
DISTANCES IN POSITIVE DENSITY SETS IN R
d

ANTHONY QUAS

Abstract. We show that for a subset A of R
d with positive upper density,

there is an R > 0 such that for any r > R, there exist x and y in A with
d(x, y) = r. The proof is based on the well-known second moment method in

probability.

We will denote the Lebesgue measure of a subset F of R
d by |F |. For a mea-

surable set A ⊂ R
d, we write ρ̄(A) = limR→∞ supside(S)≥R |A ∩ S|/|S|, where the

supremum is taken over cubes with side length at least R.
For C a set of finite measure, we define the density of A in C to be |A∩C|/|C|.

Theorem 1. Let A be a measurable subset of R
2 and suppose that ρ̄(A) > 0. Then

there exists an R > 0 such that for all r ≥ R, A contains points x and y with
|x − y| = r.

Corollary 2. Let A be a measurable subset of R
d for d ≥ 2 and suppose that

ρ̄(A) > 0. Then there exists an R > 0 such that for all r ≥ R, A contains points x
and y with |x − y| = r.

Theorem 1 was conjectured in the thesis of Székely [8] and was originally proved
using ergodic techniques by Furstenberg, Katznelson and Weiss [5]. A subsequent
proof was given using harmonic analysis by Bourgain [2]. A further proof using
geometric measure theory techniques was given in the two-dimensional case by
Falconer and Marstrand [4].

In his paper, Bourgain also proved a d-dimensional result: given a configuration
V of d points of R

d in general position, then for every set A ⊂ R
d of positive upper

density, there exists an R > 0 such that for all r ≥ R, A contains an isometric copy
of rV . Recently, a paper of Bukh [3] extends the methods used by Bourgain and
proves a more general result. See also work of Ziegler [9] for a development of the
techniques of [5].

Clearly the result of Bourgain is an extension of Theorem 1. However, the
techniques in this paper are very different, with the proof being based on probability
rather than harmonic analysis. Moreover since there are a number of unresolved
questions in the area (some of which are presented in the final section), one may
hope that a new approach will shed light on some of these.

Our proof will be divided into 3 principal parts:

(1) Define a class of ρ-configurations consisting of the unit ball and a large
number, N(ρ), of small squares of side δ(ρ) arranged around it at roughly
a fixed distance s(ρ) from the ball satisfying certain properties; use prob-
abilistic methods to show the existence of a ρ-configuration. The ball and
squares in such a configuration will be called its components.
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(2) Show that for any ρ-configuration Ξ, if A is a measurable set whose density
in each component E exceeds ρ, then A contains two points separated by
a distance exactly s(ρ).

(3) Show that if ρ̄(A) > ρ, then for any ρ-configuration Ξ, there is a T such
that for all t > T , there is a translate of tΞ such that in each component, A
has density at least ρ. (This will then guarantee that A contains points sep-
arated by ts(ρ) and hence that A contains points separated by all distances
greater than Ts(ρ)).

In our proof, we take care to use as few properties of Lebesgue measure as
possible, as we hope to extend the proof to suitable finitely additive measures so
that it can be applied to non-measurable sets A. Part 1 does not depend on the set
A at all and one can check that part 3 holds for any finitely additive translationally-
invariant measure, so that to extend the results, it is sufficient to extend part 2 to
finitely additive measures.

In the paper, we make use of the following fairly standard notation. Given
a random variable X and an event S, we define E(X ; S) = E(X1S). We will
frequently use the notation X = O(f(ρ)) to mean that there is a constant K
(dependent only on the dimension d) such that |X | ≤ Kf(ρ) for all sufficiently
small ρ. Similarly X = Ω(f(ρ)) will mean that there is a constant K > 0 such that
|X | ≥ Kf(ρ) for all sufficiently small ρ.

I would like to thank the anonymous referee for numerous helpful suggestions.

