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1.1 Enunciation of the result

In this note we want to present a proof of the almost everywhere convergence
of the ergodic averages along the sequence of squares.

Theorem 1.1. Let τ be a measurable, measure preserving transformation of
the σ-finite measure space (X, Σ, µ).

Then, for f ∈ L2, the averages

Stf(x) =
1

t

∑
n≤t

f(τn2

x)

converge for almost every x ∈ X.

The theorem is due to J. Bourgain. To keep our presentation as continu-
ous as possible, we present historical remarks, and cite references in the last
section, Section 1.6.

1.2 Subsequence lemma

The main idea of the proof is to analyze the Fourier transform Ŝt(α) =
1/t
∑

n≤t e
2πin2α of the averages. This analysis permits us to replace the av-

erages St by other operators that are easier to handle. The replace-ability of
the sequence (St) by another sequence (At) means that we have an inequality
of the form ∫ ∑

t

|Stf − Atf |2 < c

∫
|f |2. (1.1)
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Now, if somehow we prove that the sequence (Atf(x)) converges for a.e. x,
then the above inequality implies, since its left hand side is finite for f ∈ L2,
that the sequence (Stf(x)) converges a.e. as well.

Well, we will not be able to prove an inequality of the type (1.1) exactly.
In the real inequality, we will be able to have an inequality where the t runs
through a lacunary sequence. But this is quite all right since it is enough to
prove the a.e. convergence of the (Stf) along a lacunary sequence:

Lemma 1.2. For σ > 1 denote

I = Iσ = {t | t = σn for some positive integer n}.

Suppose that for each fixed σ > 1, the sequence (Stf)t∈I converges a.e.
Then the full (St) sequence converges a.e.

Proof. We can assume that the function f is nonnegative. For a given t,
choose k so that σk ≤ t < σk+1. We can then estimate as

Stf(x) ≤ 1

σk

∑
n≤σk+1

f(τn2

x) = σ · Sσk+1f(x),

and similarly, we have σ−1 · Sσkf(x) ≤ Stf(x). This means that

σ−1 · lim
k

Sσkf(x) ≤ lim inf
t

Stf(x) ≤ lim sup
t

Stf(x) ≤ σ · lim
k

Sσkf(x).

Choosing now σp = 22−p
, we get that limk Sσk

p
f(x) is independent of p for

a.e. x, and, by the above estimates, it is equal to limt Stf(x).

For the rest of the proof, we fix σ > 1, and unless we say
otherwise, we always assume that t ∈ I = Iσ.

Definition 1.3. If two sequences (At) and (Bt) of L2 → L2 operators satisfy∫ ∑
t

|Atf −Btf |2 < c

∫
|f |2; f ∈ L2,

then we say that (At) and (Bt) are equivalent.

2



1.3 Oscillation and an instructive example

One standard way of proving a.e. convergence for the usual ergodic averages
1/t
∑

n≤t f(τnx) is to first prove a maximal inequality, and then note that
there is a natural dense class for which a.e. convergence holds.

Unfortunately, the second part of this scheme does not work for the av-
erages along the squares, since there is no known class of functions for which
it would be easy to prove a.e. convergence of the averages.

Instead, for the squares, we will prove a so called oscillation inequality :
for any t(1) < t(2) < . . . with t(k) ∈ I, there is a constant c so that we have∫ ∑

k

sup
t(k)<t<t(k+1)

|Stf − St(k+1)f |2 ≤ c

∫
f 2. (1.2)

We leave it to the reader to verify why an oscillation inequality implies a.e.
convergence of the sequence (Stf). We also leave it to the reader to verify
that if two operator sequences (At) and (Bt) are equivalent and (At) satisfies
an oscillation inequality, then so does (Bt).

An important remark is that by the so called transference principle of
Calderón, it is enough to prove the inequality in (1.2) on the integers Z
which we consider equipped with the counting measure and the right shift.
In this case, we have Stf(x) = 1/t

∑
n≤t f(x + n2).

