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Abstract. We present an analysis of one-dimensional models of dynamical systems
that possess “coherent structures”; global structures that disperse more slowly than
local trajectory separation. We study cocycles generated by expanding interval
maps and the rates of decay for functions of bounded variation under the action of
the associated Perron—Frobenius cocycles.

We prove that when the generators are piecewise affine and share a common
Markov partition, the Lyapunov spectrum of the Perron—Frobenius cocycle has at
most finitely many isolated points. Moreover, we develop a strengthened version of
the Multiplicative Ergodic Theorem for non-invertible matrices and construct an
invariant splitting into Oseledets subspaces.

We detail examples of cocycles of expanding maps with isolated Lyapunov
spectrum and calculate the Oseledets subspaces, which lead to an identification
of the underlying coherent structures.

Our constructions generalise the notions of almost-invariant and almost-cyclic
sets to non-autonomous dynamical systems and provide a new ensemble-based
formalism for coherent structures in one-dimensional non-autonomous dynamics.

1. Introduction

Transport and mixing processes play an important role in many natural phenomena
and their mathematical analysis has received considerable attention in the last
two decades. The geometric approach to transport includes the study of invariant
manifolds, which may act as barriers to particle transport and inhibit mixing. So-
called Lagrangian coherent structures were introduced ([HYO00, HO1]) as finite-
time proxies for invariant manifolds in non-autonomous settings. The ergodic-
theoretic approach to transport includes the study of relaxation of initial ensemble
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2 G. Froyland, S. Lloyd and A. Quas

densities to an invariant density, with a special focus on initial densities that
relax more slowly than suggested by the rate of local trajectory separation.
Such slowly decaying ensembles have been studied as “strange eigenmodes”
([LHO4, PP03, PPEO07] in fluids and have been used to identify almost-invariant
sets [DJ99, F05, FP08, F08]). Until now, a suitable framework for the ergodic-
theoretic approach that deals with truly non-autonomous dynamics has been
lacking. The main aim of this work is to develop the fundamental structures and
results that will support a non-autonomous theory for an ensemble-based approach
to coherent structures.

We study non-autonomous one-dimensional dynamical systems that are given
by compositions of expanding interval maps, and their action on ensembles
represented by probability densities. The time evolution of a density is given by
the Perron-Frobenius operator. For a single piecewise C? expanding map that is
topologically mixing these densities converge to a unique equilibrium distribution
which is absolutely continuous (see [B0O]). Thus the equilibrium distribution is an
eigenfunction of the Perron—Frobenius operator with eigenvalue 1. The exponential
rate of convergence to equilibrium is governed by the spectrum of the Perron—
Frobenius operator. When restricted to the space of functions of bounded variation
(BV), the Perron—Frobenius operator is quasicompact (see [HK82]), meaning that
each point in the spectrum of modulus greater than the essential spectral radius is
an isolated eigenvalue of finite multiplicity. It is known that in the BV setting
the essential spectral radius equals the long-term rate of separation of nearby
trajectories, which we denote by 6 (see Section 2.1). We will say an eigenvalue is
exceptional if it is different from 1 and has modulus greater than 6. Eigenfunctions
corresponding to exceptional eigenvalues relax more slowly to equilibrium than
suggested by the local separation of trajectories, and their existence has been
attributed to the presence of “almost-invariant sets” (see [DJ99, DFS00, F07]).

Exceptional eigenvalues have previously been found by considering piecewise-
affine expanding maps with a Markov partition ([B96], [DFS00], [KR04]). When
restricted to the space of step-functions constant on the Markov partition intervals,
the associated Perron—Frobenius operator becomes a finite dimensional operator.
In the present work we extend these results to the non-autonomous setting. Instead
of iterating a single map, we consider a cocycle of maps and its associated Perron—
Frobenius cocycle. The appropriate way to describe exponential rate of convergence
to equilibrium is via the Lyapunov spectrum of the Perron—Frobenius cocycle. As
the Perron—Frobenius operator is a Markov operator, the Lyapunov spectrum is
contained in the interval [—o0o,0]. In analogy with the autonomous case, we look
for exceptional Lyapunov exponents, namely those negative exponents greater than
the long-term exponential rate of separation of nearby trajectories, which we denote
by ¥ (see Section 2.2).

We obtain a Lyapunov spectral decomposition for the Perron-Frobenius cocycle
into invariant subspaces with given Lyapunov exponents (see Corollary 4.1). This
relies on a new version of the Multiplicative Ergodic Theorem (see Theorem 4.1),
which provides an invariant splitting into Oseledets spaces even when the generators
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are non-invertible.  Our new version strengthens the standard Multiplicative
Ergodic Theorem (see, for example [A98, Theorem 3.4.1]) where only an invariant
flag of nested subspaces is supplied.

We demonstrate the existence of slow-mixing coherent structures by constructing
periodic (see Theorem 5.1) and non-periodic (see Theorem 6.1) examples
of Lebesgue measure-preserving one-sided cocycles with exceptional Lyapunov
exponents. In each case, we calculate algebraically the Oseledets subspaces
associated with the largest exceptional exponent and verify that the second largest
Oseledets space captures the coherent structures.

