GLOBAL PROPERTIES OF A FAMILY OF PIECEWISE
ISOMETRIES

AREK GOETZ AND ANTHONY QUAS

ABSTRACT. We investigate a basic system of a piecewise rotation
acting on two halfplanes. We prove that for invertible systems, an
arbitrary neighborhood of infinity contains infinitely many periodic
points surrounded by periodic cells. In the case where the under-
lying rotation is rational, we show that all orbits remain bounded,
whereas in the case where the underlying rotation is irrational, we
show that the map is conservative (satisfies the Poincaré recur-
rence property). A key part of the proof is the construction of
periodic orbits that shadow orbits for certain rational rotations of
the plane.

1. INTRODUCTION

In dynamical systems, one studies complexity in iterated mappings. It
is well known that stretching (hyperbolic behaviour) gives rise to posi-
tive entropy and hence highly complex behaviour. On the other hand,
isometries are known to have extremely simple dynamical behaviour.

In this paper, we study piecewise isometries in which the space is di-
vided into a finite number of pieces and then a different isometry is
applied to each piece. Buzzi [4] showed that in this case, the topologi-
cal entropy is zero. Nonetheless, experiments indicate that there can be
considerable complexity (see Figure 1). Such complexity arises solely
from the discontinuity. This paper studies a simple concrete family of
mappings, and attempts to describe the complexity that occurs.

Specifically for 6 € [0,1) and a,b € C, we define the piecewise isometry
T:C— Cby

1) T()= {

e (2 +a) ifze P ={z:Im(z) >0}
(2 +b) ifze Py ={z:Im(z) <0}.

Maps of this type were initially studied by Boshernitzan and Goetz [3].
It is straightforward to see that these maps are surjective if and only
if Im(a — b) < 0 and injective if and only if Im(a — b) > 0 and hence
bijective if and only if a — b is real. Boshernitzan and Goetz showed
that in the non-injective case, the map is globally attracting (there
exists M > 0 such that for all z € C, |T"z| < M for all sufficiently
large n). They also showed that in the non-surjective case, the map is
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FIGURE 1. A collection of orbits shown alongside a magnification

globally repelling (there exists M > 0 such that lim,,_, [7"z| = oo for
all z satisfying |z| > M). Their paper left open the apparently more
delicate case where T is bijective, and it is that case that we study in
this paper. Note that in this case T" preserves Lebesgue measure.

Piecewise rotations are examples of Euclidean piecewise isometries.
These systems generalize well known and studied interval exchanges
to a class of maps of R [4, 5]. However, unlike their one dimensional
counterparts, the dynamics of piecewise isometries in higher dimensions
often exhibit highly non-ergodic phenomena such as the apparent exis-
tence of microscopic periodic domains. While particular systems with
rational choices of parameters have been investigated [1, 2, 6, 9, 7, 12],
a general local theory of irrational piecewise isometries seems to be
lacking.

In particular, one of the most tantalizing questions is the apparent re-
cursive abundance of periodic cells in neighborhoods of a periodic cell.
However this article describes at behaviour at a macroscopic scale.
Specifically, we show (Theorem 1) that maps in our class have peri-
odic cells in an arbitrary neighbourhood of infinity. These cells form
almost-annuli which act as obstructions to orbits crossing the annuli.
A consequence (Theorem 2) is that the maps exhibit recurrence even
though the invariant measure is infinite.

2. PRELIMINARIES

We refer to the upper and lower half planes as atoms of T' (i.e. maximal
connected sets on which 7' is continuous). We label the upper atom
by +1 and the lower atom by —1 and then code the orbit of a point
by the sequence of atoms that its iterates lie in. More specifically, we
define s(z) = 1if Im(z) > 0 and s(z) = —1 otherwise. The itinerary of
a point z is then the sequence (s(7"z))n>0 in {£1}%". The equivalence
class of points sharing the same itinerary as a point z will be called the
cell containing z. Since a cell is the intersection of a countable family
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of half planes, it is convex (but may consist of a single point or possibly
a line segment). Clearly T" acts isometrically on a cell for all k.

Suppose that a point z has the property that inf | Im(7"z)| = a > 0.
Then if |y — z| < a, since y and z lie in the same half plane, [Ty —Tz| =
|y — z| < a. By assumption Tz lies at least a from the discontinuity so
that Ty lies in the same half plane as T'z. Continuing in this way, we
see that 7%y lies in the same half plane as T*z for all k. This shows
that given a point z whose orbit remains at least distance a away from
the discontinuity, its cell contains a disc of radius a centred at z

In particular, if a periodic point z = T%z has an orbit which does not
intersect the discontinuity, its orbit is bounded away from the disconti-
nuity so that the cell containing z contains a disc. This cell is mapped
to the cell containing 7'z, and that cell is mapped to the cell containing
T?z etc, so that the cells are mapped periodically. Such a cell is called
a periodic island. Recalling the definition of T: T'(z) = e*™(z — a)
for z € P, and €™ (2 — b) for z € P_y, the action of T on a periodic
island centred at z is to rotate it by 276 and map it to a periodic island
centred at T'z.

In the case where 6 ¢ @, the cell is a closed disk (possibly missing
a countable number of boundary points). To see this, note that if
z is one of the points on the periodic orbit which lies closest to the
discontinuity (say | Im(2)| = a), then if y is any point for which |y—z| >
a, there will exist (by density of multiples of 2wgf modulo 27) an n
such that rotation of y about z by 2wgné lies on the opposite side of
the discontinuity than z. It then follows that if the itineraries of y and
z agree until time gn — 1, they will disagree at time gn. The conclusion
is that any point y with |y — z| < a follows the orbit of z, whereas any
point with |y — z| > a has a different itinerary. If |y — z| = a, the point
has a different itinerary if and only if it lands on the discontinuity at
some stage, and this is in a different atom of the map. This establishes
that in the case where 6 is irrational, the periodic islands are closed
discs (possibly with a countable number of boundary points removed).
In the rational case, the cell consists of a convex polygon with sides
at angles that are multiples of 27 /¢ or in the case where ¢ is odd,
possibly 7/q (this arises as the region around the periodic point can
be cut ¢ times by nearby points entering the lower half plane when the
periodic point is in the upper half plane; and separately ¢ times by
points entering the upper half plane when the periodic point is in the
lower half plane).

A central concept that emerges in our work is the idea of periodic
orbits whose itineraries match those arising in rational rotations of the
circle. More specifically, if T9z = z, we say that z is p/q-rationally
coded if there exists y € C such that s(T"z) = s(R"y) and R"y ¢ R
for all n > 0, where R(z) = ey, (As usual, we require that p and ¢
have no common factors). It is the existence of such rationally coded
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FIGURE 2. Pair of orbits when ¢ is odd

orbits for suitable p/q (approximations of 6 from below) that we shall
establish in the proof of Theorem 1.

