GENERALIZED POLYNOMIALS AND MILD MIXING
SYSTEMS

RANDALL MCCUTCHEON AND ANTHONY QUAS

ABSTRACT. An unsettled conjecture of V. Bergelson and I. Haland
proposes that if (X, A, u,T) is an invertible weak mixing mea-
sure preserving system, where u(X) < oo, then if p1,po,...,pk
are generalized polynomials (functions built out of regular poly-
nomials via iterated use of the greatest integer or floor function)
having the property that no p;, nor any p; — p;, ¢ # j, is con-
stant on a set of positive density, then for any measurable sets
Ag, Ay, ..., Ak, there exists a zero-density set £ C Z such that
lim,, oo mgm w(Ag NTPHM AL N NTPM ALY =TT pu(A;). We
formulate and prove a faithful version of this conjecture for mild
mixing systems and partially characterize, in the degree two case,
the set of families {p1, pa, ..., px} satisfying the hypotheses of this
theorem.

1. INTRODUCTION

A single operator, strongly mixing measure preserving system may
be defined as a quadruple (X, A, u,T), where (X,.A, ) is a proba-
bility space and 7' is an invertible measure preserving transformation
of X having the property that for every A, B € A, lim, .. u(AN
T"B) = p(A)u(B). An outstanding open problem in ergodic the-
ory is that of whether such systems must exhibit “strong mixing of
higher orders”. So, for example, it is unknown whether the above
entails limy, . m—nooo W(ANT"B NT"C) = p(A)u(B)u(C). More
(or less, if one is betting against) modestly, it is unknown whether
lim, oo pW(ANT"BNT*C) = p(A)u(B)pu(C) must hold for mixing
systems.

On the other hand, there are other notions of mixing for which
such questions do have satisfying answers, for example weak mixing
and mild mizing. A system (X, A, u,T) is weakly mixing if L*(X)
has no non-constant eigenfunctions under the unitary action 7'f(z) =
f(Tx). Another characterization of weak mixing, running more along
the lines of the prior characterization of strong mixing, goes as fol-

lows: for a set E C Z, define the upper density of E by d(E) =
1
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limsup,, ., % Next, for x and a sequence (x,) in a topologi-
cal space, we write D-lim,z, = x if for every neighborhood U of =,
the complement of the set {n : x,, € U} has zero upper density. We
may now characterize weak mixing as follows: a system (X, A, u,T) is
weakly mixing if and only if for every A, B € A, D-lim,u(ANT"B) =
u(A)u(B).

In light of this characterization, it becomes natural to ask if one may
in fact obtain, e.g., D-lim,u(ANT"BNT*'C) = u(A)u(B)u(C). The
answer is yes. H. Furstenberg has shown in [6] that in weak mixing
systems, for any £ € N and measurable Ay, A, ..., A,

k
(1.1) D-lim,, (Ao N T" Ay (- N TFAy) = [ ] ().
=0

A “relativized” version of this consequence of weak mixing formed an
important part of his proof, via ergodic theory, of Szemerédi’s theorem
on arithmetic progressions, and is often referred to as “weak mixing of
all orders”, a designation that is perhaps somewhat misleading, as we
shall now see. In [1], V. Bergelson proved a result involving polynomial
powers of T for which (1.1) forms the linear case. His theorem states
that in weak mixing systems and for any polynomials p; € Z[z], 1 <
¢ < k, having the property that no p; and no p; — p; is constant,
1 <i+# j <k, one obtains

k
(12)  D-limy, p(Agn T M A - 0T AL = [ w(A)).
=0

Thus we see that weak mixing implies, not merely weak mixing of
higher linear orders, but of higher polynomial orders as well. The next
question that arises is this: do such polynomial functions constitute
a suitably “most general class” of integer sequences along which weak
mixing systems are well behaved? In other words, are polynomial or-
ders all orders?

Again, the answer seems to be no. Bergelson and I. Haland have
proved (unpublished) that for some interesting and non-trivial classes
of generalized polynomials p;, (1.2) remains valid under suitable hy-
potheses. Generalized polynomials Z — Z may be defined as follows.
For r € R, let [r] denote the integer part of 7, i.e. the greatest integer
less than or equal to r. Put also {r} = r — [r], the fractional part
of r. The set of generalized polynomials Z — 7Z is the smallest set
G that is a function algebra (i.e. is closed under sums and products)
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containing Z[z| and having the additional property that for all m € N,
c1,...,¢m € Rand py,...,pm € G, the mapping n — > ¢;pi(n)] is
ingG.

Though we cannot explain here (the definitions are quite technical)
precisely which classes prove amenable to the Bergelson-Haland analy-
sis, it is simple to understand why (1.2) cannot possibly hold for arbi-
trary generalized polynomials p; under the hypothesis that each p; and
each p; — p; fails to be constant. Consider for example p(n) = [2{7n}],
a generalized polynomial that, while not constant, is finite-valued. Or,
for an only slightly more exotic example, ¢(n) = np(n), which, while
taking on infinitely many values, is zero for many (roughly half, in the
sense of asymptotic density) n. Note that these examples violate (1.2)
for the same rather pedestrian reason: they are constant on a set F
having positive upper density. Indeed as Bergelson and Haland note,
(1.2) cannot possibly hold across all weak mixing systems if there exists
a set I of positive upper density on which some p; or some p; —p; is con-
stant. Accordingly, any k-tuple (py,...,px) for which they are able to
prove (1.2) has a fortiori the following property P : on no set E having
positive upper density is any p; or p; — p; constant, 1 <14 # j <k.

