denote the natural logarithm of x by log x and
the weak-L1 norm of f by

‖f‖1,∞ = sup
λ>0

λm{x : |f(x)| > λ}.

Also, as usual, we denote the ergodic maximal function by f∗, where f∗(x) =
supn

∣∣ 1
n

∑n
k=1 f(T kx)

∣∣. The maximal ergodic theorem asserts that ‖f∗‖1,∞ ≤ ‖f‖1
for all f ∈ L1(X). The following inequality from [7] turns out to be extremely
useful to our investigation:

Lemma 4. Suppose that for i = 1, 2, . . ., gi(x) is a nonnegative function on a
measure space with

∑
‖gi‖1,∞ ≤ 1. Set K =

∑∞
i=1 ‖gi‖1,∞ log(1/‖gi‖1,∞), the

entropy of the sequence (‖gi‖1,∞). Then ‖
∑∞

i=1 gi‖1,∞ ≤ 2(K + 2).

We can now prove our main result.

Theorem 5. For each dynamical system (X,Σ,m, T ) and each f ∈ L log logL(X)
(that is f satisfying

∫
|f | log+ log+ |f | dm <∞), N∗f(x) <∞ for a.e. x.

Proof. It is enough to consider f positive. Making use of the fact that f(x) ≤∑∞
i=1 2iχAi(x), where Ai = {x : 2i−1 < f(x) ≤ 2i} for i ≥ 2 and A1 = {x : f(x) ≤

2}, it easily follows that for each n,

1
n
]{1 ≤ k :

f(T kx)
k

≥ 1/n} ≤ 1
n

∞∑
i=1

n2i∑
k=1

χAi
(T kx) ≤

∞∑
i=1

2i(χAi
)∗(x).

We will show that the last term in the above inequality is finite a.e. by proving
that its L1,∞ norm is finite. Let M =

∑
2nm(An) ≤ 2‖f‖1 and let gi(x) =

2i(χAi
)∗(x)/M . By the maximal ergodic theorem, we see

‖gi‖1,∞ ≤ 2im(Ai)
M

=
2im(Ai)∑
n 2nm(An)

so that
∑

i ‖gi‖1,∞ ≤ 1. Based on Lemma 4, it will be sufficient to prove that∑∞
i=1 ‖gi‖1,∞ log(1/‖gi‖1,∞) < ∞. It is quickly seen that this condition is equiva-

lent to establishing that
∑∞

i=1 2im(Ai) log(1/(2im(Ai))) <∞.
Here and in the future the summation only runs over the indices i for which

m(Ai) > 0. Consider now S1 = {i : 2im(Ai) ≤ 1/i2} and S2 = {i : 2im(Ai) >
1/i2}. Now ∑

i∈S1

2i‖χAi
‖1 log

(
1

2i‖χAi
‖1

)
≤

∞∑
j=2

log(j2)/j2 <∞

since ψ(t) = t log
(

1
t

)
is increasing on [0, 1/e]. On the other hand∑

i∈S2

2i‖χAi‖1 log
(

1
2i‖χAi

‖1

)
< 2

∑
i∈S2

2i‖χAi
‖1 log i <∞

since f ∈ L log logL(X). This ends the proof. �
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Corollary 6. For each dynamical system (X,Σ,m, T ) and non-negative function
f ∈ L log logL(X), there is a set X0 ⊂ X of full measure, such that for any sequence
(ξk) of i.i.d. random variables on the probability space (Ω,F , µ) with ξ1 ∈ L1(Ω)
and any x ∈ X0

lim
n→∞

1
n

n∑
k=1

f(T kx)ξk(ω)

exists for µ a.e. ω.

There does not seem to be better way of exploiting Lemma 4 in order to extend
even more the class of functions for which N∗f is almost everywhere finite. More-
over, as we show in the following proposition, the inequality in Lemma 4 is sharp
up to a constant. We note that a more general version of this proposition appears
in work of Kalton [6]

Proposition 7. Given positive numbers a1, . . . , an which sum to 1, there exist func-
tions g1, . . . , gn with ‖gi‖1,∞ = ai such that ‖g1 + . . . gn‖1,∞ ≥ 1

6 (2+K)
∑
‖gi‖1,∞,

where K is the entropy of the sequence (ai).

Proof. For each i, let ξi be a random variable taking the value 1/n with probability
(1 − ai)n−1ai. Moreover, the ξi’s will be chosen to be independent. One can then
check that P(ξi > λ) ≤ ai/λ while P(ξi ≥ 1 − ε) = ai for ε small enough, so that
‖ξi‖1,∞ = ai.

We see that

E(ξi) =
∞∑

n=1

ai
(1− ai)n−1

n

= − ai

1− ai
log ai ≥ −ai log ai.

Similarly, we see that

E(ξ2i ) = ai

∞∑
n=1

1
n2

(1− ai)n−1 ≤ ai

∞∑
n=1

1
n2

≤ 2ai.

In particular, setting Ξ = ξ1 + . . .+ ξn, we see that E(Ξ) ≥ K but Var(Ξ) ≤ 2.
Using Tchebychev’s inequality, we see that

P(Ξ ≥ K − 2) ≥ P(|Ξ− E(Ξ)| ≤ 2) ≥ 1− Var(Ξ)
22

≥ 1
2
.

