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1.1 Enunciation of the result

In this note we want to present a proof of the almost everywhere convergence
of the ergodic averages along the sequence of squares.

Theorem 1.1. Let 7 be a measurable, measure preserving transformation of
the o-finite measure space (X, %, ).
Then, for f € L?, the averages

S = 30 F")

converge for almost every x € X.

The theorem is due to J. Bourgain. To keep our presentation as continu-
ous as possible, we present historical remarks, and cite references in the last
section, Section 1.6.

1.2 Subsequence lemma

The main idea of the proof is to analyze the Fourier transform §t(oz) =
1ty < e2min*e of the averages. This analysis permits us to replace the av-
erages S; by other operators that are easier to handle. The replace-ability of
the sequence (.S;) by another sequence (A;) means that we have an inequality

of the form
[Siss-aup<e [ (1.1)
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Now, if somehow we prove that the sequence (A.f(z)) converges for a.e. x,
then the above inequality implies, since its left hand side is finite for f € L2,
that the sequence (S;f(x)) converges a.e. as well.

Well, we will not be able to prove an inequality of the type (1.1) exactly.
In the real inequality, we will be able to have an inequality where the ¢ runs
through a lacunary sequence. But this is quite all right since it is enough to
prove the a.e. convergence of the (S;f) along a lacunary sequence:

Lemma 1.2. For o > 1 denote
I=1,={t|t=o" for some positive integer n}.

Suppose that for each fized o > 1, the sequence (Sif)ier converges a.e.
Then the full (S;) sequence converges a.e.

Proof. We can assume that the function f is nonnegative. For a given ¢,
choose k so that o* <t < ¢**t1. We can then estimate as

Stf(x)gﬁ S Fa) =0 Sy f(),

nSUkJrl
and similarly, we have o' - S, f(z) < S;f(x). This means that

ot liin Serf(z) < limtinf Sif(x) <limsup S;f(z) <o - liin Sgr f(z).
¢

Choosing now o, = 227", we get that limy Sekf(x) is independent of p for
a.e. , and, by the above estimates, it is equal to lim; Sy f(x). ]

For the rest of the proof, we fir ¢ > 1, and unless we say
otherwise, we always assume thatt e I = 1,.

Definition 1.3. If two sequences (A;) and (By) of L*> — L?* operators satisfy
[ as-migp<e [115 rer
t

then we say that (A;) and (By) are equivalent.



1.3 Oescillation and an instructive example

One standard way of proving a.e. convergence for the usual ergodic averages
1/t>". o, f(r"x) is to first prove a maximal inequality, and then note that
there is a natural dense class for which a.e. convergence holds.

Unfortunately, the second part of this scheme does not work for the av-
erages along the squares, since there is no known class of functions for which
it would be easy to prove a.e. convergence of the averages.

Instead, for the squares, we will prove a so called oscillation inequality:
for any ¢(1) < ¢(2) < ... with ¢(k) € I, there is a constant ¢ so that we have

> LIS S <o | (1.2
k t

<t<t(k+1)

We leave it to the reader to verify why an oscillation inequality implies a.e.
convergence of the sequence (S;f). We also leave it to the reader to verify
that if two operator sequences (A4;) and (B;) are equivalent and (A;) satisfies
an oscillation inequality, then so does (By).

An important remark is that by the so called transference principle of
Calder6n, it is enough to prove the inequality in (1.2) on the integers Z
which we consider equipped with the counting measure and the right shift.
In this case, we have S, f(z) =1/t>, _, f(x +n?).

To see how Fourier analysis can help in proving an oscillation inequality,
let us look at a simpler example first: the case of the usual ergodic averages
Uf(x) =1/t>", ., f(x +n) (by the transference principle, we only need to
prove the oscillation inequality on the integers).

Let us assume that we already know the maximal inequality

/ sup |ULfJ? < - / 5P
7 t 7

For the Fourier transform U,(a) = 1/t Donct €T o € (—1/2,1/2) we easily
obtain the estimates

U(a) =1 < c-t-af; (1.3)
Ti(a)] < t—m (1.4)

The first estimate is effective (nontrivial) when |a| < 1/t and it says that
Ui(a) is close to 1. The second estimate is effective when |a| > 1/¢, and it says



that then |(7t(oz)| is small. In other words, the estimates in (1.3) and (1.4) say
that the function 1(_1 /.1, (cr) captures the “essence” of Uy(ar). How? Let us

define the operator A; via its Fourier transform as A\t(a) = L1/10(a). The
great advantage of the (A;) is that it is a monotone sequence of projections.
We'll see in a minute how this can help. First we claim that the sequences
(Uy) and (A;) are equivalent. To prove this claim, start by observing that

