DETERMINISTIC REPRESENTATION FOR POSITION
DEPENDENT RANDOM MAPS

WAEL BAHSOUN, CHRISTOPHER BOSE, AND ANTHONY QUAS

ABSTRACT. We give a deterministic representation for position dependent ran-
dom maps and describe the structure of the set of its invariant densities. This
representation is a generalization of skew products which represent random
maps. We prove one-to-one correspondence between absolutely continuous
invariant measures (acims) for the position dependent random map and the
acims for its deterministic representation.

1. INTRODUCTION

A random map is a discrete time dynamical system consisting of a collection of
transformations 7, on a state space X, such that, at each iteration, the selection
of 73, is made randomly according to a probability distribution p'=< p; >. When
the distribution is allowed to depend on the state space, we say that the random
dynamical system has position dependent probabilities.

If all the py’s are constant functions over the state space, (constant probabilites)
then it is well-known that the map may be realized as a deterministic map via
a skew product construction on an extended state space [4] or [5]. While this
forms an important class of random dynamical systems, it does not allow for the
possibility of ‘feedback’ from the transformations or from the state space back to
the randomizing process. This may be unrealistic in some physical applications.
For example, in the case of a random thermostat model, Ruelle, [6] has observed
that without this feedback, while the system feels the effect of the randomizer (in
this model, a heat bath), the heat bath does not feel the influence of the state
of the system. Consequently, the system may heat up indefinitely. For a more
realistic model, therefore, it may be important to allow the randomizer to depend
on the position of the orbit in state space. In this way, we are led to study position
dependent probabilities.

In [2] it was observed that position dependent random maps do not allow a skew
product representation in the sense of [4]. In this note, we provide a determinis-
tic skew-type representation for position dependent random maps. When applied
to the case of constant probabilities, the representation reduces to the generalized
skew product of [4, 5]. We show that there is a one-to-one correspondence between
eigenfunctions for the transfer operator associated to the random transformation

Date: February 5, 2008.

1991 Mathematics Subject Classification. Primary 37A05, 37E05.

Key words and phrases. Random map, Skew product, Absolutely Continuous Invariant
Measure.

The research of W.B. was supported by a Postdoctoral Fellowship from the Pacific Institute
for the Mathematical Sciences, 2004-06. The research of C.B. was supported by an NSERC grant.
A.Q. thanks MSRI for its hospitality during the writing of this paper.

1



2 BAHSOUN, BOSE, AND QUAS

and eigenfunctions for the Frobenius-Perron operator associated to this determin-
istic skew-type representation. An immediate consequence is that every absolutely
continuous invariant measure (acim) for the skew representation is a product mea-
sure of the form u x A, where p is an acim for the random map and ) is Lebesgue
measure on the unit interval.

The structure of the set of acims for any skew product depends on the random-
izing process. Our randomizing process is an uncountable family of piecewise linear
and onto transformations of the unit interval. While this is but one of many pos-
sible skew-type constructions which could lead to a deterministic representation, it
is particularly simple and geometrically appealing.

In Section 2 we present careful definitions of position dependent random maps
and their invariant measures. In Section 3 we construct the deterministic skew-
product representation for position dependent random maps and investigate the
connection between invariant measures of the random map and product-type in-
variant measures for its deterministic representation. In Section 4 we consider the
case of nonsingular transformations and nonsingular skew products, and in Section
5, under a mild additional condition on the position dependent probabilities we
derive the structure theorem on eigenfunctions mentioned above (Theorem 5.4).
As in Morita [4] which investigates the case of constant probabilities, the connec-
tions between ergodic properties of the random map and the skew representation
for position dependent probabilites now follow from this structure theorem. At the
end of this article we present a simple example to illustrate the construction.