Interestingly, Bergelson and Haland could find no counterexample
to (1.2) having property P. On the other hand, they were unable to
prove that P entails (1.2). Accordingly, they formulate the following
conjecture.

Conjecture A. (Bergelson-Haland). If p; are generalized polynomials,
1 <@ <k, such that no p; and no p; —p;, 1 < i # j <k, is constant
on a set of positive upper density, then for any weak mixing system
(X, A, 1, T) and any A; € A, 0 <i <k, (1.2) holds.

We do not directly address the foregoing conjecture in this paper. We
do, however, offer a faithful rendition of the conjecture in the context
of mild mixing, then provide an affirmative answer to this recasting of
the problem. First, some background.

Let (X, A, i, T) be an invertible measure preserving system, where
u(X) = 1, and suppose that f € L?(X). If there is some sequence
of natural numbers (n) such that 7" f — f (weakly or strongly, in
measure or pointwise), then f is said to be a rigid function. (X, A, u,T)
is mildly mixing if the only rigid functions in L?(X) are the constants.
Any mildly mixing system is weakly mixing, for eigenfunctions are
rigid. To see this, suppose that T'f = af. Since T acts unitarily on
L3(X), |a| = 1, and we may choose a sequence (n;) of natural numbers
with a™ — 1, etc. On the other hand, there are weakly mixing systems
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that fail to be mildly mixing, and mildly mixing systems that fail to
be strongly mixing (see [9] for details).

We have seen that weak and strong mixing each have characteri-
zations running roughly as follows: for any system (X, A, pu,T), it is
both necessary and sufficient for (insert version of, i.e. weak or strong)
mixing that for any A, B € A and any ¢ > 0 the set of n for which
|W(ANT"B) —pu(A)u(B)| < €is (in an appropriate sense) “large”. Here
“large” means “co-finite” in the case of strong mixing, and “comple-
ment of a set of density zero” in the case of weak mixing. Mild mixing
has a characterization of this form as well; the sense of “large” appro-
priate to it is “IP*”. (A subset E of an additive semigroup S is IP* if
for any sequence (x;) in S, there is some finite, non-empty o C N such
that ) .., x; € E. See below.)

One may now guess that a mild mixing analogue of (1.1) would say
that for every e > 0, the set M = {n : |u(AgNT"A;--- NT*AL) —
Hfzo,u(AiN < €} is IP*. (By IP* here and elsewhere, we mean IP*
as a subset of N, not as a subset of Z. The reason this distinction is
important in that any set that is IP* as a subset of Z must contain
zero; M does not.) This is in fact true for mild mixing systems, as
is shown in [7](Section 9.5), entitled “Mild mixing of all orders.” Here
again, however, linear orders proved not to be “all”: indeed, Bergelson
already in [1] (Theorem 4.8) states as an unproved corollary to (the
proof of) his main result the following mild mixing version.

Theorem B. Let (X, A, u,T) be a mildly mixing system, and suppose
pi(x) € Z[z] are polynomials with no p; and no p; — p; constant, 1 <
i # j < k. Then for any e > 0 the set {n : [u(Ag N TP™MA, ... N
TP A — T, p(i)| < €} is IP*.

Let us consider now how to best formulate a version of Theorem B
for generalized polynomials. By analogy with the discussion leading
up to Conjecture A, the hypotheses must be strengthened to preclude
the possibility of some p; or p; — p; being constant on a non-trivial
set, for some appropriate interpretation of “non-trivial”. (In the weak
mixing case, “non-trivial set” meant “positive upper density set.”) A
moment’s reflection indicates that the correct interpretation of “non-
trivial set” in the mild mixing case is “IP set.” In other words, given
generalized polynomials p;, 1 <7 < k, and € > 0, an obvious necessary
condition for {n : |u(Ag N TP A, ... N TPM A, — Hf:o w(Ay)| < €}
to be IP* across mildly mixing systems is for p;, and p; — p; to be non-
constant on every IP set in N. (For example, if p; —p; = C on an IP set
R, then taking A; to be the complement of T A; yields a zero-measure
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intersection on R.) A faithful mild mixing version of Conjecture A,
then, would assert that this necessary condition is also sufficient.

Theorem C. If p; are generalized polynomials, 1 < i < k, such that
no p; and no p; —p;, 1 <1 < j < k, is constant on an IP set of
natural numbers, then for any mild mizing system (X, A, u,T) and
any Ao, A1, ..., Ap € A, the set {n: |u(AgNTPH™ A, ... ATPM A4,) —
[Ty (A < €} is 1P

The structure of the paper is as follows. In Section 2, we give our
proof of Theorem C. Then, in Section 3, we offer a partial charac-
terization, in the degree 2 case, of the set of families of generalized
polynomials meeting the hypotheses of Theorem C. Finally, in Section
4, we discuss some Z" extensions of our results.

Remark. The class of totally ergodic systems is also suitable for multiple
mixing, at least for families of polynomials that are independent over
the rationals, as N. Franzikinakis and B. Kra established in [5]. The
question as to which families of generalized polynomials this may work
for is an interesting one that we shall not attempt to address here.

2. PROOF OF MAIN THEOREM.

We denote by F the family of non-empty finite subsets of N. An
F-sequence in a set G is a function v : F — G. There is a special
sense of convergence applicable to F-sequences when G is a topological
space, of which more in a moment. For a,3 € F, we write § < «a if
max § < mina. Suppose a; € F, i € N, with ay < as < ---. The set
FM of non-empty finite unions of the o;’s, is called an IP ring. Note
that " is the isomorphic image of F under the map § — Uieﬁ Q.

The restriction of a given F sequence to an IP ring F) plays a role
analogous to that of a subsequence of a given sequence.

