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Abstract. We consider Hidden Markov Chains obtained by passing a Markov

Chain with rare transitions through a noisy memoryless channel. We obtain

asymptotic estimates for the entropy of the resulting Hidden Markov Chain as
the transition rate is reduced to zero.

Let (Xn) be a Markov chain with finite state space S and transition matrix
P (p) and let (Yn) be the Hidden Markov chain observed by passing (Xn) through
a homogeneous noisy memoryless channel (i.e. Y takes values in a set T , and there
exists a matrix Q such that P(Yn = j|Xn = i,Xn−1

−∞ , X∞n+1, Y
n−1
−∞ , Y∞n+1) = Qij).

We make the additional assumption on the channel that the rows of Q are distinct.
In this case we call the channel statistically distinguishing.

Finally we assume that P (p) is of the form I + pA where A is a matrix with
negative entries on the diagonal, non-negative entries in the off-diagonal terms and
zero row sums. We further assume that for small positive p, the Markov chain with
transition matrix P (p) is irreducible. Notice that for Markov chains of this form,
the invariant distribution (πi)i∈S does not depend on p. In this case, we say that
for small positive values of p, the Markov chain is in a rare transition regime.

We will adopt the convention that H is used to denote the entropy of a fi-
nite partition, whereas h is used to denote the entropy of a process (the en-
tropy rate in information theory terminology). Given an irreducible Markov chain
with transition matrix P , we let h(P ) be the entropy of the Markov chain (i.e.
h(P ) = −

∑
i,j πiPij logPij where πi is the (unique) invariant distribution of the

Markov chain and where as usual we adopt the convention that 0 log 0 = 0). We
also let Hchan(i) be the entropy of the output of the channel when the input symbol
is i (i.e. Hchan(i) = −

∑
j∈T Qij logQij ). Let h(Y ) denote the entropy of Y (i.e.

h(Y ) = − limN→∞
1
N

∑
w∈TN P(Y N1 = w) log P(Y N1 = w))

Theorem 1. Consider the Hidden Markov Chain (Yn) obtained by observing a
Markov chain with irreducible transition matrix P (p) = I+Ap through a statistically
distinguishing channel with transition matrix Q. Then there exists a constant C > 0
such that for all small p > 0,

h(P (p)) +
∑
i

πiHchan(i)− Cp ≤ h(Y ) ≤ h(P (p)) +
∑
i

πiHchan(i),

where (πi)i∈S is the invariant distribution of P (p).
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If in addition the channel has the property that there exist i, i′ and j such that
Pii′ > 0, Qij > 0 and Qi′j > 0, then there exists a constant c > 0 such that

h(Y ) ≤ h(P (p)) +
∑
i

πiHchan(i)− cp.

The entropy rate in the rare transition regime was considered previously in the
special case of a 0–1 valued Markov Chain with transition matrix P (p) =

( 1−p p
p 1−p

)
and where the channel was the binary symmetric channel with crossover probability
ε (i.e. Q =

(
1−ε ε
ε 1−ε

)
). It is convenient to introduce the notation g(p) = −p log p−

(1 − p) log(1 − p). In [5], Nair, Ordentlich and Weissman proved that g(ε) − (1 −
2ε)2p log p/(1 − ε) ≤ h(Y ) ≤ g(p) + g(ε). For comparison, with our result, this is
essentially of the form g(ε) + a(ε)g(p) ≤ h(Y ) ≤ g(p) + g(ε) where a(ε) < 1 but
a(ε) → 1 as ε → 0 (i.e. h(Y ) = g(p) + g(ε) − O(p log p)). A second paper due to
Chigansky [1] shows that g(ε) + b(ε)g(p) ≤ h(Y ) for a function b(ε) < 1 satisfying
b(ε) → 1 as ε → 1/2 (again giving an O(p log p) error). Our result states in this
case that there exist C > c > 0 such that g(p)+g(ε)−Cp ≤ h(Y ) ≤ g(p)+g(ε)−cp
(i.e. h(Y ) = g(p) + g(ε)−Θ(p)).