To see how Fourier analysis can help in proving an oscillation inequality,
let us look at a simpler example first: the case of the usual ergodic averages
Utf(x) = 1/t

∑
n≤t f(x + n) (by the transference principle, we only need to

prove the oscillation inequality on the integers).
Let us assume that we already know the maximal inequality∫

Z
sup

t
|Utf |2 ≤ c ·

∫
Z
|f |2

For the Fourier transform Ût(α) = 1/t
∑

n≤t e
2πinα, α ∈ (−1/2, 1/2) we easily

obtain the estimates
|Ût(α)− 1| ≤ c · t · |α|; (1.3)

|Ût(α)| ≤ c

t · |α|
. (1.4)

The first estimate is effective (nontrivial) when |α| < 1/t and it says that

Ût(α) is close to 1. The second estimate is effective when |α| > 1/t, and it says
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that then |Ût(α)| is small. In other words, the estimates in (1.3) and (1.4) say

that the function 11(−1/t,1/t)(α) captures the “essence” of Ût(α). How? Let us

define the operator At via its Fourier transform as Ât(α) = 11(−1/t,1/t)(α). The
great advantage of the (At) is that it is a monotone sequence of projections.
We’ll see in a minute how this can help. First we claim that the sequences
(Ut) and (At) are equivalent. To prove this claim, start by observing that

Ûtf(α) = Ût(α) · f̂(α); Âtf(α) = Ât(α) · f̂(α),

and then estimate, using Parseval’s formula, as∫
Z

∑
t∈I

|Atf − Utf |2 =

∫ 1/2

−1/2

∑
t∈I

|Ât(α)− Ût(α)|2 · |f̂(α)|2 dα

≤
∫ 1/2

−1/2

|f̂(α)|2 dα · sup
α

∑
t∈I

|Ût(α)− Ât(α)|2

=

∫
Z
f 2 · sup

α

∑
t∈I

|Ût(α)− Ât(α)|2

It follows that it is enough to prove the inequality

sup
α

∑
t∈I

|Ût(α)− Ât(α)|2 < ∞.

To see this, for a fixed α, divide the summation on t into two parts, t < |α|−1

and t > |α|−1. For the case t < |α|−1, use the estimate in (1.3) and in case
t > |α|−1 use the estimate in (1.4). In both cases, we end up with a geometric
progression with quotient 1/σ.

Since (Ut) and (At) are equivalent and (Ut) satisfies a maximal inequality,
the operators At also satisfy a maximal inequality. But then the sequence
(Atf(x)) satisfies an oscillation inequality. To see this, first note that if
t(k) ≤ t ≤ t(k+1) then Atf(x)−At(k+1)f(x) = At

(
At(k)f(x)− At(k+1)f(x)

)
.

It follows, that∫
Z

sup
t(k)<t<t(k+1)

|Atf − At(k+1)f |2 =

∫
Z

sup
t

∣∣At

(
At(k)f − At(k+1)f

)∣∣2
≤ c ·

∫
Z

∣∣At(k)f − At(k+1)f
∣∣2 ,
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since the sequence (At) satisfies a maximal inequality. But now the oscillation
inequality follows from the inequality∫

Z

∑
k

|At(k)f − At(k+1)f |2 ≤
∫

Z
f 2.

This inequality, in turn, follows by examining the Fourier transform of the
left hand side.

Now the punchline is that the ergodic averages (Ut) also satisfy the oscil-
lation inequality since (Ut) and (At) are equivalent.

Let us summarize the scheme above: the maximal inequality for (Ut)
implies a maximal inequality for the (At) since the two sequences are equiv-
alent. But the (At), being a monotone sequence of projections, satisfy an
oscillation inequality. But then, again appealing to the equivalence of the
two sequences, the (Ut) satisfies an oscillation inequality.

What we have learned is that if a sequence of operators (Btf) satisfies
a maximal inequality, and it is equivalent to a monotone sequence (At) of
projections, then (Btf) satisfies an oscillation inequality..

In the remaining sections we will see that the scheme of proving an os-
cillation inequality for the averages along the squares (St) is similar, and
ultimately it will be reduced to proving a maximal inequality for a monotone
sequence of projections.

1.4 Periodic systems and the circle method

The difference between the usual ergodic averages and the averages along
squares is that the squares are not uniformly distributed in residue classes.
Indeed, for example no number of the form 3n−1 is a square. This property of
the squares is captured well in the behavior of the Fourier transform, Ŝt(α) =

1/t
∑

n≤t e
2πin2α: for a typical rational α = b/q, limt→∞ Ŝt(α) is nonzero

(while it would be 0 if the squares were uniformly distributed mod q).

We need some estimates on the Fourier transform Ŝt(α). Since we will of-
ten deal with the function e2πiβ, we introduce the notation e(β) = e2πiβ. Also,

the estimates for the Fourier transform Ŝt(α) are simpler if instead of the
averages 1

t

∑
n≤t τ

n2
f(x) we consider the weighted averages 1/t

∑
n2≤t(2n −

1)τn2
f(x). The weight 2n − 1 is motivated by n2 − (n − 1)2 = 2n − 1. Ev-

erything we said about the averages along the squares applies equally well
to these new weighted averages. Furthermore, it is an exercise in summation
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by parts to show that the a.e. convergence of the weighted and non weighted
averages is equivalent.