Having defined IP rings, we are in a position to state the following
well-known result of N. Hindman [10](Corollary 3.3): given any finite
coloring of an IP ring F, there exists an monochromatic IP subring
F@ c FO. (In saying that F? is a subring of ), we mean nothing
over and above set-theoretic inclusion.) Now suppose G is an abelian
(semi-)group. If v is an F sequence into G satisfying v(a U ) =
v(a)v(B) when o N 3 = ) then we say that v is an IP system, and we
refer to its range v(F) C G as an IP set. An IP* subset of G is a set
E C G that intersects every IP set in G nontrivially.

As for the notion of convergence, here it is: if G is a topological
space, x € G, v is an F-sequence in G and F is an IP ring, we write
IP-lim,. r0) v(a) = @, or say that v(a) — z, a € FW if for every
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neighborhood U of  there exists oy € F such that for every a € F(1)
with a > ag, v(a) € U. If p: N — G, we write IP*-lim,en p(n) = x if
for every neighborhood U of x, the set {n € N : p(n) € U} is IP*.

The following can be proved by substituting Hindman’s theorem for
the pigeonhole principle in the proof of the Bolzano-Weierstrass theo-
rem.

Theorem 2.1. Let X be a compact metric space and suppose v 1is
an F-sequence in X. Then for some IP ring FY and some z € X,
IP-limgcroy v(a) = x.

The following result is well known. (See [8], Theorem 1.7.)

Lemma 2.2. Let U be an IP system into a commutative group of
unitary operators of a Hilbert space H. If FO) is an IP ring such that
IP-limycro) U(a)f = Pf exists weakly for all f € H, then P is the
orthogonal projection onto a closed subspace of 'H.

At first glance it might appear that the hypotheses of Lemma 2.2
could be rarely satisfied, however this is not the case. Indeed, with the
help of Theorem 2.1 and a standard diagonalization argument, one can
always find an IP ring ) such that IP-lim, . ) U(a)f exists weakly
for all f € H, provided H is separable.

We now pass to VIP systems, which are polynomial-like variants of IP
systems (for more information, see [2] and [12]). Suppose again that G
is an abelian group (from now on, however, we shall write the operation
of G additively). For a set «, let |a| denote its cardinality. Suppose
there exist d € N and a function f : {0} U{a € F: |a| < d} — G
satisfying f(0) = 0 and f(y) # 0 for some |y| = d. Then, letting
v(a) = Z’YCQ,|7|§d f(7), v is called a VIP system of degree d. f is
called the generating function of v. It is a simple exercise to show that
the generating function of a VIP system is unique, so that in particular
the degree is well defined.

Given a VIP system v into Z and some fixed § € F, we define, for
a > 3, v(a) = v(aUB) —v(a) —v(B). The family of VIP systems
into Z itself forms an abelian group under addition, and one may check
that the map 3 — v” is, modulo a certain technicality we shall address
presently, a VIP system into this group. The technicality involves the
fact that v” is only defined for o > 3. One may overcome this difficulty
as follows: given an IP ring FU), let Q' = (Z, FY) be the group of
all VIP systems F() — Z and define an equivalence relation on ¢
whereby vy is equivalent to vs if there exists some a € F such that
vi () = vy(a) for every a € F with a > ag. One easily checks that
the group structure lifts in a well-defined way to the set of equivalence
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classes, which we may denote by Q = Q(Z, F). Now it is easy to see
that # — v? has a natural interpretation as a VIP system F — Q,
and moreover that degv® = degv—1. We shall utilize this construction
in the proof of Theorem 2.7 below.

What we require of the connection between VIP systems and gener-

alized polynomials is summarized in Proposition 2.3, which is a weak
form of [3] (Theorem 2.9).

Proposition 2.3. Let p(x) be a generalized polynomial and suppose
n is an IP system in N. Then for every IP ring F) there exists an
IP ring F® < FO and ¢ € Z such that the restriction of v(a) =
p(n(a)) +c to F@ is a VIP system.

The following lemma is standard (see [8] Lemma 5.3).

Lemma 2.4. Suppose that (x4)acr is a bounded F-sequence in a Hilbert
space and FY is an IP-ring. If
IP-lim IP-lim{x 4, Taup) = 0

BeF) acF()
then along some subring F c FU |z, — 0 in the weak topology.

Proposition 2.5. Suppose (X, A, u, T) is a mildly mizing system. If
fyg € L>®(X) and n is an IP system into Z that is not identically zero
when restricted to any IP subring of a given IP ring FO), then there
exists a refinement F? C FO such that

i 1t (] ) (f ).

Proof. As remarked earlier, by passing to a refinement F® ¢ FO),
we may assume that in the weak operator topology, 7™} converges
to a limit Qh for all h € L*(X). By Lemma 2.2, ) is an orthogonal
projection. In particular, @ is idempotent, so that T%®Qqg — Q%*¢ =
(Rg. Since Qg is rigid and 7" is mildly mixing, )¢ is constant. In fact, as
@ is an orthogonal projection, we have Qg = [ gdu. In other words,
T g converges weakly to Jgduas a — o0, a € F®@ . The result
follows. U

The following theorem is a special case of [11] (Lemma 1.2).

Proposition 2.6. Let G be a commutative group with identity I and
suppose that v is a VIP system into G. If v(a) = g € G for every a in
an IP ring FO) then g = I.

