JOURNAL OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000-000

S 0894-0347(XX)0000-0

RATES OF DIVERGENCE OF NONCONVENTIONAL ERGODIC
AVERAGES

ANTHONY QUAS AND MATE WIERDL

CONTENTS
1. Introduction 1
2. Background and Statement of Results 3
3. Proofs of maximal rate theorems 5
4. Ultimate Badness 9
5. Khintchine’s Conjecture 17
6. Ultimate Badness of Exponential sequences 22
7. Questions and Remarks 24
References 25

1. INTRODUCTION

As the statements of many of the results below are general but fairly technical,
we start by stating some concrete results that are formally corollaries of the main
theorems, but which should give the reader a good idea about our subject. Our
choice of discussing these special results is all the more justified, since they, in fact,
motivated the work in the paper.

We consider ergodic sums along a sequence (a,): Sy f(x) = 25:1 f(Tz) and
ask for the maximal growth rate of these sums.

Theorem A.

(1) Let f € LY, let T be a measure-preserving transformation and let (a,) be
an arbitrary sequence. Then

N

1

li E T%x) =0 a.e.
Nl_IgoNlogNloglogN...nzlf( @) e

where the product in the denominator is taken over those terms that exceed
1.

(2) Let T be an aperiodic measure-preserving transformation and let the se-
quence (M) satisfy M /(N log Nloglog N ...) — 0. Then there exists an

2000 Mathematics Subject Classification. 37A30.
This research was supported by research grants from the NSF.

©1997 American Mathematical Society



2 ANTHONY QUAS AND MATE WIERDL

f € L' and a sequence (a,) such that

N
1
lim sup i Z f(Tz) = < a.e..
n=1

N—o00
Further, the sequence (a,,) may be taken to be the sequence (2™).

Remark. In [2], Akcoglu, Jones, and Rosenblatt proved that if Y %¥_, 1/My is
finite, then (1/My)Snf is convergent for f € L' and also it was demonstrated
that if My is taken to be any sequence of the form NlogN...log(k) N (where
1og(k) denotes the k-fold composition of log), then there exists f € L! for which
(1/Mp)Sn f is divergent. Based on this, they conjectured that (1/My)Snf is
convergent if and only if »° 1/My is finite. However, one can check that the
example My = Nlog Nloglog N ... disproves this conjecture.

Theorem B. Letp > 1.

(1) Let f € LP, let T be a measure-preserving transformation and let (a,) be
an arbitrary sequence. Then

1 N

NIEHOOW;]C(T "(E) =0 a.e..

(2) Let T be an aperiodic measure-preserving transformation and let the se-
quence (My) satisfy My /(N(log N)'/P) — 0. Then there exists an f € LP

and a sequence (an) such that

N
1
lim sup M Z f(Tz) = < a.e..
n=1

N—o00
Further, the sequence (a,,) may be taken to be the sequence (2™).

For another application of the general techniques presented in the first part of
the paper, we study some averages introduced by Khintchine: For f € L([0,1)),
we let Ky f(xz) = >,y f(nzmod1). Khintchine [8] in 1923 conjectured that
(1/N)K y f(z) converges for almost every = to the integral of f. This was shown
to be false by Marstrand [12] in 1970. Later, Bourgain [4] gave an alternative
proof using his entropy method. In Section 5, we give a very simple and brief
demonstration of Marstrand’s result using Rokhlin towers. In fact, we show more:
we demonstrate that for suitable f € LP, the growth rate of Ky f is exactly the
same as the maximal growth rate obtained in Theorem B.

These techniques also allow us to resolve a question of Nair [13] concerning the
Khinchine averages taken along a multiplicative subsemigroup of the natural num-
bers rather than all natural numbers. Our results demonstrate that the averages
(1/IGn[1,N]|) Z{%G: n<ny f(n@ mod 1) converges for f € L' to the integral if
and only if the semigroup G is a subsemigroup of one that is finitely generated.

We would like to thank Ciprian Demeter for making available to us his preprint
[5]. Many of the ideas in that paper were crucial to us in formulating the results
of Section 4. We would also like to thank Michael Boshernitzan, Roger Jones and
Joe Rosenblatt for stimulating discussions.



RATES OF DIVERGENCE OF NONCONVENTIONAL ERGODIC AVERAGES 3

2. BACKGROUND AND STATEMENT OF RESULTS

We will make extensive use in what follows of so-called weak (LP°°) norms.
Given a function f on a measure space (X, p), its LP**° norm is defined by

I llp.c0 = Supy - p{z: | fz)| > y}/P.

In the case of a sequence (w;), its norm analagously is ||w||p e = sup, y - [{t: w; >

y}[*/P. As is well-known, these “norms” fail to be sub-additive. In the case p > 1,
there is a true norm |||-|||p,00 and a constant C' > 1 such that ||||p.00 /C < [|]|||p,c0 <
C| - ||p,co- In the case p = 1 however, there is no equivalent norm. For more details
about these norms, the reader is referred to Bennett and Sharpley’s book [3].

In this paper, we will consider almost everywhere convergence of sequences of the
form w; A f (x), where (w;) is a sequence of real numbers and the A; are averaging
operators of various kinds. The typical example that we will consider is the case
Af(z) = (1/29) 3, <o f(T*z), where (ay) is a sequence of times and T is a
measure-preserving transformation. A key tool in our work will be the maximal
operator (wA)* f(x) = sup;, w A f(x). We will say that the sequence of operators
(wiAy) satisfies a weak (p,p) mazimal inequality if there exists a constant C' > 0
such that |[(wA)* fllp,cc < C| fllp for all f e LP.

Fact 2.1. Under conditions that are satisfied by all of the operators that we consider
in this paper, we have the following:

(1) (Banach Principle) If the sequence (w;Az) satisfies a weak (p,p) mazimal
inequality, then the set of functions f € LP for which w A, f(x) is conver-
gent almost everywhere is a closed set in LP.

(2) If the sequence (wiAy) fails to satisfy a weak (p,p) mazimal inequality in
one measure-preserving system, then there is a function f € LP such that
limsup,;_, . weAsf(x) = 00 almost everywhere in any of the systems that
we constider.

The first statement is well known (see for example Rosenblatt and Wierdl’s article
[15] or Garsia’s book [6]), holding under very mild conditions on the operator. Since
in this paper, convergence will hold trivially on the dense set of bounded measurable
functions, in order to prove a positive result, it will be sufficient to establish a
maximal inequality

The second statement is based on the transference principle of Calderén, a the-
orem of Sawyer [16] and an adaptation appearing in an article of Akcoglu, Bellow,
Jones, Losert, Reinhold-Larsson and Wierdl [1]. First, the transference principle
tells us that if a maximal inequality fails in one measure-preserving system along
some given sequence of times, then the maximal inequality fails in all measure-
preserving systems along the sequence of times. Sawyer proves that if a sequence
of operators on a finite measure space fails to satisfy a maximal inequality and
commutes with a “mixing family” of transformations, then there exists a function
giving divergence almost everywhere. The paper [1] reaches the same conclusion
for a family of operators that are averages of iterates of a single aperiodic measure-
preserving transformation.

We will use Iverson notation for indicator functions so that by the expression
[y < w; < 2'y], we will mean the function that is equal to 1 when the condition is
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satisfied and 0 otherwise. For a sequence (w;)en of positive real numbers, define

(w) = sup, Y[y < wy < 2'ylw, for p=1
b lwllp,00 for 1 < p < oo.

We note that it is convenient to formulate the results not in terms of the er-
godic sums up to N as was done in the introduction, but rather to consider the
ergodic sums (or equivalently ergodic averages) up to 2t. We justify this restric-
tion as follows. First, we observe that it is sufficient to establish convergence
to 0 for non-negative functions. Let (u,) be a sequence of real numbers and let
Uy = MaXyt—1 cp<ot Up. We will show that the following three statements are equiv-
alent:

(1) un > <y [(T%x) — 0 a.e. z, for all f € LP and every sequence (an).

(2) vt <1 f(T92) — 0 a.e. m, for all f € LP and every sequence (a,).

