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1. Article Outline

In this article, we discuss ergodicity (a form of irreducibility) and the many kinds
of mixing (independence of behaviour in the long term) for measure-preserving
transformations. We discuss the partially understood phenomenon of higher-order
mixing and indicate some of the contrast between the situation for single measure-
preserving transformations and systems of multiple commuting measure-preserving
transformations. We include a complete proof in the special case of a continuous
map on a compact metric space of the ergodic decomposition by which a measure-
preserving transformation can be split into ergodic parts.

2. Glossary

Bernoulli shift: Mathematical abstraction of the scenario in statistics or
probability in which one performs repeated independent identical experi-
ments.

Markov chain: A probability model describing a sequence of observations
made at regularly spaced time intervals such that at each time, the probabil-
ity distribution of the subsequent observation depends only on the current
observation and not on prior observations.

Measure-preserving transformation: A map from a measure space to it-
self such that for each measurable subset of the space, it has the same
measure as its inverse image under the map.

Measure-theoretic entropy: A non-negative (possibly infinite) real num-
ber describing the complexity of a measure-preserving transformation.

Product transformation: Given a pair of measure-preserving transforma-
tions: T of X and S of Y , the product transformation is the map of X ×Y
given by (T × S)(x, y) = (T (x), S(y)).

3. Definition

Many physical phenomena in equilibrium can be modeled as measure-preserving
transformations. Ergodic theory is the abstract study of these transformations,
dealing in particular with their long term average behaviour.

One of the basic steps in analysing a measure-preserving transformation is to
break it down into its simplest possible components. These simplest components
are its ergodic components, and on each of these components, the system enjoys the
ergodic property: the long-term time average of any measurement as the system
evolves is equal to the average over the component. Ergodic decomposition gives
a precise description of the manner in which a system can be split into ergodic
components.
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A related (stronger) property of a measure-preserving transformation is mixing.
Here one is investigating the correlation between the state of the system at different
times. The system is mixing if the states are asymptotically independent: as the
times between the measurements increase to infinity, the observed values of the
measurements at those times become independent.

4. Introduction

The term ergodic was introduced by Boltzmann [8, 9] in his work on statistical
mechanics, where he was studying Hamiltonian systems with large numbers of
particles. The system is described at any time by a point of phase space, a subset
of R6N where N is the number of particles. The configuration describes the 3-
dimensional position and velocity of each of the N particles. It has long been
known that the Hamiltonian (i.e. the overall energy of the system) is invariant over
time in these systems. Thus, given a starting configuration, all future configurations
as the system evolves lie on the same energy surface as the initial one.

Boltzmann’s ergodic hypothesis was that the trajectory of the configuration in
phase space would fill out the entire energy surface. The term ergodic is thus an
amalgamation of the Greek words for work and path. This hypothesis then allowed
Boltzmann to conclude that the long-term average of a quantity as the system
evolves would be equal to its average value over the phase space.

Subsequently, it was realized that this hypothesis is rarely satisfied. The ergodic
hypothesis was replaced in 1911 by the quasi-ergodic hypothesis of the Ehrenfests
[16] which stated instead that each trajectory is dense in the energy surface, rather
than filling out the entire energy surface. The modern notion of ergodicity (to be
defined below) is due to Birkhoff and Smith [7]. Koopman [42] suggested studying a
measure-preserving transformation by means of the associated isometry on Hilbert
space, UT : L2(X) → L2(X) defined by UT (f) = f ◦T . This point of view was used
by von Neumann [50] in his proof of the mean ergodic theorem. This was followed
closely by Birkhoff [6] proving the pointwise ergodic theorem. An ergodic measure-
preserving transformation enjoys the property that Boltzmann first intended to
deduce from his hypothesis: that long-term averages of an observable quantity
coincide with the integral of that quantity over the phase space.

These theorems allow one to deduce a form of independence on the average:
given two sets of configurations A and B, one can consider the volume of the phase
space consisting of points that are in A at time 0 and in B at time t. In an ergodic
measure-preserving transformation, if one computes the average of the volumes of
these regions over time, the ergodic theorems mentioned above allow one to deduce
that the limit is simply the product of the volume of A and the volume of B. This
is the weakest mixing-type property. In this article, we will outline a rather full
range of mixing properties with ergodicity at the weakest end and the Bernoulli
property at the strongest end.

We will set out in some detail the various mixing properties, basing our study
on a number of concrete examples sitting at various points of this hierarchy. Many
of the mixing properties may be characterized in terms of the Koopman operators
operators mentioned above (i.e. they are spectral properties), but we will see that
the strongest mixing properties are not spectral in nature.
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We shall also see that there are connections between the range of mixing prop-
erties that we discuss and measure-theoretic entropy. In measure-preserving trans-
formations that arise in practice, there is a correlation between strong mixing
properties and positive entropy, although many of these properties are logically
independent.

One important issue for which many questions remain open is that of higher-
order mixing. Here, the issue is if instead of asking that the observations at two
times separated by a large time T be approximately independent, one asks whether
if one makes observations at more times, each pair suitably separated, the results
can be expected to be approximately independent. This issue has an analogue in
probability theory, where it is well-known that it is possible to have a collection of
random variables that are pairwise independent, but not mutually independent.

5. Basics and Examples

In this article, except where otherwise stated, the measure-preserving transfor-
mations that we consider will be defined on probability spaces.

More specifically, given a measurable space (X,B) and a probability measure µ
defined on B, a measure-preserving transformation of (X,B, µ) is a B-measurable
map T : X → X such that µ(T−1B) = µ(B) for all B ∈ B.

While this definition makes sense for arbitrary measures, not simply probability
measures, most of the results and definitions below only make sense in the proba-
bility measure case. Sometimes it will be helpful to make the assumption that the
underlying probability space is a Lebesgue space (that is, the space together with
its completed σ-algebra agrees up to a measure-preserving bijection with the unit
interval with Lebesgue measure and the usual σ-algebra of Lebesgue measurable
sets). Although this sounds like a strong restriction, in practice it is barely a re-
striction at all, as almost all of the spaces that appear in the theory (and all of
those that appear in this article) turn out to be Lebesgue spaces. For a detailed
treatment of the theory of Lebesgue spaces, the reader is referred to Rudolph’s book
[75]. The reader is referred also to the chapter on Measure Preserving Systems.

While many of the definitions that we shall present are valid for both invert-
ible and non-invertible measure-preserving transformations, the strongest mixing
conditions are most useful in the case of invertible transformations.

It will be helpful to present a selection of simple examples, relative to which we
will be able to explore ergodicity and the various notions of mixing. These examples
and the lemmas necessary to show that they are measure-preserving transformations
as claimed may be found in the books of Petersen [63], Rudolph [75] and Walters
[91]. More details on these examples can also be found in the chapter on Ergodic
Theory: Basic Examples and Constructions.

Example 1 (Rotation on the circle). Let α ∈ R. Let Rα : [0, 1) → [0, 1) be defined
by Rα(x) = x + α mod 1. It is straightforward to verify that Rα preserves the
restriction of Lebesgue measure λ to [0, 1) (it is sufficient to check that λ(R−1

α (J)) =
λ(J) for an interval J)

Example 2 (Doubling Map). Let M2 : [0, 1) → [0, 1) be defined by M2(x) =
2x mod 1. Again, Lebesgue measure is invariant under M2 (to see this, one observes
that for an interval J , M−1

2 (J) consists of two intervals, each of half the length of
J). This may be generalized in the obvious way to a map Mk for any integer k ≥ 2.
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Example 3 (Interval Exchange Transformation). The class of interval exchange
transformations was introduced by Sinai [82]. An interval exchange transformation
is the map obtained by cutting the interval into a finite number of pieces and
permuting them in such a way that the resulting map is invertible, and restricted
to each interval is an order-preserving isometry.

More formally, one takes a sequence of positive lengths `1, `2, . . . , `k summing to
1 and a permutation π of {1, . . . , k} and defines ai =

∑
j<i `j and bi =

∑
π(j)<π(i) `j

(again with b0 = 0). The interval exchange transformation defined by (`1, . . . , `k)
and π is the map T : [0, 1) → [0, 1) defined by T |[ai,ai+1)(x) = x + (bi − ai). It is
straightforward to check that any such interval exchange transformation preserves
Lebesgue measure on the unit interval.

