ENTROPY RATE FOR HIDDEN MARKOV CHAINS WITH
RARE TRANSITIONS
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ABSTRACT. We consider Hidden Markov Chains obtained by passing a Markov
Chain with rare transitions through a noisy memoryless channel. We obtain
asymptotic estimates for the entropy of the resulting Hidden Markov Chain as
the transition rate is reduced to zero.

Let (X,,) be a Markov chain with finite state space S and transition matrix
P(p) and let (Y;,) be the Hidden Markov chain observed by passing (X,,) through
a homogeneous noisy memoryless channel (i.e. Y takes values in a set T, and there
exists a matrix @ such that P(Y;, = j|X, = 4, X0, X9, Y " V%) = Qi)
We make the additional assumption on the channel that the rows of @ are distinct.
In this case we call the channel statistically distinguishing.

Finally we assume that P(p) is of the form I + pA where A is a matrix with
negative entries on the diagonal, non-negative entries in the off-diagonal terms and
zero row sums. We further assume that for small positive p, the Markov chain with
transition matrix P(p) is irreducible. Notice that for Markov chains of this form,
the invariant distribution (7;);cs does not depend on p. In this case, we say that
for small positive values of p, the Markov chain is in a rare transition regime.

We will adopt the convention that H is used to denote the entropy of a fi-
nite partition, whereas h is used to denote the entropy of a process (the en-
tropy rate in information theory terminology). Given an irreducible Markov chain
with transition matrix P, we let h(P) be the entropy of the Markov chain (i.e.
h(P) = =3, ;miPijlog P;; where m; is the (unique) invariant distribution of the
Markov chain and where as usual we adopt the convention that 0log0 = 0). We
also let Hepan (i) be the entropy of the output of the channel when the input symbol
is i (Le. Henan(i) = — 2 cp QijlogQij ). Let h(Y') denote the entropy of V' (i.e.
h(Y)=—-limy_ 0o % Y werN P(Y{ = w)logP(YN = w))

Theorem 1. Consider the Hidden Markov Chain (Y,,) obtained by observing a
Markov chain with irreducible transition matriz P(p) = I+ Ap through a statistically
distinguishing channel with transition matriz Q). Then there exists a constant C' > 0
such that for all small p > 0,

WPE)) + 3 miHonan(i) = Cp < A(Y) < h(P(P)) + 3 7iHonan0),

where (m;)ies is the invariant distribution of P(p).
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If in addition the channel has the property that there exist i,i’ and j such that
Py >0, Qi > 0 and Q75 > 0, then there exists a constant ¢ > 0 such that

h(Y) < h(P(p)) + Zchh(m(z‘) — cp.

The entropy rate in the rare transition regime was considered previously in the
special case of a 0-1 valued Markov Chain with transition matrix P(p) = ( 1;p 1fp)
and where the channel was the binary symmetric channel with crossover probability
€ (ie. Q= (1;6 15, )) It is convenient to introduce the notation g(p) = —plogp —
(1 —p)log(l —p). In [5], Nair, Ordentlich and Weissman proved that g(e) — (1 —
2¢)?plogp/(1 —€) < h(Y) < g(p) + g(€). For comparison, with our result, this is
essentially of the form g(e) + a(e)g(p) < h(Y) < g(p) + g(¢) where a(e) < 1 but
ale) > 1lase — 0 (i.e. h(Y) = g(p)+ g(e) — O(plogp)). A second paper due to
Chigansky [1] shows that g(€) + b(€)g(p) < h(Y) for a function b(e) < 1 satisfying
be) — 1 as ¢ — 1/2 (again giving an O(plogp) error). Our result states in this
case that there exist C' > ¢ > 0 such that g(p)+g(e) —Cp < h(Y) < g(p)+g(e) —cp
(ie. A(Y) =g(p) + g(e) — O(p)).

Before giving the proof of the theorem, we explain briefly the underlying idea of
the lower bound which is the main part. Since the transitions in the (X,,) sequence
are rare, given a realization of (Y,,), the Y,, values allow one to guess (using the
statistical-distinguishing property) the X, values from which the Y,, values are
obtained. This provides for an accurate reconstruction except that where there is a
transition in the X,,’s there is some uncertainty as to its location as estimated using
the Y,,’s. It turns out that by using maximum likelihood estimation, the transition
locations may be pinpointed up to an error with exponentially small tail. Since the
transitions occur with rate p, there is an O(p) error in reconstructing (X,) from

(¥n)-

Proof of Theorem 1. Given a measurable partition Q of the space and an event
A that is F-measurable for a o-algebra F then we will write H(Q|F|A) for the
entropy of Q relative to F with respect to the measure P4(B) = P(ANB)/P(A). If

Ay, ..., A form an F-measurable partition of the space, then we have the following
equality:
k
(1) H(Q|F) =) P(A;)H(Q|F|A;).
j=1

Note that ((X,,Yy))nez forms a Markov chain with transition matrix P given
by P(i)j),(i,)j/) = P;Qirj and invariant distribution 7(; ;) = mQ;;. The stan-
dard formula for the entropy of a Markov chain then gives h(X,Y) = h(P(p)) +
> TilHchan (7). Since h(X,Y) = h(Y') + h(X|Y), one obtains

(2) WY) = h(X,Y) = h(X]Y) = h(P(p)) + Z i Henan (1) — R(X]Y).

This establishes the basic upper bound in the theorem.