Note that in the case where ¢ is odd, there are two periodic itineraries
of the rotation R : z — €22/ (s(e2m(w+1)/)), o and (s(e2™(=2)/9)) 5.
The first of these corresponds to an R—orbit that is in the upper half
plane for (¢+1)/2 steps per period and the lower half plane for (¢—1)/2
steps per period, whereas the second corresponds to an R-orbit that
is in the lower half plane for (¢ + 1)/2 steps per period and the upper
half plane for (¢ — 1)/2 steps per period. We call the first of these the
upper p/q-rotational itinerary and the second the lower p/g-rotational
itinerary (see Figure 2). In the case where ¢ is even, there is a sin-
gle periodic orbit in {jzl}Z+ that is the itinerary the rotation by p/q,
namely (s(e2™(+32)/7)) o (Note that the choice of phase: 1/4 in the
odd case and 1/2 in the even case is not unique, but these phases max-
imize the distance of the periodic orbit from the discontinuity. It may
also be shown that the periodic orbits arising in the true maps have
arguments close to these values).

Of particular importance for us are the points on the periodic orbits
that correspond (in terms of itinerary) to the points of the rotation
orbits that lie nearest to the discontinuity. More specifically, if ¢ is
even, we call the points with itineraries matching the R itineraries of
ela eiﬂ(l*é), em(H%), e "4 respectively the I, II, III and IV quadrant
critical points. If ¢ is odd, I, I1, IIT and IV quadrant critical points have
itineraries that match the R-orbits of e'2a, ei”(l_ﬁ), ™1+ 20) and ¢ %
Note that in the case where ¢ is even, all four of the points lie on a
single orbit, whereas when ¢ is odd, the I and II quadrant critical points
lie on the upper orbit and the III and IV quadrant critical points lie on
the lower orbit. Typically the I and II quadrant critical points on the
p/q-rotationally coded orbit(s) are the points nearest the discontinuity
in the upper half plane, while the III and IV quadrant critical points
are nearest the discontinuity in the lower half plane.

We will use the familiar O(X') notation to denote quantities Y such that
Y| < C|X]| for some unspecified constant C' whenever ¢ is sufficiently
large. The constant C' may depend on 6 and o (that is the parameters
defining the map 7) but nothing else.
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F1GURE 3. The action of the invertible map T : C — C.
The map rotates the upper and lower halfplanes P; and
P_; by an angle 276 and their images are then slid by
different amounts.

3. RESuLTS

We study the bijective subclass of maps of the type defined in (1). This
corresponds to a —b € R. We may assume that a # b, as the case a = b
is trivial. By conjugating by a translation, we may assume that a and
b are themselves real and by conjugating by a dilation, we may assume
that a —b = +2. If the parameters satisfy a —b = —2, we can check by
conjugating with the map R(z) = —Zz that T is conjugate to the map
with angle —f parameters —a and —b (so that —a — (=b) = 2). Given
a—b=2, wecan writea=14+cand b=1— 0.

For this reason, we study the piecewise isometries defined below. For
6 € [0,1) and o € R, define the piecewise isometry Ty, : C — C by

) T00), {T{lzzz if 2 € P = {2:1m(2) > 0}

T2 it ze Py ={z:Im(z) <0}.
where T7(2) = 2™%(z + ¢ + 1). This means that 7\%” and 79"
are two distinct Euclidean rotations through some angle 276. We let
T denote the class of all T as 6 runs over [0, 1) and o runs over R.
We call o the asymmetry of ). In the case where o = 0, the map
is called symmetric as T is self-conjugate by the map z — —z.

It is useful to subdivide the class 7 according to whether the angle 6
is rational or irrational. Specifically, we let 7., denote the members of
the class whose underlying rotation is an irrational multiple of 7 and
7.2t denote those maps whose underlying rotation is a rational multiple
of 7.

Theorem 1. Let T € T be an invertible piecewise rotation with angle
of rotation 270.
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FIGURE 4. Rationally Coded Periodic Islands for # =
(3 — V/5)/2. The islands are labelled by their rational
rotation codes. Note that the islands are close, but do
not actually touch.

Irrational case: Let 0 ¢ Q and o € R. Then T has rotationally
coded periodic points in an arbitrary neighbourhood of infinity.
Rational case: Let 0 = c¢/d € Q with d > 2. Let py/qo be the
largest rational value less than 0 with qo < d and let pp/qp =

(po + kc)/(qo + kd). Then for sufficiently small o,

(1) For each k, T has a py/qi-rotationally coded periodic orbit
(or a pair of such orbits in the case where qy is odd);

(2) The periodic islands surrounding the points on this orbit
(this pair of orbits) touch so that the union forms an in-
variant ‘annulus’ surrounding the origin.

(3) If q; and q; have the same parity, then the periodic islands
on the p;/q; and py/q, orbits are equal up to translation (if
the parity 1s odd, then the periodic islands corresponding
to the upper orbit are equal, as are the periodic islands
corresponding to the lower orbit).

As a consequence, all orbits are bounded.

The theorem is illustrated in Figures 4 and 5.

Theorem 2. LetT' € 1,,.. Then for every set A of positive measure in
the plane, Lebesgue-almost every point of A wvisits A infinitely often (i.e.
T is conservative as a Lebesque measure-preserving transformation,).
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FIGURE 5. Periodic islands for #=1/5 with ¢ = 1. The
islands are labelled by their rational rotation codes. The
islands touch vertex-to-vertex.

Remark 1. Calculations show that the periodic islands for 7% provide

some kind of visualization of the rationals that approximate 6 from
below. If p/q is an approximation from below whose code is realized,
then the islands corresponding to the orbit lie roughly around a circle
of radius approximately 1/|60—p/q|. The islands themselves have radius
approximately 1/|g0 — p|.

Remark 2. While writing this paper, we found at least three fairly
distinct proofs of the Theorem 1. They can be briefly summarized as
follows:

Perturbation of near-returns: Find a point x such that T"x ~
x. Argue that T™ behaves in each atom like a rotation through
a known angle so that from z and T"x, you can infer a centre
of rotation z. Check that x and z lie in the same half plane for
n steps. Then z is forced to be a periodic point.
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Taylor Series: If the map is a piecewise rotation with irrational
angle 0, find p/q very close to 6 (with p/q less than 6). Given
a periodic itinerary (in this case, we use the itinerary of a peri-
odic point under rotation by 27p/q), there is a simple rational
expression for the position of a potential periodic point with the
given itinerary. The point obtained in this way is a true peri-
odic point with that itinerary if and only if its itinerary agrees
with the desired itinerary for a single period. This method con-
sists of controlling the location of the points on the orbit using
a Taylor series expansion in powers of § — p/q of the rational
expression mentioned above.