Example 4 (Bernoulli Shift). Let A be a finite set and fix a vector (pi)i∈A of
positive numbers that sum to 1. Let AN denote the set of sequences of the form
x0x1x2 . . ., where xn ∈ A for each n ∈ N and let AZ denote the set of bi-infinite
sequences of the form . . . x−2x−1 ·x0x1x2 . . . (the · is a placeholder that allows us to
distinguish (for example) between the sequences . . . 01010 · 10101 . . . and . . . 10101 ·
01010 . . .).

We define a map (the shift map) S on AN by (S(x))n = xn+1 and define S on
AZ by the same formula. Note that S is invertible as a transformation on AZ but
non-invertible as a transformation on AN.

We need to equip AN and AZ with measures. This is done by defining the
measure of a preferred class of sets, checking certain consistency conditions and
appealing to the Kolmogorov extension theorem. Here the preferred sets are the
cylinder sets. Given m ≤ n in the invertible case and a sequence am . . . an, we let
[am . . . an]nm denote {x ∈ AZ : xm = am, . . . , xn = an} and define µ([am . . . an]nm) =
pampam+1 . . . pan . This is then shown to uniquely define a measure µ on the σ-
algebra of AZ generated by the cylinder sets. It is immediate to see that for any
cylinder set C, µ(S−1C) = µ(C), and it follows that S is a measure-preserving
transformation of (AZ,B, µ). The construction is exactly analogous in the non-
invertible case. See the chapter on Measure Preserving systems or the books of
Walters [91] or Rudolph [75] for more details of defining measures in these systems.

The class of Bernoulli shifts will play a distinguished role in what follows.

Example 5 (Markov Shift). The spaces AN and AZ are exactly as above, as is the
shift map. All that changes is the measure.

To define a Markov shift, we need a stochastic matrix P (i.e. a matrix with non-
negative entries whose rows sum to 1) with rows and columns indexed by A and a
left eigenvector π for P with eigenvalue 1 with the property that the entries of π are
non-negative and sum to 1. The existence of such an eigenvector is a consequence
of the Perron-Frobenius theory of positive matrices. Provided that the matrix P
is irreducible (for each a and a′ in A, there is an n > 0 such that Pn

a,a′ > 0), the
eigenvector π is unique.

Given the pair (P, π), one defines the measure of a cylinder set by µ([am . . . an]nm) =
πamPamam+1 . . . Pan−1an and extends µ as before to a probability measure on AN or
AZ.

Example 6 (Hard Sphere Gases and Billiards). We wish to model the behaviour
of a gas in a bounded region. We make the assumption that the gas consists of a
large number N of identical balls which move at constant velocity until two balls
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collide, whereupon they elastically swap momentum along the direction of contact.
The phase space for this system is a region of R6N (with N 3-dimensional position
vectors and N 3-dimensional velocity vectors). More abstractly, the system is
equivalent to the motion of a single point particle in a region of RM × RM (with
the first M -vector representing position and the second representing velocity). The
system is constrained in that its position is required to lie in a bounded region
S of RM with a piecewise smooth boundary. The system evolves by moving the
position at a constant rate in the direction of the velocity vector until the point
reaches ∂S, at which time the component of the velocity parallel to the normal to
∂S is reversed. This then defines a flow (i.e. a family of maps (Tt)t∈R satisfying
Tt+s = Tt◦Ts) on the phase space. Since the magnitude of the velocity is conserved,
it is convenient to restrict to flows with speed 1. This system is clearly the closest
of the examples that we consider to the situation envisaged by Boltzmann. Perhaps
not surprisingly, proofs of even the most basic properties for this system are much
harder than the other examples that we consider.

We will need to make use of the concept of measure-theoretic isomorphism. Two
measure-preserving transformations T of (X,B, µ) and S of (Y,F , ν) are measure-
theoretically isomorphic (or just isomorphic) if there exist measurable maps g : X →
Y and h : Y → X such that

(1) g ◦ h and h ◦ g agree with the respective identity maps almost everywhere;
(2) µ(g−1F ) = ν(F ) and ν(h−1B) = µ(B) for all F ∈ F and B ∈ B; and
(3) S ◦g(x) = g ◦T (x) for µ-almost every x (or equivalently T ◦h(y) = h◦S(y)

for ν-almost every y).

Measure-theoretic isomorphism is the basic notion of ‘sameness’ in ergodic the-
ory. It is in some sense quite weak, so that systems may be isomorphic that feel
very different (for example, as we discuss later, the time one map of a geodesic
flow is isomorphic to a Bernoulli shift). For comparison, the notion of sameness in
topological dynamical systems (topological conjugacy) is far stronger.

As an example of measure-theoretic isomorphism, it may be seen that the dou-
bling map is isomorphic to the one-sided Bernoulli shift on {0, 1} with p0 = p1 = 1/2
(the map g takes an x ∈ [0, 1) to the sequence of 0’s and 1’s in its binary expansion
(choosing the sequence ending with 0’s, for example, if x is of the form p/2n) and
the inverse map h takes a sequence of 0’s and 1’s to the point in [0, 1) with that
binary expansion.

Given a measure-preserving transformation T of a probability space (X,B, µ),
T is associated to an isometry of L2(X,B, µ) by UT (f) = f ◦ T . This operator is
known as the Koopman Operator. In the case where T is invertible, the operator
UT is unitary. Two measure-preserving transformations T and S of (X,B, µ) and
(Y,F , ν) are spectrally isomorphic if there is a Hilbert space isomorphism Θ from
L2(X,B, µ) to L2(Y,F , ν) such that Θ◦UT = US◦Θ. As we shall see below, spectral
isomorphism is a strictly weaker property than measure-theoretic isomorphism.

Since in ergodic theory, measure-theoretic isomorphism is the basic notion of
sameness, all properties that are used to describe measure-preserving systems are
required to be invariant under measure-theoretic isomorphism (i.e. if two measure-
preserving transformations are measure-theoretically isomorphic, the first has a
given property if and only if the second does). On the other hand, we shall see
that some mixing-type properties are invariant under spectral isomorphism, while



6 ANTHONY QUAS

others are not. If a property is invariant under spectral isomorphism, we say that
it is a spectral property.

There are a number of mixing type properties that occur in the probability
literature (α-mixing, β-mixing, φ-mixing, ψ-mixing etc) (see Bradley’s survey [11]
for a description of these conditions). Many of these are stronger than the Bernoulli
property, and are therefore not preserved under measure-theoretic isomorphism.
For this reason, these properties are not widely used in ergodic theory, although
β-mixing turns out to be equivalent to the so-called weak Bernoulli property (which
turns out to be stronger than the Bernoulli property that we discuss in this article
- see Smorodinsky’s paper [87]) and α-mixing is equivalent to strong-mixing.

A basic construction (see the article on Ergodic Theory: Basic Examples and
Constructions) that we shall require in what follows is the product of a pair of
measure-preserving transformations: given transformations T of (X,B, µ) and S of
(Y,F , ν), we define the product transformation T × S : (X × Y,B ⊗ F , µ × ν) by
(T × S)(x, y) = (Tx, Sy).

One issue that we face on occasion is that it is sometimes convenient to deal
with invertible measure-preserving transformations. It turns out that given a non-
invertible measure-preserving transformation, there is a natural way to uniquely
associate an invertible measure-preserving transformation transformation sharing
almost all of the ergodic properties of the original transformation. Specifically, given
a non-invertible measure-preserving transformation T of (X,B, µ), one lets X =
{(x0, x1, . . .) : xn ∈ X and T (xn) = xn−1 for all n}, B be the σ-algebra generated
by sets of the form Ān = {x̄ ∈ X : xn ∈ A}, µ̄(Ān) = µ(A) and T (x0, x1, . . .) =
(T (x0), x0, x1, . . .). The transformation T of (X,B, µ) is called the natural extension
of the transformation T of (X,B, µ) (see the chapter on Ergodic Theory: Basic
Examples and Constructions for more details). In situations where one wants to
use invertibility, it is often possible to pass to the natural extension, work there
and then derive conclusions about the original non-invertible transformation.