The next theorem forms the bulk of the work required for our main
result. It uses an inductive scheme originally used in [1], under the
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moniker “PET-induction”, and which runs in our case as follows: given
two VIP systems v and w, we write v ~ w if degv = degw > deg(v —
w). One easily checks that ~ is an equivalence relation. Given a
finite set A = {vy,...,vx} of VIP systems, define the weight of A by
w(A) = (wy,wy, . ..), where w; is the number of equivalence classes of
degree ¢ VIP systems represented in A. Finally for distinct weights
w = (wy,ws,...) and u = (ug,uy,...), one writes w > u if wy > uy,
where d is the largest j satisfying w; # u,. This is a well-ordering of
the set of weights, and PET-induction is simply induction on it.

We shall use one other combinatorial fact as well. Recall that Hind-
man’s theorem states that for any finite coloring of an IP ring F®),
there exists a monochromatic refinement F? < FU_ In fact, for any
finite coloring of the pairs {(3,a) : 8,a € FW 3 < a}, there exists
a refinement F? c FO such that {(8,a) : ,a € F@ B < a} is
monochromatic. (This is a special case of the Milliken-Taylor theorem.
See [13, 14].)

Theorem 2.7. Suppose (X, A, u,T) is a mildly mizing system, k €
N, and let vq,...,vx be VIP systems into Z such that neither v; nor
v; — v; 18 identically zero on any IP subring of a given IP ring FO,
1<i#j <k If fo,...,fx € L>®(X) then there exists a refinement
F@ c FO such that

k
Pt [ fo ) i 1 =T ([ fodu)
=0

acF(2)

Proof. The proof is by induction on the weight vector w(A) of A =
{v1,...,uc}. By Proposition 2.5, the result holds when the weight
vector is (1,0,0,...). Suppose for induction that the result holds for
families having weight vector w < w(A).

For standard reasons, we may assume without loss of generality that
f fadp =0 for some a, 0 < a < k. We reduce the general case to this
special case by employing the identity

k k k k k—1
Hal_HbZ = (ao—bo) Hbi"‘ao(al—bl) Hbz"‘ -t <HCL1> (at—bt)
=0 =0 i=1 =2 =0

under the integral, with a; = T"(®f; and b, = ffZ du, 0 <1 < k.
Indeed, by composing through by 7-%(® if necessary, where v; is of
minimal degree (this does not change the weight vector), we may in
fact assume that 1 < a < k. Also without loss of generality we may
assume that || filloc < 1,0 <1i < k.

We shall complete the proof by showing that for some refinement
F@ c FO, Hle TU(@ f; — 0 weakly. Using Lemma 2.4, with z, =
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Hle TV ;. it will suffice for this purpose to show that (by passing
to a refinement if necessary),

[P-lim IP-lim(z,, 7,
et Lt e o)

k k
2.1) —IP-lim IP-lim / [[7o s T[T fi dp
’ i=1 i=1

BeFM) aeF@)

k k
— IP-lim IP-lim 7o) £, TT v+ @ (7vi® £y dy = 0,
P-lim 1Pl | [[rs]] (O ;) dp

where v (o) = v;(@ U 8) — v;(a) — v;(3). Recall that deg(v]) < degw;,
so that in particular v; + vf ~ ;.

We claim we can pass now to a refinement (we continue to call it
FM)) having the property that for all 8, € FU with 3 < a, vf(a) =+
vj(a) — v;(a) for all ¢, 5. For, otherwise, by Milliken-Taylor, we could
pass to a refinement for which there exist i, j such that for all 5, €
FO with 8 < a, v7(a) = vj(a) — vi(a), which would require that the
VIP system 3 — o from F® into Q(Z, FM) take on the constant
value v; — v;, which by hypothesis is not equal to I in violation of
Proposition 2.6. It follows that for any 8 € FU there exists no IP
subring of F1) restricted to which v/ = vj — v;. Similar considerations
achieve the same conclusion regarding the equations v;@ — vf = v — v,
1<i#j<k

Again by a similar consideration, we may assume that vf is either
the identity for all 3 € F) (as will happen when v; is of degree one),
or for no B € FW. Let w be the number of indices for which the
former occurs. Permuting indices so that degv; is non-decreasing with
i,wemayassumevleifl§i§wandv?%]ifw<i§k. For
B e FO, write A% = {v1, -+, Up, V1 + V0,1, 0k + vp}. By the
facts obtained in the previous paragraph, A” is a mixing set, meaning
there is no IP subring of () on which some member of A®, or some
difference of two members, is constant. Moreover, w(A®) = w(A).

The double limit in the last line of (2.1) may be rewritten as

BeFM) acF()

[P-lim IP-lim / [T TP £
=1
(2.2) K
] 7 FTo @ (v £, dp,

i=w—+1



10 RANDALL MCCUTCHEON AND ANTHONY QUAS

For fixed 3 € FU the set B® = {vy—v1, ..., Uy — V1, Vi1 — V1, . - -, Vg —
V1, Va1 +vg+1 —U1, e, vk—i-v}f—vl} precedes AP. The reason for this is
that vy is of minimal weight, so that subtracting throughout by v, will
decrease the degree of every VIP system that is equivalent to vy, while
failing to change the degrees of the other ones. Moreover, if neither v;
nor v; is equivalent to vy, then v; ~ v; if and only if v; — v; ~ v; — vy.
These considerations imply that B” has one less equivalence class under
~ of degree degv; and the same number of equivalence classes at any
degree greater than degwvy.

At any rate, by the fact that 7' is measure preserving, and making
use of the induction hypothesis to pass to the limit in «, (2.2) may now
be rewritten

[P-lim IP-lim / [[7e @@ (T g
i=1

BeF() acF()

k
[T 7@ Fiv@+v] (@)=vle) (7uil) £y dy

i=w+1
w k )
— IP-li TP £ /Zd = /id =0,
ﬁefl(gli_l(/f fidp) fidp ljll fidu)

as required.
O

We now come to our main result. Denote by Gne the set of those
p € G that are constant on no IP set in N.