If the additional properties are satisfied (the existence of 7,7’ and j such that
Py >0, Q;; > 0 and Q; > 0), then we need to show that h(X|Y) > ¢p for some
¢ > 0. To show this, we will demonstrate that H(Xo|Y, X"1) > cp. In fact, we
show the stronger statement: H(X|Y, (X, )n20) > cp. Let A be the event that
X_1=14and X; =4 and Yy = j. Given that X_; = ¢ and X; =4/, the probability
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that Xo =i is P Piir/ Y ) PikPriv = 1/2 + O(p) and similarly the probability that
Xo=11s1/24 O(p). Now, given that X_; =4 and X; =’ and Yy = j, one has
from Bayes’ theorem that the probability that Xo = ¢ is Q;;/(Qs; + Qi) + O(p)
and similarly the probability that X; = 4" is Qs;/(Qi; + Qirj) + O(p). It follows
that H(Xo|Y, (Xy)nzo0lA) = k + O(p) for some positive constant k. Since A has
probability £2(p) we obtain the lower bound h(X|Y) > ¢p. From this we deduce
the claimed upper bound for h(Y):

hY) < h(X)+ ZmHChan(i) — cp.

We now establish the lower bound. We are aiming to show h(X|Y) = O(p) (for
which it suffices to show H(XEZ7Y) = O(Lp)). Setting L = |logp|* and letting P
be a suitable partition, we estimate H (XoLfl\Y, P) and use the inequality

(3) H(Xg7Y) < H(XgT'Y,P) + H(P).

We define the partition P as follows: Set K = |logp|? and let P = {Ey,, Ey,, Eg}.
Here E,, (for many) is the event that there are at least two transitions in X2~
Ey, (for boundary) is the event that there is exactly one transition and that it takes
place within a distance K of the boundary of the block and finally E, (for good) is
the event that there is at most one transition and if it takes place, then it occurs
at a distance at least K from the boundary of the block.

We have P(Ey,) = O(p*L?) and H(XE ™ Ey) < Llog|S| from which we see that
P(Ew) H(XE ™ Ew) = OWPLY) = o(pL).

We have P(Ey,) = O(pK). Given that Ey, takes place, there are 2K|S|(|S|—1) =
O(K) possible values of X&'~ so that P(E,)H(XE ™! Ey) = O(pK log K) = o(pL).

Since the elements of the partition have probabilities O(pK) or 1 — O(pK), we
see that H(P) = o(pL).

It remains to show that H(XE '|Y|Es) = O(pL). In fact we shall demonstrate
H(XE YY1 E,) = O(pL). Given that the event E, holds, the sequence X}
belongs to B = {a*: a € S}u{a’b**:a,be S, K <i< L - K}.

Given a sequence u € B, we define the log-likelihood of u being the input se-
quence yielding the output Y™ by L, (Y™ = Zf:_ol log Qu,v,. Given that E,
holds, we define ZOL_1 to be the sequence in B for which Ly (YOL_l) is maximized
(breaking ties lexicographically if necessary). We will then show using large devia-
tion methods that ZOL_1 is a good reconstruction of XOL_1 with small error.

We calculate for u,v € B,

L—1
P (LU(YOL_l) > Lu(YOL_l)‘X(%_l = u) =P <Z 1Og(QviY£/QuiYi) > O)

=0

=P (Z 108(Qu,v; / Quyv;) > 0) ,
ieA
where A = {i: u; # v;}. For each i € A, given that X~ = u, we have that
log(Qu,v,/Qu.v;) is an independent random variable taking the value log(Q.,;/Qu.;)
with probability @, ;-
It is well known (and easy to verify using elementary calculus) that for a given
probability distribution 7 on a set T, the probability distribution ¢ maximizing
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> jermilog(oj/mj) is o = m (for which the maximum is 0). Accordingly we see
that given that XZ ™" = u, L,(Y{™') — L, (Y" ™) is the sum of |A| random vari-
ables, each having one of |S|(|S| — 1) distributions, each with negative expecta-
tion. It follows from Hoeffding’s Inequality [3] that there exist C' and 7 such that
P(L, (YY) > L (YE 1) XE = u) < Onl2l where 7 is independent of p. Since
there at most 2|S| sequences in B differing from u in exactly k places, we obtain

(4) P(zE~1 differs from X! in k places|Ey) < 2|S|CnF.

In particular, conditioned on Ey, H(X |25 Zy # Zr—1) = O(1). If Zy =
Z5,_1 then XOL_1 can differ in no places or at least K places. It follows that
H(Xy 2y 20 = Z1-1) = O(Kn™) = o(Lp).

We have P(Zy # Z1,—1) = P(Xo # X1—1) + O(n®) = O(Lp). This gives

H(Xy Yy Ey) < H(X§ 25 Eg N {Z0 = Zr—1})P(Z0 = Z1—1|Ey)
+ H(X§ N2 M Eg N {Zo # Zp1})P(Zo # ZL-1|Ey)
= O(pL).

This completes the proof that H(XOL*1|Y) = O(pL) so that h(X|Y) = O(p) and
h(Y) = h(X) + >, miHchan (i) + O(p) as required.
(I

We note that as part of the proof we attempt a reconstruction of (X,) from
the observed data (Y;,). In our case, the reconstruction of the nth symbol of X,,
depended on past and future values of Y,,,. A related but harder problem of filtering
is to try to reconstruct X,, given only Y7*. This problem was addressed in essentially
the same scenario by Khasminskii and Zeitouni [4], where they gave a lower bound
for the asymptotic reconstruction error of the form Cp| log p| for an explicit constant
C (i.e. for an arbitrary reconstruction scheme, the probability of wrongly guessing
X, is bounded below in the limit as n — oo by Cp|logp|). By the above, if one is
allowed to use future as well as past observations then the asymptotic reconstruction
error is O(p).
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