6. Ergodicity

Given a measure-preserving transformation T : X → X, if T−1A = A, then
T−1Ac = Ac also. This allows us to decompose the transformation X into two
pieces A and Ac and study the transformation T separately on each. In fact the
same situation holds if T−1A and A agree up to a set of measure 0. For this reason,
we call a set A invariant if µ(T−1A4A) = 0

Returning to Boltzmann’s ergodic hypothesis, existence of an invariant set of
measure between 0 and 1 would be a bad situation as his essential idea was that
the orbit of a single point would ‘see’ all of X, whereas if X were decomposed in
this way, the most that a point in A could see would be all of A, and similarly the
most that a point in Ac could see would be all of Ac.

A measure-preserving transformation will be called ergodic if it has no non-
trivial decomposition of this form. More formally, let T be a measure-preserving
transformation of a probability space (X,B, µ). The transformation T is said to be
ergodic if for all invariant sets, either the set or its complement has measure 0.

Unlike the remaining concepts that we discuss in this article, this definition of
ergodicity applies also to infinite measure-preserving transformations and even to
certain non-measure-preserving transformations. See Aaronson’s book [1] for more
information.
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The following lemma is often useful:

Lemma 1. Let (X,B, µ) be a probability space and let T : X → X be a measure-
preserving transformation. Then T is ergodic if and only if the only measurable
functions f satisfying f ◦ T = f (up to sets of measure 0) are constant almost
everywhere.

For the straightforward proof, we notice that if the condition in the lemma holds
and A is an invariant set, then 1A ◦ T = 1A almost everywhere, so that 1A is
an a.e. constant function and so A or Ac is of measure 0. Conversely, if f is an
invariant function, we see that for each α, {x : f(x) < α} is an invariant set and
hence of measure 0 or 1. It follows that f is constant almost everywhere. We
remark for future use that it is sufficient to check that the bounded measurable
invariant functions are constant.

The following corollary of the lemma shows that ergodicity is a spectral property.

Corollary 2. Let T be a measure-preserving transformation of the probability space
(X,B, µ). Then T is ergodic if and only if 1 is a simple eigenvalue of UT .

The ergodic theorems mentioned earlier due to von Neumann and Birkhoff are
the following (see also the chapter on Ergodic Theorems).

Theorem 3 (von Neumann Mean Ergodic Theorem [50]). Let T be a measure-
preserving transformation of the probability space (X,B, µ). For f ∈ L2(X,B, µ),
let ANf = 1/N(f + f ◦ T + . . . + f ◦ TN−1). Then for all f ∈ L2(X,B, µ), ANf
converges in L2 to an invariant function f∗.

Theorem 4 (Birkhoff Pointwise Ergodic Theorem [6]). Let T be a measure-preserving
transformation of the probability space (X,B, µ). Let f ∈ L1(X,B, µ). Let ANf be
as above. Then for µ-almost every x ∈ X, (ANf(x)) is a convergent sequence.

Of these two theorems, the pointwise ergodic theorem is the deeper result, and it
is straightforward to deduce the mean ergodic theorem from the pointwise ergodic
theorem. The mean ergodic theorem was reproved very concisely by Riesz [70] and
it is this proof that is widely known now. Riesz’s proof is reproduced in Parry’s
book [62]. There have been many different proofs given of the pointwise ergodic
theorem. Notable amongst these are the argument due to Garsia [22] and a proof
due to Katznelson and Weiss [38] based on work of Kamae [33], which appears in
a simplified form in work of Keane and Petersen [40].

If the measure-preserving transformation T is ergodic, then by virtue of Lemma
1, the limit functions appearing in the ergodic theorems are constant. One sees that
the constant is simply the integral of f with respect to µ, so that in this situation
ANf(x) converges to

∫
f dµ in norm and pointwise almost everywhere, thereby pro-

viding a justification of Boltzmann’s original claim: for ergodic measure-preserving
transformations, time averages agree with spatial averages. In the case where T is
not ergodic, it is also possible to identify the limit in the ergodic theorems: we have
f∗ = E(f |I), where I is the σ-algebra of T -invariant sets.

Note that the set on which the almost everywhere convergence in Birkhoff’s the-
orem takes place depends on the L1 function f that one is considering. Straight-
forward considerations show that there is no single full measure set that works
simultaneously for all L1 functions. In the case where X is a compact metric space,
it is well known that C(X), the space of continuous functions on X with the uni-
form norm has a countable dense set, (fn)n≥1 say. If the invariant measure µ is
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ergodic, then for each n, there is a set Bn of measure 1 such that for all x ∈ Bn,
ANfn(x) →

∫
fn dµ. Letting B =

⋂
nBn, one obtains a full measure set such that

for all n and all x ∈ B, ANfn(x) →
∫
fn dµ. A simple approximation argument

then shows that for all x ∈ B and all f ∈ C(X), ANf(x) →
∫
f dµ. A point x with

this property is said to be generic for µ. The observations above show that for an
ergodic invariant measure µ, we have µ{x : x is generic for µ} = 1.

If T is ergodic, but Tn is not ergodic for some n, then one can show that the space
X splits up as A1, . . . , Ad for some d|n in such a way that T (Ai) = Ai+1 for i < d
and T (Ad) = A1 with Tn acting ergodically on each Ai. The transformation T is
totally ergodic if Tn is ergodic for all n ∈ N. One can check that a non-invertible
transformation T is ergodic if and only if its natural extension is ergodic.

The following lemma gives an alternative characterization of ergodicity, which
in particular relates it to mixing.

Lemma 5 (Ergodicity as a Mixing Property). Let T be a measure-preserving trans-
formation of the probability space (X,B, µ). Then T is ergodic if and only if for all
f and g in L2,

1
N

N∑
n=0

〈f, g ◦ Tn〉 → 〈f, 1〉〈1, g〉.

In particular, if T is ergodic, then (1/N)
∑N−1

n=0 µ(A ∩ T−nB) → µ(A)µ(B) for
all measurable sets A and B.

Proof. Suppose that T is ergodic. Then the left-hand side of the equality is equal
to 〈f, (1/N)

∑N−1
n=0 g ◦Tn〉. The mean ergodic theorem shows that the second term

converges in L2 to the constant function with value
∫
g dµ = 〈g, 1〉, and the equality

follows.
Conversely, if the equation holds for all f and g in L2, suppose that A is an

invariant set. Let f = g = 1A. Then since g ◦ Tn = 1A for all n, the left-hand side
is 〈1A,1A〉 = µ(A). On the other hand, the right-hand side is µ(A)2, so that the
equation yields µ(A) = µ(A)2, and µ(A) is either 0 or 1 as required.

Taking f = 1A and g = 1B for measurable sets A and B gives the final statement.
�

We now examine the ergodicity of the examples presented above. Firstly, for the
rotation of the circle, we claim that the transformation is ergodic if and only if the
‘angle’ α is irrational. To see this, we argue as follows. If α = p/q, then we see that
f(x) = e2πiqx is a non-constant Rα-invariant function, and hence Rα is not ergodic.
On the other hand, if α is irrational, suppose f is a bounded measurable invariant
function. Since f is bounded, it is an L2 function, and so f may be expressed in
L2 as a Fourier series: f =

∑
n∈Z cnen where en(x) = e2πinx. We then see that

f ◦ Rα =
∑

n∈Z e
2πinαcnen. In order for f to be equal in L2 to f ◦ Rα, they must

have the same Fourier coefficients, so that cn = e2πinαcn for each n. Since α is
irrational, this forces cn = 0 for all n 6= 0, so that f is constant as required.

The doubling map and the Bernoulli shift are both ergodic, although we defer
proof of this for the time being, since they in fact have the strong-mixing property.
A Markov chain with matrix P and vector π is ergodic if and only if for all i and j
in A with πi > 0 and πj > 0, there exists an n ≥ 0 with Pn

ij > 0. This follows from
the ergodic theorem for Markov chains (which is derived from the Strong Law of
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Large Numbers) (see [17] for details). In particular, if the underlying Markov chain
is irreducible, then the measure is ergodic.