So from now on, we use the notation

Stf(x) =
1

t

∑
n2≤t

(2n− 1)τn2

f(x).

Let Λ̂(α) = limt Ŝt(α). By Weyl’s theorem, Λ̂(α) = 0 for irrational α and for
rational α = b/q, if b/q is in reduced terms, we have the estimate

|Λ̂(b/q)| ≤ c

q1/2
(1.5)

This inequality tells us that while the squares are not uniformly distributed
in residue classes mod q, at least they try to be: Λ̂t(b/q) → 0 as q →∞.

Now the so called circle method of Hardy and Littlewood tells us about
the structure of Ŝt(α). Let us introduce the notations P (t) = t1/3, Q(t) =
2t/P (t) = 2t2/3. According to the circle method, we have the following
estimates∣∣∣Ŝt(α)− Λ̂(b/q) · Ût(α− b/q)

∣∣∣ ≤ c · t−1/6; q ≤ P (t), |α− b/q| < 1/Q(t)

(1.6)∣∣∣Ŝt(α)
∣∣∣ < c · t−1/6, otherwise, (1.7)

where recall that Ut denotes the usual ergodic averages so Ût(β) = 1/t
∑

n≤t e(nα).

In other words, the estimate above tells us that Ŝt(α) is close to Λ̂(b/q) ·
Ût(α− b/q) if α is close to a rational point b/q with small denominator, and

otherwise |Ŝt(α)| is small.
Given these estimates, it is easy to see that the sequence (St) is equivalent

to the sequence (At) defined by its Fourier transform as

Ât(α) =
∑
b/q

q≤P (t)

Λ̂(b/q) · Ût(α− b/q) · 11(−1/Q(t),1/Q(t))(α− b/q)

It remains to prove an oscillation inequality for the At. To do this, first we
group those b/q for which q is of similar size:

Ep = {b/q | 2p ≤ q < 2p+1}

6



By the estimates in (1.5), we have

sup
b/q∈Ep

|Λ̂(b/q)| ≤ c · 2−p/2. (1.8)

Note also that if b/q ∈ Ep then the term Λ̂(b/q) occurs in the definition of
At only when t > 23p. Define the operator Ap,t by its Fourier transform as

Âp,t(α) =
∑

b/q∈Ep

Λ̂(b/q) · Ût(α− b/q) · 11(−1/Q(t),1/Q(t))(α− b/q), t > 23p.

Using the triangle inequality for the summation in p, we see that an oscillation
inequality for (At) would follow from the inequality∫

Z

∑
k

sup
t(k)<t<t(k+1)

|Ap,tf − Ap,t(k+1)f |2 ≤ c · p2

2p
·
∫

Z
f 2 (1.9)

We have learned in the previous section, Section 1.3, that it is useful to try
work with projections. As a step, we introduce the operators Bp,t defined via

B̂p,t(α) =
∑

b/q∈Ep

Λ̂(b/q) · 11(−1/t,1/t)(α− b/q), t > 23p.

Note that for each α there is at most one b/q ∈ Ep so that 11(−1/t,1/t)(α−b/q) 6=
0 or 11(−1/Q(t),1/Q(t))(α−b/q) 6= 0 for some t > 23p. Hence, using the estimates
in (1.3), (1.4), and (1.8), we get

|Âp,t(α)− B̂p,t(α)| ≤ c · 2−p/2 ·min{t|α|, (t|α|)−1}; t > 23p.

It follows that we can replace the (Ap,t) by the (Bp,t):∫
Z

∑
t>23p

|Ap,tf −Bp,tf |2 ≤ c · 2−p ·
∫

Z
f 2

In order to prove the required oscillation inequality for the Bp,t, we make one
more reduction. Namely, we claim that defining Cp,t by

Ĉp,t(α) =
∑

b/q∈Ep

11(−1/t,1/t)(α− b/q), t > 23p.
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(so Ĉp,t is just Bp,t without the multipliers Λ̂(b/q)), we need to prove∫
Z

∑
k

sup
t(k)<t<t(k+1)

|Cp,t − Cp,t(k+1)|2 ≤ c · p2 ·
∫

Z
f 2. (1.10)

We leave the proof of this implication to the reader with the hint to replace
the function f by g defined by its Fourier transform as

ĝ(α) =
∑

b/q∈Ep

Λ̂(b/q) · 11(−2−3p,2−3p)(α− b/q) · f̂(α).