Elementary Geometric/Algebraic: We are looking for peri-
odic points whose itineraries coincide with fixed points of ra-
tional rotations of rotation angle 27p/q. These itineraries have
many Sturmian-type properties (e.g. the itinerary for two ad-
jacent periodic points on a single orbit differs in exactly two
places per period). We use simple formal arguments as above
to locate the potential periodic orbits. We then exploit the
properties of the codings to derive basic geometric properties
of the set of points obtained from these formal expressions to
simplify the process of checking that they do form a genuine
periodic orbit.

In the end, we elected to use the third method on the basis that it could
be used both for cases where 6 was rational and irrational. Further,
the arguments used here are applicable to the proof of Theorem 2.
There is a cost to using this approach, and that is a loss of generality.
It is of interest to carry out calculations of this type in which the
transformation consists of an interval exchange on the angles composed
with a piecewise translation. In this case, many of the symmetries
exploited in the third method can be expected not to persist (probably
those in the second method also), and so it may be necessary to use
the first method which has a more generic character.

Corollary 3 (to Theorem 2). Let T' € 7;... Then T has no wandering
domains (where an open set U is a wandering domain if T"U N U = ()
for alln >0).

One helpful heuristic for the action of T is as follows. The translation
part of the maps in 7 always acts to move points a net amount in the
clockwise direction (e.g. in the symmetric case where o = 0, it moves
points in the upper half plane to the right and points in the lower half
plane to the left). The magnitude of the translations is constant across
the plane, so that in terms of argument the translations have a greater
effect nearer the origin. The perturbations to the argument scale as

(-

C'/|z]. In fact, one can show that T'(z) ~ 2™ ), (If instead of
. 1

taking a —b = 2, we take a —b = 272, this becomes T'(z2) ~ ze%l(g*m).)

This heuristic successfully predicts the location of the points of period
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q: specifically if @ = p/q + n/q?, then taking points of absolute value

2mi 2

72q? /0, we have that T'(z) ~ ze "4,

Sketch of the conservativity proof. Using Theorem 1, when 6 is
well-approximated by p/q with ¢ odd, there are two families of periodic
islands with period ¢q. Some symmetry calculations show that these
islands have only very narrow gaps between them (of size O(1/q)). (In
the case where the map T is asymmetric (i.e. o # 0), if ¢ is even the
gaps are much larger (of size O(1)) and it is for this reason that we work
on the odd case). Since the islands are invariant, this suggests that it
is hard for mass to escape from ‘inside’ the island chain to outside.
Blowing up the islands slightly gives an almost-invariant region that
disconnects the plane with the property that any orbit escaping has to
enter a small (in measure) region. This allows us to bound the measure
of a wandering set by an arbitrarily small quantity so that there are no
wandering sets.

4. PRELIMINARY LEMMAS

Let T = T € T be fixed for the remainder of this section. We
will suppress the ¢ and ¢ in our notation for brevity. We will write
Tyi(x) = e (x + 0+ 1).

In the proof of Theorem 1, we will construct candidate periodic points,
and subsequently prove that they are true periodic points. Given a
sequence ¢ € {+1}2" with ,,, = &,, we start by constructing the
constructing the fixed point z. of T, o---oT,, (such a fixed point
necessarily exists provided ¢ & 7Z).

The lemmas in this section exploit combinatorial properties of the
itineraries that we use to allow explicit calculations to control the lo-
cations of the periodic points.

Lemma 4 (Criterion for Existence of periodic points). Let T' €
T.,T1 be as above. Let € € {il}ZJr satisfy €n4q = €n. Suppose that z.
is a fived point of T, _, o---0oT,,.

The following hold:

i) T;,(2.) is a fized point of 1., o1, ,o---01, .
0 0 g—1 1
(ii) z. 1s a periodic point of T' with itinerary € if and only if

(3) s(T(z.)) =¢; for0 < j <q.

Proof. The proof of (i) is an immediate calculation. To see (ii), we
argue as follows. If z. is a periodic point of T with itinerary e, then
condition (3) holds by definition. Conversely, suppose that z. is a fixed
point of 7., o ---oT,, and note that T'(z) = Ty.)(2) for all z. It
follows inductively that T9(2) = Typa-1) © Tyra-22) 0 - - - 0 Ty (2). By
assumption we have s(7T7z.) = ¢; so that T(z.) = T.,_, o -+ T.y(2).
Since 2z, was assumed to be a fixed point of T, _, o---oT.,, it follows that
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T9(z.) = z.. Finally given n > 0, write n = ag+r with 0 < r < ¢. Then
s(T"z.) = s(T"z.) = €, = €, so that z. has itinerary € as required. [

The next lemma is a simple explicit formula for the fixed point of a
composition of T 1’s and T;’s.

Lemma 5 (Fixed point formula). Let ¢, ..., g,-1 be any sequence
of +17s and —1’s. Then provided q0 & 7Z, the (unique) fixed point of
1., ,0---01T, 1is

€q—1

Fix(T&H 0---0 TEO) =
(4) ge2mif e2miqt

1 — 627ri9 + 1— 627riq9

(g0 + e 2™0g) .. e 2milaDic ),

The conclusion of Lemma 5 follows immediately from the inductive
observation

T., 0 0T (z) =™z + (e, +0) +...+ ™ (e + o).
The above two lemmas form the crux of our strategy for producing

periodic orbits of T. We first guess suitable itineraries of periodic
orbits, construct the corresponding z. and verify (3).

Given a point € € {jzl}Z+ with €,,4, = ¢, for each n, we call the fixed
point z. of T, _, o---oT,; a potential periodic point for T with code €.

From Lemma 4, if (3) is satisfied, then z. is a true periodic point for
T.

As mentioned above, the itineraries that we work with are the p/q-
rationally coded orbits for p/q a rational approximation of € from
below. More specifically, given p/q, we define a family of itineraries
corresponding to orbits under rotations by 27p/q. If ¢ is even, we de-
fine 65-") = s(e2mi@itnt2)/a) for p € {0,1,...,q—1}, whereas if ¢ is odd,
we define (™ by 55-”) = s(e2mwitntl/M/a) for n € {0,1/2,1,3/2,...q —
1/2}.