2. PRELIMINARIES

(X,B(X), u) will denote a measure space, where B(X) is a o-algebra of subsets
of X and p is a probability measure on (X,®). In particular, (I,B(I),\) will
be the unit interval I = [0,1), with B(I) the Borel o-algebra on I and A being
Lebesgue measure on (I,B(I)) . For k=1,..., K, let 7, : X — X be measurable
transformations and pg : X — I be measurable functions such that S p_, pp(z) = 1,
that is, a measurable partition of unity.

Notation 2.1. We let T = {r,...7k;p1,...pr} denote the associated random
map.

To explain the notation, ‘iterates’ of the random map 7" are performed as follows:
For ; € {1,..., K}, we write
Tz(x) = Tky O Thy_y O O Tk, (T),
and
P (@) = Prn (T 0+ 070y (2) - Phin s (Thy 5 © - 0 Ty (2)) - - - Py ().

A random map is more precisely a Markov process with transition function

K
P(x, A) = Zpk(x)lA(Tk(z))'
k=1

Here (1) 4 denotes the indicator function of a set A. The standard notion of an
invariant measure for a Markov process gives the following definition of a T-invariant
measure.
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Definition 2.2. Let T be a random map and let u be a measure on X. Define
(Erp)(A) = Zszl fT—l(A) pr(x)dp(x). Then p is T-invariant if 4 = Epp.
k

When the pj are constant functions, the random map is said to have constant
probabilities, an important and well-studied case (see [1, 3, 4, 5]). We are mostly
interested in the case of non-constant probabilities, which we call the position de-
pendent case. Of course our definition of random map above covers both settings.

3. A DETERMINISTIC REPRESENTATION FOR POSITION DEPENDENT RANDOM
MaAps

S. Pelikan, in [5], gave a deterministic, skew product representation for constant
probability random maps. In fact, he used the term generalized skew product,
referring to the fact that the fibre maps did not necessarily preserve a common
measure. His construction was central to the analysis of random maps that was to
follow. Our first task is to extend this construction to the case of position dependent
random maps. Given a random map 7" on X, we will construct a deterministic map
S on X x I that we also call the skew product representation of 7. The remainder
of the paper will relate the properties of absolutely continuous invariant measures
for T to those for S.

We make use of the following simple lemma:

Lemma 3.1. Let Y and Z be a measurable spaces and let (J)kex be a finite
(or countable), measurable partition of Y. For each k € k, assume that Ty, is a
measurable map from Jy to Z. Then the piecewise-defined map T:Y — Z defined
by T'(z) = Ty (x) if © € Jy is measurable.

In our construction, Y = Z = X x I and the set Jj, will be given by Jj, = {(z,w) :
ZKkpi(z) <w< Zigkpi(x)}. We define maps ¢y : Jp — I by

S S it §3C))
Sﬁk(xaw) - pk(l“) pk(x)

The maps Ty, are defined on J by Ti(r,w) = (mk(x), prx(z,w)). We also write
Vko(w) = r(x,w). Define the skew product transformation S : X x I — X x I by

S(.%', w) = (Tk(x)ﬂ @k,x(w))7

for (z,w) € Ji. S is then B(X) x B(I)— measurable.

Numerous authors have shown the existence of invariant measures for random
maps with constant probabilities in a variety of settings. In [2] invariant measures
are constructed for case of piecewise expanding maps 7 on the unit interval and
with position dependent probabilities. The construction proceeds directly from
Definition 2.2.

In any case, there is a simple relation between invariant measures for 7" and
those of S as follows.