Indeed, then Bp,tf(x) = Cp,tg(x) and
∫

Z g2 ≤ c · 2−p
∫

Z f 2 by (1.8).
Now, the Cp,t form a monotone (in t) sequence of projections, and hence

they will satisfy the oscillation inequality in (1.10) once they satisfy the
maximal inequality ∫

Z
sup
t>23p

|Cp,t|2 ≤ c · p2 ·
∫

Z
f 2. (1.11)

To encourage the reader, we emphasize that our only remaining task is to
prove the inequality in (1.11) above.

1.5 The main inequality

Since the least common multiple of the denominators of rational numbers in
the set Ep is not greater than 2cp2p

and the distance between two elements
of Ep is at least 2−2p, the estimate in (1.11) follows from the following result

Theorem 1.4. Let 0 < δ < 1/2 and e(α1), e(α2), . . . , e(αJ) be distinct com-
plex Q-th roots of unities with |αi − αj| > δ for i 6= j. We assume that
δ−1 ≤ Q. Define the projections Rt by

R̂t(α) =
∑
j≤J

11(−1/t,1/t)(α− αj).

Then we have, with an absolute constant c,∫
Z

sup
t≥δ−1

|Rtf |2 ≤ c · (log log Q)2 ·
∫

Z
|f |2.
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We restrict the the range on t to t ≥ δ−1, because then the sum making
up Rt contains pairwise orthogonal elements—as a result on the separation
hypothesis |αi − αj| > δ.

Proof. Two essentially different techniques will be used to handle the supre-
mum. The first technique will handle the range δ−1 ≤ t < Q4, and the other
technique will handle the remaining t > Q4 range.

Let us start with proving the inequality∫
Z

sup
δ−1≤t≤Q4

|Rtf |2 ≤ c · (log log Q)2 ·
∫

Z
|f |2. (1.12)

We can assume that Q4 is a power of σ, say Q4 = σS, and then the range
δ−1 ≤ t ≤ Q4 can be rewritten as c log δ−1 ≤ s ≤ S, where we take log
with base σ. Introduce the monotone sequence of projections Ps = RσS−s ,
s ≤ S − c log δ−1. All follows from∫

Z
sup

s≤S−c log δ−1

|Psf |2 ≤ c · log2 S ·
∫

Z
|f |2.

It is clearly enough to show the inequality for dyadic S − c log δ−1:∫
Z

sup
s≤2M

|Psf |2 ≤ c ·M2 ·
∫

Z
|f |2.

For each integer m ≤ M consider the sets

Hm =
{
P(d+1)·2m − Pd·2m | d = 0, 1, . . . , 2M−m − 1

}
.

If the dyadic expansion of s is s =
∑

m≤M εm · 2m, where εm is 0 or 1, then
for some Xm ∈ Hm, Ps =

∑
m≤M εm ·Xm. It follows that

|Psf(x)|2 ≤ M ·
∑

m≤M

|Xmf(x)|2.

For each m, we have

|Xmf(x)|2 ≤
∑

d≤2M−m

|P(d+1)·2mf(x)− Pd·2mf(x)|2,
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hence∫
Z

sup
s≤2M

|Psf |2 ≤ M ·
∫

Z

∑
m≤M

∑
d≤2M−m

|P(d+1)·2mf(x)− Pd·2mf(x)|2

≤ M ·
∑

m≤M

∑
s≤2M

∫
Z
|Ps+1f − Psf |2

≤ M2 · 2 ·
∫

Z
|f |2.

Let us now handle the remaining range for t. We want to prove∫
Z

sup
t>Q4

|Rtf |2 ≤ c ·
∫

Z
|f |2. (1.13)

It seems best if we replace the operators Rt by the operators

Atf(x) =
1

t

∑
n≤t

∑
j≤J

e(nαj)f(x + n).

This replacement is possible if we prove the following two inequalities∫
Z

∑
t>δ−2

|Atf −Rtf |2 ≤ c ·
∫

Z
|f |2. (1.14)

and ∫
Z

sup
t>Q4

|Atf |2 ≤ c ·
∫

Z
|f |2. (1.15)

Let us start with proving (1.14). By Parseval’s formula, we need to prove

sup
α

∑
t

|Ât(α)− R̂t(α)|2 < ∞.