Finally, we present an algorithm for approximating the Oseledets splitting, which
is based on a computational approach suggested by the proof of Theorem 4.1. We
demonstrate the effectiveness of the algorithm, by approximating some Oseledets
subspaces numerically.

2. Preliminaries

We study the Perron—Frobenius operator for compositions of expanding maps. We
first introduce the necessary notation and relevant results for autonomous systems,
and then extend these to the non-autonomous case.

2.1.  Autonomous systems We say that T : I — I, where I = [0,1] or [ = S* =
[0,1]/(0 ~ 1), is an ezpanding map if there exist points 0 = ag < a1 < ... < ay, =1
such that, for each i = 1,...,m, T|(4,_, q,) is continuous and extends to a C? map
on [a;_1,a;] satisfying [DT),,_, a,)| > 7, for some v > 1.

The Perron—Frobenius operator for an expanding map T : I — I is defined, for
an L' function f: I — R, by

_ fly)
Pf(x) = yeTZ@) DT (1)

In [LY73], the Perron—Frobenius operator is used to prove that expanding maps
have an absolutely continuous invariant probability measure. The key step of
their proof is to show that the Perron—Frobenius operator contracts the norm on a
suitable space of functions: the functions of bounded variation.

The variation of a function f: I — R on a subinterval A C I is defined by

k
var f 1= var f(x) =sup > |f(pi) = f(#))];
=1

where the supremum is taken over all finite collections {p;,p;}¥_; such that p; and
p, are the endpoints of an interval I; C A and I; N I; = 0 for ¢ # j. Given
f € L* C L', the variation is defined by var; f = inf{var;g: f = ga.e.}. We
denote by BV = BV(I) the Banach space

BV:{fELOOZV?If<OO},
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4 G. Froyland, S. Lloyd and A. Quas

equipped with the norm || f|| = max{|| f||L1, var; f}. We denote Lebesgue measure
on I by m, and f € BV is called a (probability) density if f > 0 on I (and
1fllzr = 1).

The Perron-Frobenius operator is Markov: that is, if f € L' is a density, then
Pf is also a density and ||Pf|lz1 = ||fllz1- A probability density f* satisfying
Pf* = f* is an invariant probability density for T

Keller [K84] shows that the Perron—Frobenius operator of an expanding map
has at most countably many exceptional eigenvalues.

THEOREM (Keller, 1984). Given an expanding interval map T : I — I, its Perron—
Frobenius operator P acting on BV has essential spectral radius

1 1/n
0 := lim sup () , 2
and there are at most countably many points in the spectrum of modulus greater
than 0, each an isolated eigenvalue of finite multiplicity.

Exceptional eigenvalues have a distinguished dynamical significance as their
eigenfunctions are associated with relaxation to equilibrium at exponential rates
slower than the rate suggested by the average local separation of trajectories 6. For
example, if Pg = Ag with 6 < |\| < 1 then an initial density f* + ag, o # 0 will
relax to f* at a rate slower than 6.

Dellnitz and Junge [DJ99] suggested that positive real Perron—Frobenius
eigenvalues near to 1 correspond to almost-invariant sets; more precisely, they
suggested the sets AT := {g > 0} and A~ := {g < 0} formed an almost-invariant
partition of the state space. Dellnitz et al. [DFS00] showed the converse, presenting
a class of interval maps with almost-invariant sets and proving the existence of
exceptional eigenvalues. Froyland [FO07] constructed a two-dimensional hyperbolic
map with almost-invariant sets and proved the existence of an exceptional
eigenvalue. Numerical methods have been developed ([DJ99, F05, F08]) for
the computation of exceptional eigenfunctions and almost-invariant sets; these
have been applied successfully in molecular dynamics ([SHD99]), astrodynamics
([D405]), and ocean circulation ([F+407]).

Our intent in the present work is to generalise the notion of almost-invariant sets
in autonomous systems to that of coherent structures in non-autonomous systems.
The latter will represent structures that are perhaps quite mobile, but disperse at
rates slower than suggested by local trajectory separation.

2.2.  Non-autonomous systems We will examine exceptional spectral points in
the non-autonomous case, and study compositions of expanding maps taken from
a finite collection, and composed in order according to given sequences.

Let s be an invertible transformation of a probability space (£2,F,P) that
preserves the probability P. Given a measurable/topological/vector space X, a
(one-sided) cocycle over s is a function H : Z* x Q x X — X with the properties
that for all w € Q and x € X:
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e H0,w,x) = x;
o forall m,n € Z*, H(m + n,w,z) = H(m, s"w, H(n,w,z)).

We sometimes write H (w)(z) for H(n,w,z), and H(w)(x) for H(1,w,z). The
generator of a cocycle H is the mapping H : Q — End(X) given by ﬁ(w) = H(w).
Since the cocycle is uniquely determined by H , we occasionally refer to H itself as
the cocycle when no confusion can occur.

In the sequel, our probability space will frequently be a (bi-infinite) sequence
space (X, H,p) on K symbols {1,..., K}, and our invertible transformation a (left)
shift o, defined by (ow); = wir1, i € Z, where ¥ C {1,..., K}? is invariant under
.