Theorem 2.8. Suppose (X, A, u, T) is a mildly mizing system, k € N,
and let py,...,pr be generalized polynomials such that p; € Gye and
pi—pj €Gne, 1<i# < k. If fo,..., fx € L®(X) then

k
: 1(n) £ .. 7PK(N) _ .
7" Jim / FoTP ) TP £ gy — q ( / fidy).

Proof. Let n be an arbitrary IP system into N and let ¢ > 0 be arbi-
trary. By Proposition 2.3 there exist an IP ring ) and constants ¢;,
1 <4 < k, such that v;(a) = p;(n(@)) — ¢; define VIP systems, and
since moreover p; € Gne and p; — p; € Gne, We may assume as well
(invoking Theorem 2.1 in the extended integers) that |v;(«)| — oo and
lvi(a) — vj(a)] — o0, @ € FU 1 <4 # j < k. Thus Theorem 2.7
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applies, so there exists a refinement F® ¢ FU with

k
tPtim [ 7 g7 e = [ [ fudu)
1=0

acF(2)

This means that for some o € F@,

k
/ fTm @) @) g~ T ( / P du))
=0

k
o| [ aren-esre ooz gy - T [ gaw)]
1=0

_ /foTvl(a)(Tclfl) oo k(@) (T fr) dp — ﬁ (/Tcifi du) ‘ < €,
i=0

as required. O

Theorem C from the introduction follows from Theorem 2.8 by let-
ting f =1 A-

3. A PARTIAL CHARACTERIZATION OF Gnc IN THE DEGREE 2 CASE.

In this section we offer conditions for identifying whether or not a
generalized polynomial of degree two belongs to Gne. The most general
form we consider is

ni n2

H(n) = Z[ain[bm + w;] + v + Z[cln + w;|[din + x4]

=1 =1

(3.1) s s
+ Z[em + il + Z[me + zi].
i=1 i=1

Any generalized polynomial of order at most 2 can be reduced, up
to a bounded error term, to this form, excepting those which contain
iterated expressions of the type

G(n) = larlaz[- - axn]] - - - ]}[ba[ba]- - - [Bin]] - - -]].

Cases of this type are usually considered pathological; Bergelson and
Haland, for example, exclude them from their treatment.

We will write [z] for the integer part of x and {z} for the fractional
part of 2. We also put [z] = [z+ 1] for  rounded to the nearest integer
and we let {z}} = = —[z]. We will use ® to denote the Q-linear tensor
product. We will consider R@ R so that 1 ®2=2®1=2(1®1), but

V2@ V3 #£ V30 V2.
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For the moment we shall restrict attention to the subclass obtained
by requiring u; = v; = w; = ¥; = y; = z; = 5 in (3.1); in other words,
where [[-]] replaces [-] and these constants are missing. Using generalized
polynomials with rounding will cause us a few problems we shall have
to deal with when we return to the general form (3.1) later.

There are however some advantages. For example, given real num-
bers a;, 1 <1 < k, and any IP system n into N, there exists an IP ring
F such that

(3.2) IP—li(rgl{{am(oz)}} =0, 1<i<k.
acF(

The corresponding statement for {-} fails (consider a case where, for
example, ay = —ay). If ;] < 1/(2|n]) for ¢ = 1,...,n, we see that
{1+ .+ ={} +. ..+ {z.}}. It follows that if |x| < 1/(2|n|)
then {nz}} = nf{z}} (where n is an integer). A corollary of these
observations is the following fact that we exploit in several places:

Lemma 3.1. Suppose that (a;)1<i<m and (b;)1<j<, are related by the
equalities a; = Zj Cijbj. Then given any IP-system n into N, there is
an IP-ring FY such that

fan(a)} = Z Cii{bn(a)} foralll <i<m and a € FY.

n2

Suppose we are given sequences of reals (a;)2, (b)), (¢i)i2y, (di)i2y,

(€))7, and (p;)i,. Define

ng n,

(3.3) F(n) = Z[[am[[bmﬂ]] + > lem]ldin] + Z[[emﬂ + ZHPmQH-

=1

Then one has the following:

Theorem 3.2. Let F' be as in (3.3). Suppose there is an IP system n
into N such that F on is constant. Then the following three conditions
must be satisfied:

(1) ialbz+icldz+ipz :O,
=1 =1 =1
=1

i=1 =1
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Conversely, suppose (1), (2) and (3) are satisfied. Then for any IP
system n into N, there exists an IP ring F) such that Fon is constant
on FO.

We shall prove Theorem 3.2 with the help of the following lemma,
whose proof is, for the moment, deferred.

Lemma 3.3. Let (a;)%_, and (b;)%_, be real numbers. Then the follow-
ing are equivalent

(i): There is an IP system n into N such that ), a;{bin(a)} =0
for all « € F.
(ii): Given any IP system n into N, there exists an IP ring FY
such that Y, a;{bin(a)}} = 0 for all « € FO).
Proof of Theorem 3.2. We start by observing the following:
(3.4)

F(n) = Zﬂaibm2 —amn{bn}] + Z(em — {lein})
+ Z(pm2 — {pin*}) + Z(Cm — {ein})(din — {din}})
=n? (leaibi +i:cidi +Z4:pi) +nie,~ + f(n)

+n (Z aif{bin} + Z(Ci{{dm}} + dvz{{cz‘”}})> :

where f(n) is bounded.