(3) vt o0 (T x) — 0 ace. , for all f € LP and every sequence (ay).
To see this, note that for any ¢, x and N satisfying 2¢=1 < N < 21,

vt Z f(T*z) <22uyn Z f(T%z) < 4, Z f(T ).
n<2t—1 n<N n<2t
It follows that (3) implies (1) implies (2).
Suppose finally that (2) is satisfied. Let (v;), (an) and f € LP be given. Let
by, = az2n—1 and b, = ag,. Applying (2) separately to the sequences (b,) and (b))
and summing, we deduce (3).

Theorem 2.2. Let (w;) be a sequence of positive real numbers such that Cq(w) <
0o. For each t € N, let the set T; contain at most 2t measure-preserving transfor-
mations. Then for f € L1,

. —t o
tlg(r)lo w2 Z f(Tx)=0
TET,

almost everywhere.

Theorem 2.3. Let 1 < r < p < oo and let (w:) be a sequence of positive real
numbers such that ||w||pc < 0o. For eacht € N, let A; be an L™ — L™ contraction.
Then for any f € LP,

thm thtf(I) =0
almost everywhere.

In particular, if for each t € N, the set T; contains at most 2t measure-preserving
transformations. Then for f € LP,

. —t o
tlg& w2 Z f(Txz)=0
TeT,

almost everywhere.

Theorem 2.4. Let 1 < p < oo and let (wy) be a sequence of positive real numbers
such that Cp(w) = 0o. Let T be an aperiodic probability measure-preserving trans-
formation. Then there is a sequence (a,) of integers so that the mazimal function
of the averages

w2™t Y f(T )

n<2t
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is not weak (p,p) and hence there exists an f € LP for which the averages diverge
almost everywhere.

The following proposition gives a simple description of the w; for which C)(w;) <
oo in the case that the w; are a sufficiently regularly decaying sequence.

Proposition 2.5. Let (w;) be a sequence of weights and let ®(t) = tlogtloglogt. ..
be defined to be the product of t and all iterates of log that are defined and greater
than 1 att. Let 1 < p < oo.

(1) If there exists a K such that w(t) < K/®(t), then Cy(w) < oo.

(2) If w(t)®(t) — oo as t — oo, then Cq(w) = oo.

(3) If there exists a K such that w(t) < Kt~Y/P then Cp(w) < oco.

(4) If w(t)t'/'? — oo as t — oo, then Cp(w) = cc.

Remark 2.6.

e Notice that Theorems 2.2, 2.3 and 2.4 give a dichotomy: in any L?, (p > 1),
if C(w) is finite then the averages w;27" " _,, f(T%"x) converge along all
sequences of times (ay,) for all LP functions f, whereas if C,(w) is infinite
then in every aperiodic dynamical system there exists a sequence of times
(an) and an LP function f for which the averages fail to converge.

e We strengthen this dichotomy below by showing that there are sequences of
times (a,) that can be chosen independently of w such that if C}(w) = oo,
then in every aperiodic dynamical system, there exists an f in LP such that
w27 Y7, o0 f(Tx) diverges almost everywhere.

e Theorem 2.2 fails in the L' case if the transformations are taken to be L —
L contractions. Also Theorem 2.3 fails in the LP case if the contractions
are only assumed to be LP — L*> contractions.

3. PROOFS OF MAXIMAL RATE THEOREMS

We make the following observations concerning the relationships of LP goodness
for various LP:

If 1 < p,q < 00, then Cp(w) < oo if and only if C,(w?/9) < co. To see this, note
that Cy(w) < oo if and only if [|[wP||1,0 < oo if and only if |w?/9||, . < co.

If Cy(w) < oo then Cp(w'/?) < oo for p > 1. To see this, we note that w, <
Cy(w) for all n and argue as follows:

y#{n: w, >y} = y#{n: w, > 2"y} + y#{n: y <w, < 2"y}
<y#{n: 2" < Ci(w) [y} + Y [y < wa < 2"ylw,

This shows that [|[w]1.00 < 201 (w) so that Cp(w'/?) = |w'/?||, - = ||w||1/:; < 00.
The converse to this assertion fails as is seen by considering w; = 1/t.

Proof of Proposition 2.5. We deal first with the equivalence ®(t)w; is bounded
above if and only if C;(w) < 0.

We start by defining a quantity C7(w) such that Cj(w) = oo if and only if
Cf(w) = oo. Namely, define

Cl(w) = supZ[t > z and wy > 27wy
2t
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Writing y = 277, this may be rewritten C}(w) = sup, >,[y < w; and 1 < 2'yJw;.
Comparing with Cy(w) = sup, Y[y < w; < 2'yJw;, we see that

|C1 (w) — Ch(w)] < Z[wt <2y < 1w + Z[wt > 2My > 1)wy.
¢ ¢

If lim sup wy; > 0, it is easy to see that both Cy (w) and C} (w) are infinite. Otherwise,
since there are only finitely many terms with w; > 1, the second term in the above
inequality is finite. The first term is bounded above by >_,[2'y < 1]2'y < 2 showing
that |C](w) — C1(w)| < oo as required.

Since ®(t)/t — oo and ®(t/(logt)?)/t — 0, we see that for large y, 2Y/y? <
d-1(2v) < 2v.

We consider } , _;_g-1(24) 1/®@(t). A calculation by comparison with the integral

shows that
Z : Z :
y<tea (2 D(t) y<ted (2 tlogtloglogt...

(1) /‘”2” L it
y tlogtloglogt...
~ 1.

If ®(t)w; — oo, we see that for large ¢, 1/®(¢) > 27 implies w; > 27Y so

Z wy > Z wy

{t: t>y and wy>2-v} {t: t>y and ®(t)<2v}

1
= > W)wt@(t).

y<t<d—1(2v)

From equation (1), we see that this is divergent establishing part (2) of the propo-
sition.

If on the other hand, w;®(t) is bounded above, we have w; < k/®(t). The above
calculation then shows that C](w) < oo establishing part (1).

For the LP case, Suppose that t'/Pw, — oco. Given any M, for t greater than
some tg, wy > M /tl/ P_ Tt follows that for sufficiently small s, the number of ¢ such
that wy > s is at least MP/sP. Since M is arbitrary, it follows that C)p(w) = occ.
This proves part (4). If on the other hand, t'/Pw; is bounded above, we have
wy < k/ t1/P for some k so that the number of solutions to w; > s is bounded above
by kP/sP for all y so that C),(w) < k giving condition (3). O

In order to prove Theorem 2.2, we start with a lemma.

Lemma 3.1. Let (w;) be a sequence of positive numbers, let T; be a set of at most 2
measure-preserving transformations of a probability space X and denote by A f(x),
the quantity 1/2* Y"1 r. f(Tx). Then for any f € L', we have

I supwids e < 9C1 ()] £
Proof. We want to show that for every A > 0 and f € L!,

" <sgp WA f(z) > A) < 9Cy (WA fI]..
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We will in fact prove the following apparently stronger inequality.
9C
S > ) < "5

Fix an f € L. By rescaling f if necessary, we can assume that A = 3. For a fixed
t, let us split f into three parts, up, middle, and down: f = u + m + d where

U =u = [f>2/wt]
m:th[l/wt<f<2t/wt]f
d=dy = [f < 1/wy]f

We first estimate the upper part, u = u;. We note that the set of z where
wyAiu(z) > 1 is a subset of the set of & where Aju(z) > 0. The set on which
Apu(x) > 0 is of measure at most 2¢ times the measure of the set on which u is
supported. It follows that u{z: wiAiu(x) > 1} < 2'p{z: f(x) > 2" /w;}.