Definition. Let {T;}X | be a set of expanding maps of I, and let P; : BV — BV be
the Perron—Frobenius operator associated to T; : I — I. The map cocycle generated
by {T;}X,, denoted by ® : Z+ x ¥ x I — I, is defined to be the one-sided cocycle
with generator ®(w) = T,,, € {T;}/X,. Associated to ® is the Perron—Frobenius
cocycle P : ZT x ¥ x BV — BV, which is defined to be the one-sided cocycle with
generator P(w) = Py, € {Pi}E, forw e X.

Notice that even though we use a two-sided shift space, we only form one-sided
cocycles not two-sided cocycles. This is because expanding maps are not invertible,
and nor are their Perron—Frobenius operators.

We say a cocycle is periodic if the underlying sequence space X is generated by
a single element: that is, there exists R € N, called the period, and w € ¥ such
that ¥ = {w, ow, ...,0% lw}; we say a cocycle is autonomous if ¥ contains a single
element.

3.  Quasicompactness of the Perron—Frobenius cocycle
Information about the exponential decay rates of the Perron—Frobenius cocycle is
given by its Lyapunov spectrum.

Definition. We denote by A(w, f) the (forward) Lyapunov exponent of f € BV at
w € 3, defined by
1
AMw, f) = limsup = log |P™ (w) f].
n

We define the Lyapunov spectrum A(P(w)) C R of the Perron—Frobenius cocycle
at w € X to be the set

APW)) = {A(w, f) : f € BV},
The exponential rate of decay that can be expected purely from the local

expansion at w € ¥ is

1 1
Y(w) := limsup — logsup ———————, (3)
n—oo N ger |D(@M(w))(z)]

If o : ¥ — X is ergodic, then (1/n)logsup,c;(1/|D(®™ (w))(x)]) converges to ¥(w)
by Kingman’s subadditive ergodic theorem (see [A98, Theorem 3.3.2]) and, since
9 is o-invariant, ¥(w) = ¥ p-almost everywhere.
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6 G. Froyland, S. Lloyd and A. Quas

If ® is a composition of expanding maps, then ¥(w) < 0. Comparing with (2),
we have ¢ = logf for autonomous systems.

Points in A(P(w)) that are greater than J(w) indicate the presence of large-scale
structures that reduce the rate of mixing of the system, except for the maximal
Lyapunov exponent, 0, which is associated with an invariant density. We refer to
Lyapunov exponents in the interval (¥(w),0) as exceptional.

In order to find systems with exceptional Lyapunov spectrum, we restrict our
attention to map cocycles generated by piecewise-affine maps with a Markov
partition. We say an expanding map T : I — I is piecewise-affine if there exists
a partition A = {A4;}™, of I into intervals such that T has constant derivative on
each interval A;. A refinement B = {B;}, of the partition A into intervals is called
a Markov partition if for each pair 1 <i,j < M such that int(B;) N T(B;) # 0, we
have int(B;) C T(Bj). Associated to T is a transition matriz T' = (v; j)1<ij<m,
where v; ; = 1 if T(B;) D int(B;) and 0 otherwise.

For a Markov partition B, we let x(B) denote the space of step-functions I — R
that are constant on the intervals of B. We say B is a common Markov partition
for a collection of maps {7T;}X, if it is a Markov partition for each map T;.

We now fix a collection 7 := {T;}% | of piecewise-affine expanding maps and
denote by ® the associated map cocycle and by P the Perron—Frobenius cocycle
acting on BV. Suppose the generators 7 have a common Markov partition
B = {Bi,...,Bu}, where B; = [b;—1,b;]. Then F = x(B) C BV is an invariant
subspace for P. We may consider the quotient space @ = Q(I) = BV(I)/F, which
is a Banach space with the quotient norm || f + F||q := infsep || f — s]|.

Given f € BV we construct a step function 7(f) € F such that:

Lfori=1,....M—1, (f —n(f)(bi—) = (f —7(f))(bi+);
2. (f—m)(0+) =0,

where we denote h(zx+) = limy |, h(y) and h(z—) = limyq, h(y). Condition (1)
ensures that vary(f — 7(f)) = infsep vary(f — s). Additionally, using condition (2)
we have that || f — 7(f)||: < vary(f — w(f)). An explicit formula for 7 : BV — F
is

M i—1
T(f) =D hi(H)xe. hilf) = fOiat) =Y (F(b=) = f(bj-11)) -
i=1 j=1
Thus the map 7 is linear, and is a projection onto F' since 7(xB,) = XBi,
i=1,...,M. We define 1 =Id — 7. Since 72 =7, wesee 72 =Id — 27 + 7 = T,
and so 7 is also a projection. Thus
If +Fllg = lI7fll = varrf, feBV. (4)

LEMMA 3.1. The projection T satisfies the following identity for any w € ¥ and
any n € N:

TP (w) = 7P (W) = 7(Pr)™ (W), (5)
where we denote (P1)™ (w) = P(6" 'w)7 - P(ow)TP(w)T.
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Coherent structures for Perron—Frobenius cocycles 7

Proof. We have, for any n € N,

P (W) =P (W) (1 +7) = 7P ()T + 7P (W) = 7P ()7 (6)
since 7F = {0}, giving the left identity. In particular 7P(w) = 7P(w)T, and so by
induction

7(P7)" (W) = 7(P7)" Y (0w)(P(w)r)
TP("fl)(ow)(P(w)T), assuming T(PT)("*l)(w) = 7'73("71)(40)
= 7P (w)r
P (w), by (6).
O

For the rest of this section, we consider functions of I = [0, 1]. By (4) we have
M
17+ Flla =3 _grs, feBV(D. (7)
We denote by B"(w) the refinement \/7— /' [®()(w)]~'B. We show that ¥ is an

upper bound for the Lyapunov spectrum of the quotient cocycle.

