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Abstract. We give a deterministic representation for position dependent ran-
dom maps and describe the structure of the set of its invariant densities. This
representation is a generalization of skew products which represent random
maps. We prove one-to-one correspondence between absolutely continuous
invariant measures (acims) for the position dependent random map and the
acims for its deterministic representation.

1. Introduction

A random map is a discrete time dynamical system consisting of a collection of
transformations τk on a state space X, such that, at each iteration, the selection
of τk is made randomly according to a probability distribution ~p =< pk >. When
the distribution is allowed to depend on the state space, we say that the random
dynamical system has position dependent probabilities.

If all the pk’s are constant functions over the state space, (constant probabilites)
then it is well-known that the map may be realized as a deterministic map via
a skew product construction on an extended state space [4] or [5]. While this
forms an important class of random dynamical systems, it does not allow for the
possibility of ‘feedback’ from the transformations or from the state space back to
the randomizing process. This may be unrealistic in some physical applications.
For example, in the case of a random thermostat model, Ruelle, [6] has observed
that without this feedback, while the system feels the effect of the randomizer (in
this model, a heat bath), the heat bath does not feel the influence of the state
of the system. Consequently, the system may heat up indefinitely. For a more
realistic model, therefore, it may be important to allow the randomizer to depend
on the position of the orbit in state space. In this way, we are led to study position
dependent probabilities.

In [2] it was observed that position dependent random maps do not allow a skew
product representation in the sense of [4]. In this note, we provide a determinis-
tic skew-type representation for position dependent random maps. When applied
to the case of constant probabilities, the representation reduces to the generalized
skew product of [4, 5]. We show that there is a one-to-one correspondence between
eigenfunctions for the transfer operator associated to the random transformation
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and eigenfunctions for the Frobenius-Perron operator associated to this determin-
istic skew-type representation. An immediate consequence is that every absolutely
continuous invariant measure (acim) for the skew representation is a product mea-
sure of the form µ× λ, where µ is an acim for the random map and λ is Lebesgue
measure on the unit interval.

The structure of the set of acims for any skew product depends on the random-
izing process. Our randomizing process is an uncountable family of piecewise linear
and onto transformations of the unit interval. While this is but one of many pos-
sible skew-type constructions which could lead to a deterministic representation, it
is particularly simple and geometrically appealing.

In Section 2 we present careful definitions of position dependent random maps
and their invariant measures. In Section 3 we construct the deterministic skew-
product representation for position dependent random maps and investigate the
connection between invariant measures of the random map and product-type in-
variant measures for its deterministic representation. In Section 4 we consider the
case of nonsingular transformations and nonsingular skew products, and in Section
5, under a mild additional condition on the position dependent probabilities we
derive the structure theorem on eigenfunctions mentioned above (Theorem 5.4).
As in Morita [4] which investigates the case of constant probabilities, the connec-
tions between ergodic properties of the random map and the skew representation
for position dependent probabilites now follow from this structure theorem. At the
end of this article we present a simple example to illustrate the construction.

2. Preliminaries

(X, B(X), µ) will denote a measure space, where B(X) is a σ-algebra of subsets
of X and µ is a probability measure on (X, B). In particular, (I,B(I), λ) will
be the unit interval I = [0, 1), with B(I) the Borel σ-algebra on I and λ being
Lebesgue measure on (I,B(I)) . For k = 1, . . . ,K, let τk : X → X be measurable
transformations and pk : X → I be measurable functions such that

∑K
k=1 pk(x) = 1,

that is, a measurable partition of unity.

Notation 2.1. We let T = {τ1, . . . τK ; p1, . . . pK} denote the associated random
map.

To explain the notation, ‘iterates’ of the random map T are performed as follows:

For
⇀

k ∈ {1, . . . ,K}N , we write

T⇀

k
(x) = τkN

◦ τkN−1 ◦ · · · ◦ τk1(x),

and

p⇀

k
(x) = pkN

(τkN−1 ◦ · · · ◦ τk1(x)) · pkN−1(τkN−2 ◦ · · · ◦ τk1(x)) · · · · pk1(x).

A random map is more precisely a Markov process with transition function

P(x,A) =
K∑

k=1

pk(x)1A(τk(x)).