We can check that C7(w) < oo implies that the w, are bounded above by C;(w).
Hence summing over ¢, we get

Zﬂ(thtut(I) >1) <> 2'u(f > 2 fwy)
t
< Zzt (Cr(w)f > 2% < 2C1 (W) f1-
Now for the middle part, my,
p(wAgme(z) > 1) < /thtmt = wt/mt
= wt/[l/wt < f<2'/wilf

Summing over ¢, and interchanging the summation and integration

Zu(thtmt(x) >1) < Zwt/[l/wt < f <2 wf

= [ 10205 < < 2w
Using the assumption that Cl (w) < oo (with the y taken to be 1/f(x)), we get
> nwidm(@) > 1) < [ Ciw)f = Ciw)|f].
t

As for the down part, clearly, for every ¢,

{wt% > di(Tz) > 1} =

TeT:

since dy < 1/w.
Summing, we see that u(sup, w A, f > 3) < 3C1(w)||f|l1 as required. O

Proof of Theorem 2.2. The above lemma establishes a maximal inequality. Since
there is a dense class of bounded functions on which there is almost everywhere
convergence, it follows that there is convergence for all f € L' as required. O
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Before proving Theorem 2.3, we prove a general lemma that will imply the
theorem almost immediately.

Lemma 3.2. Let 1 <r < p < oo, let (wi) be a sequence of positive real numbers
and Az be a sequence of positive L"-L*° contractions. Then there is a constant C
depending on p and r such that

sup we A f
t

< Clfllpllwllp,oo

p,o0

Proof. We need to estimate supy AP u{sup, w;A¢f > A}. Since the inequality is
homogeneous in f, it is sufficient to prove the estimate in the case that A = 2.
For a fixed n, we write f as the sum of u; and d;, where d; = [f < 1/wy]f and
= [f > 1/w;]f. Since A; is an L contraction, we see that wyA:d; < 1 so that
a necessary condition for wy A f > 2 is wy Azur > 1. We then estimate as follows:

p{supwiAsf > 2} < p{supwiArus > 1}
t t

< Zt:u{Atut > 1/w} = Zt:u{(Atut)r > w; "}
sZMﬂmwws;@/%w

- [re ) S wili) > 1/ )
=/ﬂw;ww»wmmmm

Splitting the summation according into parts on which the w; lie between consec-
utive powers of e~ !, this is further bounded above by

e [ 1) S e du(a)

0<g<10gj(z) {t: e"i<ws<e—Jt1}

<e /fr e It wy > eI} du(x)

0<J<1ogf( )
<o [ 1@ el oo dp(z)

0<J<logf( )
— &l [ £7(2) 7= dpu(z)

0<]<log f(z)
T ep

< ol [ F@ ) due) = Sl 1

O

Proof of Theorem 2.3. The above lemma establishes an LP maximal inequality.
Since for bounded functions there is convergence to 0 and these form a dense subset
of LP, the theorem follows. O
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4. ULTIMATE BADNESS

Definition. The sequence (T},) of linear operators on LP is called ultimately bad
in LP if for any (w,) satisfying Cp(w) = oo, the maximal function of the averages

n<2t

is not weak (p, p).

A sequence (a,) of real numbers (integers) is called ultimately bad in L? if
for any aperiodic measure-preserving flow (7%);cgr (aperiodic measure-preserving
transformation T') the operators 7% are ultimately bad in LP.

Remark 4.1. By Fact 2.1, in all sequences (7T},) considered in this paper for which
the above averages fail to satisfy a weak inequality, there is an f € LP such that
lim sup,_, o (we/2%) 3", <ot T f(2) is infinite almost everywhere.

Remark 4.2. If a sequence of transformations has a subsequence with bounded gaps
that is ultimately bad in LP, then the original sequence is also ultimately bad in
LP.

We start the section by giving some equivalent formulations of ultimate badness
of sequences of times.

Theorem 4.3. Let 1 <p < oco. The following are equivalent.

(1) The sequence of times (ay,) is ultimately bad for LP.
(2) There exists a B such that for any sequence (wy) with Cp(w) < oo, there is
an f € LP such that

Slz.pthtf Z BCp(w)||f||P7

p,o0

where Ay f(z) = 1/2 nggt f(T%z).

Proof. Suppose we are given that condition (2) holds. Supposing further that
Cp(w) = o0, we can take truncations w™ of w with C,(w(™) increasing to in-
finity. Then letting f(") be the function guaranteed by the condition, we see that
| sup, wi Ay f™) |00 > | sup, wt(n)Atf(")Hp,oo > BCO,(w™)|| f™],. Since the con-

stants BC,(w™) increase to oo, the ultimate badness follows so that condition (2)
implies condition (1).

To show that condition (1) implies condition (2), we argue by the contrapositive.
Suppose that no constant B as in condition (2) exists. Then for each k € N, there

exists a sequence (wt(k)) such that

sup wgk)Atf

t

sup <47kC, (wh)

llFll=1

p,o0

We may assume that the sequences (wgk)) are scaled so that Cp(w®)) = 2% and

_ . k
< 27%. Forming a new sequence v; = Y, wg ), we

k
Sup| r|=1 HSUPt wt( )Atf

p,o0
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observe that

sup |[supv:Asf = sup suprgk)Atf
lf=21l ¢ poo  IfII=1] T T oo
< sup Zsupwgk)Atf
lfFl=1)|"% ¢ oo

Since for ||f]l, = 1, || sup, wgk)Atprm < 2% the norm of the sum is bounded
above by a constant depending only on p. (In the case p = 1, this follows from a
result of Stein and Weiss [17]). On the other hand, since C),(v) = oo, this establishes
that the sequence (a,) is not ultimately bad in LP so that condition (1) implies
condition (2). O

Theorem 4.4. Let 1 < p < oo and let (a,) be a sequence of times. The following
conditions are equivalent

(1) The sequence of times (ay,) is ultimately bad for LP;

(2) There exists a C > 0 such that for all sequences of weights (w;) such
that ||w||p,cc < 00, there exists an f € LP such that || sup, wiAf|poo >
Cllwllp,o0ll.flp-

(3) There exists a C > 0 such that for all finite subsets J C N, there exists an
f € I? such that || maxse; A; fllpe > CLI[7| £l

(4) There exists a C > 0 such that for all finite subsets J C N, there exists an
f € I such that | maxje; A; fll, > CLIYP| ],

(5) The sequence of times (ay) is ultimately bad for L? for all 1 < q < co.

The equivalence of (1) and (2) was already established in Theorem 4.3. The
structure of the proof is that we first prove (2) is equivalent to (3). Since || f|[, >
I/ lp,005 We see that (3) implies (4). Most of the work is taken up with proving the
implication (4) implies (3). The implication (4) implies (5) falls out of the proof of
this step.

Remark 4.5. We remark that at no point in the proof do we use the fact that the 7%~
are powers of a single measure-preserving transformation. The whole proof works
verbatim if the T%" are replaced by a family of measure-preserving transformations.
We make use of the theorem in this form in Section 5.

Remark. We note that a further by-product of the proof is the fact that in fact if
(ay) is ultimately bad for LP, then there is a C' such that for every J C N, there
exists a characteristic function f such that || max;es A; f|lp.co > C|J|V2|| f |-

Remark. In the LP case above, if we restrict to decreasing sequences (wy), then
condition (3) can be weakened to

>c-NYP-| 1],

p,o0

This condition is the same as one appearing in recent work of Demeter [5]

Proof of Theorem 4.4: (2) is equivalent to (3). To see that condition (2) implies
condition (3), let J be a finite subset of the positive integers and let (w;) be the
indicator sequence of the set J. Tt is not hard to see that ||w|peo = |J|'/? and
condition (3) follows.
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Now suppose that condition (3) holds with a constant C. Let the sequence (w;)
satisfy ||wl|p,co < c0. Let a positive number o < 1 be given and let A be such that
A {t:we > AHYP >0 lwill,. o0 -
Setting J = {j: w; > A} the above can be written as
1
AP > o], o -

By condition (3), there exists an f such that || max;es A; f||p.co > C|J|"?||f]. Now
estimate as

sup wy - AJf > maxwy - Ajf
j JjeJ
Pp,00 p,o0
> ||lmax A - A]f
ieJ p,00

>Ca- IR,
>C o llwyl, o 151,

where the third inequality comes from condition (3). This shows that condition (2)
follows. O

The proof of (4) implies (3) proceeds by three lemmas. An outline of the ar-
gument is as follows. Let || max;es A;f|l, > C|J|[*/?| f|l,. We split f into pieces
according to the value of f(x): fn = fli,. f(s)e(rr-1/2,Rn+1/2]}, Where R is a suit-
ably chosen constant. The pieces are then essentially disjointly supported multiples
of characteristic functions. The fact that || sup; A; f|l, is comparable to T2 N £
(which is the maximum possible value over all possible operators of this type) is
shown to imply that the sup; A; f,, are almost disjointly supported; they are them-
selves close to characteristic functions; and many have a norm that is comparable
to the maximum norm. Since for multiples of characteristic functions, the weak
and strong norms are equal, this will allow us to conclude condition (3).