In the case of interval exchange transformations, there is a simple necessary
condition on the permutation for irreducibility, namely for 1 ≤ j < k, we do
not have π{1, . . . , j} = {1, . . . , j}. Under this condition, Masur [47] and Veech
[88] independently showed that for almost all values of the sequence of lengths
(`i)1≤i≤k, the interval exchange transformation is ergodic. (In fact they showed
the stronger condition of unique ergodicity : that the transformation has no other
invariant measure than Lebesgue measure. This implies that Lebesgue measure is
ergodic, because if there were a non-trivial invariant set, then the restriction of
Lebesgue measure to that set would be another invariant measure).

For the hard sphere systems, there are no results on ergodicity in full generality.
Important special cases have been studied by Sinai [85], Sinai and Chernov [86],
Krámli, Simányi and Szász [43], Simányi and Szász [81], Simányi [79, 80] and Young
[94].

7. Ergodic Decomposition

We already observed that if a transformation is not ergodic, then it may be
decomposed into parts. Clearly if these parts are not ergodic, they may be further
decomposed. It is natural to ask whether the transformation can be decomposed
into ergodic parts, and if so what form does the decomposition take? In fact such
a decomposition does exist, but rather than decompose the transformation, it is
necessary to decompose the measure into ergodic pieces. This is known as ergodic
decomposition.

The set of invariant measures for a measurable map T of a measurable space
(X,B) to itself forms a simplex. General functional analytic considerations (due
to Choquet [14, 13] - see also Phelps’ account [65] of this theory) mean that it is
possible to write any member of the simplex as an integral-convex combination of
the extreme points. Further, the extreme points of the simplex may be identified
as precisely the ergodic invariant measures for T . It follows that any invariant
probability measure µ for T may be uniquely expressed in the form

µ(A) =
∫

Merg(X,T )

ν(A) dm(ν),

where Merg(X,T ) denotes the set of ergodic T -invariant measures on X and m is
a measure on Merg(X,T ).

We will give a proof of this theorem in the special case of a continuous trans-
formation of a compact space. Our proof is based on the Birkhoff ergodic theorem
and the Riesz Representation Theorem identifying the dual space of the space of
continuous functions on a compact space as the set of bounded signed measures on
the space (see Rudin’s book [74] for details). We include it here because this special
case covers many cases that arise in practice, and because few of the standard er-
godic theory references include a proof of ergodic decomposition. Exceptions to this
are Rudolph’s book [75] which gives a full proof in the case that X is a Lebesgue
space based on a detailed development of the theory of these spaces and builds
measures using conditional expectations. Kalikow’s notes [30] give a brief outline
of a proof similar to that which follows. Oxtoby [61] also wrote a survey article
containing much of the following (and much more besides).
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Theorem 6. Let X be a compact metric space, B be the Borel σ-algebra, µ be
an invariant Borel probability measure and T be a continuous measure-preserving
transformation of (X,B, µ). Then for each x ∈ X, there exists an invariant Borel
measure µx such that:

(1) For f ∈ L1(X,B, µ),
∫
f dµ =

∫ (∫
f dµx

)
dµ(x);

(2) Given f ∈ L1(X,B, µ), for µ-almost every x ∈ X, one has ANf(x) →∫
f dµx;

(3) The measure µx is ergodic for µ-almost every x ∈ X.

Notice that conclusion (2) shows that µx can be understood as the distribution
on the phase space “seen” if one starts the system in an initial condition of x. This
interpretation of the measures µx corresponds closely with the ideas of Boltzmann
and the Ehrenfests in the formulation of the ergodic and quasi-ergodic hypotheses,
which can be seen as demanding that µx is equal to µ for (almost) all x.

Proof. The proof will be divided into 3 main steps: defining the measures µx,
proving measurability with respect to x and proving ergodicity of the measures.
Step 1: Definition of µx

Given a function f ∈ L1(X,B, µ), Birkhoff’s theorem states that for µ-almost
every x ∈ X, (ANf(x)) is convergent. It will be convenient to denote the limit by
f̃(x). Let f1, f2, . . . be a sequence of continuous functions that is dense in C(X).
For each n, there is a set Bn of measure 1 on which (Anfk(x))∞n=1 is a convergent
sequence. Intersecting these gives a set B of full measure such that for x ∈ B, for
each k ≥ 1, Anfk(x) is convergent. A simple approximation argument shows that
for x ∈ B and f an arbitrary continuous function, Anf(x) is convergent. Given
x ∈ B, define a map Lx : C(X) → R by Lx(f) = f̃(x). This is a continuous linear
functional on C(X), and hence by the Riesz Representation Theorem there exists
a Borel measure µx such that f̃(x) =

∫
f dµx for each f ∈ C(X) and x ∈ B. Since

Lx(f) ≥ 0 when f is a non-negative function and Lx(1) = 1, the measure µx is a
probability measure. Since Lx(f ◦ T ) = Lx(f) for f ∈ C(X), one can check that
µx must be an invariant probability measure. For x 6∈ B, simply define µx = µ.
Since Bc is a set of measure 0, this will not affect any of the statements that we
are trying to prove.

Now for f continuous, we have ANf is a bounded sequence of functions with
ANf(x) converging to

∫
f dµx almost everywhere and

∫
ANf dµ =

∫
f dµ since T

is measure-preserving. It follows from the bounded convergence theorem that for
f ∈ C(X),

(1)
∫
f dµ =

∫ (∫
f dµx

)
dµ(x).

Step 2: Measurability of x 7→ µx(A)

Lemma 7. Let C ∈ B satisfy µ(C) = 0. Then µx(C) = 0 for µ-almost every
x ∈ X.

Proof. Using regularity of Borel probability measures (see Rudin’s book [74] for
details), there exist open sets U1 ⊃ U2 ⊃ · · · ⊃ C with µ(Uk) < 1/k. There
exist continuous functions gk,m with (gk,m(x))∞m=1 increasing to 1Uk

everywhere
(e.g. gk,m(x) = min(1,m · d(x,U c

k))). By (1), we have
∫

(
∫
gk,m dµx) dµ(x) < 1/k

for all k,m. Note that
∫
gk,m dµx = limn→∞Angk,m(x) is a measurable function
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of x, so that using the monotone convergence theorem (taking the limit in m),
x 7→

∫
1Uk

dµx = µx(Uk) is measurable and
∫

(
∫

1Uk
dµx) dµ(x) ≤ 1/k. We now

see that x 7→ limk→∞ µx(Uk) = µx(
⋂
Uk) is also measurable, and by monotone

convergence we see
∫
µx (

⋂
Uk) dµ(x) = 0. It follows that µx(

⋂
Uk) = 0 for µ-

almost every x. Since
⋂
Uk ⊃ C, the lemma follows. �

Given a set A ∈ B, let fk be a sequence of continuous functions (uniformly
bounded by 1) satisfying ‖fk−1A‖L1(µ) < 2−n, so that in particular fk(x) → 1A(x)
for µ-almost every x. For each k, x 7→

∫
fk dµx = limn→∞Anfk(x) is a measurable

function. By Lemma 7, for µ-almost every x, fk → 1A µx-almost everywhere, so
that by the bounded convergence theorem limk→∞

∫
fk dµx = µx(A) for µ-almost

every x. Since the limit of measurable functions is measurable, it follows that
x 7→ µx(A) is measurable for any measurable set A ∈ B.

This allows us to define a measure ν by ν(A) =
∫
µx(A) dµ(x). For a bounded

measurable function f , we have
∫
f dν =

∫
(
∫
f dµx) dµ(x). Since this agrees with∫

f dµ for continuous functions by (1), it follows that µ = ν. Conclusion (1) of the
theorem now follows easily.

Given f ∈ L1(X), we let (fk) be a sequence of continuous functions such that
‖fk − f‖L1(µ) is summable. This implies that ‖fk − f‖L1(µx) is summable for µ-
almost every x and in particular,

∫
fk dµx →

∫
f dµx for almost every x. On the

other hand, by the remark following the statement of Birkhoff’s theorem, we have
f̃k = E(fk|I) so that ‖f̃ − f̃k‖L1(µ) is summable and f̃k(x) → f̃(x) for µ-almost
every x. Combining these two statements, we see that for µ-almost every x, we
have

f̃(x) = lim
k→∞

f̃k(x) = lim
k→∞

∫
fk dµx =

∫
f dµx.

This establishes conclusion (2) of the theorem.
Step 3: Ergodicity of µx

We have shown how to disintegrate the invariant measure µ as an integral combi-
nation of µx’s, and we have interpreted the µx’s as describing the average behaviour
starting from x. It remains to show that the µx’s are ergodic measures.