LEMMA 3.2. For each w € X2,
A(Po(w)) € [=o0, d(w)]; (8)
where Pq is the quotient cocycle on the space @ = BV([0,1])/F.

Proof. For A € B™ (w), the support of P (w)(fxa) is contained in the interval
®(™ (w)A, which is equal to the closure of a union of elements of B. Thus by (7),
for f € BV([0,1]) we have

P (W) f + Fllg = Zvarp

BeB

< p(n)

< > poir PU(@)(fxa)
AEB(™) (w)

_ !
- 2 Dew)

AEB™M) (w)

1
< m . T
= AeBO (w) (|D‘I’(") (w)|A|) i

AEBM (w)
since D®(™)(w)]| 4 is constant for each A € B (w). So

PO+ Flo <sup (b ) 3 vars

1

Hence
1
h;risotip log 1P (w)]|g < hyILILSogp - logsup <|D<I>(")(w)|) = J(w), (9)
as required. O
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8 G. Froyland, S. Lloyd and A. Quas

Remark. Quasicompactness of the autonomous Perron—Frobenius operator has been
proven for a variety of Banach spaces (e.g. [R89], [BKLO02|, [GL06]). It would be
natural to consider bounds analogous to Lemma 3.2 for these other spaces in the
cocycle setting.

We now prove that the exceptional Lyapunov spectrum of the cocycle P(w)
is contained in A(P|y(z)(w)). For the autonomous case, see for example [BK98,
Lemma 3.1].

PROPOSITION 3.1. Let o be an invertible ergodic measure-preserving shift of the
sequence space (3, H,p), and P : Z* x ¥ x BV([0,1]) — BV([0,1]) be the Perron—
Frobenius cocycle associated to a map cocycle over o generated by piecewise-affine
expanding maps with a common Markov partition B. Let F = x(B) be the finite
dimensional subspace spanned by {xp : B € B}. Then, for almost every w € 3,

A(P(w)) N (9,0] € A(P|r(w)),

where P|p is the finite dimensional cocycle induced on F. In particular, P(w) has
at most dim F' = #B exceptional Lyapunov exponents for almost every w € X.

Proof. For each w € ¥ and f € BV([0,1]), since f = wf + 7f, we have
Alw, f) < max{A(w, 7 f), AMw, 7f)} (10)
with equality if AMw,7f) # Aw, 7f). So either A(w, f) = Aw,7f) € A(P|p(w)) or
else Aw, f) < Aw, 7f). In the latter case, applying (10) to A(ow, P(w)7 f) we have
that either A(w, f) = A(ow, 7P (w)7f) € A(P|r(ow)) or
Aw, f) = Mow, P(w)f) < Mow, P(w)7f) < Aow, TP (w)7f).
Inductively, we have that either A(w, f) € U,y A(P|r(c"w)) or else

Aw, f) < inf A(o"w, 7(P7)™ (@) f)

1
< limsup - log ||T(777’)(n)(w)f||

n—oo

1
= limsup - log [|[7P™ (w)f|l, by Lemma 3.1

n—oo

1
= lim sup - log |P™ (W) f + Fllg

n—oo

<9Y(w), by Lemma 3.2.

Clearly |J;~ , A(P|r(c"w)) = A(P|p(w)) for almost every w. Thus by the standard
MET (see [A98, Theorem 3.4.1]), we have that for almost every w the number of
exceptional exponents of P(w) is no greater than #A(P|p(w)) < #B. O

Remark. For f € BV(S1), let f € BV(]0,1]) be the map obtained by considering f
as a function on [0, 1]. Notice that for f € BV(S1),

[Y)éﬁfﬁ\{salrf=[\(f)jalr]erlf(l—)—f(OJr)l§2[\6§ﬁf- (11)
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Coherent structures for Perron—Frobenius cocycles 9

Thus, we have two equivalent norms on Q(S*) = BV(S')/F: ||f + Fllg(s) and
1f+Fligsy = lIf+Fllggo,), for f € BV(S1). Therefore, we see that Lemma 3.2
and Proposition 3.1 hold for the case f € BV(S 1Y by following the proofs applied
to f € BV([0,1]) and then using the norm equivalence.

4. A stronger Multiplicative Ergodic Theorem for non-invertible matrices

By Proposition 3.1, for almost every w € X, all exceptional Lyapunov exponents
of P(w) are contained in the Lyapunov spectrum A(P|,z)(w)). We now represent
P(w)|y(B) as a matrix cocycle.