-~

Uf(a) =Ui(a)- fla);  Af(a) = Aa) - fla),

and then estimate, using Parseval’s formula, as

/Z SOIAS — U = / S A(e) = ()2 |F() da

tel 12 4er

: // (@) da-sup 3 |Ti(a) = A()P

Y ter

/f2 sup 3 1) — A(a)

Y ter

It follows that it is enough to prove the inequality

sup »_ |[Ui(a) — Ay(a)[* < oo
¢ terl
To see this, for a fixed «, divide the summation on ¢ into two parts, ¢t < |a|™!
and t > |a|~!. For the case t < |a|™!, use the estimate in (1.3) and in case
t > || ™! use the estimate in (1.4). In both cases, we end up with a geometric
progression with quotient 1/o.

Since (Uy) and (A¢) are equivalent and (U;) satisfies a maximal inequality,
the operators A; also satisfy a maximal inequality. But then the sequence
(Auf(z)) satisfies an oscillation inequality. To see this, first note that if
t(k‘) <t< t(k‘—l—l) then Atf(aj)_At(k+1)f(x) = A, (At(k)f(l") — At(k+1)f(aj)>.
It follows, that

/ ( sup ‘Atf - At(k—i—l)f‘Q /SUP |At (At k;)f At(k+1 f) }2
Zt

k)<t<t(k+1)
AT




since the sequence (A;) satisfies a maximal inequality. But now the oscillation
inequality follows from the inequality

/Z|At(k)f_At(k+1)f|2 < /f2-
7% z

This inequality, in turn, follows by examining the Fourier transform of the
left hand side.

Now the punchline is that the ergodic averages (U;) also satisfy the oscil-
lation inequality since (U;) and (A;) are equivalent.

Let us summarize the scheme above: the maximal inequality for (U;)
implies a maximal inequality for the (A;) since the two sequences are equiv-
alent. But the (A;), being a monotone sequence of projections, satisfy an
oscillation inequality. But then, again appealing to the equivalence of the
two sequences, the (U;) satisfies an oscillation inequality.

What we have learned is that if a sequence of operators (B;f) satisfies
a maximal inequality, and it is equivalent to a monotone sequence (A;) of
projections, then (B;f) satisfies an oscillation inequality..

In the remaining sections we will see that the scheme of proving an os-
cillation inequality for the averages along the squares (S;) is similar, and
ultimately it will be reduced to proving a maximal inequality for a monotone
sequence of projections.

1.4 Periodic systems and the circle method

The difference between the usual ergodic averages and the averages along
squares is that the squares are not uniformly distributed in residue classes.
Indeed, for example no number of the form 3n—1is a square. This property of
the squares is captured well in the behavior of the Fourier transform, S;(«) =
1/t> _, ¥ for a typical rational a = b/q, lim .. S,(ct) is nonzero
(while it would be 0 if the squares were uniformly distributed mod gq).

We need some estimates on the Fourier transform §t(a). Since we will of-
ten deal with the function e*% we introduce the notation e(3) = €2™#. Also,
the estimates for the Fourier transform §t(oz) are simpler if instead of the
averages 1y, -, 7 f(x) we consider the weighted averages 1/t>° ,_,(2n —
17" f(z). The weight 2n — 1 is motivated by n® — (n — 1)2 = 2n — 1. Ev-
erything we said about the averages along the squares applies equally well
to these new weighted averages. Furthermore, it is an exercise in summation



by parts to show that the a.e. convergence of the weighted and non weighted
averages is equivalent.

So from now on, we use the notation

Sif(@) = 1 Y en— 1) (o).

n2<t

Let A(e) = lim, Sy(r). By Weyl’s theorem, A(«) = 0 for irrational o and for
rational o = b/q, if b/q is in reduced terms, we have the estimate

Ab/g)| < — (1.5)

q
This inequality tells us that while the squares are not uniformly distributed
in residue classes mod ¢, at least they try to be: A;(b/q) — 0 as ¢ — oo.
Now the so called circle method of Hardy and Littlewood tells us about
the structure of S;(). Let us introduce the notations P(t) = t'/3, Q(t) =
2t/P(t) = 2t*/3. According to the circle method, we have the following
estimates

Sie) = R(bfg) - Uila = bjg)| < +7% g < P@), |a—b/al < 1/Q(1)
(1.6)
§t(a)‘ <c-t7Y8 otherwise, (1.7)

where recall that U; denotes the usual ergodic averages so ﬁt(ﬁ) =1/t)", ., e(na).
In other words, the estimate above tells us that () is close to A(b/q) -
ﬁt(a —b/q) if a is close to a rational point b/g with small denominator, and
otherwise |S()] is small.