Here (1)A denotes the indicator function of a set A. The standard notion of an
invariant measure for a Markov process gives the following definition of a T -invariant
measure.
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Definition 2.2. Let T be a random map and let µ be a measure on X. Define
(ET µ)(A) =

∑K
k=1

∫
τ−1

k (A)
pk(x)dµ(x). Then µ is T -invariant if µ = ET µ.

When the pk are constant functions, the random map is said to have constant
probabilities, an important and well-studied case (see [1, 3, 4, 5]). We are mostly
interested in the case of non-constant probabilities, which we call the position de-
pendent case. Of course our definition of random map above covers both settings.

3. A Deterministic Representation for Position Dependent Random
Maps

S. Pelikan, in [5], gave a deterministic, skew product representation for constant
probability random maps. In fact, he used the term generalized skew product,
referring to the fact that the fibre maps did not necessarily preserve a common
measure. His construction was central to the analysis of random maps that was to
follow. Our first task is to extend this construction to the case of position dependent
random maps. Given a random map T on X, we will construct a deterministic map
S on X × I that we also call the skew product representation of T . The remainder
of the paper will relate the properties of absolutely continuous invariant measures
for T to those for S.

We make use of the following simple lemma:

Lemma 3.1. Let Y and Z be a measurable spaces and let (Jk)k∈κ be a finite
(or countable), measurable partition of Y . For each k ∈ κ, assume that Tk is a
measurable map from Jk to Z. Then the piecewise-defined map T : Y → Z defined
by T (x) = Tk(x) if x ∈ Jk is measurable.

In our construction, Y = Z = X×I and the set Jk will be given by Jk = {(x, ω) :∑
i<k pi(x) ≤ ω <

∑
i≤k pi(x)}. We define maps ϕk : Jk → I by

ϕk(x, ω) =
1

pk(x)
ω −

∑k−1
r=1 pr(x)
pk(x)

The maps Tk are defined on Jk by Tk(x, ω) = (τk(x), ϕk(x, ω)). We also write
ϕk,x(ω) = ϕk(x, ω). Define the skew product transformation S : X × I → X × I by

S(x, ω) = (τk(x), ϕk,x(ω)),

for (x, ω) ∈ Jk. S is then B(X)×B(I)− measurable.
Numerous authors have shown the existence of invariant measures for random

maps with constant probabilities in a variety of settings. In [2] invariant measures
are constructed for case of piecewise expanding maps τk on the unit interval and
with position dependent probabilities. The construction proceeds directly from
Definition 2.2.

In any case, there is a simple relation between invariant measures for T and
those of S as follows.

Lemma 3.2. Let µ be a measure on (X, B). Then µ is invariant for the random
map T if and only if µ× λ is invariant for the skew product S.
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Proof. Since λ is ϕx invariant,
∫

ϕ−1
k,x(B)

dλ(ω) = pk(x)λ(B) for any B ∈ A. Let
A ∈ B and B ∈ A. We have

(µ× λ)
(
S−1(A×B)

)
=

∫ ∫
1A×B (S(x, ω)) dµ(x)dλ(ω)

=
K∑

k=1

∫
X

∫
(Jk)x

1A(τk x) · 1B(ϕk,x ω)dλ(ω)dµ(x)

=
K∑

k=1

∫
X

1A(τk x)
∫

(Jk)x

1B(ϕk,x ω)dλ(ω)dµ(x)

=
K∑

k=1

∫
X

1A(τk(x))pk(x)λ(B)dµ(x)

=
K∑

k=1

∫
τ−1

k (A)

pk(x)dµ(x) · λ(B)

= (ET µ)(A)λ(B),

(3.1)

where ET µ is as in Definition 2.2. If µ is T -invariant, then the above yields µ ×
λ

(
S−1(A×B)

)
= µ× λ(A×B) so that µ× λ is S-invariant.

Conversely, if µ × λ is S-invariant, then the left side of (3.1) is µ × λ(A × B).
Set B = I and conclude µ(A) = (ET µA) so µ is T -invariant.

�

Remark 3.3. At this point, a natural question is whether or not there exist addi-
tional invariant measures for the skew beyond those of product type as above. We
show in the next sections that, in general, this is possible, but under mild conditions
on the transformations and probabilities, such non-physical measures are excluded.