1. Step 1: ρ-configurations

Given ρ > 0, let N(ρ) = ⌊ρ−7⌋, δ(ρ) = ρ4 and s(ρ) = ρ−25. We deal in this
section with a fixed ρ and will just write N , δ and s for the above quantities. It
will also be convenient to fix the function g(r) = 2

√

max(1 − r2, 0).
Let D denote the unit disc and let P denote the normalized Lebesgue measure

on D. A squarelet will be a square of side 2δ whose centre is a distance between
s and s + 1 + δ from the origin and whose sides are parallel and perpendicular to
the line joining the origin to the centre of the square.

Given a squarelet S whose centre P is at a distance s + r from the origin, we let

e be the unit vector in the direction ~PO. The strip corresponding to S is the set

L(S) of points X such that s−δ < ~PX ·e < s+δ. The fattened strip corresponding

to S is the set L̄(S) of points X such that s − δ − 1/s < ~PX · e < s + δ + 1/s.
The role of the strips L(S) in the proof is that these will approximate the ‘for-

bidden regions’ of D that need to be avoided if one is to ensure that there are no
two points separated by a distance s (one in S and the other in D). If the strips
cover too much of D, we will obtain a contradiction.

Given a squarelet S whose centre is at a distance s + r from the origin, let
Z(S) = 2δρg(r + δ + 1/s)/π and let Z̄(S) = ρP(L(S)). Note that since L(S)
contains a rectangle of dimensions g(r + δ) × 2δ, we have Z(S) ≤ Z̄(S). Given a
subset B of S of density ρ, Z(S) will be seen to be a lower bound for the P-measure
of the set of points at a distance exactly s from a point of B.
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Given a pair of squarelets S and S′, let

X(S, S′) =







(1 + δ)min

(

ρ2|L(S) ∩ L(S′)|
π

, 1

)

if L̄(S) ∩ L̄(S′) ∩ D 6= ∅;

0 otherwise.

X(S, S′) =
ρ2|L(S) ∩ L(S′) ∩ D|

π
= ρ2

P(L(S) ∩ L(S′))

so that X(S, S′) ≤ X(S, S′).
A ρ-configuration is the unit disc together with a collection of N(ρ) squarelets

S1, . . . , SN such that

N
∑

i=1

Zi > 2/ρ(1)

∑

i<j

(Xi,j − ZiZj) < 1/ρ(2)

where Zi = Z(Si) and Xi,j = X(Si, Sj).

Lemma 3. For sufficiently small ρ > 0, there exist ρ-configurations.

Proof. For (r, θ) ∈ [0, 1 + δ) × [0, 2π), let S(r, θ) be the squarelet with centre ((r +
s) cos θ, (r + s) sin θ). We equip the set of parameters with a uniform distribution,
which we shall denote by P . We will write E for expectations with respect to P and
E for expectations with respect to P. Let S1 = S(r1, θ1), S2 = S(r2, θ2), . . . , SN =
S(rN , θN ) be N independently chosen squarelets with distribution P . We show
that for small ρ, with high probability, they form a ρ-configuration.

We have for i 6= j, Xi,j = ρ2
E1L(Si)1L(Sj) so that we see the following: EXi,j =

ρ2EE
[

1L(Si)(x)1L(Sj)(x)
]

= ρ2
E
[

E1L(Si)(x)E1L(Sj)(x)
]

= ρ2
EF 2, where F (x) =

∫

1L(S(ω))(x) dP(ω). Since the situation is rotationally symmetric about the origin,
it is sufficient to calculate F (t, 0) for 0 ≤ t < 1. If θ is fixed, then we have
(t, 0) ∈ L(Sr,θ) if and only if t cos θ − δ < r ≤ t cos θ + δ. This gives

2π(1 + δ)F (t, 0) =

∫ 2π

0

dθ

∫ 1+δ

0

1[t cos θ−δ,t cos θ+δ)(r) dr

=

∫ π

0

dθ

∫ 1+δ

−(1+δ)

1[t cos θ−δ,t cos θ+δ)(r) dr = 2πδ.

This shows that F (x) = δ/(1+δ) for x ∈ D so that we have EXi,j = ρ2δ2/(1+δ)2.

Similarly, E(Z̄i) = ρδ/(1 + δ). This shows that for i < j,

(3) E(Xi,j − Z̄iZ̄j) = 0.