Given these estimates, it is easy to see that the sequence (.S;) is equivalent
to the sequence (A;) defined by its Fourier transform as

Aia) = > Ab/q) - Uiler = b/g) - 1-1/q.1/00) (@ — b/q)

b/q
q<P(t)

It remains to prove an oscillation inequality for the A;. To do this, first we
group those b/q for which ¢ is of similar size:

E,={b/q|2" <q< 2p+1}

6



By the estimates in (1.5), we have

sup [A(b/q)| < c- 2772 (1.8)
b/q€E)

Note also that if b/q € E, then the term A(b/q) occurs in the definition of
A, only when t > 2%, Define the operator A,; by its Fourier transform as

Apyle) = > A(b/q) - Uil = b/q) - L—yjquajeuy(a —b/g), t>2%.
b/gEE)

Using the triangle inequality for the summation in p, we see that an oscillation
inequality for (A;) would follow from the inequality

<t<t(k+1)

2
§ p
/ sup |Ap,tf - Ap,t(k+1)f|2 <c- o : / f2 (1.9)
757 t(k) .

We have learned in the previous section, Section 1.3, that it is useful to try
work with projections. As a step, we introduce the operators B, ; defined via

/B\p,t(a) = Z 7\\(b/(]) : ]1(—1/t,1/t)(Oé —-b/q), t> 2%,
b/qeE,

Note that for each « there is at most one b/q € E, so that 1(_1.1/)(a—b/q) #

0 or 1—1/0().1/q@) (@—b/q) # 0 for some t > 2%, Hence, using the estimates
in (1.3), (1.4), and (1.8), we get

A, (@) = Bya(a)] < c- 277 minft|al, (tla]) 7'} ¢ > 2%,
It follows that we can replace the (A,;) by the (B,;):
Z y~93p z

In order to prove the required oscillation inequality for the B, ;, we make one
more reduction. Namely, we claim that defining C),; by

617,1?(04) = Z ]l(—l/t,l/t)(Oé —-b/q), t> 23P.

b/qeE,



(so apﬂg is just B, without the multipliers /AX(b/ q)), we need to prove

<t<t(k+1)

/Z sup |Gyt — Cpuran| SC’P2'/f2~ (1.10)
757 k) z

We leave the proof of this implication to the reader with the hint to replace
the function f by g defined by its Fourier transform as

Ge)= D" A(b/q) Lz p-m)(a—bfq) - fla).

b/qEEy

Indeed, then B, f(z) = Cpug(z) and [, ¢° < c-277 [, f? by (1.8).

Now, the C,; form a monotone (in t) sequence of projections, and hence
they will satisfy the oscillation inequality in (1.10) once they satisfy the
maximal inequality

/ sup ]C’p,t|2 <c-p*- / 12 (1.11)
7 t>23p VA

To encourage the reader, we emphasize that our only remaining task is to
prove the inequality in (1.11) above.

1.5 The main inequality

Since the least common multiple of the denominators of rational numbers in
the set E, is not greater than 2% and the distance between two elements
of E, is at least 27%, the estimate in (1.11) follows from the following result

Theorem 1.4. Let 0 < § < 1/2 and e(ay), e(aa), ..., e(ay) be distinct com-
plex Q-th roots of unities with |o; — «j| > 6 for i # j. We assume that
671 < Q. Define the projections R; by

/Rt(oz) = Z ]1(_1/t71/t)(a — Oéj).

i<J

Then we have, with an absolute constant c,

[ s 1R < e oglog @ [ 11
7 Z

t>6—1



We restrict the the range on ¢t to ¢t > §~!, because then the sum making
up R; contains pairwise orthogonal elements—as a result on the separation
hypothesis |a; — a;| > 0.

Proof. Two essentially different techniques will be used to handle the supre-
mum. The first technique will handle the range 6! < ¢t < Q*, and the other
technique will handle the remaining ¢ > Q* range.

Let us start with proving the inequality

/ sup  [Ruf[? < c- (loglog Q)2 - / P (1.12)
VA VA

d-1<t<Q4

We can assume that Q* is a power of o, say @* = ¢°, and then the range
071 <t < @Q* can be rewritten as clogé~! < s < S, where we take log
with base o. Introduce the monotone sequence of projections P, = R s-s,
5 < S —clogédt. All follows from

/ sup |Psf|2§c-log25-/|f\2.
z z

s<S—clogd—1

It is clearly enough to show the inequality for dyadic S — clogd—!:

/ sup |PfP < - M / 5P
7 s<2M VA

For each integer m < M consider the sets
Hy = {Pas1yam — Paam | d=0,1,... 2" — 1}