4. Nonsingular maps and associated Frobenius-Perron operators

In order to proceed we will assume that X is equipped with a measure ν on
B(X) such that S is nonsingular with respect to ν × λ, that is:

(ν × λ) A = 0 =⇒ (ν × λ) S−1A = 0

We denote this by (ν × λ) ◦ S−1 � ν × λ and refer to ν or ν × λ as the ambient
measure for T or S respectively.

Lemma 4.1. If τk, k = 1, 2, . . . K are nonsingular with respect to ν then S is
nonsingular with respect to ν × λ.

Proof. For a measurable subset A ⊆ X × I and x ∈ X let (A)x denote the second
component section at x . Let A1 = {x ∈ X : (A)x 6= ∅}, A+

1 = {x ∈ A1 : λ((A)x) >
0} and A0

1 = {x ∈ A1 : λ((A)x) = 0}. Then A1 = A+
1 ∪ A0

1. Now suppose
ν × λ(A) = 0 and fix k. Then

ν × λ(T−1
k A) =

∫
τ−1

k A+
1

∫
ϕ−1

k,y(A)τky

dλ dν(y) +
∫

τ−1
k A0

1

∫
ϕ−1

k,y(A)τky

dλ dν(y) = 0;

the first integral evaluating to zero because ν(A+
1 ) = 0 and τk is nonsingular;

the second integral being zero because the ϕk,y are individually nonsingular with
respect to λ, for each y. �



DETERMINISTIC REPRESENTATION FOR POSITION DEPENDENT RANDOM MAPS 5

From this point on it will therefore be convenient to assume that all tranforma-
tions τk are nonsingular with respect to ν.

We denote the Frobenius-Perron operator associated to S by PS . Note that
PS : L1 → L1 is a Markov operator, uniquely determined by the property∫

S−1A

f d(ν × λ) =
∫

A

PSf d(ν × λ)

for all f ∈ L1 and measurable A ⊆ X× I. On the other hand, looking at Definition
2.2 we have a natural ‘transfer operator’ on L1(X) whose dual is given by the action
of T on L∞. We will call this the Frobenius-Perron operator of the random map T
(see, for example [2]):

(LT f)(x) =
K∑

k=1

Pτk
(pkf) (x),

where each Pτk
is the Frobenius-Perron operator associated with the transformation

τk. It is easy to see that a measure dµ = f dν is T -invariant if and only if LT f = f .
The connection between PS and LT is as follows. First, we set some notation. If

g ∈ L1(X) we define ǧ(x, ω) = g(x), the ‘lift’ of g onto the product space. Denote
by Ľ1 = Ľ1(X × I) ⊆ L1(X × I), the subspace of constant fibre lifts from L1(X)
into L1(X × I).

Lemma 4.2. PS : Ľ1 → Ľ1. If g ∈ L1(X) then PS ǧ = ˇLT g almost everywhere.

Proof. Let A be measurable and let ǧ be given.∫
A

PS ǧd(ν × λ) =
∑

k

∫
T−1

k A

ǧd(ν × λ)

=
∑

k

∫
X

∫
(Jk)x

ǧ(x, ω)1A(τk(x), ϕk,xω)dλ(ω)dν(x)

=
∑

k

∫
X

∫
(Jk)x

g(x)1A(τk(x), ϕk,xω)dλ(ω)dν(x)

=
∑

k

∫
X

∫ 1

0

g(x)1A(τk(x), t)pk(x)dλ(t)dν(x)

=
∑

k

∫ 1

0

∫
X

g(x)1A(τk(x), t)pk(x)dν(x)dλ(t)

=
∫

I

∫
X

∑
k

Pτk
(pkg)1A(x, t)dν(x)dλ(t)

=
∫

A

(
∑

k

Pτk
(pkg))̌d(ν × λ)

Since A is arbitrary, the lemma is established. �
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Finally, we set notation that we need later in the text. For x ∈ X and
⇀

k ∈
{1, . . . ,K}N , B ∈ B(I) and A ∈ B(X), we make the following definitions

ϕ⇀

k ,x
= ϕkN ,τkN−1◦···◦τk1 (x) ◦ · · · ◦ ϕk2,τk1 (x) ◦ ϕk1,x

τ⇀

k
(x) = τkN

◦ τkN−1 ◦ . . . τk1(x)