The set {xp,}M, forms a basis for x(B), and thus each f € x(B) may be
written as f = Zf\il v;XB, in a unique way. Similarly, given v € RM we write
(v) :== Zﬁl v;xB; for the corresponding function in BV.

For T' € T, the matrix P = (p; j)1<i,j<m, Where

Vi _ m(T"(Bi) N Bj)
|DTp, | m(B;) 7

pi,j: ]-élv.?SMa

represents the Perron—Frobenius operator for T’ with respect to the basis {x(B;)},
of x(B) (see, for example, [BG97, p.176]). That is, for each v € R™ we have

P (v) = (Pv).

Let P; denote the matrix representing the restricted Perron—Frobenius operator
Pily() with respect to the basis {xp,}L; of x(B). The matrix cocycle
A7 x 8 x RM — RM is the one-sided cocycle with generator A(w) = P,,.

Thus for almost every w € X, all exceptional Lyapunov exponents of P(w) are
captured by the Lyapunov spectrum of the cocycle A(A(w)) = A(P|y(s)(w))-

The Multiplicative Ergodic Theorem for one-sided matrix cocycles (see, for
example, [A98, Theorem 3.4.1]) provides us with a description of the asymptotic
behaviour of the cocycle A(w). It reveals that the Lyapunov spectra 0 = Ay >
Ay > --- > Ny > —00 of the A(w) coincide for all w in a g-invariant ¥ C X of full
p-measure. Moreover, it states that for each w € 3, a Lyapunov exponent Aw,v) of
v € RM for A(w) is determined by the position of v within a flag of nested subspaces
{0} = Vo(w) C -+ C Va(w) C Vi(w) = x(B). Specifically, for each i =1,...,¢,

AMw,v) =\ <= v e Vi(w) \ Vig1(w). (12)

In addition, the flag of subspaces is preserved by the action of the cocycle: for
i=1,...,¢,
A(w)Vi(w) C Vi(ow).

For two-sided matrix cocycles (see, for example, [A98, Theorem 3.4.11]), by
intersecting the corresponding subspaces of the flags for the cocycle and for its
inverse, one obtains an Oseledets splitting: that is, for each w € ¥ we have a
decomposition RM = @521 Wi(w) such that for i =1,...,¢,

1
v € Wilw) \ {0} = Tim_—log[[A®™ (w)e] = A
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10 G. Froyland, S. Lloyd and A. Quas
where AT (w) := A~ (o "w) - A" (o7 w) for n > 0, and
A(w)W;i(w) = W;i(ow).

Our cocycle A(w) sits between these two extremes: the shift o is invertible, but
the matrices {P;}X | generating A(w) are not. Because of the non-invertibility of
the cocycle, we cannot use the standard approach described above to define an
Oseledets splitting.

The following new result relies on a push-forward approach to prove the existence
of an Oseledets splitting even when the generators are non-invertible. We state
and prove the theorem for an arbitrary matrix cocycle over an invertible ergodic
measure-preserving transformation of a probability space. Afterwards, we apply the
theorem to the special case of a Perron-Frobenius cocycle over a shift of a sequence
space.

THEOREM 4.1. Let s be an invertible ergodic measure-preserving transformation
of the probability space (2, F,P). Let A: Q& — My(R) be a measurable family of
matrices satisfying

/10g+ [|A(w)]| dP(w) < 0.

Then there exist Ay > Ay > -+ > Ay > —oo and dimensions myq, ..., my, with
m1 + -+ my = d, and a measurable family of subspaces W;(w) C R? such that
for P-almost every w € €2 the following hold:

1. dim W;(w) = my;
2. RY = @_, W;(w);
3. Aw)W;(w) € W;(sw) (with equality if \; > —o0);
4. for all v € W;(w) \ {0}, one has
lim. % log [ A(s"w) - A(w)o]l = Ai
Proof. See Section 8. m|

Remarks.

1. It follows from part (iv) of Theorem 4.1 that for almost every w € Q, we can
determine the Lyapunov exponent for any vector v € R%\ {0} by

41 41
Mw,v) =X <= v € @Wk(w) \ @ Wi (w),
k=i k=i+1

where we set Wy41(w) = {0} for all w € Q.
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2. If the family A : Q@ — My(R) is non-invertible on a set of positive measure,
then we can obtain a lower bound for the dimension of the subspace Wy (w)
corresponding to the lowest exponent A\ = —oo using the nullities of the
generator as follows. Let Q. = {w € Q : dim ker A(s"w) > ¢ for some n € N}.
Since s71Q, C ., we have that P(€2.) = 0 or 1 by ergodicity. Choose the
maximal ¢ € N for which P(Q.) = 1. Then, by Theorem 4.1 dim Wy(w) is
constant almost everywhere, and so dim W (w) > ¢ for almost every w € .

3. Let v(u,v) denote the angle between non-zero vectors u,v € RZ. As R? =
Zle W;(w), we may decompose u, v as u = Zle u;(w) and v = Zle vi(w),
where u;(w),v;(w) € W;(w). Let i(w,u) := min{i : u;(w) # 0}. Since 7 is
bounded, we have limsup,, ._(1/n)logy(A™ (w)u, A™ (w)v) < 0. In fact
lim,, o0 (1/7) log y(A™ (w)u, AT (w)v) exists, and it is negative if and only
if w0 ) (W) and v;(, ) (w) are linearly dependent (see [A98, Corollary 5.3.7]).