Lemma 4.6. Suppose that for some finite subset J of N and some function f € LP,
| maxjcs A;fll, = C|J[*?|fll,- Then there exists a subset J' of J such that for
g€ J', A Il = (C/2)|IfIl and || maxjer Aj fllp > (C/2)IT[VP] fllp-

Proof. Let Ji = {j: ||4; fll < (C/2)||fllp} and J' = J\ Ji. For j € J, let E; =
{z: A, f(x) = maxges Ar f(x)}. We have

> 5y = [y -3 [ gy

JjeJ! jeJ1

@ >l - 3 [

jeJr

> CPIAP = [TIC/2)PIFIP = (CL2)P LT F11P-

The conclusion then follows: || maxje s A f|[P > Y ,c ;0 [ (A7 5)P > (C/2)P[ ||| fI|P
O

By an averaging operator, A, we will mean an operator of the form Af(z) =
% Yonen f(T%x). Given an averaging operator A, a fixed non-negative function
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f and a real number R > 1, let E* denote {z: Af(z) € (RF~'/2, R*1/2]}. Given
all of this, we define for k € Z,
1 a
Bfg(x) = — > g(T* )1 .

{n<N: f(Tona)e(RE-1,REF1]}

Note that the range of the summation does not depend on g so that B is a linear
operator. We modify this giving B’*g(z) = Bkg(w)l{Bkg(Ibkal}(x). Also define
Bg(x) = }2), B"g(z) and B'g(x) = 3=, B"g(x).

Lemma 4.7. Let 0 < C < 1 be given. There exists an R with the following
property: If A is an averaging operator such that || Af|, > (C/2)||f|l, then if B’ is
defined as above, we have ||Af — B'f|| < ||Af]|/2.

Proof. Let L be chosen so that (2/C)L~Y? = 1/8 and let the quantity R in the
statement of the lemma be chosen so that max(L/R®~1/2 R=1/2) = 1/8. Note
that R depends only on C.

First define

1y f(T““w)>p
o) = NZE( A )
We note that [(Af)Pp= [ fP < (%)p J(Af)P. This gives an upper bound on p

on part of the space. If p(z) is small, then we have (1/N) 25:1 f(Tomx)/Af(z) =1

and (1/N) Zﬁ;l (f(Tez)/Af(z))" is small. This implies that for most n, f(T% x)
is comparable to Af(z).
We use the above inequality to estimate ||Af — Bf] in three parts.

1/p
|Af — Bf| < ( /{ . IAf(x)I”>
z: p(x

p\ 1/p
1
(3) + / ZlEk(I)N | Z F(T*z)
{z: p(x)<L} \ 7% {n: f(Tonz)<Rk-1
p\ 1/p
1
+ / ZlEk(:v)N | Z F(T )
{z: p(x)<L} k {n: f(Tonz)>RF+1

First, for the second part of (3), we note that for any z,  belongs to some E¥. We
then calculate 3 2(n: f(ranay<pe-1y f(Tx) < RF1 < Af(z)/VR < Af(z)/8.
It follows that the contribution of the second term is dominated by [|Af]|/8.

For the first term, we have

(2) [anr= [ ey

> 1 / (Af)P,
{w: p(e)>L}

so that the first term is dominated by (2/C)L=Y?||Af|| = || Af]/S.
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Finally, for the third term, let x satisfy p(z) < L. Since the Ej partition the
space, we let x € Fj. We have

1 f(T ) P
L>— > EASI)
N {n: f(Tonz)>Rk+1} ( Af(SC) )
_ i f(T%x) [ f(Tx) p—1
TN e Af(@) ( Af(@) ) |

{n: f(Tonz)>Rkt+1}

It follows that

1
¥ Y JIwRUTV2<LAf@),
{n: f(Tenz)>Rk+1}
so that %Z{n f(Tang)>RF+1} f(Ta”JJ) < (L/R(p_l)/Q)Af(l‘) We see that the
contribution from the last term is dominated by (L/R®~1/2)||Af|| < ||Af||/S.

To complete the proof, we note that || Bf — B'f|| < ||[Af/vVR|| < ||Af]|/8 so that
[Af = B'fl < [[Af]l/2. O
Lemma 4.8. Let J' C J and suppose (Fj)jer and (G;)jes satisfy G; < F; and
G = Fjll < (C/D|fllp- Suppose further that || maxje, Ej|l > (C/2)|J]"7| f].
Then

[Fmax G| = c/alIM1f

Proof. Let H = maxjc s Fj(z) — max e G;j(x) and let E; be the set {z: Fj(z) =
maXge.j’ Fk(CC)} Then
o
E;

LIENEEDS
= Z /Ej(Fj — max Gy, )P

jeJ’

= keJ’
> [5-ar
jegr 7/ E;
< (CPIFIP < (CLAPLT] - FIIP-
jeJ
We then have that | maxjer Gyl > [F|| - |H| > (C/4)T1/7 f]. O

We now assemble the above lemmas to complete the proof of Theorem 4.4.

Proof of Theorem 4.4: (4) implies (3) and (5). Recall that we are assuming that
| max;es Ajf|| = C|J|*?||f||. From Lemma 4.6, we can pick a subset .J of .J such
that for each j € J', ||4;f]] > (C/2)||f|| and also such that || max;ecy A;f] >
(C/2)117| £

By Lemma 4.7, there exists an R and operators B; for each j € J’ such that
| Ajf — Bjfll <1|A;fl|/2. Specifically, these operators were defined as follows. Let

Ejk = {x: A;f(z) € (R*=Y/2 R*1/2]} and define operators by

B f(x) = 7 > F(T2)1 g (2),

|5l {n€l;: f(Tonz)c(R+—1,RF+1]}
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where I; is the range of indices of the a, involved in the jth average. We then
define B f(z) = B f(2)1y,. B5 (o)>rr—1y and BYj f(z) = S° B'% f. Note that the
non-zero values taken by B’? are in the range (R*~1, RF+1].

Applying Lemma 4.8 with F; = A;f, G; = B f, we deduce || max;e, B} f| >
(/D) f1]

Now write f as a decomposition f = ...+ f_1 + fo+ f1 + fo + ..., where
Jiu(@) = f(x) 1y, gr-1<p(z)<pry- Suppose that max;e o Bjf(z) € (RF~!, R*]. We
will assume that the maximum is attained for £ € J’. Since the maximum is in the
range (R*~1, R¥], it follows that Bjf(z) = B'¥ f(x) or B ' f(z). In particular,
we have Béf(x) = Bé(fkfz + fi—1 + fx)(x). Setting hy = fr—o + fe—1 + f&, if
x satisfies max;c ;o B f(z) € (R*~!, R¥], we have shown that max;c Bjf(z) =
maX; e js B;hk (I)

Write F'(z) = maxje, Bjf(r) and decompose F' into parts F), where RF1 <
F(x) < R*. Then the above shows that max; B;hk > F). We now have

(C/12)710)> ([P < (C/PLT> L fell?
k k
= (C/P|JIIfIIP
<|FIP =" | FellP
k

< max B’ hy||P
_zk:H ax B; k|

In particular, there must exist a k such that ||hx]| # 0 and || max;je Bihy| >
(C/12)[ |7 |-

Since hy only takes non-zero values between R¥~3 and RF, we see from the
definition of B’ that max;e j B;h;C only takes non-zero values between R*~* and RF.