I
⇀

k = {(x, ω) : ω ∈ ϕ−1
⇀

k ,x
(I)}

I
⇀

k
x = ϕ−1

⇀

k ,x
(I) ⊆ I

B
⇀

k = {(x, ω) : ω ∈ ϕ−1
⇀

k ,x
(B)}

B
⇀

k
x = ϕ−1

⇀

k ,x
(B) ⊆ I

⇀

k
x

A⇀

k
= {(x, ω) : τ⇀

k
(x) ∈ A}.

Remark 4.3. In the case that all constituent maps τk are local homeomorphisms
on a subset of Rn and if the pi are continuous and everywhere non-zero, then the
deterministic representation S is a local homeomorphism of Rn+1 – a class for which
considerable machinery exists for the analysis of ergodic properties.

5. Absolutely Continuous Invariant Measures and Eigenfunctions of
the Frobenius-Perron Operators

In this section we establish a one-to-one correspondence between eigenvalues and
eigenfunctions for the operators LT and those for PS . As an immediate consequence
(Corollary 5.5), we conclude that all absolutely continuous invariant measures for
the skew S are of product type ν × λ where µ is an acim for T on X. This
requires one additional mild assumption on the spatially dependent probabilities.
We remind the reader that we are assuming that T and S are nonsingular with
respect to the ambient measures ν and ν × λ and we assume

(5.1) pk(x) < 1 ν − a.e. ∀k.

Remark 5.1. That the correspondence does not hold in general is shown by the
following simple example.

Example 5.2.

τ1(x) =
{

2x for 0 ≤ x ≤ 1
2

x for 1
2 < x ≤ 1 ,

τ2(x) =
{

x for 0 ≤ x ≤ 1
2

2x− 1 for 1
2 < x ≤ 1 ;

and

p1(x) =
{

0 for 0 ≤ x ≤ 1
2

1 for 1
2 < x ≤ 1 ;

p2(x) = 1− p1(x).

It is easy to see that S is the identity on the unit square which preserves any
measure and hence, there can be no identification between eigenfunctions for T
and S (in this case, corresponding to eigenvalue λ = 1).
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Remark 5.3. Condition 5.1 is related to our choice of the randomizing process.
Other randomizers could lead to different conditions which could be advantageous
in certain applications. However, our example above shows that some sort of con-
straint will be necessary.

We now present a generalization of the main structure theorem from Morita [4]
to the position-dependent case.

Theorem 5.4. Suppose that S is the skew product system arising from a position-
dependent, nonsingular random map T satisfying (5.1). If PSg = λg where |λ| = 1,
then g agrees almost everywhere with a function dependent on the first coordinate
alone.

In particular if dµg = gd(ν × λ) is an acim for S then g(x, ω) = ĝ(x) a.e. (x, ω)
where ĝ(x) =

∫ 1

0
g(x, ω)dλ(ω).

Before proving Theorem 5.4, we will state a corollary. Let

FS =
{

g ≥ 0,

∫
gd(ν × λ) = 1 : PSg = g

}
and FT =

{
ĝ ≥ 0,

∫
ĝdν = 1 : PT ĝ = ĝ

}
.

Corollary 5.5. Under the condition (5.1), there is a bijective correspondence be-
tween absolutely continuous invariant measures for the random map T and ab-
solutely continuous invariant measures for the skew product S given in terms of
densities by g ↔ g× 1 = ǧ. Further, an invariant density g is an extreme point for
FS if and only if g = ĝ × 1 and ĝ is an extreme point for FT .

Proof. The theorem above together with Lemma 3.2 establishes that the correspon-
dence g ↔ g×1 between invariant densities for T and invariant densities for S is a
bijection. This correspondence preserves convex combinations and hence extreme
points. �

We need a few lemmas before proving Theorem 5.4. First, we introduce some
notation. Write p(x, ω) = pi(x), where i is the smallest r ∈ {1, . . . ,K} such that
p1(x) + · · ·+ pi(x) ≥ ω.