We now apply Theorem 4.1 to our cocycle A(w) induced by P(w)l|y(s). Consider
the part of the Lyapunov spectrum of A(w) that is greater than 9. Let 1 < r < ¢
satisfy A,y1 < 9 < A.. Thus, the part of A(P|,(g)(w)) strictly greater than
¥ is precisely Ay > Ay > --- > A.. It follows from Proposition 3.1 that
the exceptional Lyapunov spectrum of P(w) is precisely Ag,...,A.. By defining
Wi(w) = {{(v) : v € Wi(w)} for 1 < i < r, we transfer the splitting of R™ obtained
from Theorem 4.1 into a splitting of x(B) and obtain the following result:

COROLLARY 4.1. Let o be an invertible ergodic measure-preserving shift of the
sequence space (X, H,p), and P : ZT x X x BV — BV be the Perron—Frobenius
cocycle associated to a map cocycle over o generated by piecewise-affine expanding
maps with a common Markov partition B. Let ) # {\;}I_; = A(P(w)) N (¥,0] be
the Lyapunov exponents of P(w) greater than 9, where 0 = Xy > -+ > A, > ¥.
Then there exists a forward invariant full p-measure subset ¥ C ¥ and
my,...,m. € N, satisfying mi + --- + m, < #B, such that for all w € ¥

1. there exist subspaces W;(w) C x(B), dim W;(w) = my;
2. P(w)W;(w) =W;(ow);
3. feWi(w)\ {0} = Aw, f) =\

5. Construction of periodic cocycles with exceptional Lyapunov spectrum
In this section we build a periodic map cocycle for which the Perron—Frobenius
cocycle has an exceptional Lyapunov spectrum.

In [DFSO00] individual maps are constructed for which the Perron—Frobenius
operator has exceptional eigenvalues. The construction uses so-called ‘almost-
invariant’ sets. Given a map T : I — I with an absolutely continuous invariant
probability measure p, a subset U C I is almost-invariant if

pUnT'U)
pt) T
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12 G. Froyland, S. Lloyd and A. Quas

For a map with an almost-invariant set U, the transfer of mass between U and
I\ U is low, and so we expect to find that a mean-zero function positive on U
and negative on I \ U decays to zero slowly. It is shown that for piecewise-affine
Markov maps, one often obtains an almost-invariant set from the support of either
the positive or negative part of the eigenfunction associated to the second largest
eigenvalue of the Perron—Frobenius operator.

For this first example, we construct a cocycle over a periodic shift space of period
3 that has a cyclic coherent structure. More precisely, we take three maps, each
having a distinct interval from the partition J = {[0,1/3],[1/3,2/3],[2/3,1]} of
S as an almost-invariant set. Post-composing these maps with the rotation by
1/3, we form three new maps which we apply in sequence repeatedly, thus forming
a periodic map cocycle ®. In this way, each generator é(w) of the map cocycle
moves the majority of the mass of one distinguished interval J(w) € J into another
interval J(ow) € J with some small dissipation. Thus a map J : ¥ — J specifies
the location of our coherent structure.

THEOREM 5.1. There exists a collection of three piecewise-affine expanding maps
T, Ty, T3 : S* — S' with a common Markov partition B that generates a map
cocycle ® : Zt x ¥ x St — S owver the shift o on the periodic sequence space
¥ C {1,2,3}% generated by a = 123 with the following properties for i = 1,2,3:

1. each map T; preserves Lebesque measure;

2. ¥ =1logl/3;

3. each finite dimensional restriction Pi|y(s) of the Perron—Frobenius operator
of T; has no exceptional eigenvalues;

4. P(w) has an exceptional Lyapunov spectrum that is independent of w and

satisfies
A(P)N (9,0) D {log <38:|:32\/ﬁ> } .

5. the Oseledets subspace Wa(w) corresponding to the largest exceptional
Lyapunov exponent exists for all w € ¥, and depends only on wy.

For periodic map cocycles, one can find Lyapunov spectral points from the
eigenvalues of the cyclic composition of Perron—Frobenius operators.

LEMMA 5.1. Consider a periodic map cocycle ® : Zt x X x I — Q x I of period R.
If n is an eigenvalue of the Perron—Frobenius operator P (w), then

1

=51 € A(PW)).

Proof. There exists a function 0 # f € BV such that P9 (w)f = nf. Hence for
any ke Nand 0 <r < R,

(kR+r)
[PER WS

- (4) < (%)
min ([PO) 1y < T < o (PO ) 1),
and the result follows. O
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Coherent structures for Perron—Frobenius cocycles 13

Proof. [Proof of Theorem 5.1] Consider the partition J = {Ji, J2, J3} of S! into
the subintervals J; = [(i —1)/3,4/3]. Let ® : ZT x ¥ x S* — S! be the map cocycle
with generator ®(w) = T,,,, where the maps T = {T1, T3, T3} are given by

Ti(m)=3x—% Gg’j(modl), xij:{J;l,gJ, ji=1,...,9,
where
6 7 6 1 3 0 4 3 0
G=|3 6 500 8 3 6 2

06 7106 3 3 4

The graphs of T},T5, T3 are shown in Figure 1: note that, by construction, each
map 7T; largely maps the interval J; into the interval J;; 1, taking indices modulo
3: in fact, for i € 1,2, 3,

m(JZ ﬁT;lJH,l) 8

m(J;) 9
Thus we have a coherent structure built around the family of intervals J : ¥ — J

given by J(w) = J,,.