Suppose that F' is constant on the range of some IP system n. We
must establish (1), (2) and (3). Since the coefficient of n in the above
expression is bounded, it is immediately clear that in order for the
expression to be constant, the coefficient of n? must be zero, yielding
(1). Restricting now to an IP ring ), we may assume that the
foin}, e}, {din}} terms converge to 0. Hence in order for F on to
be constant, it is required that ) e; = 0, yielding (2).

Define G(n) by

G(n) = Z a;if{bin} + Z(Ci{{dm}} +difcin}).

We require nG(n) to be bounded on S = n(FW) so that G(n) < <
for some C. Choose pairwise disjoint aj, € FU and let ny = n(ay),
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so that [{bine B}, |dcinw B}, [f{diny}| are less than 27F for each . Fix
n € S. Now for large k, m = n +ny € S so that G(m) < £. On the
other hand, for large k, G(n+ny) = G(n)+G(ng); it follows that Gon
is identically zero on F1) and so by Lemma 3.3 we get (3).
Conversely, suppose (1), (2) and (3) are satisfied and let n be an
[P system into N. Looking at (3.4), we see that the only non-trivial,
potentially unbounded term of F on is n(G e n) But according to
Lemma 3.3, G on is 0 restricted to some IP ring FM. A routine

application of Hindman’s theorem finishes the proof.
O

We need the following for the proof of Lemma 3.3.

Lemma 3.4. Let f1,..., fo be independent over Q. For n € N, define
the vector g, by (8,): = [fin]. Then for any infinite set S C N,
{g, :n € S} spans Q°.

Proof. Suppose not. Then the vectors (g, ),ecs span a proper subspace
of Qf. Pick ¢ € Qf such that (¢, g,) = 0 for each n € S. Dividing by n
and taking the limit, we get & f1 + - -+ + & fe = 0, a contradiction. [

Proof of Lemma 3.3. Adding an index k+1, if necessary, with ag,, = 0
and b1 = 1, doesn’t change the truth value of any of the conditions,
so we may assume without loss of generality that 1 is in the rational
linear span of the (b;). Let ej,eq,..., e, be a basis (over Q) for the
subspace of R spanned by (a;). Similarly, let fi,..., f, be a basis for
the subspace of R spanned by b;. These bases may be chosen in such
a way that the a; and b; are integer combinations of the e; and f;.
Specifically, we will have a; = > i A;je; and b, = >, Bir fr, where the
A;; and By, are integers. As noted above, 1 is assumed to be in the
rational linear span of the (b;) and hence of the (f;). We will assume
that fi € Q. Write Cj, = >, A;; By, so that C' is an m x ¢ matrix
with integer coefficients.

Assume that condition (i) holds. We shall establish (iii). Using
Lemma 3.1, choose a subsystem n of the system guaranteed by (i) such
that for every a- € F, {bin(a) }} = {32, Biefrn(@)}} = 225 Bun{{ fin(a) }}-
Put S for the range of n.
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For n € S one has

0= bl =323 Aues 3 Bl fin
= Z (Z AijBik> e;f fun

Jk i
= e fin}-
j?k
Let e denote the column vector having coordinates eq, ..., e, let
f denote the column vector having coordinates fi,..., fr, and let g,

denote the column vector whose ith coordinate is [nf;].

By assumption, we have e’C(nf — g,) = 0 for all n € S. Let
h = e’C'. We consider two cases: either (h,f) = 0 or not. In the latter
case, we write (h,f) =~ and we set h = % so that (h,f) = 1.

If (h,f) = 0, then we must have (h,g,) =0 for all n € S. However
since by Lemma 3.4 the g, span Qf, as real vectors they span Rf. It
follows that h = 0. Since the e; were assumed to be independent, it then
follows that the matrix C' was 0 so that ) . a; ®b; = Zj’k Cire; ® fr =
0e R®Q. .

If (h,f) = 1, then we must have (h,g,) = n for all n € S. Since
the g, span QY, it follows that the map x (fl,x> maps points in Q°
to rational values, so that h is a rational vector. Since f1, fa,..., fo
are independent over Q, and (h,f) is a rational multiple of fi, the
(rational) vector h must have a non-zero first entry and zero in all other
entries and so the same is true of h = e”C. Since the coordinates of e
were assumed to be rationally independent and C' has integer entries,
it follows that all columns of C' except for the first must be 0.

This yields
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;ai Dbi=> (; Aijej> ® (; Bikfk>

7

= Z (Z AijBikz) e; @ fx
ik

7

= Z Cjkej ® fk
7,k

= chlej ® fi
J

= (ZCj1€j> ®f1 € R@Q,
J

where in the second equality, we used the fact that ® is Q-linear in
both factors. Thus we have shown that (i) implies (iii).

We now show that (iii) implies (ii). Assume that condition (iii) holds.
Let the denominator of f; (the rational element of the basis) be q. We
have

dai®bi=) Ciue;®fr=)Y (Z Cjkej) ® fr-
i gk k J

Since this sum was assumed to be in R ® Q, it follows that the
terms involving f,, ..., f; in this sum must vanish, so that for £ > 2,
> i Cjre; = 0. Since the e; are assumed to be independent over Q and
the Cjj are integers, it follows that Cj;, = 0 for k > 2, so that C has
non-zero entries only in the first column.