It follows that || maxjec; Ajhk|lpoo > | maxje s Bihgllp,oo > (C/12RY)|J|V/? || hy .
Further, since both hj, and max;e j B}hk take on values in ranges with a bounded

ratio between the endpoints, it follows that for any 1 < ¢ < oo, there exists a C’

such that || maxjcs Ajhillge0 > || maxjer Bihillgoo > C'|J|M 4|\ hg|l4- Applying

the equivalence (3) implies (1) for L? completes the proof of the theorem.
O

The proof of Theorem 2.4 will depend on the following lemmas.

Lemma 4.9. Suppose the sequence (a,) of real numbers satisfies the following
condition:

For each positive integer M, there exists an ng such that if N > ng
and K satisfies K < MN then for any sequence r1,72,...,7n of
integers, there is a positive real o so that for

laanii] =1y mod K, for all1 <k <n.
Then the sequence of times (ay) is ultimately bad for L'.

Lemma 4.10. Suppose the sequence (an) of real numbers satisfies the following
condition:
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There exists an ng such that if N > ng and K satisfies K < N
then for any sequence T1,72,...,1, of integers, there is a positive
real o so that

|laaon-144] =rp mod K, forall1 <k <n.
Then the sequence of times (ay) is ultimately bad in every LP (p > 1).
Corollary 4.11. Suppose that for some fized € the sequence (a,,) satisfies

An+41 /an
ne

Then (ay) is ultimately bad in L*.

— OQ.

Proof. This follows from Lemma 4.9 using a standard lacunarity argument. Let
the sequence (a,) be as in the statement of the lemma. Using Remark 4.2, we
first refine to a subsequence (by,) of the (ay)’s occurring with bounded gaps in the
original sequence such that (b,41/b,)/n? — oo. It will be sufficient to show that
(b,) is ultimately bad for L. Let M be given. Then there exists an N > 2M such
that n > N implies b,,4+1/b, > n? > 2MN. Let K < MN, we see that for any
n> N, byi1/b, > 2K.

To finish the argument, we claim that for any sequence rg,r1, ..., r:—1 of integers
with 0 < r; < K, there exists an interval I of length 1/(Kb;_1) such that for o € I,
ab;mod 1 € [r;/K, (r; +1)/K) for 0 <i < t.

We prove this by induction. Clearly it is true for ¢ = 1. Suppose that it holds
for t < s and let I be the interval of length 1/(Kbs_1) such that for o € I,
ab;mod 1 € [r;/K,(r; +1)/K) for 0 <1i < s. We see that S = {§: bsfmod 1 €
[rs/K,(rs + 1)/K) is a union of intervals of length 1/(Kbs) spaced 1/bs apart.
Since 1/bs(1/K + 1) < 1/(Bbs—1) we see that I contains a complete interval from
S. Letting J be the subinterval, the induction is complete. O

Corollary 4.12. Suppose that for some fized € the sequence (ay,) satisfies

an+1/an
(logn)
Then (ay) is ultimately bad in LP for every 1 < p < co.

— OQ.

Proof. The proof is similar to that of Corollary 4.11. Let (a,,) be as in the statement
and suppose that (an+1/an)/(logn)¢ — oo. First, refine the sequence to a subse-
quence (b,,) with bounded gaps in the original sequence so that the new sequence
(b,) satisfies (bn11/bn)/(logn) — oco. There exists an ng such that n > 2m0~1
implies b,41/b, > 3log(2n). Now if K < N, we see that for any n > 2N-1
bp+1/bn > 3log(2n) > 2N > 2K. The remainder of the argument follows exactly
as in Corollary 4.11 |

Remark. Unfortunately both in the L' and LP cases, an arbitrary lacunary sequence
(an) is out of reach for now.

Corollary. The sequence (n!) is ultimately bad in every LP, 1 < p < co.
Proof. This is an immediate consequence of Corollaries 4.11 and 4.12. O

Proof of Theorem 2.4. This follows from the above Corollary.
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Corollary. Let the sequence (ay) be independent over the rationals. Then (ay) is
ultimately bad in every LP, 1 < p < oo.

Proof. This follows since the vectors a(an,an41,...,an1¢—1) mod 1 are dense in
the t-dimensional torus as « runs over the positive reals. Accordingly, for any NNV,
K and rg,...,r4_1, there exists a positive real number « with the property that
a(an,an+1,. .- ane—1) mod 1 € [[oo; [ri/ K, (ri + 1)/ K). O

Corollary. The sequence (\/n) is ultimately bad in every LP, 1 < p < co.

Proof. The set {\/s: s squarefree} is independent over the rationals and arranged
in increasing order it forms a positive density subsequence of (1/n) so that there
exists a fixed k£ such that the first 2" squarefree numbers are a subset of the first
2"+F square roots. We then use the fact that if (w;) satisfies C,(w) = oo, then
Cp(wisr) = o0, so letting A; be the average over the first 2! square roots and
B, be the average over the first 2! squarefree square roots, we have the estimate
Wik Arinf > 2wy Bef. Since C(wyyy) = oo, the right hand side can be made
to diverge and hence so does the left hand side. 0

Proof of Lemma 4.9. We just deny the maximal inequality on [0,1). Let the posi-
tive integer M be given and let ng be as in the statement of the lemma. We consider
the set of N such that

(4) > [1/N < wy < 2'/(4N)Jw; > 3M.
t

We note that these terms are necessarily unbounded above as >, [z < w; < 2'z]wy
may be bounded above by the sum of two of these terms. We assert that the set
of N satisfying (4) is unbounded above. This is because either limsupw; > 0,
in which case for all large enough N we have > ,[1/N < w; < 2'/Nw;, = oo, or
w; — 0, in which case for N < K, Y ,[1/N < wy < 2'/N]w, is uniformly bounded
above by >, [w; > 1/K]w; which is the sum of a finite number of terms and hence
is finite. Since the sums Y _,[1/N < w; < 2'/(4N)]w; are as noted above unbounded
in N, there must exist arbitrarily large integers IV for which the sum exceeds 3M.
Hence we may choose an N satisfying (4) such that N > ng.

If we consider the #’s such that 2 < 2N, then we see 2o 2r<onyI/N <
wy < 28/(AN)]w; < Dot 2t<any 2¢/(AN) < 1 so that g 2sany /N < we <
2! /(4N)]Jw; > 2M. Tt then follows that there is a finite set U of the ’s satisfying
2! > 2N and 1/N < w; < 2'/(4N) so that we still have 7, ., w, > 2M.

Now set K = NM. For each t € U, select | Nw;] different residue classes modulo
K. Denote these residue classes by R;. Since

> [Nw| > NM,

teu
we can choose the R; so that their union over ¢ € U covers all residue classes
modulo K. Since 2/=! > N for all t € U, we can now apply the condition in the
statement of the lemma to conclude that there is a positive a so that for each t € U
and r € R, there are at least 271 /(Nw;) n’s between 2!=1 and 2! with |«aa, | =7
mod K. Define the function f by

2N, f0<z< 2
fz) = K
0, otherwise
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Clearly, ||f]l1 = %.
We define a measure-preserving flow on [0,1] by T¢(z) = = + a¢/K. Now let
€ [0,1) be arbitrary. Then there is a t and r € R, with o € [£=r E=rtl)
Since we have a number of n between 2!~ and 2! such that |aa,| = r mod K,
for these n, we see that T (z) € [0,2/K) so that f(T% (z)) = 2N and hence we

can estimate:

wigy 3 Fa+an)

n<2t

1
> wig; > [laan] =7 mod K| f(T%(z))
{n:2t-1<n<2t}
:wt% Z [laan] =7 mod K|2N
{n:2t-1<n<2t}

1 2t—1
> wy—2N
= W5 Y Ny,

=1.
‘We have shown that

1 i M
m<{ x: sgpwtiz:f(T () >1 :1>Z||f||1-

n<2t

Since M is arbitrary, the required violation of the maximal inequality is shown.
O

Proof of Lemma 4.10. We aim to establish condition (3) of Theorem 4.4 for the
sequence (a,). Let ng be as in the statement of the lemma and let J be a fi-
nite subset of N. If |J| < 2ng, taking f to be a constant function, we have
I maxses Aj fllpe = (2n0) V2LIP] £],

If on the other hand, |J| > 2ng, then let N = K = |[|J|/2] and let J' =
{j1,-..,Ji} be a subset of J of size K consisting of elements of J at least as big
as |J|/2. By assumption, there exists an « such that for n € {27¢=1 4 1,29¢71 +
2,...,29} |aa,] =€ —1 (mod K). Then letting () be the flow on [0, K) given
by T*(z) = z—at and f be the function 2-1( 5), we see that || f||, = 21 +1/P|K|~1/P.
We also have for z € [n,n+1), A; f(x) > 1. It follows that || maxje; A; f(2)||p,co =
1> 271=2/2| J|Y/7 || f|| as required.