Lemma 3.2. Let p be a measure on (X,B). Then u is invariant for the random
map T if and only if p X A is invariant for the skew product S.
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Proof. Since X is ¢, invariant, f%% () @A W) = pe(z)A(B) for any B € 2. Let
A€ B and B € 2. We have ’

(L xA)(STHAx B)) = //1A><B (S(z,w)) du(x)dA(w)

K
kz:l /x /(Jk)m La(7k ) - 15(pr,a w)dA(w)dp(x)

[
M= T
S~

1a(7p ) /( 15(pk w)dA(w)du(z)

(31) k=1"X Tk )
K
_ ,; /X 14 (72(2))pi () A(B)dpa()
K
— z)du(z) - \M(B
,;/T,;mp’“( du(x) - M(B)
— (Er) (A)A(B),

where Epp is as in Definition 2.2, If g is T-invariant, then the above yields p x
A(STHA x B)) = px AM(A x B) so that p x A is S-invariant.
Conversely, if p1 x A is S-invariant, then the left side of (3.1) is u x A(4A x B).
Set B = I and conclude p(A) = (ErpA) so p is T-invariant.
O

Remark 3.3. At this point, a natural question is whether or not there exist addi-
tional invariant measures for the skew beyond those of product type as above. We
show in the next sections that, in general, this is possible, but under mild conditions
on the transformations and probabilities, such non-physical measures are excluded.

4. NONSINGULAR MAPS AND ASSOCIATED FROBENIUS-PERRON OPERATORS

In order to proceed we will assume that X is equipped with a measure v on
B(X) such that S is nonsingular with respect to v x A, that is:

(VxANA=0 = (rxA\)StA=0

We denote this by (v x A) o S7! < v x X and refer to v or v x \ as the ambient
measure for T or S respectively.

Lemma 4.1. If 7, £k = 1,2,... K are nonsingular with respect to v then S is
nonsingular with respect to v X .

Proof. For a measurable subset A C X x I and = € X let (A4), denote the second
component section at x . Let A; = {z € X : (A), # 0}, AT ={x € A1 : \((A)z) >
0} and A} = {x € A; : A\((A)z) = 0}. Then A; = Af U AY. Now suppose
v X AM(A) =0 and fix k. Then

v x \T; ' A) :/ / d\dv(y) +/ / d\dv(y) = 0;
T tAT e (A T AL o ()

TLY

the first integral evaluating to zero because v(A]) = 0 and 7, is nonsingular;
the second integral being zero because the ¢y, are individually nonsingular with
respect to A, for each y. [
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From this point on it will therefore be convenient to assume that all tranforma-
tions 7, are nonsingular with respect to v.

We denote the Frobenius-Perron operator associated to S by Ps. Note that
Pg: L' — L' is a Markov operator, uniquely determined by the property

/SflA fd(ux)\):/APsfd(yxA)

for all f € L' and measurable A C X x I. On the other hand, looking at Definition
2.2 we have a natural ‘transfer operator’ on L*(X) whose dual is given by the action
of T on L°°. We will call this the Frobenius-Perron operator of the random map T
(see, for example [2]):

K
ETf Z PTk pkf
k=1

where each P;, is the Frobenius-Perron operator associated with the transformation
Tk. It is easy to see that a measure du = f dv is T-invariant if and only if L1 f = f.

The connection between Pg and L is as follows. First, we set some notation. If
g € LY(X) we define §(x,w) = g(z), the ‘lift’ of g onto the product space. Denote
by L' = LY(X x I) € L'(X x I), the subspace of constant fibre lifts from L'(X)
into LY(X x I).

Lemma 4.2. Ps: L' — L'. If g € L'(X) then Psj = Lrg almost everywhere.

Proof. Let A be measurable and let § be given.

/Psgdyx)\ Z/ d(v x \)
= ; /X /( Jk)mg<xaw>1A(Tk($),@k,ww)d)\(w)du(x)
= Z / / Jk)mg(x)lA(Tk(CE)7wk,IW)d)\(w)dV(m)
- Z / / 2)1a(mr (@), O)pr(2)dA(t)dv (@)
= Z / / z)1a(7k(2), t)pr(z)dv(z)dA(t)
- /, /. 52 P hg o, D)D)
-/ (3 P )

Since A is arbitrary, the lemma is established. O
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N