Fix α. Without loss of generality we can assume that of the αj, the point α1

is closest to α. Possibly dividing the sum on j into two and reindexing them,
we also assume that α1 < α2 < · · · < αJ . Using the separation hypothesis
|αi − αj| > δ for i 6= j, we have that |α− αj| > (j − 1)δ for j > 1.
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For t ≤ 1/|α−α1| we can thus estimate (recall that Ût(β) = 1/t
∑

n≤t e(nβ))
as

|Ât(α)− R̂t(α)| ≤ |Ût(α− α1)|+
∑

2≤j≤J

|Ût(α− αj)| by (1.3) and (1.4)

≤ c ·

(
t|α− α1|+

∑
2≤j≤J

1

t(j − 1)δ

)
≤ c · (t|α− α1|+ log J/(δt))

≤ c ·
(
t|α− α1|+ δ−2/t

)
where we used in the last estimate that J ≤ δ−1. Summing this estimate
over t ∈ I with δ−2 ≤ t ≤ 1/|α−α1| we get a finite bound independent of α.

For t > 1/|α− α1|, we have

|Ât(α)− R̂t(α)| ≤
∑

1≤j≤J

|Ût(α− αj)| ≤ c · δ−2

t
,

which, upon summing over the full range δ−2 < t, again gives a finite bound
independent of α.

Let us single out a consequence of inequality (1.14): there is a constant c
so that ∫

Z
|Atf |2 ≤ c ·

∫
Z
|f |2; t > δ−2. (1.16)

Our only remaining task is to prove inequality (1.15).
For a given t, let q be the largest integer so that qQ2 ≤ t. Note that

q ≥ Q2 since t > Q4. We can estimate as∣∣∣∑
n≤t

∑
j≤J

e(nαj)f(x + n)
∣∣∣

≤
∣∣∣ ∑
n≤qQ2

∑
j≤J

e(nαj)f(x + n)
∣∣∣+ ∣∣∣ ∑

qQ2<n≤t

∑
j≤J

e(nαj)f(x + n)
∣∣∣. (1.17)

We estimate the second term on the right trivially as∣∣∣ ∑
qQ2<n≤t

∑
j≤J

e(nαj)f(x + n)
∣∣∣ ≤ J ·

∑
qQ2<n≤(q+1)Q2

∣∣f(x + n)
∣∣.
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With this, we have

sup
t>Q4

(1

t

∣∣∣ ∑
qQ2<n≤t

∑
j≤J

e(nαj)f(x + n)
∣∣∣)2

≤ sup
q≥Q2

( J

qQ2
·

∑
qQ2<n≤(q+1)Q2

|f(x + n)|
)2

by Cauchy’s inequality

≤ sup
q≥Q2

J2 ·Q2

qQ2
·
∑

qQ2<n≤(q+1)Q2 |f(x + n)|2

qQ2

≤
∑
q≥Q2

J2

q2
· 1

Q2

∑
qQ2<n≤(q+1)Q2

|f(x + n)|2

Integrating the last line, we obtain the bound∑
q≥Q2

J2

q2
·
∫

Z
|f |2 ≤ c · J2

Q2

∫
Z
|f |2 ≤ c ·

∫
Z
|f |2.

since J ≤ Q.
Let us now handle the first term on the right of (1.17). Since e(αj) satisfies

e((mQ2 +h)αj) = e(hαj) (this is the first and last time we use that the e(αj)
are Q-th roots of unities), we can write, defining Tg(x) = g(x + Q2),∣∣∣1

t

∑
n≤qQ2

∑
j≤J

e(nαj)f(x + n)
∣∣∣ ≤ ∣∣∣1

q

∑
m≤q

Tm 1

Q2

∑
h≤Q2

∑
j≤J

e(hαj)f(x + h)
∣∣∣.

By the ergodic maximal inequality, applied to T , the `2 norm of our maximal
operator is bounded by the `2 norm of

1

Q2

∑
h≤Q2

∑
j≤J

e(hαj)f(x + h).

But the estimate in (1.14) says, the `2 norm of the above is bounded inde-
pendently of Q since Q2 > δ−2 by assumption.

1.6 Notes

More details More details and references can be found in [RosW]. In par-
ticular, the circle method and the transference principle are described
in complete details—though no proof of the main inequality of Bour-
gain, Theorem 1.4, is given. The inequalities (1.6) and (1.7) appear as
(4.23) and (4.24) in [RosW].
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Theorem 1.1 The result is due to Bourgain ([Bou1]). He later extended
the result to f ∈ Lp, p > 1; cf [Bou2]. The case p = 1 is the most
outstanding unsolved problem in this subject.

Idea of proof The basic structure of the proof is that of Bourgain’s ([Bou2])
but we used ideas from Lacey’s paper [La] as well—not to mention some
personal communication with M. Lacey.

Other sequences The sequence of primes is discussed in [Wi]. But we’d
like to emphasize that the L2 theory of the primes is identical to the
case of the squares. The only difference is in the estimates in (1.6) and
(1.7).

A characterization of sequences which are good for the pointwise and
mean ergodic theorems can be found in [BoQW].
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