Fix for now a continuous function f and a number 0 < ε < 1. Since Anf(x) →
f̃(x) µ-almost everywhere, there exists an N such that µ{x : |ANf(x) − f̃(x)| >
ε/2} < ε3/8.

We now claim the following:

(2) µ{x : µx{y : |f̃(y)−
∫
f dµx| > ε} > ε} < ε.

To see this, note that {y : |f̃(y)−
∫
f dµx| > ε} ⊂ {y : |f̃(y)−ANf(y)| > ε/2} ∪

{y : |ANf(y)− f̃(x)| > ε/2}, so that if µx{y : |f̃(y)−
∫
f dµx| > ε} > ε, then either

µx{y : |f̃(y) − ANf(y)| > ε/2} > ε/2 or µx{y : |ANf(y) − f̃(x)| > ε/2} > ε/2. We
show that the set of x’s satisfying each condition is small.

Firstly, we have ε3/8 > µ{y : |f̃(y)−ANf(y)| > ε/2} =
∫
µx{y : |f̃(y)−ANf(y)| >

ε/2} dµ(x), so that µ{x : µx{y : |f̃(y)−ANf(y)| > ε/2} > ε/2} < ε2/4 < ε/2.
For the second term, given c ∈ R, let Fc(x) = |ANf(x)−c| and G(x) = Ff̃(x)(x).

Note that ∫
Ff̃(x)(y) dµx(y) = lim

n→∞
AnFf̃(x)(x) = lim

n→∞
AnG(x)
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(using the facts that y 7→ Ff̃(x)(y) is a continuous function and that since f̃(x)
is an invariant function, Ff̃(x)(T

kx) = G(T kx)). Since
∫
G(x) dµ(x) < ε3/8, it

follows that
∫
Ff̃(x)(y) dµx(y) ≤ ε2/4 except on a set of x’s of measure less than

ε/2. Outside this bad set, we have µx{y : |ANf(y) − f̃(x)| > ε/2} < ε/2 so that
µ{x : µx{y : |ANf(y)− f̃(x)| > ε/2} > ε/2} < ε/2 as required.

This establishes our claim (2) above. Since ε > 0 is arbitrary, it follows that for
each f ∈ C(X), for µ-almost every x, µx-almost every y satisfies f̃(y) =

∫
f dµx.

As usual, taking a countable dense sequence (fk) in C(X), it is the case that for
all k and µ-almost every x, f̃k(y) =

∫
fk dµx µx-almost everywhere. Let the set

of x’s with this property be D. We claim that for x ∈ D, µx is ergodic. Suppose
not. Then let x ∈ D and let J be an invariant set of µx measure between δ and
1− δ for some δ > 0. Then by density of C(X) in L1(µx), there exists an fk with
‖fk − 1J‖L1(µx) < δ. Since 1J is an invariant function, we have 1̃J = 1J . On
the other hand, f̃k is a constant function. It follows that ‖f̃k − 1̃J‖L1(µx) ≥ δ >
‖fk − 1J‖L1(µx). This contradicts the identification of the limit as a conditional
expectation and concludes the proof of the theorem.

�

8. Mixing

As mentioned above, ergodicity may be seen as an independence on average
property. More specifically, one wants to know whether in some sense µ(A∩T−nB)
converges to µ(A)µ(B) as n→∞. Ergodicity is the property that there is conver-
gence in the Césaro sense. Weak-mixing is the property that there is convergence
in the strong Césaro sense. That is, a measure-preserving transformation T is
weak-mixing if

1
N

N−1∑
n=0

|µ(A ∩ T−nB)− µ(A)µ(B)| → 0 as N →∞.

In order for T to be strong-mixing, we require simply µ(A∩T−NB) → µ(A)µ(B)
as N → ∞. It is clear that strong-mixing implies weak-mixing and weak-mixing
implies ergodicity.

If T d is not ergodic (so that T−dA = A for some A of measure strictly between 0
and 1), then |µ(T−ndA∩A)−µ(A)2| = µ(A)(1−µ(A)), so that T is not weak-mixing.

An alternative characterization of weak-mixing is as follows:

Lemma 8. The measure-preserving transformation T is weak-mixing if and only
if for every pair of measurable sets A and B, there exists a subset J of N of density
1 (i.e. #(J ∩ {1, . . . , N})/N → 1) such that

(3) lim
n→∞n 6∈J

µ(A ∩ T−nB) = µ(A)µ(B).

By taking a countable family of measurable sets that are dense (with respect
to the metric d(A,B) = µ(A4 B)) and taking a suitable intersection of the cor-
responding J sets, one shows that for a given weak-mixing measure-preserving
transformation, there is a single set J ⊂ N such that (3) holds for all measurable
sets A and B (see Petersen [63] or Walters [91] for a proof).

We show that an irrational rotation of the circle is not weak-mixing as follows: let
α ∈ R\Q and let A be the interval [ 14 ,

3
4 ). There is a positive proportion of n’s in the
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natural numbers (in fact proportion 1/3) with the property that |Tn( 1
2 )− 1

2 | <
1
6 .

For these n’s µ(A∩T−nA) > 1
3 , so that in particular |µ(A∩T−nA)−µ(A)µ(A)| > 1

12 .
Clearly this precludes the required convergence to 0 in the definition of weak-mixing,
so that an irrational rotation is ergodic but not weak-mixing. Since Rn

α = Rnα, the
earlier argument shows that Rn

α is ergodic, so that Rα is totally ergodic.
On the other hand, we show that any Bernoulli shift is strong-mixing. To see

this, let A and B be arbitrary measurable sets. By standard measure-theoretic
arguments, A and B may each be approximated arbitrarily closely by a finite union
of cylinder sets. Since if A′ and B′ are finite unions of cylinder sets, we have that
µ(A′ ∩ T−nB′) is equal to µ(A′)µ(B′) for large n, it is easy to deduce that µ(A ∩
T−nB) → µ(A)µ(B) as required. Since the doubling map is measure-theoretically
isomorphic to a one-sided Bernoulli shift, it follows that the doubling map is also
strong-mixing.

Similarly, if a Markov Chain is irreducible (i.e. for any states i and j, there
exists an n ≥ 0 such that Pn

ij > 0) and aperiodic (there is a state i such that
gcd{n : Pn

ii > 0} = 1), then given any pair of cylinder sets A′ and B′, we have
by standard theorems of Markov chains µ(A′ ∩ T−nB′) → µ(A′)µ(B′). The same
argument as above then shows that an aperiodic irreducible Markov Chain is strong-
mixing. On the other hand, if a Markov chain is periodic (d = gcd{n : Pn

ii > 0} > 0),
then letting A = B = {x : x0 = i}, we have that µ(A ∩ T−nB) = 0 whenever d - n.
It follows T d is not ergodic, so that T is not weak-mixing.

Both weak- and strong-mixing have formulations in terms of functions:

Lemma 9. Let T be a measure-preserving transformation of the probability space
(X,B, µ).

(1) T is weak-mixing if and only if for every f, g ∈ L2 one has

1
N

N−1∑
n=0

|〈f, g ◦ Tn〉 − 〈f, 1〉〈1, g〉| → 0 as N →∞.

(2) T is strong-mixing if and only if for every f, g ∈ L2, one has

〈f, g ◦ TN 〉 → 〈f, 1〉〈1, g〉 as N →∞.

Using this, one can see that both mixing conditions are spectral properties.

Lemma 10. Weak- and strong-mixing are spectral properties.

Proof. Suppose S is a weak-mixing transformation of (Y,F , ν) and the transforma-
tion T of (X,B, µ) is spectrally isomorphic to S by the Hilbert space isomorphism
Θ. Then for f, g ∈ L2(X,B, µ), 〈f, g ◦ Tn〉X − 〈f, 1〉X〈1, g〉X = 〈Θ(f),Θ(g) ◦
Sn〉Y − 〈Θ(f),Θ(1)〉Y 〈Θ(1),Θ(g)〉Y . Since 1 is an eigenfunction of UT with eigen-
value 1, Θ(1) is an eigenfunction of US with an eigenvalue 1, so since S is er-
godic, Θ(1) must be a constant function. Since Θ preserves norms, Θ(1) must
have a constant value of absolute value 1 and hence 〈f, g ◦Tn〉X −〈f, 1〉X〈1, g〉X =
〈Θ(f),Θ(g) ◦ Sn〉Y − 〈Θ(f), 1〉Y 〈1,Θ(g)〉Y . It follows from Lemma 9 that T is
weak-mixing.