Finally, we set notation that we need later in the text. For x € X and k €
{1,...,K}N, Be®B(I) and A € B(X), we make the following definitions

P> 2 = SOkN7TkN,10"‘OTk1 (z) 0---0 901452,7'1@1 (’I‘) o Sokl,x

T~ (T) = Thy O Thiy_y O -+ - Ty (T)

k

IF = {(@v): wep! (D}
Ik = ool (el

B = {(zw): we ! (B)}

BY — o (B)C I
A; = {(x,w) : T;(iﬂ) c A}

Remark 4.3. In the case that all constituent maps 75 are local homeomorphisms
on a subset of R™ and if the p; are continuous and everywhere non-zero, then the
deterministic representation S is a local homeomorphism of R"*! — a class for which
considerable machinery exists for the analysis of ergodic properties.

5. ABSOLUTELY CONTINUOUS INVARIANT MEASURES AND EIGENFUNCTIONS OF
THE FROBENIUS-PERRON OPERATORS

In this section we establish a one-to-one correspondence between eigenvalues and
eigenfunctions for the operators L7 and those for Pg. As an immediate consequence
(Corollary 5.5), we conclude that all absolutely continuous invariant measures for
the skew S are of product type v x A where p is an acim for 7" on X. This
requires one additional mild assumption on the spatially dependent probabilities.
We remind the reader that we are assuming that 7" and S are nonsingular with
respect to the ambient measures v and v X A and we assume

(5.1) pr(xz) <1 v—a.e. Vk.

Remark 5.1. That the correspondence does not hold in general is shown by the
following simple example.

Example 5.2.
() = 2z for0<az <3
R B for%<x§1’
(@) = T forOSxS%.
PWT 2w -1 ford<a<l
and
() = 0 for()ga:g%.
PiiT) =191 for%<x§1’

pa(z) =1 —p1(x).
It is easy to see that S is the identity on the unit square which preserves any
measure and hence, there can be no identification between eigenfunctions for T
and S (in this case, corresponding to eigenvalue A = 1).
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Remark 5.3. Condition 5.1 is related to our choice of the randomizing process.
Other randomizers could lead to different conditions which could be advantageous
in certain applications. However, our example above shows that some sort of con-
straint will be necessary.

We now present a generalization of the main structure theorem from Morita [4]
to the position-dependent case.

Theorem 5.4. Suppose that S is the skew product system arising from a position-
dependent, nonsingular random map T satisfying (5.1). If Psg = A\g where |A\| =1,
then g agrees almost everywhere with a function dependent on the first coordinate
alone.

In particular if dug = gd(v x X) is an acim for S then g(z,w) = §(x) a.e. (z,w)

where §(x) = fol g(z,w)dA\(w).

Before proving Theorem 5.4, we will state a corollary. Let
FS:{g>07/gd(ux)\):1:PSg:g} andFT:{§>0,/ng:1:PT§:g}.

Corollary 5.5. Under the condition (5.1), there is a bijective correspondence be-
tween absolutely continuous invariant measures for the random map 7T and ab-
solutely continuous invariant measures for the skew product S given in terms of
densities by g <+ g x 1 = g. Further, an invariant density g is an extreme point for
Fs if and only if g = g X 1 and § is an extreme point for F7p.

Proof. The theorem above together with Lemma 3.2 establishes that the correspon-
dence g <« g x 1 between invariant densities for 7" and invariant densities for S is a
bijection. This correspondence preserves convex combinations and hence extreme
points. U

We need a few lemmas before proving Theorem 5.4. First, we introduce some
notation. Write p(x,w) = p;(z), where ¢ is the smallest r € {1,..., K} such that
pi(z) + - +piz) > w.

Lemma 5.6. Let R be a nonsingular mapping of a probability space (Z,F, p) and

let £ be the associated Frobenius-Perron operator. If g € L' is an eigenfunction of
L with eigenvalue X satisfying |A| = 1, then the following are true:

(1) L(lgl) = lgl; )
(2) There exist h € L* such that g = hlg| and h satisfies ho T = A\h almost
everywhere.