If the dyadic expansion of s is s = ngM €m - 2™, where €, is 0 or 1, then
for some X,, € H,,, P, = ngM €m * Xm. It follows that

Pf(@)P < M- X f(2)

m<M

For each m, we have

X f (@) <Y [Paryan f(2) = Paon f(2),

d<gM-m



hence

/Z sup [P.fP < M- /Z S S Py £(5) — P f ()

SS?IW mSM dSQJ&Ifm

S M - EE: 2{: /2‘I2+1f__}§fﬁ

m<M s<2M

§M2-2-/|f|2-
7

Let us now handle the remaining range for t. We want to prove
[ sw R < [ 15 (113)
7 t>Q* Z
It seems best if we replace the operators R; by the operators
1
Af (@) = - > ) e(nay)f(z+n).
n<t j<J
This replacement is possible if we prove the following two inequalities
[ s -nspse [ (114)
Ly -2 Z

and

[swlag? <e- [ is2 (1.15)

t>Q4

Let us start with proving (1.14). By Parseval’s formula, we need to prove
sup Y _ |Ay(a) — Ri(a)[? < 0.
«
t

Fix . Without loss of generality we can assume that of the o, the point o
is closest to a. Possibly dividing the sum on j into two and reindexing them,
we also assume that a; < ay < --- < «ay. Using the separation hypothesis
la; — aj| > 6 for i # j, we have that |a — a;| > (5 — 1)d for j > 1.

10



For t < 1/|a—a;| we can thus estimate (recall that ﬁt(ﬁ) =1/t < e(np))
as

[Ai(@) = Ri(a)] < |Uila—an)l+ Y |Ui(a—ay)| by (1.3) and (1.4)
2<5<J
1
<c- (t|a—a1| +2§§:Jt(j——1)5>
< ¢ (tla — au| +log J/(4t))
<c- (ta—ai|+072/t)

where we used in the last estimate that J < §~!. Summing this estimate
over t € I with 672 <t < 1/|a— a;| we get a finite bound independent of «.
For t > 1/|ac — oy, we have

Y

[A(a) = Ri(a)| < ) U —ay)| < c- 572

1<j<J

which, upon summing over the full range d~2 < t, again gives a finite bound
independent of a.

Let us single out a consequence of inequality (1.14): there is a constant ¢
so that

/\AtfP §c-/]f|2; t>62 (1.16)
Z Z

Our only remaining task is to prove inequality (1.15).
For a given t, let ¢ be the largest integer so that ¢@Q* < t. Note that
q > Q? since t > Q*. We can estimate as

‘ZZe(naj)f(:B + n))
nstis (1.17)
<| Y D emaf@rn)|+| Yo D etnay)f+n)|
n<gQ? j<J qQ?<n<t j<J
We estimate the second term on the right trivially as

Z Ze(naj)f(:c—l—n)‘SJ- Z | f(z+n)|.

qQ?<n<t j<J qQ?<n<(g+1)Q?

11



With this, we have

sup (%‘ Z Z e(na;) f(x +n)

) 2
4
>Q gQ2<n<t j<J

T 2
< sup (—2 . Z |f(x+ n)|) by Cauchy’s inequality
22 40 4Q2<n<(q+1)Q? )
< sup T QF Xg@rensierne: [ (@ 0
Q2 4@ qQ?

2
<X Sm X P

q>Q? qQ?<n<(g+1)Q?

Integrating the last line, we obtain the bound

S L [irse 2 [ <e [

q>Q?

since J < Q.

Let us now handle the first term on the right of (1.17). Since e(c;) satisfies
e((mQ@Q*+h)a;) = e(ha;) (this is the first and last time we use that the e(a;)
are Q-th roots of unities), we can write, defining T'g(x) = g(z + Q?),

‘1 Z Ze(naj)f(x—irn)‘ < ‘EZT’”% Z Ze(haj)f(x—l—h) :
t n<qQ? j<J q m<gq Q h<@? j<J

By the ergodic maximal inequality, applied to T, the £2 norm of our maximal
operator is bounded by the ¢? norm of

& S° S elhay)flo+ ).
h<Q@? j<J

But the estimate in (1.14) says, the ¢* norm of the above is bounded inde-
pendently of @ since Q? > §~2 by assumption. O

1.6 Notes

More details More details and references can be found in [RosW]. In par-
ticular, the circle method and the transference principle are described
in complete details—though no proof of the main inequality of Bour-
gain, Theorem 1.4, is given. The inequalities (1.6) and (1.7) appear as
(4.23) and (4.24) in [RosW].

12



Theorem 1.1 The result is due to Bourgain ([Boul]). He later extended
the result to f € LP, p > 1; cf [Bou2]. The case p = 1 is the most
outstanding unsolved problem in this subject.