A similar proof shows that strong-mixing is a spectral property. �

Both weak- and strong-mixing properties are preserved by taking natural exten-
sions.
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Recent work of Avila and Forni [4] shows that for interval exchange transfor-
mations of k ≥ 3 intervals with the underlying permutation satisfying the non-
degeneracy condition above, almost all divisions of the interval (with respect to
Lebesgue measure on the k− 1-dimensional simplex) lead to weak-mixing transfor-
mations. On the other hand, work of Katok [34] shows that no interval exchange
transformation is strong-mixing.

It is of interest to understand the behaviour of the ‘typical’ measure-preserving
transformation. There are a number of Baire category results addressing this. In
order to state them, one needs a set of measure-preserving transformations and a
topology on them. As mentioned earlier, it is effectively no restriction to assume
that a transformation is a Lebesgue-measurable map on the unit interval preserving
Lebesgue measure. The classical category results are then on the collection of
invertible Lebesgue-measure preserving transformations of the unit interval. One
topology on these is the ‘weak’ topology, where a sub-base is given by sets of the
form N(T,A, ε) = {S : λ(S(A)4T (A)) < ε}. With respect to this topology, Halmos
[25] showed that a residual set (i.e. a dense Gδ set) of invertible measure-preserving
transformations is weak-mixing (see also work of Alpern [3]), while Rokhlin [71]
showed that the set of strong-mixing transformations is meagre (i.e. a nowhere
dense Fσ set), allowing one to conclude that with respect to this topology, the
typical transformation is weak- but not strong-mixing.

As often happens in these cases, even when a certain kind of behaviour is typical,
it may not be simple to exhibit concrete examples. In this case, a well-known
example of a transformation that is weak-mixing but not strong-mixing was given
by Chacon [12].

While on the face of it the formulation of weak-mixing is considerably less natu-
ral than that of strong-mixing, the notion of weak-mixing turns out to be extremely
natural from a spectral point of view. Given a measure-preserving transformation
T , let UT be the Koopman operator described above. Since this operator is an
isometry, any eigenvalue must lie on the unit circle. The constant function 1 is
always an eigenfunction with eigenvalue 1. If T is ergodic and g and h are eigen-
functions of UT with eigenvalue λ, then gh̄ is an eigenfunction with eigenvalue 1,
hence invariant, so that g = Kh for some constant K. We see that for ergodic
transformations, up to rescaling, there is at most one eigenfunction with any given
eigenvalue.

If UT has a non-constant eigenfunction f , then one has |〈Un
T f, f〉| = ‖f‖2 for

each n, whereas by Cauchy-Schwartz, |〈f, 1〉|2 < ‖f‖2. It follows that |〈Un
T f, f〉 −

〈f, 1〉〈1, f〉| ≥ c for some positive constant c, so that using Lemma 9, T is not
weak-mixing.

Using the spectral theorem, the converse is shown to hold.

Theorem 11. The measure-preserving transformation T is weak-mixing if and only
UT has no non-constant eigenfunctions.

Of course this also shows that weak-mixing is a spectral property. Equivalently,
this says that the transformation T is weak-mixing if and only if the apart from the
constant eigenfunction, the operator UT has only continuous spectrum (that is, the
operator has no other eigenfunctions). For a very nice and concise development of
the part of spectral theory relevant to ergodic theory, the reader is referred to the
Appendix in Parry’s book [62]. See also the chapter on Spectral Properties.

Using this theory, one can establish the following:
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Theorem 12.

(1) T is weak-mixing if and only if T × T is ergodic;
(2) If T and S are ergodic, then T ×S is ergodic if and only if US and UT have

no common eigenvalues other than 1.

Proof. The main factor in the proof is that the eigenvalues of UT×S are precisely
the set of αβ, where α is an eigenvalue of UT and β is an eigenvalue of US . Further,
the eigenfunctions of UT×S with eigenvalue γ are spanned by eigenfunctions of the
form f ⊗ g, where f is an eigenfunction of UT , g is an eigenfunction of US , and the
product of the eigenvalues is γ.

Suppose that T is weak-mixing. Then the only eigenfunction is the constant
function, so that the only eigenfunction of UT×T is the constant function, proving
that T × T is ergodic. Conversely, if UT has an eigenvalue (so that f ◦ T = αT for
some non-constant f) then f ⊗ f̄ is a non-constant invariant function of T × T so
that T × T is not ergodic.

For the second part, if US and UT have a common eigenvalue other than 1 (say
f ◦ T = αf and g ◦ T = αg), then f ⊗ ḡ is a non-constant invariant function. Con-
versely, if T ×S has a non-constant invariant function h, then h can be decomposed
into functions of the form f ⊗ g, where f and g are eigenfunctions of UT and US

respectively with eigenvalues α and β satisfying αβ = 1. Since the eigenvalues of
S are closed under complex conjugation, we see that UT and US have a common
eigenvalue other than 1 as required. �

For a measure-preserving transformation T , we let K be the subspace of L2

spanned by the eigenfunctions of UT . It is a remarkable fact that K may be iden-
tified as L2(X,B′, µ) where B′ is a sub-σ-algebra of B. The space K is called the
Kronecker factor of T . The terminology comes from the fact that any sub-σ-algebra
F of B gives rise to a factor mapping π : (X,B, µ) → (X,F , µ) with π(x) = x.
By construction L2(X,B′, µ) is the closed linear span of the eigenfunctions of T
considered as a measure-preserving transformation of (X,B′, µ). By the Discrete
Spectrum Theorem of Halmos and von Neumann [24], T acting on (X,B′, µ) is
measure-theoretically isomorphic to a rotation on a compact group. This allows
one to split L2(X,B, µ) as L2(X,B′, µ) ⊕ L2

c(X,B, µ), where, as mentioned above
the first part is the discrete spectrum part, spanned by eigenfunctions, and the
second part is the continuous spectrum part, consisting of functions whose spectral
measure is continuous. Since we have split L2 into a discrete part and a contin-
uous part, it is natural to ask whether the underlying transformation T can be
split up in some way into a weak-mixing part and a discrete spectrum (compact
group rotation) part, somewhat analogously to the ergodic decomposition. Unfor-
tunately, there is no-such decomposition available. However for some applications,
for example to multiple recurrence (starting with the work of Furstenberg [19, 20]),
the decomposition of L2 (possibly into more complicated parts) plays a crucial role
(see the chapters on Ergodic Theory: Recurrence and Ergodic Theory: Interactions
with Combinatorics and Number Theory).

For non-invertible measure-preserving transformations, the transformation is
weak- or strong-mixing if and only if its natural extension has that property.

The understanding of weak-mixing in terms of the discrete part of the spectrum
of the operator also extends to total ergodicity. Tn is ergodic if and only if T
has no eigenvalues of the form e2πip/n other than 1. From this it follows that an
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ergodic measure-preserving transformation T is totally ergodic if and only if it has
no rational spectrum (i.e. no eigenvalues of the form e2πip/q other than the simple
eigenvalue 1).

An intermediate mixing condition between strong- and weak- mixing is that a
measure-preserving transformation is mild-mixing if whenever f ◦ Tni → f for an
L2 function f and a sequence ni → ∞, then f is a.e. constant. Clearly mild-
mixing is a spectral property. If a transformation has an eigenfunction f , then
it is straightforward to find a sequence ni such that f ◦ Tni → f , so we see that
mild-mixing implies weak-mixing. To see that strong-mixing implies mild-mixing,
suppose that T is strong-mixing and that f ◦Tni → f . Then we have

∫
f ◦Tni f̄ →

‖f‖2. On the other hand, the strong mixing property implies that
∫
f ◦ Tni f̄ →

|〈f, 1〉|2. The equality of these implies that f is a.e. constant. Mild-mixing has a
useful reformulation in terms of ergodicity of general (not necessarily probability)
measure-preserving transformations: A transformation T is mild-mixing if and only
if for every conservative ergodic measure-preserving transformation S, T × S is
ergodic. See Furstenberg and Weiss’ article [21] for further information on mild-
mixing.