Proof. To see (1), note that £ is a Markov operator so that |g| = [Lg] < L(|g]).
Since L preserves integrals, we see L(|g|) = |g| a-e.

For (2), set ho(x) = g(x)/|g(x)| if g(x) # 0 and 0 otherwise. We first claim that
[ 1gllho o T — Aho|*> dp = 0. To see this, we argue as follows:

/IgllhooT—XhoPdp:/(Igl\ho\QoT—X(Iglho)ﬁooT—A(Iglﬁo)hooTJr\gllhol2) dp

- / (Iallhol? o T — 3g(o o T) — Ag(ho o T) + |gllo[?) dp.

Applying the definition of the Perron-Frobenius operator and using L(lg)) = lgl,
L(g) = Ag and L(g) = Ag shows that the integral is 0, so that on C' = {z: g(x) # 0},
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ho o T = Mhg. We then define h(z) = lim,,_,oo A"ho(T™z). Since {z: g(z) # 0} is
forward-invariant (as £(|g|) = |g|), we see that if T™(z) € C, then A" ho (T z) =
A"ho(T™x). This shows that the limit exists for z in |JT~"C. For z in the com-
plement of this set, A" ho(T"x) = 0 for all n so the limit exists for all z. Given that
the limit exists, it follows immediately from the algebra of limits that h o T' = Ah.
Since h = hg on C, we have that g = |g|h as required. O

Lemma 5.7. Suppose that S is the skew product system arising from a position
dependent random map satisfying (5.1). If dug = |g|d(v x X) is an acim for S
then for alle > 0 and § > 0, there exists an N > 0 and a measurable set G C X x I,
such that:

(1) For (z,w) € G, p(z,w) - p(S(z,w)) - p(SVN~Hz,w)) < §;
(2) g (G) 21 —¢;

(3) The set G is a union of sets of the form {x} x IF for k of length N.

Remark 5.8. Condition (3) can be stated as a measurability condition: G € Fy,
where Fy = /2" S P v B(X), and P = {J,..., Jx}.

Proof. Let G(6, N) = {(z,w): p(z,w)p(S(z,w)) - p(S¥~(z,w)) < §}. Since the
function p(z,w)p(S(x,w)) - - - p(SN~1(x,w)) is constant on sets of the form {z} x I}

for k of length N, we see that condition (3) is always satisfied. Condition (1) is
also satisfied by definition.
Define LY (z,w) = Eg:_ol log p(S™(x,w)). Since logp < 0 (and by (5.1), <
0 almost everywhere), for fixed (z,w), L™ (z,w) is a decreasing sequence. It is
sufficient to show that for a set of full yi5— measure, limy_.oc L (z,w) < logé.
By the Birkhoff ergodic theorem, we see that for almost all (z,w), (1/N)LY (x,w)
is convergent (Note that in the case that logp is not integrable, the assertion still
holds since logp is non-positive). Since the set Z of points (z,w) for which this
limit is O is an invariant set, the integral of the limit over Z will agree with the
integral of logp over Z. Since the integral of the limit over Z is 0, it follows that the
integral over Z of logp is 0. However, since log p is strictly negative (v x A\)—almost
everywhere, this implies that Z is of measure 0. We conclude that for almost every
(r,w), (1/N)L" (z,w) converges to a strictly negative quantity (possibly —o0). It
follows that for almost every (z,w), LY (z,w) — —oo so that the increasing union
of the G(6, N) over N is of measure 1. In particular, there exists an N > 0 such
that 14 (G(6,N)) > 1 — ¢ satisfying conclusion (2).
([

— —/ — —/ — —/
Lemma 5.9. Let k, k €{l,...., K}, k#k . Then IF NIF =0.