We need to estimate E(Xi,j − Xi,j) for fixed i < j. Clearly if the intersection of

L̄(Si) and L̄(Sj) is entirely outside D, then Xi,j = Xi,j , while if the intersection

lies inside D, then Xi,j = (1 + δ)Xi,j so that E(Xi,j − Xi,j ; L̄(Si) ∩ L̄(Sj) ⊂ D) ≤
δE(Xi,j) ≤ ρ2δ3.

It remains to estimate the contribution to the expectation in the case in which the
intersection of L̄(Si) and L̄(Sj) contains a point of ∂D. We cover cases according
to the difference in the angle parameters, θi and θj , of Si and Sj by estimating
E(Xi,j ; L̄(Si) ∩ L̄(Sj) ∩ ∂D 6= ∅). We deal first with the case where | sin φ| ≤
1/2, where φ = θi − θj . The area of the parallelogram where they intersect is
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(2δ + 2/s)2/| sinφ|. If | sinφ| is between 2−n and 2−(n−1), the area is therefore of
order δ22n. On the other hand, the probability of such an intersection is of order
δ2−n (the difference between the θ coordinates is determined up to order 2−n and
given the θ coordinates, the difference between the r coordinates is determined
up to order δ). Since we are taking the expectation of min(ρ2Area/π, 1), we can
estimate the | sin φ| < 1/2 contribution by

∑∞
n=1 δ2−n min(ρ2δ22n, 1). The small

angle contribution to E(Xi,j − Xi,j) is then O(ρ2δ3| log(ρδ)|).
If | sin φ| > 1/2, then the area of the intersection is of O(ρ2δ2). It will be sufficient

to bound the probability that L̄(Si)∩L̄(Sj) intersects ∂D. Given the values of ri, θi

and θj , if the intersection is non-empty, then rj is within δ+1/s of the projection in
the θj direction of L̄(Si)∩∂D. The probability that the intersection is non-empty is
therefore of order at most δ plus the total arclength of L̄(Si)∩∂D. This arclength is
overestimated by 6δ+g(ri−2δ)−g(ri+2δ), the arc being compared to straight lines
parallel to and perpendicular to the θi direction (noting that some care is needed
if ri < 2δ). We have g(ri − 2δ) − g(ri + 2δ) = O(δ/

√
1 + 2δ − ri). Accordingly, by

integrating over ri, we see that the probability of such an intersection is O(δ). It
follows that the large angle contribution to E(Xi,j − Xi,j) is O(ρ2δ3). Combining

these, we see that E(Xi,j − Xi,j) = O(ρ2δ3| log ρ|) (using the fact that | log(ρδ)| =
O(| log ρ|)). It follows that

(4) E





∑

i<j

Xi,j − Xi,j



 = O(N2ρ2δ3| log ρ|).

We also need to estimate E(Z̄i − Zi). Notice that if S has parameters r and θ,

then Z̄(S) = ρ
π

∫ r+δ

r−δ g(t) dt. It follows that Z̄(S) − Z(S) ≤ 2δρ(max[r−δ,r+δ] g −
g(r+ δ +1/s))/π = O(δ2ρ/

√

1 − (r − δ)2). Since (1− (r− δ)2)−1/2 is an integrable
function of r over [0, 1 + δ], it follows that E(Z̄i −Zi) = O(ρδ2). Since Zi ≤ Z̄i, we
have

E
∑

i<j

(Z̄iZ̄j − ZiZj) ≤ N2/2((EZ̄i)
2 − (EZi)

2)

≤ N2(EZ̄i)(E(Z̄i − Zi)) = O(N2ρ2δ3).

(5)

Combining (3),(4) and (5), we see

E
∑

i<j

(Xi,j − ZiZj) = O(N2ρ2δ3| log ρ|) = O(| log ρ|).