Before giving the proof of the theorem, we explain briefly the underlying idea of
the lower bound which is the main part. Since the transitions in the (Xn) sequence
are rare, given a realization of (Yn), the Yn values allow one to guess (using the
statistical-distinguishing property) the Xn values from which the Yn values are
obtained. This provides for an accurate reconstruction except that where there is a
transition in the Xn’s there is some uncertainty as to its location as estimated using
the Yn’s. It turns out that by using maximum likelihood estimation, the transition
locations may be pinpointed up to an error with exponentially small tail. Since the
transitions occur with rate p, there is an O(p) error in reconstructing (Xn) from
(Yn).

Proof of Theorem 1. Given a measurable partition Q of the space and an event
A that is F-measurable for a σ-algebra F then we will write H(Q|F|A) for the
entropy of Q relative to F with respect to the measure PA(B) = P(A∩B)/P(A). If
A1, . . . , Ak form an F-measurable partition of the space, then we have the following
equality:

(1) H(Q|F) =
k∑
j=1

P(Aj)H(Q|F|Aj).

Note that ((Xn, Yn))n∈Z forms a Markov chain with transition matrix P̄ given
by P̄(i,j),(i′,j′) = Pii′Qi′j′ and invariant distribution π̄(i,j) = πiQij . The stan-
dard formula for the entropy of a Markov chain then gives h(X,Y ) = h(P (p)) +∑
i πiHchan(i). Since h(X,Y ) = h(Y ) + h(X|Y ), one obtains

(2) h(Y ) = h(X,Y )− h(X|Y ) = h(P (p)) +
∑
i

πiHchan(i)− h(X|Y ).

This establishes the basic upper bound in the theorem.
If the additional properties are satisfied (the existence of i, i′ and j such that

Pii′ > 0, Qij > 0 and Qi′j > 0), then we need to show that h(X|Y ) ≥ cp for some
c > 0. To show this, we will demonstrate that H(X0|Y,X−1

−∞) ≥ cp. In fact, we
show the stronger statement: H(X0|Y, (Xn)n 6=0) ≥ cp. Let A be the event that
X−1 = i and X1 = i′ and Y0 = j. Given that X−1 = i and X1 = i′, the probability
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that X0 = i is PiiPii′/
∑
k PikPki′ = 1/2 +O(p) and similarly the probability that

X0 = i′ is 1/2 + O(p). Now, given that X−1 = i and X1 = i′ and Y0 = j, one has
from Bayes’ theorem that the probability that X0 = i is Qij/(Qij + Qi′j) + O(p)
and similarly the probability that X1 = i′ is Qi′j/(Qij + Qi′j) + O(p). It follows
that H(X0|Y, (Xn)n 6=0|A) = k + O(p) for some positive constant k. Since A has
probability Ω(p) we obtain the lower bound h(X|Y ) ≥ cp. From this we deduce
the claimed upper bound for h(Y ):

h(Y ) ≤ h(X) +
∑
i

πiHchan(i)− cp.

We now establish the lower bound. We are aiming to show h(X|Y ) = O(p) (for
which it suffices to show H(XL−1

0 |Y ) = O(Lp)). Setting L = | log p|4 and letting P
be a suitable partition, we estimate H(XL−1

0 |Y,P) and use the inequality

(3) H(XL−1
0 |Y ) ≤ H(XL−1

0 |Y,P) +H(P).

We define the partition P as follows: Set K = | log p|2 and let P = {Em, Eb, Eg}.
Here Em (for many) is the event that there are at least two transitions in XL−1

0 ,
Eb (for boundary) is the event that there is exactly one transition and that it takes
place within a distance K of the boundary of the block and finally Eg (for good) is
the event that there is at most one transition and if it takes place, then it occurs
at a distance at least K from the boundary of the block.

We have P(Em) = O(p2L2) and H(XL−1
0 |Em) ≤ L log |S| from which we see that

P(Em)H(XL−1
0 |Em) = O(p2L3) = o(pL).

We have P(Eb) = O(pK). Given that Eb takes place, there are 2K|S|(|S|−1) =
O(K) possible values of XL−1

0 so that P(Eb)H(XL−1
0 |Eb) = O(pK logK) = o(pL).