Proof. First note that if w is a string of length n whose first m terms are a string

7

?, then IE D IE. If £ and k first differ in the mth term, then let v and 0 be
the truncated strings of length m. Since IE D IF and If/ o IF

7, it is sufficient

N

to show that IE and If / are disjoint. Accordingly, we deal with the case where k
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7
and k differ only in the last term. In this case, we have

k _ -1 —1 —1 -1
Iz - wkl,r(pk%nclm te spkn_l,'rkn_z...ﬂclr (Spkn,Tkn_l...-rkl,t(I))

—/
Eo_ —1 -1 —1 -1
I; = (pkl,zwkz,mlz s gpknflﬂ'k"72~-7'k1$ ((‘Okﬁw‘rkn,lmmlz(l))

We see that the final two intervals are disjoint, whereas all the preceding inverse
maps are the same. Since inverse maps preserve disjointness, the lemma follows.
O

Corollary 5.10. For measurable sets A C X, B C I, we have

-N _ ARk
(5.2) S (AxB)_A U (AN B"),
ke{l,.. K}V
where (5.2) is a mutually disjoint union.
Proof. The decomposition is a straightforward calculation. To see that the subsets
are disjoint, observe BY C I* and BY < I* . Thus, the corollary follows from
Lemma 5.9. [

We will also need to make use of the following standard fact.

Lemma 5.11. Let g be an L' function on X x I and let € > 0. Then there exists
h e LY (v x \) and a 6 > 0 such that:

(1) llg=hll <e;

(2) for|w—uw'| <0, |h(z,w)— h(z,w)] <e.

Proof of Theorem 5.4. Let Psg = A\g where g € L' and |A\| = 1. We may assume
that ||g|l1 = 1. Let € > 0 be given. We will show that for any measurable sets
A C X and B C I we have

/ (9 §)d(v x \)| < 6e.
AXxXB

From this it follows that g = ¢ (v x A)-almost everywhere.

First, applying Lemma 5.11, we find § > 0 and h satisfying the conclusions of
the lemma for our chosen €. Next, let N > 0 and G be as given Lemma 5.7 for our
chosen € and the § coming from above. We then argue as follows.

Since g is an eigenfunction of Ps, we have g = A=V PY g and

/ (gg)dux)\‘
AxB

/1AX3P§ng(y X \) — \(B) / 1axr Py gd(v x )\)'

(5.3)
= ’/1SN(A><B)gd(V X A) — /\(B)/lst(sz)g d(v x /\)’

/ hd(v x \) — )\(B)/ hd(v x \)
S—N(AxB) S—N(AXI)

where for the inequality we used the fact that ||g—h||z1,xx) <. We now estimate
the remaining term.

<2+

)
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From Corollary 5.10

hdy x A = / hdv x A and
/SN(AxB) Z nB*

kel KN

hdv x X\ = / hdy x A.
/SN(AXI Z Aﬂl"

k(L. K}N
‘We see that

/ hd(ux)\)f)\(B)/ hd(v x \)
S—N(AxB) S—N(AXI)

< ) / Ahdyx)\—)\(B)/ _hdy x A|.
A-~NBEk A?ﬁlk

ke{l,...K}N k

(5.4)

We now estlmate for a | fixed k: € {1,..., K}, the term appearing in the sum.
Notice that )\(Bk) = )\(Im’“))\(B) since SOE is an affine map on IF.

Let h; be the average value of h on the vertical interval I}, i.e.
X

[ M)

k:,(E A(Ik.)