O

5. KHINTCHINE’S CONJECTURE

In this section, we consider the averages arising in a conjecture due to Khintchine.
For f € L?[0,1), Write T,, f(z) = f(nz mod 1). Khintchine [8] conjectured in 1923
that for every f € L', it is the case that 1/N 21]:[:1 T, f(z) converges pointwise
almost everywhere to [ f. This was answered negatively by Marstrand [12] in
1970. This negative result was strengthened further in Bourgain’s work using his
Entropy Method [4].

We start with a lemma showing the equivalence of maximal theorems for averages
of the type % >, -y f(anz) for functions f € LP([0,1)) and averages of the type

+ > n<n 9(x —logay) for functions g € LP(R).
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FHFAC

g on the Rokhlin tower in Y f on the Rokhlin tower in X

F1GUrE 1. Copying a function between Rokhlin towers

This lemma will allow us to give a very simple demonstration of Marstrand’s
result and in fact to show more: that the sequence of operators (T},) is ultimately
bad in L? for p > 1.

We also take up a question posed by Nair in [13] concerning a version of Khint-
chine’s conjecture, where the Ty, f(x) are averaged along a subsequence rather than
all of the integers. Nair proved that if the sequence (ay,) is the increasing enumera-
tion of a finitely generated multiplicative subsemigroup of the positive integers, then
for all f € L', the averages 1/N 21]:[:1 T., f(z) converge for almost every z to [ f.
He asked about the case of averaging along an infinitely generated subsemigroup of
the positive integers.

Later, Lacroix [10, 11] took up this question and claimed that there do exist
infinitely generated subsemigroups of the integers along which the above averages
converge. Unfortunately, while the arguments in his papers appear to be correct,
the result seems to be false as they rely on an incorrect statement in Krengel’s book
[9].

Here, using the lemma again, we clear up the situation with an explicit dichotomy
in Theorem 5.7. If S is a multiplicative subsemigroup of the positive integers, then
the averages above converge for all f € L! if and only if S is contained in a finitely
generated subgroup of the positive integers.

Lemma 5.1. Let (a,) be any sequence of positive integers. Let I, ..., Ix be any
non-empty finite subsets of N. Denote by A; f(x) the average 1/|I;| 32, c; f(an)
and by Bjg(y) the average 1/|I,] Znejj g(y —logay). Then the following are equiv-
alent:

(1) There exists an f € LP[0,1) such that | maxj<k A;fllp.cc > C|lfllp;
(2) There exists a g € LP(R) such that | max;<k Bjgllp.co > Cllgllp-

Let T,,(x) = nzmod 1 and let S,(y) = y — logn. The crux of the proof is
the simple observation that S,, and T;, satisfy the same basic relationship: Sy, =
Sn oSy, and Ty, = T, o T}, allowing data from a Rokhlin tower for one system
to be copied to a Rokhlin tower for the other. This transference is illustrated in
Figure 1.
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Proof. Let p1,pa,...,pq be the primes occurring in the prime factorization of el-
ements of {a,: n € JI;} and let r be the maximum of all the powers of the pg
occurring in the elements of {a,: n € |JI;}.

We first observe that condition (2) is equivalent to the following condition that
we call (27):

There exists an M rationally independent of {logp1, . ..,logps} and
a g € LP([0, M)) such that || max;<x B;g|lp,c > C||g|lp, where the
difference y — log a,, is interpreted modulo M.

To see that (2) implies (2’), simply restrict the function g occurring in (2) to some
large interval, whereas to see that (2’) implies (2), starting from the function in
(2%), concatenate a large number of translated copies of the function g on intervals
[(n — 1)M,nM) to produce a function supported on [0, LM) and observe that
condition (2) is satisfied.

We will therefore demonstrate the equivalence of (1) and (2’). If (2°) holds, let
M be as in the statement, otherwise let M = 1 so that M is rationally independent
of {logpi,...,logps}. Let N be chosen to be a large integer and let € > 0 be small.

For n € N4, write T%(x) = [[p}iz mod 1, and for n € Z4, write S™(y) =
y — Y. n;logp; mod M. We observe that these are both free actions. Accordingly,
we can construct Rokhlin towers of geometry Ay = {0,1,...,N — 1}? for both
systems with an error set of size exactly e: there exist V C [0, M) and W C [0, 1)
such that u(V) = A(W) and that the sets S™™V for n € Ay are mutually disjoint,
as are the sets T~"W. We now construct measure-preserving maps between the
Rokhlin towers. Let Rx = J,cp, T7°W and Ry = U,cp, STV

Let 6y be an arbitrary measure-preserving measurable bijection from V to W.
Then define 6(z) for x € T™™W by S™™ 0 6 o T™(z). Similarly, letting k = (N —
1,...,N —1), let 19 be an arbitrary measure-preserving measurable bijection from
S=kV to T~ and define ¢ (y) for y € SV by ¥ (y) = T* ™ o)y o S~k (y).
These are then defined so as to ensure that 0(T™(z)) = S™(0(x)) provided that the
orbit of x remains inside the tower and similarly ¢ (S™(y)) = T™(¥(y)).

If condition (2’) holds, we define f on Rx by f(z) = ¢g(f(x)) and define f
to be 0 on the remainder of [0,1). By construction, we see that provided that
T € Upn: r<nien,izt,.ay I (W), we have that f(T™z) = g(S™(0(z)) for n with
coefficients less than r. In particular, since the times a, involved in the averages
Aj and By for j € J may be expressed in terms of p1,...,pq with powers at most
r, we see that for such an z, we have max;ec s A; f(z) = max;c s Bjg(f(x)). Now for
sufficiently small € and large N, we will have | maxj<x A, f(z)|lp,c0 > C/f|lp-

If condition (1) holds, we define g on Ry by g(y) = f(¥(y)) and define g to be
0 elsewhere. The same argument as above demonstrates that condition (2’) holds
provided that IV is chosen to be sufficiently large and € is taken to be sufficiently
small.

O

Theorem 5.2. The sequence (Ty,) of operators defined by T, f(x) = f(nx mod 1)
is ultimately bad in LP for all p > 1.

Proof. We let g(y) be the function 2 - 1jg 21052) and set for any finite set J C N,
I; = {n:n < 27}. We will then demonstrate that max;ecs | Bjgllp.0 > C|J|"?||gl,
for a constant C' that does not depend on J. By Lemma 5.1, this will establish the
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existence of an f € L'[0,1) satisfying condition (3) of Theorem 4.4 (see Remark
45).

We have [lg[|p = 2P*'log2. Let j € J and 2 € [j,j + 1). Then Bj(z) >
1. It follows that the measure of the set where the maximal function exceeds 1
is at least |J|. This shows that || maxjc; Big(y)|p.co > C|J|*?|g|l, where C =
2-1=1/P(log 2)'/P as required. O

Lemma 5.3. Let (hy,) be an non-decreasing sequence of real numbers and let ¢, =
(hyy—hp_1)/hn (or 0 in the case that the denominator is 0). Then h,, = O(nll¢ll.o)
as n — oo.