Lemma 5.6. Let R be a nonsingular mapping of a probability space (Z,F , ρ) and
let L be the associated Frobenius-Perron operator. If g ∈ L1 is an eigenfunction of
L with eigenvalue λ satisfying |λ| = 1, then the following are true:

(1) L(|g|) = |g|;
(2) There exist h ∈ L∞ such that g = h|g| and h satisfies h ◦ T = λ̄h almost

everywhere.

Proof. To see (1), note that L is a Markov operator so that |g| = |Lg| ≤ L(|g|).
Since L preserves integrals, we see L(|g|) = |g| a.e.

For (2), set h0(x) = g(x)/|g(x)| if g(x) 6= 0 and 0 otherwise. We first claim that∫
|g||h0 ◦ T − λ̄h0|2 dρ = 0. To see this, we argue as follows:∫
|g||h0 ◦ T − λ̄h0|2 dρ =

∫ (
|g||h0|2 ◦ T − λ̄(|g|h0)h̄0 ◦ T − λ(|g|h̄0)h0 ◦ T + |g||h0|2

)
dρ

=
∫ (

|g||h0|2 ◦ T − λ̄g(h̄0 ◦ T )− λḡ(h0 ◦ T ) + |g||h0|2
)

dρ.

Applying the definition of the Perron-Frobenius operator and using L(|g|) = |g|,
L(g) = λg and L(ḡ) = λ̄ḡ shows that the integral is 0, so that on C = {x : g(x) 6= 0},
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h0 ◦ T = λ̄h0. We then define h(x) = limn→∞ λnh0(Tnx). Since {x : g(x) 6= 0} is
forward-invariant (as L(|g|) = |g|), we see that if Tn(x) ∈ C, then λn+1h0(Tn+1x) =
λnh0(Tnx). This shows that the limit exists for x in

⋃
T−nC. For x in the com-

plement of this set, λnh0(Tnx) = 0 for all n so the limit exists for all x. Given that
the limit exists, it follows immediately from the algebra of limits that h ◦ T = λ̄h.
Since h = h0 on C, we have that g = |g|h as required. �

Lemma 5.7. Suppose that S is the skew product system arising from a position
dependent random map satisfying (5.1). If dµ|g| = |g| d(ν × λ) is an acim for S
then for all ε > 0 and δ > 0, there exists an N > 0 and a measurable set G ⊆ X×I,
such that:

(1) For (x, ω) ∈ G, p(x, ω) · p(S(x, ω)) · · · p(SN−1(x, ω)) < δ;
(2) µ|g|(G) ≥ 1− ε;

(3) The set G is a union of sets of the form {x} × I
⇀

k
x for

⇀

k of length N .

Remark 5.8. Condition (3) can be stated as a measurability condition: G ∈ FN ,
where FN =

∨N−1
n=0 S−nP ∨ B(X), and P = {J1, . . . , JK}.

Proof. Let G(δ,N) = {(x, ω) : p(x, ω)p(S(x, ω)) · · · p(SN−1(x, ω)) < δ}. Since the

function p(x, ω)p(S(x, ω)) · · · p(SN−1(x, ω)) is constant on sets of the form {x}×I
⇀

k
x

for
⇀

k of length N , we see that condition (3) is always satisfied. Condition (1) is
also satisfied by definition.

Define LN (x, ω) =
∑N−1

n=0 log p(Sn(x, ω)). Since log p ≤ 0 (and by (5.1), <
0 almost everywhere), for fixed (x, ω), LN (x, ω) is a decreasing sequence. It is
sufficient to show that for a set of full µ|g|− measure, limN→∞ LN (x, ω) < log δ.
By the Birkhoff ergodic theorem, we see that for almost all (x, ω), (1/N)LN (x, ω)
is convergent (Note that in the case that log p is not integrable, the assertion still
holds since log p is non-positive). Since the set Z of points (x, ω) for which this
limit is 0 is an invariant set, the integral of the limit over Z will agree with the
integral of log p over Z. Since the integral of the limit over Z is 0, it follows that the
integral over Z of log p is 0. However, since log p is strictly negative (ν×λ)−almost
everywhere, this implies that Z is of measure 0. We conclude that for almost every
(x, ω), (1/N)LN (x, ω) converges to a strictly negative quantity (possibly −∞). It
follows that for almost every (x, ω), LN (x, ω) → −∞ so that the increasing union
of the G(δ,N) over N is of measure 1. In particular, there exists an N > 0 such
that µ|g|(G(δ,N)) > 1− ε satisfying conclusion (2).