Let n be an IP system into N. Choose an IP ring 1) such that
n(a) € ¢N for all @ € FO and note that for all a € FU one has
{fin(a)} = 0. Now using Lemma 3.1, pass to a further sub-ring
F@  FO guch that for all o € F@,

fom(@)} = {D_ Bufin(@)} = > Buf{ fin(a)}.
Thus for a € F®,

Z a;{bin} = Z Cire;{ fin}t = Z Cie;{ fin} =0,

as required. Thus we have shown that (iii) implies (ii). Since (ii)
obviously implies (i), we are done.
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O

We now prepare to apply Theorem 3.2 to generalized polynomi-
als expressed with the greatest integer function (not rounding). Let
ai,...,ar € R\ Q. Choose a basis ey, ..., e, for the Q-linear span of
{ajy,...,a;} over Q in such a way that a; = Zj Ajje;, 1 <i <k, where
the A;; are integers. Write A for the k x s matrix (4;;).

Proposition 3.5. Let ¢, € {—1,1}, 1 < i < k. The following are
equivalent.

(1) There exists an IP system n into N such that sgn{{a;n(a)}} =
€, 1 <i<kanda e F.

(2) There exists a column vector u € R® such that, letting v =
(v1,...,0)T = Au, one has sgnv; = ¢;, 1 <i < k.

Proof. Suppose (1) holds. One has na; = »_; Ajj(ne;). Again, us-
ing Lemma 3.1, choose an IP-ring F® such that for all a € FO),
fin(a)alt = >°; Aijf{n(a)e; . Fixing such an o and letting u be
the column vector whose coordinates are given by u; = {n(a)e;}},
1 <j < s, one has Au = v = (vq,...,0), where v; = {n(a)a;},
1 <i < k. Thus (2) follows from (1).

Next suppose (2) holds. We may assume without loss of generality
that both u and v have sufficiently small modulus to guarantee the
linearity we presume in the expressions to follow. For m € N, choose
by density of (nej,...,nes) on the torus some n,, € N such that the
vector h = ({nmerd}, ..., {nmes})T is sufficiently close to 27™u to
ensure that Ah = ({nna ), ..., {nna )T is very close to 27™v, in
particular, close enough that all coordinates have the same sign. Now

forae F,let n(a) => . . O

meox

Remark. Proposition 3.5 restricts the (a;) to irrational values; note that
{an}} = 0 can always be arranged along IP systems n for rational
values of a;.

Now consider the case of a generalized polynomial having the form

(3.5)  F(n)= Z[am[bm]] + Z[Cm] [din] + Z[ein] + Z[pﬂf]

i=1

We would like to determine whether or not there is an IP system n
into N such that ' on is constant. Our first (obvious) observation is
that we can change three sets of outer brackets to rounding brackets,
changing the value by a uniform bounded amount.
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ni n2

F(n) =Y [am[bn]] + ) [em][dn] + Z[[em]] + Z[[pm2]] + B(n),

i=1 =1

where B(n) is bounded. (By Hindman’s theorem we can make B con-
stant along relevant IP systems so we’ll just omit the B(n) term in what
follows.) In changing the remaining brackets to rounding brackets, we
do introduce potentially significant new terms:

F(n) = Z[[am([[bm]] +e(n)] + Z([[Cm]] +0i(n))([din] +~i(n))

+ Z[[ei"]] + Zﬂpinﬂ]a

where now €;(n) = [bn|—[bin]], §;(n) = [c;in]—[e;n] and v;(n) = [din] —
[din] take values in {—1,0}. Now, again using Hindman’s theorem, we
can choose constants x;, y; and z; in {—1,0} and an IP system n into
N such that ¢, on = z;, §; on = y; and v, on = z; on F. Now for
n = n(«) one has:

F(n) = Zﬂain([[bmﬂ + )] + Z([[Cz‘n]] + i) ([din] + 2:)

+ Z[[ein]] + ZﬂmeH

%

= Z[[am[[bm]]]] + Z[[%am]] + Z[[Cm]] ldin] + Z[[diymﬂ

+ 2 _lezn] + 3 lem] + 3 [pin’] + B'(n),

where B’ is bounded and hence negligible. Applying now the condition
of Theorem 3.2 to the above form yields the following.

Theorem 3.6. Let F' be given by (3.5). There exists an IP system n
into N such that F on is constant if and only if there are choices x;,
y; and z; in {—1,0} having the following properties:

(i) For some IP set S C N, one has, for alln € S, [bn] — [bin] = x;,
lein] — [en] = yi and [din] — [din] = 2.

(ii) These hold:
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(1) Zlaibi—i—zzcidri-ipi =0;
i=1 i=1 i=1

(2) i €; + i T;a; + i(yldl + ZZ'CZ') = 0;
=1 =1 =1

ni no
(3) Zai®bi+2(cz’®di+di®ci)€R®Q-
i—1 i1

Notice that, since [z] — [z] is —1 when sgn {z}} = —1 and 0 oth-
erwise, condition (i) can be determinately checked for any candidate
values of z;, y; and z; using Proposition 3.5 and the remark following
it; hence the necessary and sufficient conditions given in Theorem 3.6
are wholly explicit.

We now return to the general form H(n) given in (3.1). Our first
observation is that by moving integer parts outside of brackets we may
assume without loss of generality that w;, v;, w;, x;,y; and z; are all in
[0,1). Next, we may assume v; = y; = z; = 5 while changing H(n) by
a bounded amount. Finally, by (3.2), given any IP system n, every IP
ring contains a subring along which the value of H on will be unaffected
by setting all the non-zero u;, w; and z; equal to % (in other words, we
may assume that u;, w;, z; € {0,4}). The most general form we must
therefore consider is much as before, namely

(3.6)

ni

F(n) = _Jamn([bin] + e(n)] + Z([[Cm]] +0i(n))([din] +~i(n))

+ Z[[Gi”]] + Z[[pﬂfﬂ,

where ¢; is either given by €;(n) = [b;n] — [bin] or is identically zero, J;
is either given by 6;(n) = [¢;n] — [e;n] or is identically zero, and ~; is
either given by 7;(n) = [d;n] — [[d;n] or is identically zero.