Idea of proof The basic structure of the proof is that of Bourgain’s ([Bou2|)
but we used ideas from Lacey’s paper [La] as well—not to mention some
personal communication with M. Lacey.

Other sequences The sequence of primes is discussed in [Wi]. But we’d
like to emphasize that the L? theory of the primes is identical to the
case of the squares. The only difference is in the estimates in (1.6) and
(1.7).

A characterization of sequences which are good for the pointwise and
mean ergodic theorems can be found in [BoQW].

13



[Beb]

[Be6]

[BeT|
[BeBB]

[BeBH]

References

J. Auslander, On the proximal relation in topological dynamics, Proc.
Amer. Math. Soc. 11 (1960), 890-895.

S. Banach, Sur le probleme de la mesure, Fund. Math., 4, (1923), 7-33.
S. Banach and A. Tarski, Sur la décomposition des ensembles de points
en parties respectivement congruentes, Fund. Math. 6 (1924) 244-277.
D. Berend and V. Bergelson, Jointly ergodic measure-preserving trans-
formations, Israel J. Math. 49 (1984), no. 4, 307-314.

V. Bergelson, Sets of recurrence of Z"-actions, and properties of sets of
differences in Z™, J. London Math Soc. (2) 31 (1985), 295-304.

V. Bergelson, Weakly mixing PET, Erg. Th. and Dynam. Sys. 7 (1987),
337-349.

V. Bergelson, Ergodic Ramsey theory - an update, Ergodic theory of
7% actions (Warwick, 1993-1994), 273-296, London Math. Soc. Lecture
Note Ser., 228, Cambridge Univ. Press, Cambridge, 1996.

V. Bergelson, The multifarious Poincare recurrence theorem, Descrip-
tive set theory and dynamical systems (Marseille-Luminy, 1996), 31-57,
London Math Soc. Lecture Note Ser. 277, Cambridge Univ. Press, Cam-
bridge, 2000.

V. Bergelson, Ergodic theory and diophantine problems, Topics in sym-
bolic dynamics and applications (Temuco, 1997), 167-205, London Math
Soc. Lecture Note Ser. 279, Cambridge Univ. Press, Cambridge, 2000.
V. Bergelson, Minimal idempotents and ergodic Ramsey theory, Topics
i dynamics and ergodic theory, 839, London Math. Soc. Lecture Note
Ser., 310, Cambridge Univ. Press, Cambridge, 2003.

V. Bergelson, Multiplicatively large sets and ergodic Ramsey theory, to
appear in Israel J. Math.

V. Bergelson, M. Boshernitzan, and J. Bourgain, Some results on non-
linear recurrence, J. Anal. Math. 62 (1994), 29-46.

V. Bergelson, A. Blass and N. Hindman, Partition theorems for spaces of
variable words, Proc. London Math. Soc. (3) 68 (1994), no. 3, 449-476.

[BeFHK]| V. Bergelson, H. Furstenberg, N. Hindman, and Y. Katznelson, An alge-

braic proof of van der Waerden’s theorem, Enseign. Math. (2) 35 (1989),
no. 3-4, 209-215.

[BeFM] V. Bergelson, H. Furstenberg, and R. McCutcheon, IP-sets and polyno-

mial recurrence, Ergodic Theory and Dynam. Systems 16 (1996), no. 5,
963-974.

14



[BeG]

[BeH1]

[BeH2)]

[BeH3]

[BeH4]
[BeL1]
[BeL2]
[BeL3]

[BeL4]

[BeLM]

[BeM1]

[BeM2]

[BeM3]

[BeMZ]

[BeR1]

V. Bergelson and A. Gorodnik, Weakly mixing group actions: a brief
survey and an example, Modern Dynamical Systems and Applications, B.
Hasselblatt, M. Brin, Y. Pesin, eds., 3-25, Cambridge University Press,
New York, 2004.

V. Bergelson and N. Hindman, Nonmetrizable topological dynamics and
Ramsey theory, Trans. AMS. 320 (1990), 293-320.

V. Bergelson and N. Hindman, Some topological semicommutative van
der Waerden type theorems and their combinatorial consequences, J.
London Math. Soc. (2) 45 (1992), no. 3, 385-403.

V. Bergelson and N. Hindman, Additive and multiplicative Ramsey theo-
rems in N—some elementary results, Combin. Probab. Comput. 2 (1993),
no. 3, 221-241.