Note that S(e™) = gmtPmodd) where S is the shift map. In the case
where ¢ is even, there is a single periodic orbit, whereas when ¢ is odd,
there are a pair of periodic orbits. We let 2(®) denote the fixed point of
Teﬁ,’i)l 0---0 Tag;” and note from Lemma 4 (part (i)) that Teén) (z™) =

(n+p mod q)

If ¢ is even, we call 20, 2(@/2=D 2@/2) and 2@V the I, II, III and IV
quadrant potential periodic points respectively. These are the points
whose codes correspond to points on the rotation orbit closest to the
real axis in their respective quadrants.

If ¢ is odd, the I, II, IIT and IV quadrant potential periodic points are
Z(O), Z((q_l)/2)7 Z(Q/2) and Z(q_1/2).
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We now exploit certain symmetries of the sequences €™ to get more

precise information about the locations of the potential periodic points
(2).

Lemma 6 (Periodic points above the discontinuity). Lety and z

be I and II quadrant potential p/q-coded periodic points. Then Im(y) =
Im(z).

A similar result holds for III and IV quadrant potential periodic points.

Proof. Let ¢ be the itinerary of y and n be the itinerary of z. We check
that n; = (4—; for 0 < j < ¢. To see this in the case where ¢ is odd,

notice that 7,_; = 3(62”(%’%’%)) and (; = s(eQ”i(Tlﬁ%)). Since the

two points are reflections in the imaginary axis, their imaginary parts

have the same sign. An almost identical proof works when ¢ is even.
We then have from Lemma 5 that
2760
oe
Yy=71_ 20 + 1 _ o2wiq0 (Co

627riq6 + <1627ri(q—1)9 L+ Cq,162m‘6)

0.627ri9

1 2miq 2mi(q—1)0 2mif
2= 1— 627ri9 + 1 — 62ﬂ-iq9 (C()e I + Cq—le + ... Cle )

Subtracting, we get

y—z= e (Cl [627r2(q—1)9 . 627”9] 4.+ Cq—1[627”9 o 627r2(q—1)0])
_ . 91 ‘ G(C [627ri(q/2—1)9 o 6—27ri(q/2—1)6] 4.
e—miql _ pmiq

+ qul[eme'(Q/Qfl)G _ eQm’(q/271)9])‘

Since all the terms in the outer parentheses of this last expression are
imaginary as is the denominator, it follows that y — z is real, so that y
and z have the same imaginary parts as required. U

Lemma 7 (Separation between periodic points). Let § = p/q+h
and let the 2™ be the points constructed above.

If q is even, there is a collection of points y™ (forn =0,1,...,q — 1
lying on a circle centred at the origin with Arg(y™) = 27 (n/q+1/(2q))
such that

(5) Z(n) . Z(n—l) _ 627rirh(y(n) . y(n—l))7

where |r| < q/4.

If q is odd, there is a collection of points y™ (forn =0,1/2,1,...,q—
1/2) lying on a circle centred at the origin with Arg(y™) = 2w (n/q +
1/(4q)) such that

(6) Z(n) . Z(n71/2) _ 627rirh(y(n) . y(nfl/Z))

Y

where |r| < q/2.
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Proof. We deal with the (slightly harder) even case indicating the dif-
ferences with the odd case. Let n and ( be the codes corresponding
to 2™ and 2"V respectively. Let kp mod ¢ = 1. Then amongst
the first ¢ steps, n and ( differ only in two places, specifically at the
k(q/2 — n) mod ¢ position (where n has a —1 while ¢ has a +1) and
k(q — n) mod ¢ position (when 1 has a +1 and ¢ has a —1). We then
use Lemma 5 to control 2™ — 2(*~1) We will make use of the relation
627ri(kq/2)§ T

We have

() _ (n=1)

2627riq(§+h) . .
_e (e—m[(k(q—n)) mod qJ¢ _ ,—2mi[(k(§—n)) mod q]e>
1— 627riq(§+h)
.nkp

2627riqh62mT

= W <6727ri[(*kn) mod glh + 6727ri[(%fkn) mod q]h)

27”% equh(l + e—ﬂiqh) @—27ri[(—kn) mod %]h

1 — e2migh
1

—mih4
eth_e

= 2e

2mih(4—[(—kn) mod £])

i
— 2627”‘1 e

ih4
mihg

. . 1 ) 1
— Reerh(e%m(%—f—%) . 627”(%_%),

where r = ¢/4 — [(—kn) mod (q/2)] satisfies |r| < ¢/4 and
2

i . M - hq

R=—
(6lg _ 677)(67M 5 67”7)

so that the denominator appearing in R is the product of a positive
and negative imaginary term so that R > 0.

To finish, set y™ = R e2ri(n+3)/a,

The odd case works similarly, except that in this case, adjacent itineraries
differ in a single location only. If n is an integer, then £ and £~1/2)
differ in the [k(q — n) mod ¢] position where £™ has a 1 and £®™~1/2
has a —1. Also, e™*1/2) and ™ differ in the [k((¢ — 1)/2 — n) mod ¢]
position, where e*1/2) has a —1 and ™ has a 1. O

Corollary 8 (Equidistance between periodic points). All adja-
cent pairs of rotation coded potential periodic points are equally sepa-
rated.

Proof. This follows immediately from Lemma 7. U

Lemma 9 (Points above and below the real axis). Let y and
z denote potential I and IV quadrant critical p/q-coded points. Then
Re(z —y) = 1.

Also, if q is odd then Im(y — z) = cot(mqh), whereas if q is even then
Im(y — z) = — tan(mqd/2).
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Similarly if y and z are IT and IIT quadrant critical p/g-coded points,
then Re(z —y) = 1.

Proof. In the case where ¢ is odd, the two points have the same itinerary
for the first g steps except that they differ at time 0, where y is coded
by +1 and z is coded by —1. It follows that using Lemma 5 that
z—y = —2e2™0 /(1 — e2™4%) = 1 — j cot(mqb).

If ¢ is even, the two points differ at time 0 (when y is coded by +1
and z by —1) and time ¢/2 (when y is coded by —1 and z by +1).
From Lemma 5, we see that z — y = —2(e?™40 — ¢™4%) /(1 — ¢2™4%) =
2e™4% /(1 + e™4%) = 1 + i tan(mql/2). O

Lemma 10. Let z and z* be potential periodic points coded by strings
s and —s (where by —s, we mean that +1’s and —1’s are reversed).
Then z + z* = 20e%™ /(1 — ™) = —g + io cot(m0)

The result is a simple computation using Lemma 5.

We finish this section with a geometric lemma describing the shape of
the periodic islands in the case where the map has a rational rotation
angle.