It follows that P(
∑

i<j(Xi,j − ZiZj) ≥ 1/ρ) = O(ρ| log ρ|).
Since Zi > δρ/4 with probability at least 1/2, it follows that P(

∑N
i=1 Zi >

Nδρ/8) ≥ 1/2. In particular, P(
∑N

i=1 Zi > 2/ρ) ≥ 1/2.
It follows that there is a positive probability that (1) and (2) are satisfied, so

that there exist ρ-configurations for ρ sufficiently small.
�

2. Step 2: Sufficiency

Lemma 4. Let Ξ be a ρ-configuration. Suppose that A is a measurable set such
that the density of A in each component of Ξ exceeds ρ. Then A contains two points
separated by a distance s(ρ).
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Proof. As before, let N = N(ρ), δ = δ(ρ) and s = s(ρ). Let the squarelets in
C be S1, . . . , SN . Each squarelet Si may be disintegrated into a collection of line
segments of length 2δ parallel to the line joining the centre of Si to the origin. By
Fubini’s theorem, since the density of A in Si exceeds ρ, there exists one of the
parallel line segments in which the (one-dimensional) density of A exceeds ρ. Pick
a (one-dimensionally measurable) subset Ei of the intersection of the line segment
with A whose one-dimensional measure is exactly 2ρδ. We now let Fi be the subset
of the unit disc consisting of those points at a distance s(ρ) from a point of Ei.

Let (Xi,j)1≤i<j≤N and (Zi)1≤i≤N be as in Section 1. We will need the following
estimates:

P(Fi) ≥ Zi for each i;(6)

P(Fi ∩ Fj) ≤ Xi,j for each i < j.(7)

Assuming these inequalities, we let X = 1F1
+ . . . +1FN

and complete the proof
as follows:

P

(

N
⋂

i=1

F c
i

)

= P(X = 0) ≤ P
(

|X − EX | ≥ EX
)

≤ Var(X)

E(X)2

≤
E(1F1

+ . . .1FN
) + 2

∑

i<j(E1F1
1Fj

− E1Fi
E1Fj

)

(E(1F1
+ . . .1FN

))2

≤ 1

Z1 + . . . + ZN
+

2
∑

i<j(Xi,j − ZiZj)

(Z1 + . . . + ZN )2

<
ρ

2
+

ρ

2
= ρ.

In particular, since the density of A in D exceeds ρ, there exists a point of A outside
⋂

i≤N F c
i (hence inside

⋃

i≤N Fi). Hence there is a point of A at a distance s from
a point in one of the squarelets.

To see (6), note that each point of Ei gives rise to a disjoint arc of a circle in
Fi of radius s. If the the distance of the centre of the squarelet from the origin
is s + r, elementary geometric arguments using the intersecting chords theorem
show that these arcs have length at least g(r + δ + 1/s) (the arcs subtend a larger
portion of the circle than the straight line at a distance r + δ +1/s from the origin,
and are not straight). An application of Fubini’s theorem shows that P(Fi) ≥
2δρg(r + δ + 1/s)/π = Zi.

We now move on to (7). First note that Fi ∩ D ⊂ L̄(Si) ∩ D. It follows that if
L̄(Si) ∩ L̄(Sj) ∩ D = ∅, then P(Fi ∩ Fj) = 0 so that P(Fi ∩ Fj) ≤ Xi,j .

It remains to consider the case where L̄(Si)∩ L̄(Sj)∩D 6= ∅. In this case we are
trying to show

P(Fi ∩ Fj) ≤ (1 + δ)min

(

ρ2|L(Si) ∩ L(Sj)|
π

, 1

)

We note by elementary trigonometry that the area of L(Si)∩L(Sj) is 4δ2/| sin(θi −
θj)|. Since P(Fi ∩ Fj) ≤ 1, the inequality is trivial if | sin(θi − θj) < ρ2δ2 so we
assume that the sine exceeds ρ2δ2.