Since the elements of the partition have probabilities O(pK) or 1 − O(pK), we
see that H(P) = o(pL).

It remains to show that H(XL−1
0 |Y |Eg) = O(pL). In fact we shall demonstrate

H(XL−1
0 |Y L−1

0 |Eg) = O(pL). Given that the event Eg holds, the sequence XL−1
0

belongs to B = {aL : a ∈ S} ∪ {aibL−i : a, b ∈ S,K ≤ i ≤ L−K}.
Given a sequence u ∈ B, we define the log-likelihood of u being the input se-

quence yielding the output Y L−1
0 by Lu(Y L−1

0 ) =
∑L−1
i=0 logQuiYi

. Given that Eg

holds, we define ZL−1
0 to be the sequence in B for which LZ(Y L−1

0 ) is maximized
(breaking ties lexicographically if necessary). We will then show using large devia-
tion methods that ZL−1

0 is a good reconstruction of XL−1
0 with small error.

We calculate for u, v ∈ B,

P
(
Lv(Y L−1

0 ) ≥ Lu(Y L−1
0 )|XL−1

0 = u
)

= P

(
L−1∑
i=0

log(QviYi/QuiYi) ≥ 0

)

= P

(∑
i∈∆

log(QviYi
/QuiYi

) ≥ 0

)
,

where ∆ = {i : ui 6= vi}. For each i ∈ ∆, given that XL−1
0 = u, we have that

log(QviYi
/QuiYi

) is an independent random variable taking the value log(Qvij/Quij)
with probability Quij .

It is well known (and easy to verify using elementary calculus) that for a given
probability distribution π on a set T , the probability distribution σ maximizing
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j∈T πj log(σj/πj) is σ = π (for which the maximum is 0). Accordingly we see

that given that XL−1
0 = u, Lv(Y L−1

0 ) − Lu(Y L−1
0 ) is the sum of |∆| random vari-

ables, each having one of |S|(|S| − 1) distributions, each with negative expecta-
tion. It follows from Hoeffding’s Inequality [3] that there exist C and η such that
P(Lv(Y L−1

0 ) ≥ Lu(Y L−1
0 )|XL−1

0 = u) ≤ Cη|∆| where η is independent of p. Since
there at most 2|S| sequences in B differing from u in exactly k places, we obtain

(4) P(ZL−1
0 differs from XL−1

0 in k places|Eg) ≤ 2|S|Cηk.

In particular, conditioned on Eg, H(XL−1
0 |ZL−1

0 |Z0 6= ZL−1) = O(1). If Z0 =
ZL−1 then XL−1

0 can differ in no places or at least K places. It follows that
H(XL−1

0 |ZL−1
0 |Z0 = ZL−1) = O(KηK) = o(Lp).

We have P(Z0 6= ZL−1) = P(X0 6= XL−1) +O(ηK) = O(Lp). This gives

H(XL−1
0 |Y L−1

0 |Eg) ≤ H(XL−1
0 |ZL−1

0 |Eg ∩ {Z0 = ZL−1})P(Z0 = ZL−1|Eg)

+H(XL−1
0 |ZL−1

0 |Eg ∩ {Z0 6= ZL−1})P(Z0 6= ZL−1|Eg)

= O(pL).

This completes the proof that H(XL−1
0 |Y ) = O(pL) so that h(X|Y ) = O(p) and

h(Y ) = h(X) +
∑
i πiHchan(i) + Θ(p) as required.

�

We note that as part of the proof we attempt a reconstruction of (Xn) from
the observed data (Yn). In our case, the reconstruction of the nth symbol of Xn

depended on past and future values of Ym. A related but harder problem of filtering
is to try to reconstruct Xn given only Y n1 . This problem was addressed in essentially
the same scenario by Khasminskii and Zeitouni [4], where they gave a lower bound
for the asymptotic reconstruction error of the form Cp| log p| for an explicit constant
C (i.e. for an arbitrary reconstruction scheme, the probability of wrongly guessing
Xn is bounded below in the limit as n→∞ by Cp| log p|). By the above, if one is
allowed to use future as well as past observations then the asymptotic reconstruction
error is O(p).
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