T1 T2 T3

FIGURE 1. Graphs of T1,T>,T5.

Note also that each map T; is piecewise-affine expanding and there is a common
Markov partition for 7 given by B={B; :¢=1,...,9}. Notice that for each map
T €T and interval B € B, DT|p = 3, and so ¥(w) = log1/3 for each w € 3.

Moreover, for each map T € 7 and interval B € B, the preimage T~ 'B has
precisely three components, each of one third of the length of B. Thus each T' € T
preserves Lebesgue measure, and hence each <I>(”)(w), w € X and n € N, does also.

As before, let P; denote the matrix of the restriction P;|,(g) with respect to the
basis {x(B)})_;. Here P; = I'1, /3 is the one third scaling of the transition matrix
I'r,, which is itself easily observed from the graph of T;: the (p, ¢)th entry of the 0-1
matrix T'; is 1 if and only if the graph of T; intersects the (p, ¢)th square of B x B.
Each matrix P; has a simple eigenvalue 1, and all other non-zero eigenvalues lie on
the circle of radius 1/3:

spec(Py) = (1,-1/3,-1/3,0,...,0)
spec(Pz) = (1,1/3,0,...,0)
spec(P3) = (1,—1/3,-1/6 £i/3/6,0,...,0).
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14 G. Froyland, S. Lloyd and A. Quas

Unlike in Theorem 6.1 in the following section, the maps used here cannot be
expressed as different rotations of a single map.

We can find slowly decaying functions by examining the triple composition
®B)(a) = T3 0Ty 0 Ty. The Perron-Frobenius operator P®)(a), when restricted
to the space x(B), can be represented by the matrix A®)(a) = PyP,P;. We have

spec(A® (a)) = <1, 237(4 +2V11),0, ... ,o>

Since the cocycle is periodic, we find that the spectrum of A®)(w) is independent of
w € ¥. Applying Lemma 5.1 we have that A(P) has the two exceptional elements
with approximate values

A2 = 1og 0.8153, A3 ~ log0.3699.

Moreover, these Lyapunov exponents are achieved by the corresponding
eigenvectors of A®)(w). For w = a, the space Wy(a) is spanned by the second
eigenvector wo of the matrix A(?’)(a) = P3P, Py, with approximate entries

wy = (0.105,0.193,0.193,0.008, —0.059, —0.059, —0.113, —0.134, —0.134),

and the graph of (ws) € x(B), which spans Wa(«), is shown in Figure 2. For

(w2)

FI1GURE 2. The graph of (w2) € x(B) for Theorem 1.

i = 1,2, Wa(o'a) is spanned by (ws) o p=¢, where p : S — S! is the rotation
p(x) =z +1/3(mod1). o

Evidence of the cyclic coherent structure is visible in the second eigenfunction
of the Perron—Frobenius operator. Note that J(«) = [0,1/3] supports the majority
of the mass of the positive part of (ws). Similarly, the distinguished interval
J(ota) = [(i —1)/3,i/3], i = 1,2, is picked up by (wz) o p~°.

6. Construction of non-periodic cocycles with exceptional Lyapunov spectrum
We now construct a non-periodic map cocycle with exceptional Lyapunov spectrum.
The map cocycle is generated by six maps, including 77 used in the previous
example. The shift space is taken to be a subshift of finite type that has the
Bernoulli shift on two symbols as a factor.
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Coherent structures for Perron—Frobenius cocycles 15
Let © C {1,...,6}% be the subshift of finite type
©:={we{l,...,6}" :Vk € Z,Epp .., = 1},

with transition matrix

01 0j0 1 O
0 0 1|0 0 1
1 0 0j1 0 O
B = (B )i<ij<6 =
( 7])1§ ,J<6 0 0 1 0 0 1
1 0 0j1 0 O
01 00 1 O

We let 0 : © — O be the left shift, and p the uniform measure on ©. As an
indication of the complexity, notice that the full two-shift ¢ : {1,2}* — {1,2}Z is a
factor of 0 : © — © via the mapping

1
2

, Wi € {172a3}7

h(”)i:{ . wi €{4,5,6).

The six maps {S;}%_; are obtained from T} by rotations, and constructed so that

m(J;NS; i) 8 .
i = fori=1,2 1
m(JZ) 9 Or?’ ) 73) ( 3)
m(J; NS i) 8 .
i = — fori=4,5,6. 14
() g fori ,5,6 (14)

From these maps we construct a map cocycle with a non-periodic coherent structure
that is responsible for the slow decay.