For points x and y in Ei and Ej , we will be considering points that are at a
distance exactly s from each. One can check that any two points in Si and Sj

subtend an angle at the origin whose sine is at least ρ2δ2/2 (since the angles at the
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α(x, y)
β(x, y)

φ(x, y)

x

y

origin change by less than 4δ/s). Let ci and cj denote the centres of Si and Sj . The
distance between ci and cj is at most 2(s + 1) cos(δ2ρ2/4) < 2s − 4δ. Letting z be
any point on the line joining ci and cj , x be a point in Si and y be a point in Sj , we
have d(x, z) + d(y, z) ≤ d(x, ci) + d(ci, z) + d(z, cj) + d(cj , y) ≤ 4δ + d(ci, cj) < 2s.
It follows that there is no point on the line ℓ joining ci and cj which is at a distance
s from a pair of points in Si and Sj . One can also see that ℓ does not intersect the
unit disc. It follows that for any x and y in Si and Sj, there is a unique z(x, y) on
the same side of ℓ as the unit disc which is at a distance s from each. We note that
Fi ∩ Fj = D ∩ z(Ei, Ej) where z(Ei, Ej) = {z(x, y) : x ∈ Ei, y ∈ Ej} and we use
this to estimate P(Fi ∩ Fj). We have

(8) Area(z(Ei, Ej)) =

∫

E1

∫

E2

dx dy
cosα(x, y) cos β(x, y)

sin φ(x, y)
,

where we identify x ∈ [−δ, δ] and y ∈ [−δ, δ] with points in the line segments ℓi and
ℓj containing Ei and Ej ; α(x, y) is the angle between ℓi and the line joining x to
z(x, y); β(x, y) is the angle between ℓj and the line joining y to z(x, y) and ℓj ; and
φ(x, y) is the angle subtended at z by x and y.

To justify (8), we refer to Figure 2. As x is moved an infinitesimal distance δx
along ℓi, z(x, y) moves around the circle of radius s about y through a distance
δx cosα(x, y)/ sin φ(x, y). Similarly if y moves by δy along ℓj , then z(x, y) moves
through a distance δy cosβ(x, y)/ sin φ(x, y). Since these infinitesimal vectors are
separated by an angle of φ(x, y), as x and y sweep out intervals of lengths δx and δy,
z(x, y) sweeps out an infinitesimal parallelogram with sides δx cosα(x, y)/ sin φ(x, y),
δy cosβ(x, y)/ sin φ(x, y) and angle φ(x, y) and thus has infinitesimal area given by
δxδy cosα(x, y) cosβ(x, y)/ sin φ(x, y).

We now check that cosα(x, y) and cosβ(x, y) are close to 1 by bounding the
diameter of z(Ei, Ej); and that sinφ(x, y) is close to sin θ. Let r = d(x, y). We

see that sin(φ/2) = r/(2s) and so sinφ = r
√

1 − r2/(4s2)/s. As x and y move
over Si and Sj , r changes by at most 4δ. We then check that sin(φ) changes by

at most 4
√

δ/s < ρ2δ3/8. By assumption, there are u ∈ Si and v ∈ Sj such that
z(u, v) ∈ D so that | sin φ(u, v) − sin θ| < 1/s < ρ2δ3/8. Combining these, we see
that for x ∈ Si and y ∈ Sj , sin φ ≥ sin θ/(1 + δ/4).
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To estimate the maximal distance of z(Ei, Ej) from the origin, we argue as
follows: As x and y move around Ei and Ej , their midpoint moves by no more

than 2δ. Since z(x, y) is obtained by moving a distance
√

s2 − d(x, y)2 from the
midpoint in a direction perpendicular to the line joining x and y, the diameter of
z(Ei, Ej) is bounded above by 2δ + sη, where η is the range of variation of the
angle of the lines joining points of Ei to points of Ej . Since points of Ei and
Ej are at least δ2ρ2s/2 apart, and x and y move over a combined distance of at
most 4δ, it follows that the angle variation is no greater than 8/(ρ2δs) and the
diameter of z(x, y) is no greater than 9/(ρ2δ). Since we may assume that z(Ei, Ej)
intersects the unit disc, it follows that α(x, y) and β(x, y) are no greater than
10/(ρ2δs). In particular, we see cosα(x, y) cos β(x, y)/ sin φ(x, y) ≤ (1+ δ)/ sin θ so
that Area(z(Ei, Ej)) ≤ (1 + δ)4δ2ρ2/ sin θ and P(Fi ∩ Fj) ≤ Xi,j as required. �

3. Step 3: Scaling

Lemma 5. Let ρ̄(A) > ρ > 0. Then for any N , there exists an r0 such that for all
r > r0, there exists an N × · · · × N grid of squares (Cj)j∈{1,...,N}2 of side r such
that |A ∩ Cj|/|Cj| > ρ for each j.