�

Lemma 5.9. Let
⇀

k ,
⇀

k
′
∈ {1, . . . ,K}N ,

⇀

k 6=
⇀

k
′
. Then I

⇀

k
x ∩ I

⇀

k
′

x = ∅.

Proof. First note that if
⇀
w is a string of length n whose first m terms are a string

⇀
v , then I

⇀
v
x ⊃ I

⇀
w
x . If

⇀

k and
⇀

k
′
first differ in the mth term, then let

⇀
v and

⇀
v
′
be

the truncated strings of length m. Since I
⇀
v
x ⊃ I

⇀

k
x and I

⇀
v
′

x ⊃ I
⇀

k
′

x , it is sufficient

to show that I
⇀
v
x and I

⇀
v
′

x are disjoint. Accordingly, we deal with the case where
⇀

k
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and
⇀

k
′
differ only in the last term. In this case, we have

I
⇀

k
x = ϕ−1

k1,xϕ−1
k2,τk1x . . . ϕ−1

kn−1,τkn−2 ...τk1x

(
ϕ−1

kn,τkn−1 ...τk1x
(I)

)
I

⇀

k
′

x = ϕ−1
k1,xϕ−1

k2,τk1x . . . ϕ−1
kn−1,τkn−2 ...τk1x

(
ϕ−1

k′n,τkn−1 ...τk1x
(I)

)
We see that the final two intervals are disjoint, whereas all the preceding inverse

maps are the same. Since inverse maps preserve disjointness, the lemma follows.
�

Corollary 5.10. For measurable sets A ⊆ X, B ⊆ I, we have

(5.2) S−N (A×B) =
⋃

⇀

k∈{1,...,K}N

(A⇀

k
∩B

⇀

k ),

where (5.2) is a mutually disjoint union.

Proof. The decomposition is a straightforward calculation. To see that the subsets

are disjoint, observe B
⇀

k
x ⊂ I

⇀

k
x and B

⇀

k
′

x ⊂ I
⇀

k
′

x . Thus, the corollary follows from
Lemma 5.9. �

We will also need to make use of the following standard fact.

Lemma 5.11. Let g be an L1 function on X × I and let ε > 0. Then there exists
h ∈ L1(ν × λ) and a δ > 0 such that:

(1) ‖g − h‖ < ε;
(2) for |ω − ω′| < δ, |h(x, ω)− h(x, ω′)| < ε.

Proof of Theorem 5.4. Let PSg = λg where g ∈ L1 and |λ| = 1. We may assume
that ‖g‖1 = 1. Let ε > 0 be given. We will show that for any measurable sets
A ⊆ X and B ⊆ I we have∣∣∣∣∫

A×B

(g − ĝ) d(ν × λ)
∣∣∣∣ < 6ε.

From this it follows that g = ĝ (ν × λ)-almost everywhere.
First, applying Lemma 5.11, we find δ > 0 and h satisfying the conclusions of

the lemma for our chosen ε. Next, let N > 0 and G be as given Lemma 5.7 for our
chosen ε and the δ coming from above. We then argue as follows.

Since g is an eigenfunction of PS , we have g = λ−NPN
S g and∣∣∣∣∫

A×B

(g − ĝ) dν × λ

∣∣∣∣
=

∣∣∣∣∫ 1A×BPN
S g d(ν × λ)− λ(B)

∫
1A×IP

N
S g d(ν × λ)

∣∣∣∣
=

∣∣∣∣∫ 1S−N (A×B)g d(ν × λ)− λ(B)
∫

1S−N (A×I)g d(ν × λ)
∣∣∣∣

≤ 2ε +

∣∣∣∣∣
∫

S−N (A×B)

h d(ν × λ)− λ(B)
∫

S−N (A×I)

h d(ν × λ)

∣∣∣∣∣ ,

(5.3)

where for the inequality we used the fact that ‖g−h‖L1(ν×λ) < ε. We now estimate
the remaining term.
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From Corollary 5.10∫
S−N (A×B)

h dν × λ =
∑

⇀

k∈{1,...,K}N

∫
A⇀

k
∩B

⇀
k

h dν × λ and

∫
S−N (A×I)

h dν × λ =
∑

⇀

k∈{1,...,K}N

∫
A⇀

k
∩I

⇀
k

h dν × λ.