Lemma 11. Let 0 = ¢/d and let z be a periodic point of period q
with ged(q,d) = 1. Let a = min{| Im(7"z2)|: Im(7"z) > 0} and b =
min{| Im(7"z)|: Im(7T"z) < 0}.

If d is even, the periodic islands surrounding the points on the orbit of z
are reqular d-gons all in the same orientation with tops (and therefore
bottoms) parallel to the real axis at a distance min(a,b) from the central
periodic point.

If d 1s odd then there are three cases depending on the ratio of a and b:

e Ifa/b < cos(m/d) then the islands are reqular d-gons with flat
bottoms at a distance a from the centre.
e Ifa/b > sec(m/d) then the islands are regular d-gons with flat
tops at a distance b from the centre.
e [fcos(m/d) < a/b < sec(m/d), then the islands are semi-reqular
2d-gons with all exterior angles given by 7 /d and face lengths al-
ternating between 2(a—bcos(mw/d))/ sin(n/d) and 2(b—a cos(w/d))/ sin(w/d),
with the top face of the former length and the bottom face of the
latter length. All of the islands are translates of one another.

Proof. We deal first with the case where dis odd. Let 2’ = T"z and 2" =
T%z be the points on the orbit closest to the real axis from above and
below so that Im(z') = a and Im(2") = —b. Let P = {y: Im(e2™"d (y—
z)) € [—a,b) for all k}.

We claim that if y € P, then it has the same itinerary as z. We show
this inductively. Suppose y and z have the same itinerary for k& — 1
steps. Then T*y —Tkz = e2mi'y (y —2). The imaginary part of this is in
[—a,b) so that since T*z has an imaginary part in (—oo, —b] U [a, 00),
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FIGURE 6. Odd Case

it follows that the imaginary part of 7%y has the same sign as the
imaginary part of Tz (considering the sign of 0 to be positive), so
that the itineraries agree also at the kth step.

Conversely, suppose that y ¢ P. Then there exists an integer k such
that Im(e2™' (y — z)) is either less than —a or greater than or equal
to b. Since ¢ and d are coprime, by adding multiples of d, £ may be
chosen to be congruent to » modulo ¢ in the former case or congruent
to s modulo ¢ in the latter case. Now we check that if y and z have
itineraries which agree up to time k — 1, then T*y — Tz = 2™ (y — 2)
so that they must disagree at the kth step.

This shows that P is precisely the periodic island around z. From the
definition, we see that P is the intersection of two sets of ¢ halfplanes
containing z: ¢ (closed) halfplanes at a distance a from z with nearest
point in direction —ie?™'s for k =0,...,d—1; and ¢ (open) halfplanes
at a distance b from z with nearest point in direction ie?™'¢ 2. If a and
b are close in size, this gives rise to a semi-regular 2d-gon as illustrated
in Figure 6.

If a is considerably smaller than b, one obtains a d-gon, as the a-
polygon lies entirely inside the halfplanes at distance b. Similarly if b
is considerably smaller than a. The critical case is when the vertices of
the a polygon are exactly at a distance b from the periodic point (see
Figure 7) or vice versa. Elementary trigonometry shows these cases
occur when a = bcos(m/d) or b = acos(mw/d) as required.

In the even case, since the a and the b polygons have the same face
directions, one d-gon is nested inside the other so that one obtains
simply a d-gon with faces at a distance min(a,b) from the periodic
point at angles 2wke/d from the horizontal.

All that remains is to calculate the side lengths in the case where d

is odd and the island is a (2d)-gon. We calculate using elementary
trigonometry as shown in Figure 8
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FIGURE 7. Critical Case (d odd)

=\

FIGURE 8. Calculating the side lengths of a (2d)-gon for
d odd

We see from the figure that x cos @ = a and z cos(w/d — ) = b. Substi-
tuting for z in the second equation, we get a tan = (b—a cos(w/d))/ sin(w/d).
Similarly working in the other triangle, we get btan(w/d — 0) = (a —
beos(m/d))/sin(w/d). These are the two half-edge lengths in the semi-
regular polygon giving the required edge lengths. U

5. PROOF OF THEOREM 1

Proof of Theorem 1. Fix p/q with h = 0 — p/q < 1/(4q). (Note that
there are always such p/q when provided that 6 is not a rational
with denominator 4 or less). Let €™ be the sequence of itineraries
constructed in Section 4 (indexed by {0,1,...,q¢ — 1} if ¢ is even or
{0,1/2,1,...,q — 1/2} if ¢ is odd) and let 2™ be the corresponding
potential periodic points.

From Lemma 7, we see that 2(™ lies in the cone between with vertex at
2 and sides e~ (™ — y(©)) and ™" (y(™ — () By the choice of
h, we see that if n < ¢/4, then 2" has a greater imaginary part than
20 A similar argument based at the II quadrant potential periodic
point together with an application of Lemma 6 establishes that for
0<n<q/2, 2" has an imaginary part that is at least as large as that
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of (9. Similarly for ¢/2 < n < ¢, 2™ has an imaginary part that is
no bigger than the imaginary part of z(¢/?).

From criterion (3) of Lemma 4, we see that in order for the potential
periodic orbit with code p/q to be realized, it is therefore sufficient that
the I quadrant potential periodic orbit lie in the upper half plane and
the IV quadrant potential periodic orbit lie in the lower half plane.

We can use Lemmas 9 and 10 to calculate the imaginary parts of the I
and IV quadrant potential periodic points.

Let a be the imaginary part of the I quadrant potential periodic orbit
and b be the imaginary part of the IV quadrant potential periodic
point (which is the same by Lemma 6 as the imaginary part of the III
quadrant potential periodic point).

From Lemma 10 (applied to the T and III potential periodic points) we
see that a + b = Im(20¢*™ /(1 — €*™?)) = o cot (7).

From Lemma 9, we have that a — b = cot(mwgf) if ¢ is odd and a — b =
—tan(mqf/2) if q is even.

The condition (3) therefore boils down to o cot(mw#) + cot(mgf) > 0 and
o cot(mh) — cot(mql) < 0 if ¢ is odd; and o cot(mf) — tan(mgf/2) > 0
and o cot(mf) + tan(mqf/2) < 0 if ¢ is even.

More straightforwardly, the conditions are:

(7) lo| < |tanmf| cot(mqh) if ¢ is odd; and
(8) lo| < —|tan 0| tan(mwqh/2) if q is even.