Theorem 3.7. Let F' be given by (3.6). There exists an IP system n
into N such that F' on is constant if and only if there are choices x;,
y; and z; in {—1,0} having the following properties:

(i) For some IP set S C N, one has, for all n € S, ¢(n) = x;,
0i(n) = y; and vi(n) = z.

(i1) (1), (2) and (3) above hold.
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Theorem 3.7 gives an explicit answer to the question when a gener-
alized polynomial F' having form (3.6) has the property that F on is
constant for some IP system n. On the other hand, as we have argued,
if H has form (3.1) then there is some readily computable F' having
form (3.6) such that for any IP system n and any IP ring there is a
subring on which |H on — F o n| is bounded. Invoking Hindman, the
verdict that 3.7 gives in regard to F' will apply equally to H.

4. A NOTE ON MILD MIXING Z" ACTIONS

Up to now, we have restricted ourselves to Z-actions, however our
main theorem does have a Z" version. Given a measure preserving
Z"-action {T,} of a probability space (X, A, u), and f € L*(X), f is
said to be rigid if there is a sequence (n;) C Z" with |n;| — oo such
that T, f — f. {In} is mild mixing if there are no non-constant rigid
functions.

For fixed | € N, the set of generalized polynomials Z' — 7Z is the
smallest set G(WV) that is a function algebra (i.e. is closed under sums
and products) containing Z[x1, ..., ;] and having the additional prop-
erty that for all m € N, ¢1,...,¢m € R and py,....pm € GOY, the
mapping n — [>7 eipi(n)] is in GGV, A map p 1 Z8 — Z7 is a
generalized polynomial if its coordinate functions are generalized poly-
nomials, and we write p € G,

We now indicate how one would get a version of Theorem C for
mild mixing Z"-actions and generalized polynomials Z! — Z". One
ingredient is the following strengthening of Proposition 2.3.

Proposition 4.1. (¢f. [3], Theorem 2.9). Let p(z) be a generalized
polynomial Z' — Z" and suppose n is a VIP system in Z'. Then for
every IP ring FY there exists an IP ring F@ c FO and some c € Z"
such that the restriction to F® of v(a) = p(n(a)) +c is a VIP system.

Next, we state (without proof) a Z" version of Theorem 2.7.

Theorem 4.2. Suppose (X, A, pu,{Tn : n € Z"}) is a mildly mizing
system, k € N, and let vq,...,v, be VIP systems into Z" such that
neither v; nor v; — v; s identically zero on any IP subring of a given
IP ring FO, 1 <i#j<k. If fo,..., fr € L®(X) then there exists a
refinement F® C FO such that

k
1P [ T T fedi = TL ([ fide)
@ i=0
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Deriving a satisfactory (for our purposes) analog of Theorem 2.8 is
a bit more of an adventure. Notice that Theorem B from the intro-
duction contains no proviso vis-a-vis degeneration along IP sets, only
one precluding constant polynomials from consideration. This is be-
cause non-constant polynomials Z — Z do not degenerate along IP
sets, however such is not the case for polynomials Z! — Z". For exam-
ple, let p(x1,25) = 29 — x1 and let n be any IP system into N. Then
n(a) — (n(a),n(e)) defines an IP system into Z* having the property
that p(n(a)) = 0 for every a € F.

This is all somewhat annoying, as we wish to formulate questions
concerning potential degeneration of generalized polynomials Z! — Z",
and we would like to have regular polynomials acting as a kind of
ideal base case free of degeneration, as before. In other words, we
are interested in which ways generalized polynomials Z' — Z" can
degenerate along IP rings, however, we wouldn’t like to count silly
examples such as the foregoing one as “legitimate.” This perspective
can be adopted at minimal cost, as we now outline.

Note that the cause of degeneration in the example just considered
is a linear dependence existing between the coordinate functions of N.
Accordingly, we agree to call an IP system n into Z' “degenerate” if for
some non-trivial vector ¢ € Z! and some IP ring 1, ¢ - n(a) = 0 for
every a € F). (Here - denotes ordinary dot product.) An IP system
that is not degenerate in this sense will be called an NIP system. NIP*
subsets of Z! and NIP*-limits are defined in the obvious ways.

Now by [4](Lemma 6.9), if p : Z! — Z" is a non-constant polynomial
and n is an NIP system into Z!, the restriction of & — p(n) to any
IP ring ) cannot be constant. This leads to the following theorem,
which is a special case of [4]( Theorem 6.10).

Theorem 4.3. Suppose (X, A, pu,{Tn : n € Z"}) is a mildly mizing
system, k € N, and let p1,...,pr be polynomials Z' — Z" such that
neither p; nor p; — p; is constant, 1 < i # j < k. If fo,..., fr € L*(X)
then

k

Now, denote by Ql(\f’é) the set of all p € G having the property that
p(n(a)) isn’t constant for any NIP system n into Z!. (Hence, as desired,
polynomials Z! — Z" comprise a subclass of Ql(\fg).) The following
extension of Theorem 4.3 can now be established from Theorem 4.2,
using Proposition 4.1.
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Theorem 4.4. Suppose (X, A, pu,{Tn : n € Z"}) is a mildly mizing
system, k € N, and let p1,...,px € G such that p; € g%’g) and
pi—p; €GVD 1 <i# i<k Iffo,..., fr € LX) then

neZ!

k
Pt [ i T edn = 1 ([ £1d).
=0

In order to appreciate Theorem 4.4 more fully, it would be nice to
know something about Ql(\fg) in some simple cases other than [ = r = 1.
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