We see that ∣∣∣∣∣
∫

S−N (A×B)

h d(ν × λ)− λ(B)
∫

S−N (A×I)

h d(ν × λ)

∣∣∣∣∣
≤

∑
⇀

k∈{1,...,K}N

∣∣∣∣∣
∫

A⇀
k
∩B

⇀
k

h dν × λ− λ(B)
∫

A⇀
k
∩I

⇀
k

h dν × λ

∣∣∣∣∣ .

(5.4)

We now estimate for a fixed
⇀

k ∈ {1, . . . ,K}N , the term appearing in the sum.

Notice that λ(B
⇀

k
x ) = λ(I

⇀

k
x )λ(B) since ϕ⇀

k ,x
is an affine map on I

⇀

k
x .

Let h⇀

k ,x
be the average value of h on the vertical interval I

⇀

k
x , i.e.

h⇀

k ,x
=

1

λ(I
⇀

k
x )

∫
I

⇀
k

x

h(x, ω)dλ(ω);

Let π1 be the projection to the x component. Using condition (3) of Lemma 5.7,
we have∫

A⇀
k
∩B

⇀
k

h dν × λ =
∫

π1(A⇀
k

)

∫
B

⇀
k

x

h(x, ω)dλdν

=
∫

π1(A′
⇀
k

)

∫
B

⇀
k

x

h(x, ω)dλdν +
∫

π1(A′′
⇀
k

)

∫
B

⇀
k

x

h(x, ω)dλdν

where π1(A′
⇀

k
) = {x ∈ π1(A⇀

k
) : λ(I

⇀

k
x ) < δ} and π1(A′′

⇀

k
) = {x ∈ π1(A⇀

k
) :

λ(I
⇀

k
x ) ≥ δ}
We then estimate∣∣∣∣∣
∫

A⇀
k
∩B

⇀
k

h dν × λ− λ(B)
∫

A⇀
k
∩I

⇀
k

h dν × λ

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

π1(A′
⇀
k

)

∫
B

⇀
k

x

(h(x, ω)− h⇀

k ,x
)dλdν +

∫
A′′

⇀
k
∩B

⇀
k

h dν × λ− λ(B)
∫

A′′
⇀
k
∩I

⇀
k

h dν × λ

∣∣∣∣∣∣
≤

∫
A′

⇀
k
∩B

⇀
k

ε dν × λ +
∫

Gc∩A⇀
k
∩I

⇀
k

|h| dν × λ,

where we used conclusions (2) of Lemma 5.7 and (2) of Lemma 5.11 to get the third
line. Combining this inequality with (5.4) and (5.3), we see∣∣∣∣∫ (g − ĝ) dν × λ

∣∣∣∣ ≤ 3ε +
∫

Gc

(|g|+ |h− g|) dν × λ ≤ 5ε.
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Finally, we give an illustrative example.

Example 5.12. Let T be a random map which is given by {τ1, τ2; p1(x), p2(x)}
where

(5.5) τ1(x) =
{

2x for 0 ≤ x ≤ 1
2

x for 1
2 < x ≤ 1 ,

(5.6) τ2(x) =
{

x + 1
2 for 0 ≤ x ≤ 1

2
2x− 1 for 1

2 < x ≤ 1 ;

and

(5.7) p1(x) =
{

2
3 for 0 ≤ x ≤ 1

2
1
3 for 1

2 < x ≤ 1 ,

(5.8) p2(x) =
{

1
3 for 0 ≤ x ≤ 1

2
2
3 for 1

2 < x ≤ 1 .