The idea of the proof is very simple: all sufficiently large areas have density no
bigger than ρ̄(A) + η. On the other hand, given an area of density close to ρ̄(A),
if it is divided up into a finite number of large pieces, then since none of them can
have density much more than ρ̄(A), none can have density much less than ρ̄(A)
either.

Proof. Let ǫ = ρ̄(A)−ρ. By definition of ρ̄(A), there exists an r0 such that for every
square C of side greater than r0, |A∩C|/|C| ≤ ρ̄(A) + ǫ/(2N2) = ρ + ǫ + ǫ/(2N2).

Let r > r0. Since ρ̄(A) = ρ + ǫ, there is a square C of side R > 8N3r/ǫ such
that |A ∩ C|/|C| > ρ + ǫ − ǫ/(4N3).

Let D be the largest subsquare of C whose side length is a multiple of Nr. We
then have |C \ D| ≤ (R2 − (R − Nr)2) ≤ 2NrR. It follows that

|A ∩ D|
|D| ≥ |A ∩ C| − |C \ D|

|C|
≥ ρ + ǫ − ǫ/(4N2) − 2Nr/R > ρ + ǫ − ǫ/(2N2).

Since D has side length a multiple of Nr, it has a subsquare E of side length
Nr such that |A ∩ E|/|E| > ρ + ǫ − ǫ/(2N2). Divide E into N2 subsquares of side
r and let the subsquares be (Cj)1≤ji≤N .

Now for any given j, we see that

|A ∩ Cj|
|Cj|

=
1

|Cj|



|E ∩ A| −
∑

k 6=j

|E ∩ Ck|





=
Nd|E ∩ A|

|E| −
∑

k 6=j

|E ∩ Ck|
|Ck|

> N2ρ + N2ǫ − ǫ/2 − (N2 − 1)
(

ρ + ǫ +
ǫ

2N2

)

> ρ.

�
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Corollary 6. Let B1∪. . .∪Bn be any finite disjoint collection of balls and cylinders.
Let ρ̄(A) > ρ. Then there exists R > 0 such that for all r > R, there exists x such
that

|A ∩ (rBi + x)|
|rBi|

> ρ.

Proof. Let ǫ = ρ̄(A)−ρ. Choose a sufficiently fine finite grid of squares (with squares
of side δ) covering

⋃

Bi that for each i, the proportion of Bi that is contained in
the squares that lie entirely in Bi is at least ρ/(ρ + ǫ/2). From the Lemma there
exists an r0 such that when the grid is scaled up by a factor greater than r0/δ, there
exists a translation of the dilated grid such that each square intersects A in a set of
density at least ρ+ ǫ/2. Let B′

i be the corresponding dilated and translated copy of
Bi. Since union of the squares in the dilated grid that are completely contained in
B′

i form a subset of B′
i of density at least ρ/(ρ+ǫ/2), it follows that |B′

i∩A| > ρ|B′
i|

as required. �

Proof of Theorem 1. By Lemma 3 there exists a ρ-configuration for all suitably
small ρ. In particular, there exists ρ < ρ̄(A) for which there is a ρ-configuration Ξ.

By Corollary 6 there exists an R > 0 such that for all r > R, there exists a
translate rΞ + x of rΞ such that A has density greater than ρ in each component.
Equivalently, (A − x)/r has density greater than ρ in each component of Ξ.

Lemma 4 then shows that (A− x)/r has points separated by s(ρ) so that A has
points separated by rs(ρ). Since r > R is arbitrary, A contains points separated by
all distances greater than Rs(ρ).