Let m be the projection to the 2 component. Using condition (3) of Lemma 5.7,
we have

/ Ahdux)\:/ /Ah(%w)d)\dl/
A?ﬂBk 7T1(A?) BLk
= / _ h(z,w)d\dv —|—/ _ h(z,w)dMdv
71 (AL) Bwk w1 (A”)) B,tk
k k

where mi(AL) = {z € m(A;) MIF) < 6} and m(AL) = {z € m(Ay) :

/\(If) >4}
We then estimate

/ Ahdux)\—)\(B)/ hdv x A
A?ﬂBk A;\ﬁ[k

< / /;(h(x,w)—hA )d)\dl/—l—/ AthX/\—/\(B)/ _hdv x A
T (AL) JBF k.z A".NB*k ATk

k
g/ AngxH/ Bl dv x A,
'.NBk GcmA?mI’c

k

where we used conclusions (2) of Lemma 5.7 and (2) of Lemma 5.11 to get the third
line. Combining this inequality with (5.4) and (5.3), we see

‘/(gg)dyx)\‘g?)eJr/ (lgl + 1 —g]) dv x X < Be.
Ge
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O

Finally, we give an illustrative example.

Example 5.12. Let T be a random map which is given by {71, 72;p1(x), p2(2)}
where

2z for0<z< %
(5.5) Tl(x){ T for%<x§1 ’
_ x—i—% for0<z < % )
(56) TQ(x)_{Qm—l for <o <1’
and
2 for0<z< %
(57) mo={ 1 miti1
L foro<a< %
(5.8) p2($>_{ % for%<x§1
Then, S(z,w) is given by:
(2z, %w) for (z,w) €0, %] x [0, %]
B (z,3w) for (z,w) € (3,1] x [0, 5]
(5.9) S(z,w) = (2z — 1, %w — %) for (z,w) € (; 1] x (é, 1]
(x4 %,3w—2) for (z,w) € [0, %} x (%,1]

Notice that S is piecewise linear Markov transformation with respect to the par-
tition {[0, 3] x [0, 2],(5,1] x [0,3],(5,1] x (3,1],[0, 3] x (,1]}. Therefore, its
Frobenius-Perron operator reduces to a matrix:

(5.10) Ps =

W= O Owl—
0|00 | e [ o =
|00 | 00| 0o =
W= O Owl=

If the invariant density of S is g = [g1, 92, g3, g4], normalized by 2¢g1+g2+2g3+9g4 = 6
and satisfying equation gPs = g, then g = [%, %, %, %} Observe that P2 > 0. Thus,
ftg is ergodic. By Theorem 5.4 p1 is a simple lift of a T-acim. Namely, g is a simple
lift of g = [3, 3] which is T-invariant. To verify this fact by direct calculation,
notice that 7, 7o are piecewise linear Markov transformations defined on the same
Markov partition P : {[0, 1], (1,1]}. The corresponding Frobenius-Perron operator

matrices are:

(5.11) P (ii) P (01>
. T 01 ) T2 %% .

Since p1(z) and po(x) are piecewise constant on the same partition, the Frobenius-
Perron operator of the random map T is given by:

(6 0) (6 1) (6 1) (1)

If the invariant density of T is § = [g1, g2, normalized by §1 + g2 = 2 and satisfying
the equation §Pr = g, then g = 7%]

[«
= ol
O wl

W0
(S IMN)
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6. ADDITIONAL RESULTS ON ERGODIC PROPERTIES OF T AND S

As in Morita [4] we can use Theorem 5.4 to establish a correspondence between
ergodic properties of T" and S with respect to invariant measures g and g x A. In
particular, all these results hold for the absolutely continuous invariant measures
for S since we have shown them to be of product type. Notions of ergodicity,
weakly mixing, strongly mixing and uniformly mixing for T are as defined in [4].
(but perhaps they should be given here as well??).

Theorem 6.1. Assume that T is a random transformation with position dependent
probabilities satisfying Condition 5.1 and that p is invariant for T. Then

(1) p is ergodic for T if and only if p X A is ergodic for S.

(2) p is weakly mizing for T if and only if p X A is weakly mizing for S.

(3) w is strongly mizing for T if and only if pn X X\ is strongly mizing for S

(4) p is uniformly mizing for T if and only if p x X\ is exact for S.
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