If 6 is irrational, then taking p/q a close approximation to 6 from
below, ¢gf can be made to exceed an integer p by an arbitrarily small
amount. If ¢ is odd, then mqf is slightly greater than a multiple of
7 so its cotangent is arbitrarily large. If ¢ is even, then p is odd and
mq6/2 is larger than an odd multiple of 7/2 by an arbitrarily small
amount so that —tan(mgf/2) is arbitrarily large and positive. We
therefore see that there are infinitely many solutions. Further, we see
that the a and b become arbitrarily large. Since the I, II, III and IV
potential periodic points are the closest points to the discontinuity on
the potential periodic orbit, it follows that the periodic islands become
arbitrarily large. Since they have different itineraries they must be
disjoint and it follows that there are periodic orbits in an arbitrary
neighbourhood of infinity.

If 6 is rational, let 6 = ¢/d. Let py/qo be the largest rational below
¢/d with denominator less than d. Then ¢/d — po/q0 = 1/(dqo) (so
that cqo — dpy = 1). We will study the periodic islands with code
e/ = (po + kc)/(qo + kd). Note that ¢/d — px/qr. = 1/(dqy).

We will consider two cases based on the parity of .
Case 1: ¢, odd

In this case, there are two py/qy rotation itineraries. From (7), the
condition for these both to be realized is |o| < |tannf| cot(rqpc/d) =
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FIGURE 9

| tan 70| cot(m/d). Since this is independent of k, the entire family of
itineraries are present or absent simultaneously. Also, from Lemma 11,
the geometry of the polygons does not depend on k. In the case where
d is even, the periodic points are surrounded by periodic islands that
are regular d-gons.

In the case where d is odd, we need to establish that the criteria in
Lemma 11 for the islands to be regular d-gons are satisfied. These
criteria are that for both periodic orbits, the ratio of the closest point
on the orbit to the axis from above to the closest point on the orbit
from below should lie outside the interval (cos(w/d),sec(r/d)). Thus
we need to establish that

© | Im 2, _1|/] Im 2| > sec(7/d); and
| Im 21 2| /| Im 24, —1/2| > sec(n/d).

We verify that these hold when o = 0 and by continuity, the inequalities
will persist for small values of ¢. When o = 0, as above we have
Im(zp) = —Im(zg,—1/2) = cos(m/d)/(2sin(m/d)). On the other hand,
Im(21/2) = —Im(2g,—1) = (cos(n/d) + 2cos(n/q, = 7/d)/(2sin(r/d))
from Lemma 9, where the 7 /d corresponds to a term less than 7/d
in absolute value. The desired condition (9) is satisfied if cos(w/d) +
2cos(m/qr + m/d) > 1. Since d and ¢, are distinct and odd, one can
check that this inequality holds for all d > 1 and ¢, > 7.

Let A be the I quadrant periodic point, B be the IV quadrant periodic
point, C' be the rightmost point of the base of the d-gon about A,
D be the midpoint of the base of the d-gon and E be the point on
the discontinuity line that lies on the line joining A and B. This is
illustrated in Figure 9.

Note that C' and E lie on the discontinuity line. We aim to show that
C' = E. To see this, note that since the d-gon is regular, DAC = 7/d.
By Lemma 9, we have BA = —1 + icot(rqpc/d) = —1 + i cot(w/d),
so that DAE = DAB = 7©/d. Since B and C both lie on the discon-
tinuity line and make the same angle, they must coincide. The same
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calculation shows that E coincides with the left vertex of the top of
the d-gon centred at B.

An identical argument shows that the II and III quadrant periodic
points have touching islands. Now given any adjacent pair of periodic
points p and p’ in the collection, suppose that their itineraries first
differ at time n (so that 7"p and T™p’ are on opposite sides of the
discontinuity, but 77p and T7p’ are on the same side of the discontinuity
for j < n). This means that the restriction of 7" to the periodic
islands about p and p’ is an isometry, mapping the islands onto a pair
of adjacent islands on opposite sides of the discontinuity (they are only
mapped by different atoms in the following step). Since we have just
established that these islands are touching, their inverse image under
T, the islands about p and p’ must also be touching. It follows that
the periodic islands form an annulus as claimed.

Case 2: ¢, even but d odd

Since gy, is even, there is a single py/qx-coded itinerary. By the above,
there is a periodic orbit with this coding. We want to establish that
for small values of o, the periodic islands about points on the orbit are
touching (2d)-gons. Further, we will show that the sizes of the islands
and the range of values of ¢ for which this situation persists is the same
for all even q.

We appeal to Lemma 11 to verify that the islands are 2d-gons. To do
this, we need to calculate a/b, the ratio of the distances of the closest
periodic points above and below the discontinuity. From Lemma 9, we
have a + b = — tan(mgxc/(2d)). Since g, = qo + kd with k odd

If gy is odd, since we require ¢, even, k must also be odd. If &k = 2r+1,
we have grc/(2d) = (qo + (2r + 1)d)c/(2d) = rc + (pod + cd + 1) /(2d).
Since goc = pod + 1, and ¢o and d are odd, we see reducing modulo 2
that ¢ and pg have opposite parities, so that pod+ cd is an odd multiple
of d. It follows that the fractional part of gyc/(2d) is 1/2 4+ 1/(2d) so
that a + b = cot(n/(2d)) (independently of k for k odd).

If on the other hand, ¢y is even, k& must be even (2r say) so that
qxc/(2d) = (qo + 2rd)c/(2d) = rc+ (pod 4+ 1)/(2d). Since qq is even, pg
must be odd, so that again gzc/(2d) has fractional part 1/2 4+ 1/(2d)
and again a + b = cot(mw/(2d)) (again independently of k for k even).

From Lemmas 6 and 10, we have a — b = o cot(wc/d). Since a/b =
((a+b)+ (a—0b))/((a+b) — (a—Db)), we see that the quantity a/b does
not depend on the particular value of k (provided that it has the right
parity to make g even). We also see that when o = 0, the ratio is 1
so that there is an open interval of values of o for which the inequality
cos(m/d) < a/b < sec(w/d) holds. For o in this range, for each k of the
correct parity, the periodic islands are (2d)-gons. It remains to show
that the islands touch.

To see this, we will show that the sum of the two edge lengths is 2. Since
their midpoints are 1 unit apart, this will be sufficient to establish that
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the two polygons touch on the real axis. From Lemma 11, we see that
the sum of the two edge lengths is 2(a + b)(1 — cos(w/d))/ sin(w/d) =
2(a+b) tan(m/(2d)). Since we already established a+ b = cot(w/(2d)).
This ensures that the sum of the side lengths is 2 as required.

As in the case where d is odd, this argument establishes that the I and
IV islands touch; and also that the II and III islands touch. As in the
odd case, this implies that the family of islands forms an annulus.