The strongest spectral property that we consider is that of having countable
Lebesgue spectrum. While we will avoid a detailed discussion of spectral theory in
this article, this is a special case that can be described simply. Specifically, let T be
an invertible measure-preserving transformation. Then T has countable Lebesgue
spectrum if there is a sequence of functions f1, f2, . . . such that {1} ∪ {Un

T fj : n ∈
Z, j ∈ N} forms an orthonormal basis for L2(X).

To see that this property is stronger than strong-mixing, we simply observe that
it implies that 〈U t

TU
n
T fj , U

m
T fk〉 → 0 as t → ∞. Then by approximating f and

g by their expansions with respect to a finite part of the basis, we deduce that
〈Un

T f, g〉 → 〈f, 1〉〈1, g〉 as required. Since already strong-mixing is atypical from
the topological point of view, it follows that countable Lebesgue spectrum has to
be atypical. In fact, Yuzvinskii [95] showed that the typical invertible measure-
preserving transformation has simple singular spectrum.

The property of countable Lebesgue spectrum is by definition a spectral property.
Since it completely describes the transformation up to spectral isomorphism, there
can be no stronger spectral properties. The remaining properties that we shall
examine are invariant under measure-theoretic isomorphisms only.

An invertible measure-preserving transformation T of (X,B, µ) is said to be K
(for Kolmogorov) if there is a sub-σ-algebra F of B such that

(1)
⋂∞

n=1 T
−nF is the trivial σ-algebra up to sets of measure 0 (i.e. the inter-

section consists only of null sets and sets of full measure).
(2)

∨∞
n=1 T

nF = B (i.e. the smallest σ-algebra containing TnF for all n > 0 is
B.

The K property has a useful reformulation in terms of entropy as follows: T is K
if and only if for every non-trivial partition P of X, the entropy of T with respect
to the partition P is positive: T has completely positive entropy. See the chapter
on Entropy in Ergodic Theory for the relevant definitions. The equivalence of the
K property and completely positive entropy was shown by Rokhlin and Sinai [73].
For a general transformation T , one can consider the collection of all subsets B of
X such that with respect to the partition PB = {B,Bc}, h(PB) = 0. One can
show that this is a σ-algebra. This σ-algebra is known as the Pinkser σ-algebra.
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The above reformulation allows us to say that a transformation is K if and only if
it has a trivial Pinsker σ-algebra.

The K property implies countable Lebesgue spectrum (see Parry’s book [62] for
a proof). To see that K is not implied by countable Lebesgue spectrum, we point
out that certain transformations derived from Gaussian systems (see for example
the paper of Newton and Parry [51]) have countable Lebesgue spectrum but zero
entropy.

The fact that (two-sided) Bernoulli shifts have the K property follows from Kol-
mogorov’s 0–1 law by taking F =

∨∞
n=0 T

−nP, where P is the partition into cylinder
sets (see Williams’s book [92] for details of the 0–1 law).

Although the K property is explicitly an invertible property, it has a non-
invertible counterpart, namely exactness. A transformation T of (X,B, µ) is exact
if

⋂∞
n=0 T

−nB consists entirely of null sets and sets of measure 1. It is not hard to
see that a non-invertible transformation is exact if and only if its natural extension
is K.

The final and strongest property in our list is that of being measure-theoretically
isomorphic to a Bernoulli shift. If T is measure-theoretically isomorphic to a
Bernoulli shift, we say that T has the Bernoulli property. While in principle this
could apply to both invertible and non-invertible transformations, in practice the
definition applies to a large class of invertible transformations, but occurs compar-
atively seldom for non-invertible transformations. For this reason, we will restrict
ourselves to a discussion of the Bernoulli property for invertible transformations
(see however work of Hoffman and Rudolph [27] and Heicklen and Hoffman [26] for
work on the one-sided Bernoulli property).

In the case of invertible Bernoulli shifts, Ornstein [52, 56] developed in the
early 1970s a powerful isomorphism theory, showing that two Bernoulli shifts are
measure-theoretically isomorphic if and only if they have the same entropy. En-
tropy had already been identified as an invariant by Kolmogorov and Sinai [41, 83],
so this established that it was a complete invariant for Bernoulli shifts. Keane
and Smorodinsky [39] gave a proof which showed that two Bernoulli shifts of the
same entropy are isomorphic using a conjugating map that is continuous almost
everywhere. With other authors, this theory was extended to show that the prop-
erty of being isomorphic to a Bernoulli shift applied to a surprisingly large class of
measure-preserving transformations (e.g. geodesic flows on manifolds of constant
negative curvature (Ornstein and Weiss [58]), aperiodic irreducible Markov chains
(Friedman and Ornstein [18]), toral automorphisms (Katznelson [37]) and more
generally many Gibbs measures for hyperbolic dynamical systems (see the book of
Bowen [10])).

Initially, it was conjectured that the properties of being K and Bernoulli were
the same, but since then a number of measure-preserving transformations that are
K but not Bernoulli have been identified. The earliest was due to Ornstein [53].
Ornstein and Shields [57] then provided an uncountable family of non-isomorphic
K automorphisms. Katok [35] gave an example of a smooth diffeomorphism that is
K but not Bernoulli; and Kalikow [31] gave a very natural probabilistic example of
a transformation that has this property (the T, T−1 process).

While in systems that one regularly encounters there is a correlation between
positive entropy and the stronger mixing properties that we have discussed, these
properties are logically independent (for example taking the product of a Bernoulli
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shift and the identity transformation gives a positive entropy transformation that
fails to be ergodic; also, the zero entropy Gaussian systems with countable Lebesgue
spectrum mentioned above have relatively strong mixing properties but zero en-
tropy).

In many of the mixing criteria discussed above we have considered a pair of sets
A and B and asked for asymptotic independence of A and B (so that for large n,
A and T−nB become independent). It is natural to ask, given a finite collection of
sets A0, A1, . . . Ak, under what conditions µ(A0∩T−n1A1∩ . . .∩T−nkAk) converges
to

∏k
j=0 µ(Aj).

A measure-preserving transformation is said to be mixing of order k+1 if for all
measurable sets A0, . . . , Ak,

lim
n1→∞,nj+1−nj→∞

µ(A0 ∩ T−n1A1 ∩ . . . ∩ T−nkAk) =
k∏

j=0

µ(Aj).

An outstanding open question asked by Rokhlin [72] appearing already in Halmos’
1956 book [24] is to determine whether mixing (i.e. mixing of order 2) implies mix-
ing of all orders. Kalikow [32] showed that mixing implies mixing of all orders for
rank 1 transformations (existence of rank one mixing transformations having been
previously established by Ornstein in [59]). Later Ryzhikov [77] used joining meth-
ods to establish the result for transformations with finite rank, and Host [28] also
used joining methods to establish the result for measure-preserving transformations
with singular spectrum, but the general question remains open.

It is not hard to show using martingale arguments that K automorphisms and
hence all Bernoulli measure-preserving transformations are mixing of all orders.

For weak-mixing transformations, Furstenberg [20] has established the following
weak-mixing of all orders statement: if a measure-preserving transformation T is
weak-mixing, then given sets A0, . . . , Ak, there is a subsequence J of the integers
of density 0 such that

lim
n→∞n 6∈J

µ(A0 ∩ T−nA1 ∩ . . . ∩ T−knAk) =
k∏

i=0

µ(Ai).

Bergelson [5] generalized this by showing that

lim
n→∞,n 6∈J

µ(A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pk(n)Ak) =
k∏

i=0

µ(Ai)

whenever p1(n), . . . , pk(n) are non-constant integer-valued polynomials such that
pi(n)− pj(n) is unbounded for i 6= j. The method of proof of both of these results
was a Hilbert space version of the van der Corput inequality of analytic number
theory. Furstenberg’s proof played a key role in his ergodic proof [19] of Szemerédi’s
theorem on the existence of arbitrarily long arithmetic progressions in a subset of
the integers of positive density (see the chapter on Ergodic Theory: Interactions
with Combinatorics and Number Theory for more information about this direction
of study)

The conclusions that one draws here are much weaker than the requirement for
mixing of all orders. For mixing of all orders, it was required that provided the gaps
between 0, n1, . . . , nk diverge to infinity, one achieves asymptotic independence,
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whereas for these weak-mixing results, the gaps are increasing along prescribed
sequences with regular growth properties.