Proof. We will suppose for simplicity that h; > 0. Suppose that ||c]|1,00 = d < 0.
We have h,, = hy,—1/(1 — ¢,,) so that in particular,

|
ho = [
j=2 J

If (t,) denotes the decreasing rearrangement of (cy,), then we have

Tl
o <t [ = &
j=2
Since ||t]|1,00 = d, we have [{j: t; > d/k}| < d/(d/k) =k so that t; < d/k. Letting
C=mnII%5"1/(1 = t;), we have

J
]
=l a
j=2d

Taking logarithms, we see that logh(n) < C’ + dlogn so that h(n) < Kn as
required. (Il

Theorem 5.4. Let (t,)nen be an increasing sequence of real numbers with the
property that t, — co. Let h(N) denote |{n:t, < N}|. If limsuph(N)/N*¥ =
oo for all k, then Bng fails to satisfy a mazimal inequality, where Bng(y) =
(1/h(N)) Z{n tn <N} g(Ttny)

Proof. Set ¢, = (h(n)—h(n—1))/h(n). For simplicity, we assume that h(1) > 1. We
let g be the indicator function 1 2104 2) and we estimate || sup Bygl|. We quickly
see that for n <z < n+1, B*g(x) > Bpg(xz) > (h(n) — h(n —1))/h(n) = c,. It
follows that || supy Bngll1,00 = [l€]l1,00-

By Lemma 5.3, since we know that for all k, limsup,, . h(n)/n* = oo, it follows
that ||c]|1,00 = 0. O

The following corollary is closely related to a theorem of Jones and Wierdl [7]
(the hypothesis and conclusion are both weakened).

Corollary 5.5. If (a,,) is an increasing sequence of real numbers with the property
that for all € > 0, a, < n¢ for all sufficiently large n, then Byg fails to satisfy a
mazximal inequality.

Proof. If a,, < n€ for all n > ng, then h(n) > nt/¢ for n > ng. O

If S is an infinite subset of N, we let Sy denote {n € S: n < N}. For a function
f € L'([0,1)), we consider the averages Ay f(z) = 1/|Sn| Y, cq, f(n2).
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Corollary 5.6. Let S be an infinite subset of N. If S has the property that
limsup |Sx|/(log N)¥ = oo for all k,
N—o00

then there exists f € L' such that limsup Ay f(z) = oo almost everywhere.

Proof. By Fact 2.1, the conclusion is equivalent to establishing the fact that there
is no maximal inequality for the averages Ay. By Lemma 5.1, this is equivalent
to establishing that there is no maximal inequality for the averages Byg(y) =
(L/1SN1) Xotcron(sy) 9(y — t). Since the number of elements of log(S) up to K is

equal to the number of elements of S up to e, which by hypothesis is not bounded
by any power of K, Theorem 5.4 gives the desired conclusion. O

Theorem 5.7. If S is a multiplicative subsemigroup of the positive integers, then
there is pointwise convergence of An f(x) to [ f for all f € L* if and only if S is
contained in a finitely generated semigroup.

Proof. Suppose that logby,...,logby are rationally independent. Let B be the
largest of the b’s. It follows that for any n > 1, there are at least Cn¢ terms of
Snii,B".

If S is not contained in any finitely generated semigroup, it follows that for any k&,
there exist elements by, bs, ..., by of S whose logarithms are rationally independent
so that the hypothesis of Corollary 5.6 is satisfied showing that there exists an
f € L' such that limsup Ay f(z) is infinite almost everywhere.

In the case where S is contained in a finitely generated semigroup, we make use
of an ergodic theorem for amenable group actions due to Ornstein and Weiss [14].
It is sufficient to establish that the sets S defined above form a Fglner sequence.
For convenience, we use additive notation. Specifically, since by assumption, S is
contained in a finitely generated semigroup of the positive integers, let the primes
that appear as factors of elements of S be p1,...,pr. Given n € S, write n =
pt -+ pi* and we will associate n with the vector (v, . .., o) € Z%. These vectors
span a lattice in Z* whose dimension we will call d. Let L, be the intersection of
Zi with the lattice spanned by the vectors in S. In this notation, Sy corresponds
to {(a1,...,a) € S: Y a;logp; <logN}. Clearly the Sy are nested. It remains
to establish the following two conditions.

(5) For alln € S, Nlim |(n+ Sn) A SN|/|SN] =0
(6) There exists an M such that for all N, |Sy — Sy| < M|Sn|.

The second of these is seen as follows: If x € Sy — Sy, then  may be expressed
as (z1,...,25) = (a1,...,ar) — (B1,y...,Bk), where (ai,...,ax) and (B1,...,0%k)
are in Sy. It follows that a; < (log N)/(logp;) so that |z;| < (log N)/(logp;).
Clearly the number of such elements x is bounded above by an expression of the
form C(log N)?. On the other hand, by the argument at the start of the proof,
there are at least C’(log N)? elements in Sy so condition (6) holds.

To establish condition (5), let © € S. We need to estimate the cardinality of
(Sny+2)ASy. Clearly this is twice the cardinality of (Sy +x)\ Sx. This difference
is contained in {(a,...,ar) € Ly: log N < > a;logp; <log N + > z;logp;}. To
estimate this, we will use a crude estimate for the number L(y) of lattice points
in {(z1,...,2k) € Ly: > a;logp; <y}. Let V be the d-dimensional vector space
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spanned by S equipped with the inherited d-dimensional Lebesgue measure A. Let
F denote a convex fundamental domain for the lattice L inside the vector space
V and let T denote the set V N {(ay,...,ar): D a;logp; < 1}. We claim that
L(y) = y?\T)/A(F) + o(y?). To see this, note that if & is the diameter of F' and
letting P (y) denote the set of lattice points in L4 whose h-neighborhood lies
within yT and let Poy(y) denote the set of lattice points whose h-neighborhood
intersects yT'. We now have Intoy, (yT') C Pint(y)+F C yT C Poxt(y)+F C Ban(yT)
so that [P (y)|ANF) < yoNT) < |Pexi(y)|M(F). Clearly we also have |Pi(y)| <
L(y) < |Poxs(y)| so it follows that |L(y) — y\T)/ANF)| < Pext(y) — Pis(y) <
A(Br(yT) \ Inty(yT)). Since this region is contained in the union of d + 1 slabs
each of which having bounded thickness and dimensions linearly dependent on y,
this quantity is O(y¢~1). It now follows that L(log N + 3" x;logp;) — L(log N) =
O((log N)?=1) so that limy oo [(Sy + 2) \ Sn|/|Sn| = 0 as required.

(]

6. ULTIMATE BADNESS OF EXPONENTIAL SEQUENCES
Theorem 6.1. For any k € {2,3,...}, the sequence (k™) is ultimately bad in L*.

Proof. We deny a maximal inequality by carefully using the standard lacunarity
trick for a rotation of the circle. Let (w;) be a sequence such that Cy(w) = co. Let
M be a large integer and fix a y € N such that

(7) My = 2[277’ <wp <27 Yw, > M.
t

Let ng = |2ylog,, 2| so that k™ ~ 22¥. Throughout the proof, K will be used to
denote various quantities that can be bounded above or below independently of y
and M. (The bounds may however depend on k). Let f be the function on the circle
taking the value 2¥ on an interval of length 3/(k™ — 1) starting at —1/(k™ — 1)
and extending to 2/(k™ — 1) and 0 elsewhere so that || f];1 < K27Y.

We now construct a number « such that letting 7' be the rotation of the unit
circle by —a and computing the averages

Af@) =gy 3 (o= k"),

n<2t

the maximal function f*(z) = sup A, f(z) has weak L' norm greater than Km,|| f||1.

Initially divide the circle into intervals of length 1/(k™ —1). These intervals have
endpoints whose base k expansions are periodic with period dividing ng. We label
each interval by a string of ng symbols in {0, ..., k—1} that form the repeated block
of the left endpoint so that if B € {0,1,...,k — 1} then Ip is the interval with
left endpoint equal to 0.B in the base k expansion. We shall consider only those
intervals whose left endpoint’s expansion has period exactly ng. This excludes a
negligible fraction of the intervals.