�

Proof of Corollary 2. Rather than working with ρ̄(A), we work with ρ̄2D(A) which
is the upper limit of the two-dimensional density of A in two-dimensional square
sub-regions of R

d as the side length increases to infinity. It is straightforward to
see that ρ̄2D(A) ≥ ρ̄(A). The above proof applies verbatim in this situation. �

4. Conclusion and open problems

We mention here a problem due to Moshe Rosenfeld. Let O denote the set of odd
numbers. Consider the graph Gd with vertex set R

d and edge set {(x, y) : d(x, y) ∈
O}. The chromatic number χ(Gd) of this graph (i.e. the smallest number n such
that there exists a map φ : R

d → {1, . . . , n} such that d(x, y) ∈ O ⇒ φ(x) 6= φ(y)})
is unknown. However, Theorem 1 allows us to see that the measurable chromatic
number (the same definition except that φ is required to be measurable) is infinite.
To see this, note that if there is a proper colouring using finitely many colours,
then at least one colour class must have positive upper density. By Theorem 1,
this colour class contains points separated by all sufficiently large distances and in
particular, the colour class contains points separated by odd distances.

Note that the significance of having odd distances in the problem is that if one
has edges of all integer distances, then the chromatic number is trivially infinite as
R

d contains an embedded copy of N (which would be an infinite clique). On the
other hand by an article of Graham, Rothschild and Straus [7], it is known that in
each dimension d, R

d contains at most d + 2 points such that the distance between
each pair is odd (so that Gd contains no clique of size d + 3).

Problem 1. (Rosenfeld) Is χ(Gd) = ∞ for d ≥ 2?
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It was shown by Banach [1] that there exists a finitely additive measure ν on the
plane that satisfies the following properties:

(1) ν is defined on the entire power set of the plane;
(2) ν(A) = |A| for every Lebesgue measurable set A;
(3) ν(R(A)) = ν(A) for any rigid motion R.

The definition of density remains valid for ν and it is straightforward to see that
for any finite partition of the plane, one of the pieces must have positive density.
Accordingly a version of Theorem 1 valid for non-measurable sets using density with
respect to ν would yield a positive answer to Problem 1. Since the ρ-configurations
constructed in Lemma 3 do not depend on the set A, this step of the proof is
unaffected by changing to non-measurable sets. Lemma 5 is easily modified to deal
with the non-measurable case just by a verbatim replacement of Lebesgue measure
by ν. This leaves just Lemma 4. While the second moment method remains valid,
the problem appears to be providing an upper bound for the second moment. In
particular, no formula of the form (8) is available. Finding a replacement for this
is the key missing piece of the argument.

Problem 2. Does Theorem 1 remain valid for arbitrary (not necessarily measur-
able) sets if Lebesgue measure is replaced by ν?

The following problem is well known.

Problem 3. Let T be a set of three non-collinear points in R
2 and let A be a subset

of R
2 with positive upper density. Is it true that there exists R > 0 such that for

all r ≥ R, A contains a congruent copy of rT?

In the case where T consists of collinear points, Bourgain [2] has shown that
the answer is negative. More generally, Graham [6] called a set of points V ⊂ R

d

spherical if they lie on a sphere of finite radius. He showed that if V is not spherical,
then there exists a positive density subset A of R

d for which there are arbitrarily
large r such that A contains no isometric copy of rV .

Problem 4 (Graham [6]). Let V ⊂ R
d be spherical. Does every positive density

subset of R
d contain isometric copies of rV for all sufficiently large r?

Furstenberg, Katznelson and Weiss [5] have shown that if the set A in Problem
3 is ‘fattened’, then the new set contains congruent copies of rT for all sufficiently
large r. Ziegler [9] extended this to show that given a arbitrary finite set V of R

d

(for d > 1), then a fattened positive density set contains isometric copies of rV for
all sufficiently large r.
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[8] L. Székely. Analytic Methods in combinatorics. PhD thesis, Hungarian Academy of Sciences,
1985.

[9] T. Ziegler. Nilfactors of R
m actions and configurations in sets of positive upper density in R

m.
J. Anal. Math., 99:249–266, 2006.

University of Victoria

E-mail address: aquas(a)uvic.ca