To see that the families of annuli are indeed nested, note that by Lemma
10, for each annulus, the I quadrant periodic point and the III quadrant
periodic point have real parts that average to o /2. Since the rings don’t
intersect (as points of intersection would be forced to have two different
itineraries), the nesting is established.

The above establishes that if B, is the closure of the union of the poly-
gons forming the nth annulus, that C\ B, is disconnected having one
bounded and one unbounded component. Let the bounded component
be I and decompose I \ R as I, UI_ where I, = {z € I: Im(z) > 0}
and I_ = {zx € I: Im(x) < 0}. Let U, be the interior of B, so that
T(U,) = U,. It follows that T'(I1) are open sets that are disjoint from
U, so that they must also be disjoint from B,. Since T'(I1) are con-
nected, and contain points near the origin, it follows that 7'(1.) C I.
It may be seen that there is a segment of / MR (an interval lying to the
left of the I quadrant periodic island) which is mapped to a segment of
the inner boundary of polygons forming B,,. This segment follows the
inner boundary of B,, until it is mapped to the top of the III quadrant
periodic island, whereupon it reenters I.

This proves the claim that all points have bounded orbits. U

6. PROOF OF THEOREM 2

The outline of the proof is as follows. We will deduce from the lemmas
making up Theorem 1 that the periodic islands with rotational coding
p/q form a near barrier making it hard for points inside the ring of
periodic islands to escape to the outside. More specifically, for p/q a
close rational approximation to # with odd denominator, we construct
a ‘necklace’ consisting of tangential discs that are slight enlargements
of the islands surrounding period ¢ points. The complement of the
necklace splits the plane into a bounded and an unbounded component.
Any orbit traversing from the bounded to the unbounded component
must do so by entering a small region consisting of a pair of segments
of the discs. By showing that these regions can be made arbitrarily
small, it will follow that almost all orbits are recurrent.

Lemma 12 (Odd denominator approximations to 6). Let 6 €
(0,1)\ Q. There ezist infinitely many rationals p/q with odd denomi-
nator satisfying 0 < p/q < 0+ 2/q>.
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Proof. Let p,/q, be the convergents to 6 arising from the continued
fraction algorithm. These satisty po,_1/¢2n—1 < 0 < pon/Gon and also
10—pn/qn| < 1/¢>. We need two more properties of continued fractions.
Namely we have |p,¢ni1 — ¢upni1| = 1 for each n. Secondly, we have
that (pons1 + Pon)/(G2nt1 + @2n) > 0 > Papi1/Gensr. (This follows as
we have pa,11 = Apon + pon—1 and qany1 = Agen + Gon—1 Where A is
the largest integer such that po,y1/qon11 lies on the same side of 0 as
Pon—1/G2n-1)-

We now complete the proof as follows. If there are infinitely many
n such that g, is odd, we are done as these satisfy 0 < po,/qon, <
6 + 1/q3,. Otherwise for all sufficiently large n, go, is even. Since
|P2nGon+1 — @enpant1| = 1, @an1 must be odd. Also, as noted above, we
have that (pan41 + D2n)/(Gent1 + Gon) > 0 > Dant1/Gons1-

We note that g¢o,11 + o, is odd. Finally, we have

_ Pant1 t Pon
G2n+1 + Qon

Pant1  P2nt1 + Pon

0 <

Qn+1 Qont1 + Gon

2
T (Gont1 + @n)?

Pon+192n — Q2n+1P2n
Qon+1(G2nt1 + G2n)

O

Lemma 13 (Near-invariant set Criterion for Conservativity).
Let (X, B, ) be a o-finite measure space and let T: X — X be an
wnvertible measure-preserving transformation. Suppose that there is a
sequence of sets (Ap)nen satisfying the following properties:

[} Al gAggAg...;

e 1(A,) < oo foralln

o JA, =X

o (A, NT1(A%)) = 0 asn — oo.

Then T s a conservative transformation: for every set B of positive
measure, almost every point of B returns to B infinitely often.

Proof. We start by recalling that for every invertible measure-preserving
transformation, there is a partition of X into a conservative part C' and
a dissipative part D. The conservative part C' has the property de-
scribed above: for every subset of positive measure, almost every point
returns to the subset infinitely often. The dissipative part D may be
expressed as a disjoint union D = | J,,., T"(Dy))(see Krengel’s book [8]
for details). Here we will show that u(Do N A,) < p(A, NT1(AS)).
Then taking limits, the left side converges to u(Dy), whereas the right
side converges to 0.

We start by observing that for almost every point x of Dy N A,,, there
is a k > 0 such that T%"z € A, N T 'AS. To see this, we consider
the set of points that never escape: S = Dy N (Vg T-*A,. Since
S C Dy, the T¥S are disjoint and of measure equal to S. However,
they all lie in the set A,, of finite measure so that p(S) = 0 as claimed.
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Now given z € Dy N Ay, let k(x) = min{k: T"z € A, N T 1AS}. We
now decompose Dy N A,, according to the values of the function k: set
Cj={x e DynNA,: k(x) = j}. By the above observation, (C};);>o is a
partition up to a set of measure 0 of DyNA,,. Notice also that 77C; are
subsets of 77 Dy and hence are disjoint. Further 79C; C A, N T A¢.
We now have

1w(Do N Ay) ZM = wT'Cy) < p(A, NTAS).

J

This proves the claim and hence the lemma. O
We are now ready to complete the proof of Theorem 2

Proof of Theorem 2. Fix a T € Ty,,. We start by fixing p/q satisfying
the following conditions:

(1) q is odd;

(2) 0 <p/qg<0+2/¢* and

(3) there is a pair of periodic orbits of period ¢ of T" whose orbits
have the same codes as periodic orbits under rotation by 27p/q.

The above lemma guarantees the existence of infinitely many ¢ sat-
isfying the first two conditions. Theorem 1 part (a) ensures that all
sufficiently large ¢ satisfying the first two conditions also satisfy the
third.

Let p/q be as above. From Theorem 1, T" has two interwoven orbits
of period ¢. For the remainder of the proof, we will let y be the I
quadrant periodic point and z be the IV quadrant periodic point. Let
n=0-p/q

We now define the necklace generated by the periodic orbit. Let w
be the point on the line joining  and y that lies on the real axis and
set r = |y —w| and r* = |z — w|. We observe that r +r* = |y — z|.
From Lemma 9, we have z — y = 1 — icot(mn/q), while from Lemma
10, we have Im(z +y) = io cot(w#). It follows that for large ¢, we have
r, v’ & qn/(2m). Let y' be the periodic point diagonally opposite z, 2’
be the periodic point diagonally opposite y. (These are respectively
the periodic points lying above and below the negative real axis). We
note that y and 3 lie on the same periodic orbit; as do z and 2’. Let
w’ be the point on the line joining 3" and 2’ that lies on the real axis.