V. Bergelson and N. Hindman, On IP* sets and central sets, Combinato-
rica 14 (1994), no. 3, 269-277.

V. Bergelson and A. Leibman, Polynomial extensions of van der Waer-
den’s and Szemerédi’s theorems, Journal of AMS 9 (1996), 725 —753.
V. Bergelson and A. Leibman, Set-polynomials and polynomial extension
of the Hales-Jewett theorem. Ann. of Math. (2) 150 (1999), no. 1, 33-75.
V. Bergelson and A. Leibman, A nilpotent Roth theorem. Invent. Math.
147 (2002), no. 2, 429-470.

V. Bergelson and A. Leibman, Topological multiple recurrence for poly-
nomial configurations in nilpotent groups. Adv. Math. 175 (2003), no. 2,
271-296.

V. Bergelson, A. Leibman and R. McCutcheon, Polynomial Szemerédi
theorems for countable modules over integral domains and finite fields,
to appear in J. d’Analyse Math.

V. Bergelson and R. McCutcheon, Uniformity in the polynomial Sze-
merédi theorem. Ergodic theory of Z¢ actions (Warwick, 1993-1994),
273-296, London Math. Soc. Lecture Note Ser., 228, Cambridge Univ.
Press, Cambridge, 1996.

V. Bergelson and R. McCutcheon, An ergodic IP Szemerédi theorem.
Mem. Amer. Math. Soc. 146 (2000), no. 695, viii+106 pp.

V. Bergelson and R. McCutcheon, Recurrence for semigroup actions and
a non-commutative Schur theorem. Topological dynamics and applica-
tions (Minneapolis, MN, 1995), 205—222, Contemp. Math., 215, Amer.
Math. Soc., Providence, RI, 1998.

V. Bergelson, R. McCutcheon and Q. Zhang, A Roth theorem for
amenable groups, Amer. J. Math. 119 (1997), no. 6, 1173-1211.

V. Bergelson and J. Rosenblatt, Mixing actions of groups, Illinois J.
Math. 32 (1988), no. 1, 65-80.

15



[BeR2]

[BeS]

V. Bergelson and J. Rosenblatt, Joint ergodicity for group actions, Er-
godic Theory Dynam. Systems, 8 (1988), no. 3, 351-364.

V. Bergelson and D. Shapiro, Multiplicative subgroups of finite index in
a ring. Proc. Amer. Math. Soc. 116 (1992), no. 4, 885-896.

P. Billingsley, Probability and Measure, Wiley, New York, 1986.

A. Blaszczyk, S. Plewik, S. Turek, Topological multidimensional van der
Waerden theorem. Comment. Math. Univ. Carolin. 30 (1989), no. 4,
783-787.

M. Boshernitzan, G. Kolesnik, A. Quas and M. Wierdl, Ergodic averaging
sequences, 33 pages, to appear in J. d’Analyse Math., available as
http://www.csi.hu/mw/hardy_ergav.pdf or
http://www.csi.hu/mw/hardy_ergav.dvi

J. Bourgain, On the maximal ergodic theorem for certain subsets of the
integers, Israel J. Math. 61 (1988), 39-72.

J. Bourgain, Pointwise ergodic theorems for arithmetic sets (appendix:
The return time theorem), Publ. Math. I.H.E.S. 69 (1989), 5-45.

T. C. Brown, An interesting combinatorial method in the theory of locally
finite semigroups. Pacific J. Math. 36 (1971) 285-289.

T.J. Carlson, Some unifying principles in Ramsey theory, Discrete Math.
68 (1988), 117-169.

J.P. Conze and E. Lesigne, Théoremes ergodiques pour des mesures di-
agonales, Bull. Soc. Math. France 112 (1984) no. 2, 143-175.

J.P. Conze and E. Lesigne, Sun un théoreme ergodique pour des mesures
diagonales, Probabilités, 1-31, Publ. Inst. Rech. Math. Rennes, 1987-1,
Univ. Rennes I, Rennes, 1988.

J.P. Conze and E. Lesigne, Sun un théoreme ergodique pour des mesures
diagonales, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988) no. 12, 491
493.

W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer-
Verlag, Berlin and New York, 1974.

P. Civin and B. Yood, The second conjugate space of a Banach algebra
as an algebra, Pac. J. Math. 11 (1961), 847-870.

L. E. Dickson, On the congruence z" +y" = 2" = 0 (mod p). Journal of
Reine Angew. Math. 135 (1909) p.134-141.

L. E. Dickson, History of the Theory of Numbers, vol. II (Diophantine
analysis), Chelsea, New York, 1971.

R. Ellis, Distal transformation groups, Pac. J. Math. 8 (1958), 401-405.
R. Ellis, A semigroup associated with a transformation group, Trans.
AMS, 94 (1960), 272-281.