It is interesting to note that the analogous question of whether mixing implies
mixing of all orders is known to fail in higher-dimensional actions. Here, rather than
a Z action, in which there is a single measure-preserving transformation (so that
the integer n acts on a point x ∈ X by mapping it to Tnx), one takes a Zd action.
For such an action, one has d commuting transformations T1, . . . , Td and a vector
(n1, . . . , nd) acts on a point x by sending it to Tn1

1 · · ·Tnd

d x. Ledrappier [44] studied
the following two-dimensional action. Let X = {x ∈ {0, 1}Z2

: xv+xv+e1 +xv+e2 =
0 (mod 2)} and let Ti(x)v = xv+ei . Since X is a compact Abelian group, it has a
natural measure µ invariant under the group operations (the Haar measure). It is
not hard to show that this system is mixing (i.e. given any measurable sets A and
B, µ(A ∩ T−n1

1 T−n2
2 B) → µ(A)µ(B) as ‖(n1, n2)‖ → ∞). Ledrappier showed that

the system fails to be 3-mixing. Subsequently Masser [46] established necessary and
sufficient conditions for similar higher-dimensional algebraic actions to be mixing
of order k but not order k + 1 for any given k.

9. Hyperbolicity and Decay of Correlations

One class of systems in which the stronger mixing properties are often found
is the class of smooth systems possessing uniform hyperbolicity (i.e. the tangent
space to the manifold at each point splits into stable and unstable subspaces Es(x)
and Eu(x) such that the ‖DT |Es(x)‖ ≤ a < 1 for all x and ‖DT−1|Eu(x)‖ ≤ a
and DT (Es(x)) = Es(T (x)) and DT (Eu(x)) = Eu(T (x))). In some cases similar
conclusions are found in systems possessing non-uniform hyperbolicity. See Katok
and Hasselblatt’s book [36] for an overview of hyperbolic dynamical systems, as
well as the chapter in this volume on Smooth Ergodic Theory.

In the simple case of expanding piecewise continuous maps of the interval (that
is, maps for which the absolute value of the derivative is uniformly bounded below
by a constant greater than 1), it is known that if they are totally ergodic and
topologically transitive (i.e. the forward images of any interval cover the entire
interval), then provided that the map has sufficient smoothness (e.g. the map is C1

and the derivative satisfies a certain additional summability condition), the map has
a unique absolutely continuous invariant measure which is exact and whose natural
extension is Bernoulli (see the paper of Góra [23] for results of this type proved under
some of the mildest hypotheses). These results were originally established for maps
that were twice continuously differentiable, and the hypotheses were progressively
weakened, approaching, but never meeting, C1. Subsequent work of Quas [68, 67]
provided examples of C1 expanding maps of the interval for which Lebesgue measure
was invariant, but respectively not ergodic and not weak-mixing. Some of the key
tools in controlling mixing in one-dimensional expanding maps that are absent in
the C1 case are bounded distortion estimates. Here, there is a constant 1 ≤ C <∞
such that given any interval I on which some power Tn of T acts injectively and
any sub-interval J of I, one has 1/C ≤ (|TnJ |/|TnI|)/(|J |/|I|) ≤ C. An early
place in which bounded distortion estimates appear is the work of Rényi [69].

One important class of results for expanding maps establishes an exponential
decay of correlations. Here, one starts with a pair of smooth functions f and g and
one estimates

∫
f · g ◦ Tn dµ −

∫
f dµ

∫
g dµ, where µ is an absolutely continuous

invariant measure. If µ is mixing, we expect this to converge to 0. In fact though,
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in good cases this converges to 0 at an exponential rate for each pair of functions f
and g belonging to a sufficiently smooth class. In this case, the measure-preserving
transformation T is said to have exponential decay of correlations. See Liverani’s
article [45] for an introduction to a method of establishing this based on cones.
Exponential decay of correlations implies in particular that the natural extension
is Bernoulli.

Hu [29] has studied the situation of maps of the interval for which the derivative
is bigger than 1 everywhere except at a fixed point, where the local behaviour is
of the form x 7→ x + x1+α for 0 < α < 1. In this case, rather than exhibiting
exponential decay of correlations, the map has polynomial decay of correlations
with a rate depending on α.

In Young’s survey [93], a variety of techniques are outlined for understanding
the strong ergodic properties of non-uniformly hyperbolic diffeomorphisms. In her
article [94], methods are introduced for studying many classes of non-uniformly
hyperbolic systems by looking at suitably high powers of the map, for which the
power has strong hyperbolic behaviour. The article shows how to understand the
ergodic behaviour of these systems. These methods are applied (for example) to
billiards, one-dimensional quadratic maps and Hénon maps.

10. Future Directions

Problem 1 (Mixing of all orders). Does mixing imply mixing of all orders? Can
the results of Kalikow, Ryzhikov and Host be extended to larger classes of measure-
preserving transformations? Thouvenot observed that it is sufficient to establish
the result for measure-preserving transformations of entropy 0. This observation
(whose proof is based on the Pinsker σ-algebra) was stated in Kalikow’s paper [32]
and is reproduced as Proposition 3.2 in recent work of de la Rue [76] on the mixing
of all orders problem.

Problem 2 (Multiple weak-mixing). As mentioned above, Bergelson [5] showed
that if T is a weak-mixing transformation, then there is a subset J of the integers
of density 0 such that

lim
n→∞,n 6∈J

µ(A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pk(n)Ak) =
k∏

i=0

µ(Ai)

whenever p1(n), . . . , pk(n) are non-constant integer-valued polynomials such that
pi(n)− pj(n) is unbounded for i 6= j. It is natural to ask what is the most general
class of times that can replace the sequences (p1(n)), . . . , (pk(n)). In unpublished
notes, Bergelson and H̊aland considered as times the values taken by a family
of integer-valued generalized polynomials (those functions of an integer variable
that can be obtained by the operations of addition, multiplication, addition of or
multiplication by a real constant and taking integer parts (e.g. g(n) = b

√
2bπnc+

b
√

3nc2c)). They conjectured necessary and sufficient conditions for the analogue
of Bergelson’s weak-mixing polynomial ergodic theorem to hold, and proved the
conjecture in certain cases.

In a recent paper of McCutcheon and Quas [48], the analogous question was
addressed in the case where T is a mild-mixing transformation.

Problem 3 (Pascal adic transformation). Vershik [89, 90] introduced a family
of transformations known as the adic transformations. The underlying spaces for
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these transformations are certain spaces of paths on infinite graphs, and the trans-
formations act by taking a path to its lexicographic neighbour. Amongst the adic
transformations, the so-called Pascal adic transformation (so-called because the
underlying graph resembles Pascal’s triangle) has been singled out for attention in
work of Petersen and others [64, 49, 15, 2]. In particular, it is unresolved whether
this transformation is weak-mixing with respect to any of its ergodic measures.
Weak-mixing has been shown by Petersen and Schmidt to follow from a number-
theoretic condition on the binomial coefficients [15, 2].

Problem 4 (Weak Pinsker Conjecture). Pinsker [66] conjectured that in a measure-
preserving transformation with positive entropy, one could express the transfor-
mation as a product of a Bernoulli shift with a system with zero entropy. This
conjecture (now known as the Strong Pinsker Conjecture) was shown to be false
by Ornstein [54, 55]. Shields and Thouvenot [78] showed that the collection of
transformations that can be written as a product of a zero entropy transformation
with a Bernoulli shift is closed in the so-called d̄-metric that lies at the heart of
Ornstein’s theory.

It is, however, the case that if T : X → X has entropy h > 0, then for all
h′ ≤ h, T has a factor S with entropy h′ (this was originally proved by Sinai [84]
and reproved using the Ornstein machinery by Ornstein and Weiss in [60]). The
Weak Pinsker Conjecture states that if a measure-preserving transformation T has
entropy h > 0, then for all ε > 0, T may be expressed as a product of a Bernoulli
shift and a measure-preserving transformation with entropy less than ε.
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