Then, S(x, ω) is given by:

(5.9) S(x, ω) =


(2x, 3

2ω) for (x, ω) ∈ [0, 1
2 ]× [0, 2

3 ]
(x, 3ω) for (x, ω) ∈ ( 1

2 , 1]× [0, 1
3 ]

(2x− 1, 3
2ω − 1

2 ) for (x, ω) ∈ ( 1
2 , 1]× ( 1

3 , 1]
(x + 1

2 , 3ω − 2) for (x, ω) ∈ [0, 1
2 ]× ( 2

3 , 1]

.

Notice that S is piecewise linear Markov transformation with respect to the par-
tition {[0, 1

2 ] × [0, 2
3 ], ( 1

2 , 1] × [0, 1
3 ], ( 1

2 , 1] × ( 1
3 , 1], [0, 1

2 ] × ( 2
3 , 1]}. Therefore, its

Frobenius-Perron operator reduces to a matrix:

(5.10) PS =


1
3

1
3

1
3

1
3

0 1
3

1
3 0

0 1
3

1
3 0

1
3

1
3

1
3

1
3

 .

If the invariant density of S is g = [g1, g2, g3, g4], normalized by 2g1+g2+2g3+g4 = 6
and satisfying equation gPS = g, then g = [23 , 4

3 , 4
3 , 2

3 ]. Observe that P 2
S > 0. Thus,

µg is ergodic. By Theorem 5.4 µ is a simple lift of a T -acim. Namely, g is a simple
lift of ĝ = [ 23 , 4

3 ] which is T -invariant. To verify this fact by direct calculation,
notice that τ1, τ2 are piecewise linear Markov transformations defined on the same
Markov partition P : {[0, 1

2 ], ( 1
2 , 1]}. The corresponding Frobenius-Perron operator

matrices are:

(5.11) Pτ1 =
(

1
2

1
2

0 1

)
, Pτ2 =

(
0 1
1
2

1
2

)
.

Since p1(x) and p2(x) are piecewise constant on the same partition, the Frobenius-
Perron operator of the random map T is given by:

PT =
(

2
3 0
0 1

3

) (
1
2

1
2

0 1

)
+

(
1
3 0
0 2

3

) (
0 1
1
2

1
2

)
=

(
1
3

2
3

1
3

2
3

)
.

If the invariant density of T is ĝ = [ĝ1, ĝ2], normalized by ĝ1 + ĝ2 = 2 and satisfying
the equation ĝPT = ĝ, then ĝ = [23 , 4

3 ].
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6. Additional Results on Ergodic Properties of T and S

As in Morita [4] we can use Theorem 5.4 to establish a correspondence between
ergodic properties of T and S with respect to invariant measures µ and µ × λ. In
particular, all these results hold for the absolutely continuous invariant measures
for S since we have shown them to be of product type. Notions of ergodicity,
weakly mixing, strongly mixing and uniformly mixing for T are as defined in [4].
(but perhaps they should be given here as well??).

Theorem 6.1. Assume that T is a random transformation with position dependent
probabilities satisfying Condition 5.1 and that µ is invariant for T . Then

(1) µ is ergodic for T if and only if µ× λ is ergodic for S.
(2) µ is weakly mixing for T if and only if µ× λ is weakly mixing for S.
(3) µ is strongly mixing for T if and only if µ× λ is strongly mixing for S
(4) µ is uniformly mixing for T if and only if µ× λ is exact for S.
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10, Birkhäuser Boston, 1986.

4. Morita, T., Deterministic version lemmas in ergodic theory of random dynamical systems,
Hiroshima Math. J., 18 (1988), 15-29.

5. Pelikan, S., Invariant densities for random maps of the interval, Trans. Amer. Math. Soc.,
281 (1984), 813-825.

6. Ruelle, D., Positivity of entropy production in the presence of a random thermostat, J. Statist.
Phys., (5-6) 86 (1997), 935-951.

WB: Department of Economics, School of Social Sciences, The University of Manch-
ester, Manchester, M13 9PL, United Kingdom

E-mail address: Wael.Bahsoun@manchester.ac.uk

CB & AQ: Department of Mathematics and Statistics, University of Victoria, P.O.
Box 3045 STN CSC, Victoria, B.C. Canada, V8W 3P4

E-mail address: cbose@math.uvic.ca, aquas@math.uvic.ca