16



[ET]
[Fol
[F1]

(2]

[FK1]

[FK2]

[FK3)
[FK4]

[FKO]

[FW1]

[FW2]

[GJ]
[GraRS]
[Gre]

[HaJ]

P. Erd6s and P. Turan, On some sequences of integers, J. London Math.
Soc. 11 (1936), 261-264.

E. Fglner, On groups with full Banach mean values, Math. Scand. 3
(1955), 243-254.

H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963),
477-515.

H. Furstenberg, Ergodic behavior of diagonal measures and a theorem
of Szemerédi on arithmetic progressions, J. d’Analyse Math. 31 (1977),
204-256.

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Num-
ber Theory, Princeton University Press, 1981.

H. Furstenberg, Poincaré recurrence and number theory, Bull. AMS (New
Series) 5 (1981), 211-234.

H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for
commuting transformations, J. d’Analyse Math. 34 (1978), 275-291.

H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for
IP-systems and combinatorial theory, J. d’Analyse Math. 45 (1985), 117
168.

H. Furstenberg and Y. Katznelson, Idempotents in compact semigroups
and Ramsey theory, Israel J. Math. 68 (1990), 257-270.

H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett
theorem, J. d’Analyse Math. 57 (1991), 64-119.

H. Furstenberg, Y. Katznelson, D. Ornstein, The ergodic theoretical
proof of Szemerédi’s theorem, Bull. Amer. Math. Soc. (N.S.) 7 (1982),
no. 3, 527-552.

H. Furstenberg and B. Weiss, Topological dynamics and combinatorial
number theory, J. d’Analyse Math. 34 (1978), 61-85.

H. Furstenberg and B. Weiss, A mean ergodic theorem for
%ZnNzl f(T"a:)g(T"Qx), Convergence in ergodic theory and probability
(Columbus, OH, 1993), 193-227, Ohio State Univ. Math. Res. Inst. Publ.,
5, de Gruyter, Berlin, 1996.

L. Gillman and M. Jerison, Rings of continuous functions, Springer-
Verlag, New York, 1976.

R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, Wiley, New
York, 1980.

F. Greenleaf, Invariant Means on Topological Groups, von Nostrand, New
York, 1969.

A.W. Hales and R.I. Jewett, Regularity and positional games, Trans.
AMS 106 (1963), 222-229.

17



[Hopf]
[HoK1]

[HoK2]

[HoK3]

P. Halmos, Lectures on Ergodic Theory, Mathematical Society of Japan,
Tokyo, 1956.

P. Halmos and J. von Neumann, Operator methods in classical mechan-
ics, I1, Ann. of Math. 43 (1942), 332-350.

G. Hardy and J. Littlewood, Some problems of Diophantine approxima-
tion, Acta Mathematica, 37 (1914), 155-191.

F. Hausdorff, Grundziige der Mengenlehre, Verlag von Veit, Leipzig, 1914.
Reprinted by Chelsea, New York, 1949.

H. Helson, Harmonic Analysis, Addison-Wesley, Reading, MA, 1983.

E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Springer-Verlag,
1963.

D. Hilbert, Uber die Irreduzibilitiit ganzer rationaler Funktionen mit
ganzzahligen Koeffizienten, J. Math. 110 (1892), 104-129.

N. Hindman, Finite sums from sequences within cells of a partition of N,
J. Combinatorial Theory (Series A), 17 (1974), 1-11.

N. Hindman, Partitions and sums and products of integers, Trans. AMS,
247 (1979), 227-245.

N. Hindman and D. Strauss, Algebra in the Stone-Cech Compactification.

Theory and Applications, de Gruyter Expositions in Mathematics, 27.
Walter de Gruyter & Co., Berlin, 1998. xiv+485 pp.

E. Hopf, Ergodentheorie, Chelsea, New York, 1948.

B. Host and B. Kra, Convergence of Conze-Lesigne averages, Ergodic
Theory Dynam. Systems 21 (2001), no. 2, 493-509.

B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds,
to appear in Annals of Math.

B. Host and B. Kra, Convergence of polynomial ergodic averages, to
appear in Israel J. of Math.

T. Kamae and M. Mendes-France, van der Corput’s difference theorem,
Israel J. Math. 31 (1978), no. 3-4, 335-342.

A. Y. Khintchine, Three Pearls of Number Theory, Graylock Press,
Rochester, N.Y., 1952.

B.O. Koopman and J. von Neumann, Dynamical systems of continuous
spectra, Proc. Nat. Acad. Sci. U.S.A., 18 (1932), 255-263.