Consider a t satisfying 8n¢27Y < w; < 2'7Y. We say that an interval Ip is
infected at time 2° if

wt% > fla—k'a)>1forallz € Ip.
2t—l<n<2t

We will show how to choose the digits of a’s base k expansion from the 2/~! position
to the 2! position in order to bound below the number of new intervals infected
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at time 2!. Summing these contributions over ¢, will give a lower bound for the
maximal function as required.

We say that two words are (cyclically) equivalent if one is a cyclic permutation
of the other. List representatives of all of the equivalence classes in some order as
Bi, Ba, .... Suppose that by time 27!, the intervals corresponding to Bj, ..., B;
and their cyclic permutations are infected. We then define the binary expansion
of av starting from the 2~ !st digit to be concatenations of B;1 until the intervals
corresponding to the members of the equivalence class become infected. At this
point, define digits of o to be concatenations of B, etc. If all of the the equivalence
classes are exhausted before the 2'th digit of the binary expansion is defined, this
will ensure that the constant in the maximal inequality exceeds K2¥ which will be
sufficient as the y can be chosen to be arbitrarily large. We estimate the number
of intervals that can be infected up to time 2% as follows:

Let v, be the sequence obtained by cyclically permuting B, to the left r times
and let J, be the interval corresponding to v,.. We observe that if n > 2t=1 4+ ng,
we can write n as 2¢~1 + jng 4+ r for some j > 1 and 0 < r < ng. In this case, for
x € J,, we notice that f(z — k™a) = 2¥. In order to be infected, the sum needs
to exceed 2'/w; so we see that this needs to be repeated [2!7Y/w;]| times. After
this number of repetitions, « starts following the next B in a similar manner. The
number of repetitions of B in each block is therefore bounded above by 2¢=Y+2 /w,
(the extra 1 being an overestimate coming from the fact that we have no control of
the location of x — k™« while j = 0). Since each repetition has length ng, the length
of the block is bounded above by 2¢t=¥*2n, /w;. Since we have 2!~! digits available
to define, we are able to infect the intervals in at least K |2!71/(287¥"2ng/w;)]
equivalence classes. Since we ensured that w; > 8n¢27Y, we see that the quantity
being rounded is greater than 1. As each equivalence class has ny members, we
see that the number of intervals infected is given by K2Y%w,. The measure of the
infected intervals then exceeds K2 Yw; > Kwl|f||1. The constant in the maximal
inequality therefore exceeds K, where

ly = Z[S?’L()Qiy < wg < 2t7y]wt
t

We complete the proof by demonstrating that [, 4 la,, > m, — 9.
We have

ly + 1oy > Z[2‘y < wp < 272 or 8np27Y < wy < 2 Y]wy.
t
This yields

my — (Iy +l2y) <D [27% < wy < 8np2 V]wy
t

<1627 Y#{t: 2% < 8ng27Y}
< 16y2 Y4 {t: 28 < 2%} <32y%27Y < 9

as required. O

Theorem 6.2. For k € {2,3,...}, the sequence (k™) is ultimately bad for LP when
p> 1.
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Proof. We will use condition (3) established in Theorem 4.3 for ultimate badness.
We deal with the case k > 2. The fact that (2™) is ultimately bad follows from the
fact that (4™) is ultimately bad using Remark 4.2.

For a given subset J of the positive integers, we construct a characteristic func-
tion f = 1p on Z such that A;f (the average over the jth dyadic block) takes a
value of order 1 on a set of size approximately |B|, but that A;f and Aj f are
disjointly supported for distinct j, 5" € J.

Let J be a finite set of integers. We will assume that J contains no two consec-
utive integers. For j € J, let B; denote (k — 1) - k%" - {1,2,3,4,.. .7k:2”1}. Let C;
denote the truncated version (k —1)- k2 - {1,2,3,4,... k¥ —k?}.

Let B =} . ;Bj, C =3 ,;Cj and let f € [P be the characteristic function
of B. By the requirement that J contains no two consecutive integers, it follows
that each element of B may be expressed in only one way as the sum of elements
of the B;’s. Note that |Cj|/|Bj| = 1 — k=2 so that since |C| = [I;es1C;| and
|B| = [Lje. |Bjl; we have |C] > |B[/2.

Let © € Z satisfy z+k2" € C, for some jo € J. Let n = 270, Let m € [270, 2/0+1),
We have z+k" =3, ; ¢;, where ¢; € Cj. In other words, z+k" = 3.\ (jo3 G+
(k—1)-k"a, where 0 < a < k?" — k™. We now have z + k™ =z + k" + (k™ — k™).
Then k™ — k™ = k™(k™ " —-1) = (k—1)-k"((k™ "™ —1)/(k—1)) so that x + k™ =
Yjes—tjor & T (k=1) - k"(a+ (k™" = 1)/(k — 1)). Since a < k? — k™ and
m —n < n, it follows that a+ (k™" —1)/(k — 1) < k?" ensuring that z + k™ € B.
This establishes that for z € C' — k2", A, f(x) > 1/2.

We now show that these sets are disjoint. Suppose that z lies in C' — k2" and
C — k2" for distinct [ > m € J. Then we sece that k2’ — k2" € B— B. We show that
this gives rise to a contradiction as follows. Note that B — B = 3. ; S;, where
S;=(k—1)-k¥ -{t: |t| < k"), If a € B — B has its largest non-zero summand
in the S; block, then we see that k27 /2 > (k — 1)(k3% + k32" 4+ ..)) > |a| >
(k—1)(k¥ — k3277 k327" ) > k¥ 1f j > I, we see that a exceeds k2 — k2"
If j <1 then j <1 — 2 and we see that a is smaller than k2 — k2. Note that this
is where we made use of the assumption that k > 2.

It follows that || sup,c; A;fllpoc > (|JIIC)/P/2 > [J|V/?| f||,/4. A standard
argument using Rokhlin towers similar to (but simpler than) Lemma 5.1 allows
this example to be transferred to an arbitrary aperiodic system. (Il

7. QUESTIONS AND REMARKS

Remark 7.1. The sequence of times a, = [logn| is ultimately bad in L? for all
1 < p < oo, but not in L. To see that the sequence is ultimately bad in L?, using
Theorem 4.4, we verify that for f(z) = 2 121052 and J C N, for x € [, + 1],
we see that A; f(z) > 1, verifying condition (3) of Theorem 4.4.

To see that the sequence is not ultimately bad in L', let w; = 1/t and note
that Cy (w¢) = oo but sup, w; A f is bounded above by the regular ergodic maximal
function of f, which has weak L! norm bounded above by || f]|1.

Question 7.2. Is the sequence of operators M, f(x) = f(nz mod 1) ultimately bad
in L1?
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Remark 7.3. We remark that Theorem 5.2 also shows that if s(n)/logn — 0, then
there exists an f € L' for which 1/(ns(n)) >, -, f(kz) diverges almost everywhere.
We also pose the following weakening of Question 7.2.

Question 7.4. Does there exist f € L'([0,1)), such that 1/(nlogn) >, ., f(kz)
diverges almost everywhere? B

Question 7.5. Do there exist lacunary sequences that are not ultimately bad in
some LP?

Question 7.6. If the sequence of times (a,,) is ultimately bad for L*, does it follow
that it is ultimately bad for LP (p > 1). Remark 7.1 shows that the converse is false.

[1]
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ABSTRACT. We first study the rate of growth of ergodic sums along a sequence
(an) of times: Sy f(z) = >, «n f(T*x). We characterize the maximal rate
of growth and identify a number of sequences such as a, = 2", along which
the maximal rate of growth is achieved.

To point out though the general character of our techniques, we then turn
to Khintchine’s Strong Uniform Distribution Conjecture that the averages
(1/N) ¥, <n f(nz mod 1) converge pointwise to [ f for integrable functions
f. We give a simple, intuitive counterexample and prove that, in fact, diver-
gence occurs at the maximal rate.
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