It follows from the proof of Corollary 8 that ' — 2’ = y — 2. From
Lemma 6, we have Im(y) = Im(y') and Im(z) = Im(2’) (i.e. the line
segment joining ¥’ and 2’ is a horizontal translate of the line segment
joining y and z). It follows that |y’ — w'| = r and |z — w'| = ¥, so
that in particular the tangency of the discs of radii r and r* about v’
and 2’ occurs at w’ just as the tangency of the discs of radii r and r*
about y and z occurs at w.



22 AREK GOETZ AND ANTHONY QUAS

FIGURE 10. An actual Necklace with ¢ = 5.

We set N, = U, B-(T7y) UU,, B+ (T72). Tt follows from Corollary
8 (the equidistance between consecutive periodic points) that each ad-
jacent pair of discs is tangent. As in the rational case, the complement
of N, has exactly two path-connected components (see Figure 10). We
call the bounded component A, and the unbounded component U,,.

We observe that since by Lemma 9 the real parts of y and z differ by 1,
the segments of the discs about y and z have a combined intersection
with the real axis of length 2. We will write A; for the intersection
of A, with the upper half plane and A, for the intersection with the
lower half plane.

We start by calculating 771 (N,) N 4,. In particular, we suppose that
point x lies in T~ (N,)NA] . Inorder that T'(x) lies in N, it is necessary
that T'(x) lies within distance r of one of the points on the orbit of y or
r* of one of the points on the orbit of z. It will be convenient to write
the point approached by T'(z) as T'(T7y) for some j or T(T7z) for some
j (depending whether T'(z) was close to a point on the orbit of y or of
z). If the chosen periodic point lies in the same half plane as z, then we
derive a contradiction as 1" preserves the distance between the periodic
point and z, so that = must also have belonged to V,. It follows that
we must have that T'(x) lies within r of some T(T7y) or r* of some
T(T’z), where the Ty or T?z lies in the lower half plane. Since the
action of T is to perform a relative shear of the two half planes by 2
and then to rotate, it is a necessary and sufficient condition that x + 2
lies within one of discs corresponding to a periodic point in the lower
half plane. By the geometric observations above, this is only possible
if x lies in the segment of the circle congruent to the segment of z’s
disc lying in the upper half plane shifted 2 to the left. Denote this
segment by SF (see Figure 11). Now Af \ S is path-connected and
lies in a single atom of 7T". Since its image does not intersect N,, and
is path-connected, it must lie in A,.
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FIGURE 11. The segment S

Similarly, there is a segment S, (which is a translate 2 to the right
of the segment of y'’s disc lying in the lower half plane) such that
T(A;\ (S;)) C Ay Welet S, =SFuUS;.

We crudely estimate the measure of those sets using the intersecting
chords theorem: Let § and ¢’ be the height of the segments of the discs
corresponding to z and y’. We have §(2r* —§) < 1 and §'(2r — ') < 1
so that m(A, NT~'AS) < m(S,) = O(n/q).

To complete the argument, we appeal to Lemma 13. The A, for ¢’s
satisfying the above criteria form a nested family of bounded sets whose
union is the whole plane which are closer and closer to being invariant.
This proves the conservativity as required.

O

7. OPEN QUESTIONS

In the irrational case, the existence of periodic cells in an arbitrary
neighborhood of infinity implies there are many points whose orbits do
not escape to infinity. The following proposition (which was already
known and appears in [5]) uses elementary topology to show that there
are points not lying in any periodic cell.

Proposition 14. Let T be a piecewise isometry with irrational angle.
Then there are points that do not lie in any periodic cell.

Proof. To see this, we argue by contradiction. Suppose the plane is
covered by a (countable) disjoint union of discs possibly missing some
boundary points. There is an uncountable family of lines in the plane,
so we can pick a line that does not go through any tangency point
between a pair of discs. We claim that every disc that intersects this
line must do so in a closed interval; if not then the endpoint would have
to belong to another disc and that would give rise to a tangency. We
therefore need to show that the line cannot be covered by a collection of
disjoint bounded closed intervals. To see this, note that their endpoints
must form a perfect set, which must therefore be uncountable. U

A version of the following proposition characterizing the points with
irrational itinerary appears in [10] and [5].
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Proposition 15. Let T' € 7. The set of points whose itinerary is not
periodic coincides up to a set of measure with the closure of the set of
preimages of the discontinuity.

Proof. From Theorems 1 and 2, T is a conservative area-preserving
map of the plane. If z is a point with an aperiodic itinerary, then let
C' denote the cell of z. Since the itinerary is aperiodic, it is impossible
for C' to intersect itself (if z € C' and y = T"z € C, then since y €
C, y has the same itinerary as x; but on the other hand since y =
T"z, y’s itinerary is an n-times shifted version of x’s itinerary which
is a contradiction). It follows that every aperiodically coded cell is
of measure 0. On the other hand, we already established that if a
point x has an orbit that remains bounded a distance § away from the
discontinuity, then its cell contains a disc of radius ¢ about x. It follows
that the orbit of x approaches the discontinuity arbitrarily closely. It
follows that x is in the closure of the preimages of the discontinuity.

Conversely, if x is a point in the interior of a periodic island, then points
on its orbit have a distance from the discontinuity is bounded below
by a positive quantity. It follows that the closure of the preimages of
the discontinuity are contained in the set of aperiodically coded points
together with the boundaries of the periodic islands. Since there are
countably many periodic islands, all with boundaries of measure 0, the
statement of the proposition follows.

4

There are many questions that we have been unable to resolve concern-
ing this family of maps. A partial list (with some interdependencies)
is the following.

Question 1. Does there exist a point that is the accumulation of peri-
odic points?

Question 2. [s it true that for T € T, the periodic islands are dense
in the plane? How about the measure of the set of points with non-
periodic itinerary? From Proposition 15 above, the set of points with
non-periodic itinerary agrees up to a set of Hausdorff dimension 1 with
the closure of the union of the preimages of the discontinuity. What is
the Hausdorff dimension of this set?

Question 3. Are there maps in T for which some points have un-
bounded orbits? This question has recently been answered in the affir-
mative by Schwartz [11] for the class of outer billiards. If there are
points with unbounded orbits, what can be said about the rate of escape
of an orbit?

Question 4. Can the analysis presented here be generalized to wider
classes of bijective piecewise isometries of the plane? For example,
one could consider an interval exchange in the angular direction com-
posed with a translation of the plane or half-plane. What about higher-
dimensional piecewise isometries?
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