U. Krengel, Weakly wandering vectors and weakly independent parti-
tions, Trans. Amer. Math. Soc. 164 (1972), 199-226.

L. Kronecker, Die Periodensysteme von Funktionen Reeller Variablen,
Berliner Sitzungsberichte (1884), 1071-1080.

M. Lacey, On an inequality due to Bourgain, Illinois J. Math. 41 (1997),
231-236.

18



[Lel]

A. Leibman, Multiple recurrence theorem for nilpotent group actions,
Geom. Funct. Anal. 4 (1994), no. 6, 648-659.

A. Leibman, Multiple recurrence theorem for measure preserving actions
of a nilpotent group, Geom. and Funct. Anal., 8 (1998), 853-931.

A. Leibman, The structure of unitary actions of finitely generated nilpo-
tent groups, Ergodic Theory Dynam. Systems 20 (2000), 809-820.

A. Leibman, Convergence of multiple ergodic averages along polynomials
of several variables, to appear in Israel J. of Math

E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math.
146 (2001), 259-295.

R. McCutcheon, Elemental Methods in Ergodic Ramsey Theory, Springer
Lecture Notes in Mathematics 1722, Springer-Verlag, Berlin, 1999.

K. Milliken, Ramsey’s theorem with sums or unions, J. Combinat. Th.
(Series A) 18 (1975), 276-290.

I. Namioka, Fglner’s condition for amenable semi-groups, Math. Scand.,
15 (1964), 18-28.

J. von Neumann, Zur algemeinen Theorie des Masses, Fund. Math., 13
1929, 73-116.

J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik,
Ann. of Math. 33 (1932), 587-642.

K. Numakura, On bicompact semigroups, Math. J. of Okayama Univer-
sity 1 (1952), 99-108.

A. Olshanskii, On the question of the existence of an invariant mean on
a group, Uspekhi Mat. Nauk. 35 (1980), no. 4 (214), 199-200.

A. Olshanskii, An infinite group with subgroups of prime orders, Izv.
Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 2, 309-321.

D. Ornstein, B. Weiss, Entropy and isomorphism theorems for actions of
amenable groups, J. d” Analyse Math., 48 (1987), 1-141.

A. Patterson, Amenability, Amer. Math. Soc., Providence, 1988.
K. Petersen, Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981.

J.-P. Pier, Amenable Locally Compact Groups, John Wiley and Sons,
1984.

H. Poincaré, Sur le probleme des trois corps et les équations de la Dy-
namique, Acta Mathematica 13 (1890), 1-270.

R. Rado, Note on combinatorial analysis, Proc. London Math. Soc. 48
(1993), 122-160.

F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc.
30 (1930), 264-286.

19



[Zie]
[Zim1]

[Zim2]

P. Ribenboim, 18 Lectures on Fermat’s Last Theorem, Springer-Verlag,
New York, 1979.

J. Rosenblatt and M. Wierdl, Pointwise ergodic theorems via harmonic
analysis, Ergodic Theory and Its Connection with Harmonic Analysis (K.
Petersen and I. Salama, eds.), 3-151, London Math. Soc. Lecture Note
Ser. 205, Cambridge University Press, Cambridge, 1995.

H. L. Royden, Real analysis, Macmillan, New York, 1968.

A. Sarkozy, On difference sets of integers III, Acta. Math. Acad. Sci.
Hungar., 31 (1978) 125-149.

W. Schmidt, Equations over Finite Fields: an Elementary Approach,
Springer-Verlag, Berlin ; New York, 1976.

I. Schur, Uber die Kongruenz 2™ + 3™ = 2™ (mod p), Jahresbericht der
Deutschen Math.-Ver. 25 (1916), 114-117.

E. Szemerédi, On sets of integers containing no k elements in arithmetic
progression, Acta Arith. 27 (1975), 199-245.

A. Taylor, A canonical partition relation for finite subsets of w, J. Com-
binat. Th. (Series A) 17 (1974), 1-11.

B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw. Arch.
Wisk. 15 (1927), 212-216.

B. van der Waerden, How the proof of Baudet’s conjecture was found,
Studies in Pure Mathematics presented to Richard Rado (1971), L.
Mirsky, ed., Academic Press, London, 251-260.

S. Wagon, The Banach-Tarski Parador, Cambridge University Press,
Cambridge, 1985.

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New
York, 1982.

H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann.
77 (1916), 313-352.

M. Wierdl, Pointwise ergodic theorem along the prime numbers, Israel
J. Math., 64 (1988), 315-336.

Q. Zhang, On convergence of the averages
LS AR f2(Sx) f3(T™x), Monat. Math. 122 (1996), 275-
300.

T. Ziegler, Universal characteristic factors and Furstenberg averages,
preprint.

R. Zimmer, Extensions of ergodic group actions, Illinois J. Math 20
(1976), no. 3, 373-409.

R. Zimmer, Ergodic actions with generalized discrete spectrum, Illinois
J. Math 20 (1976), no. 4, 555-588.

20