If K > 4, we have P(Ξ ≥ K/2) ≥ 1
2 so that the weak-L1 norm exceeds K/4, which

in turn exceeds (K + 2)/6. If K ≤ 4, take f to be any function of weak L1 norm
1 and let fn = anf , so that ‖fn‖1,∞ = an. Then

∑
fi = f , so that ‖

∑
fi‖1,∞ =

1 ≥ 1
6 (K + 2)

∑
‖fi‖1,∞. This completes the proof of the proposition. �

Remark 8. Note that although f ∈ L log logL is sufficient to guarantee that
N∗f < ∞ almost everywhere, there are functions f outside L log logL(X), for
which N∗f(x) < ∞ for a.e. x. In particular, it is easy to construct functions
outside L log logL for which the entropy computed in Theorem 5.

Further, if we are willing to restrict the system, we see that no condition on the
distribution of f can guarantee the divergence of N∗f(x). Specifically, Lemma 1
of [1] guarantees that whenever T kf are independent random variables (take for
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example (X,Σ,m, T ) to be a Bernoulli shift and f to depend only on the first
coordinate), then N∗f(x) <∞ for a.e. x.

Another consequence of Theorem 5 is the following weighted version of Theo-
rem 3.

Theorem 9. For each dynamical system (X,Σ,m, T ) and f ∈ L1(X), there is a set
X0 ⊂ X of full measure, such that for any sequence (ξk) of i.i.d. random variables
on the probability space (Ω,F , µ) with ξ1 ∈ L1(Ω) and any x ∈ X0

lim
n→∞

1
n log log n

n∑
k=1

f(T kx)ξk(ω) = 0

for µ a.e. ω.

The proof will be based on the following relative of Theorem 5. Define L∗f(x) =
supn

1
n#{1 ≤ i : f(T ix)

i log log i ≥
1
n}

Lemma 10. For each dynamical system (X,Σ,m, T ) and each f ∈ L1(X), L∗f(x) <
∞ for a.e. x.

Proof. As usual, we can assume f is positive. Fix an n ∈ N. Using the fact that
f(x) ≤

∑∞
i=1 2iχAi

(x) we get that

1
n
]{1 ≤ k :

f(T kx)
k log log k

≥ 1/n} ≤ 1
n

∞∑
i=1

pi∑
k=1

χAi
(T kx) ≤ 1

n

∞∑
i=1

pi(χAi
)∗(x)

where pi is the largest integer such that pi(log log pi) ≤ n2i. Letting φ : (1,∞) → R
be the increasing function φ(x) = x log log x, we see that pi ≤ φ−1(n2i). We
claim that there exists a C > 0 such that pi ≤ C 2in

log(i+1) for all i, n ∈ N. To see

this, we check the existence of a C such that φ−1(2x) ≤ C 2x

log(x+1) or equivalently

2x ≤ φ(C 2x

log(x+1) ) for all x ≥ 0. Hence

sup
n

1
n
]{1 ≤ i :

f(T ix)
i log log i

≥ 1
n
} ≤ C

∞∑
i=1

(
2i

log(i+ 1)

)
(χAi

)?(x).

Based on Lemma 4 and on the maximal ergodic theorem, it suffices to prove that∑∞
i=1−

(
2i‖χAi

‖1
log(i+1)

)
log

(
2i‖χAi

‖1
log(i+1)

)
<∞. By splitting the sum in two parts depend-

ing on whether or not 2i‖χAi
‖1

log(i+1) < 1
i2 and reasoning like in the proof Theorem 5, it

easily follows that the sum from above is finite. �

Proof of Theorem 9. It suffices to assume that both f and ξ1 are positive. Ac-
cording to the previous lemma, let X0 the subset of full measure of X containing
all the points x for which L∗f(x) < ∞. For a fixed x ∈ X0 denote wk := f(T kx)
and also Wk := k log log k. The argument of Jamison, Orey and Pruitt from [5] can
be extended with really no essential changes to this case, to conclude that since

sup
n

1
n
]{1 ≤ i :

wi

Wi
≥ 1
n
} <∞,

lim
n→∞

1
Wn

n∑
k=1

wkξk(ω) = 0



6 C. Demeter and A. Quas

for µ a.e. ω. �

Remark 11. It is not known whether in Theorem 9 the weight n log log n can be
replaced with a smaller one, like n log log log n, much less with n. Any improvement
on this weight will necessarily have behind it an extension of the result of Theorem 5
to a larger Orlicz class.

Remark 12. It would be interesting to find the largest Orlicz class that would
guarantee that N∗f(x) < ∞ almost everywhere. The above establishes that such
an Orlicz class would contain L log logL and the recent preprint

A careful examination of the proof of [3] demonstrates that in any Orlicz class
with an essentially smaller weight than the class L log log logL, there exists a func-
tion f such that N∗f(x) = ∞ almost everywhere.

In particular, these two results demonstrate that the largest Orlicz class that
would guarantee that N∗f(x) <∞ almost everywhere lies between L log logL and
L log log logL.
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