THEOREM 6.1. There exists a collection S of six piecewise-affine expanding maps
Si,...,8 : St — S with a common Markov partition B that generate a map
cocycle ® : ZT x © x St — S over the shift o : © — O with the following
properties fori=1,...,6:

1. each map S; preserves Lebesgue measure;
2. 9 =logl/3;

3. the restricted Perron—Frobenius operator Pilysy has no exceptional
etgenvalues;

4. for each w € ©, A(P(w)) contains a unique exceptional exponent

1+V2
log .

3

5. there exists an Oseledets decomposition for all w € O, and the Oseledets
subspace Wa(w) depends only on wy.
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16 G. Froyland, S. Lloyd and A. Quas

Proof. Let p: S' — S be the rotation x +— z + 1/3 (mod 1) and let S : St — S*
be the map given by

‘ _ 1
S(:r):3xf%+%](modl), xGBj[j ‘7>, j=1,...,9,

where g = (3,4,3,7,0,6,1,0,6). The interval J; = [0,1/3] is an almost-invariant
subset of S*, with m(Jy N S™1J1)/m(J1) = 8/9. Let Ps be the matrix of Pgly s
with respect to the basis x(B). The spectrum of Pg is

1++v2
spec(Ps) = (1, B\f,O,...,O> )

We define the collection of maps & = {S;}¢_; in terms of S and p:

S1=poS S4=p205
Sy =p?oSop’ S5 =Sop
Sz3=Sop Sg =poSop.
The graphs of S, ...,Sg are shown in Figure 3. Note that the graph of Sy is the
S1 S S3
Sy Ss Se

FIGURE 3. Graphs of Sy, ..., Ss.

same as that of 77 shown in Figure 1.

Let @ : ZT x © x S* — S' be the map cocycle with generator ®(w) = S, € S.
Let J = {J;}3_,, where J; = [(i—1)/3,i/3]. As a consequence of (13) and (14), we
have a coherent structure built around the family of intervals J : © — J, where
{ on, if wo S 3;

J(w) - JwO,37 if wg > 3.
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Coherent structures for Perron—Frobenius cocycles 17

Let P; be the Perron-Frobenius operator of S;. Let P : ZT x © x St — St
the Perron—Frobenius cocycle associated to ®. Let P; be the matrix representing
Pily(s) with respect to the basis x(B) and let A : ZT x © x S — S be the
matrix cocycle with generator A(w) = P,,. Let R denote the matrix with R; ; =1
if i —j = 3(mod9) and 0 otherwise. Note that R? is the identity matrix. For
1 =1,...,6, the formula for P; is obtained directly from the formula for S; by
replacing p by R and replacing S by Ps. Thus, for i = 1,...,6, we may write
P; = Rl PsR", where | = (1,2,0,2,0,1) and » = (0,2,1,0,2,1).
One may confirm that

- - if i < 3:
spec(R){ (1,-1/3,-1/3,0,...,0), ifi<3;

(1,0,...,0), if i > 3,

and so no map in S has exceptional eigenvalues.
Note that whenever E; ; = 1, we find I; + r; = 0 (mod 3). Hence for any w € ©,
we have that

A (w) = RYn—1 (Pg)™ R"™o,

with all inner R factors cancelling.
Hence for any v € RM,

1AM (@)o]| = || Rt (Ps)"R™0v]
= [|(Ps)" R"“)v]|
= [[(Ps)"v"|],

where v/ = R"(“0)y. So A(A) is precisely the set of logarithms of the eigenvalues of
Pg, and in particular, is independent of w. Thus, A(P) has a unique exceptional
exponent log(1 + v/2)/3 with approximate value log 0.8047 for every w € ©.

Let wo be an eigenvector of Pg corresponding to the second largest eigenvalue
(1 + v/2)/3. The graph of (ws) € x(B), which spans Wy(a), is shown in
Figure 4. Moreover, we have an Oseledets splitting for every w € ©: for each

(w2)

L[

FIGURE 4. The graph of (w2) € x(B) for Theorem 2.

w € O, the function (R~"(“0)w,) spans the Oseledets subspace Wy(w) associated
to log(1 + v/2)/3 and thus Wa(w) depends only on wy. m
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18 G. Froyland, S. Lloyd and A. Quas

As in the periodic example, the coherent structure responsible for the slow decay
is detected by the second eigenfunction of the Perron—Frobenius operator. When
wo = 1, J(w) = [0,1/3] is the distinguished interval for ®(w), and this interval
supports the majority of the mass of the positive part of the function (ws) spanning
Wa(w). More generally, for w € ©, the positive part of (wy)op™"(«0) = (R77(@0)y,)
is supported approximately on the interval J(w).

7.  Numerical approximation of Oseledets subspaces

In this section we outline a numerical algorithm to approximate the W;(w)
subspaces. The Oseledets splittings for the cocycles in Theorem 5.1 and Theorem
6.1 were explicitly constructed as eigenvectors. In general, the Oseledets splittings
are difficult to compute. The algorithm is based on the push-forward limit argument
developed in the proof of Theorem 4.1. After stating the algorithm for an arbitrary
matrix cocycle, we apply it to an example of a finite dimensional Perron—Frobenius
cocycle over a non-periodic shift space that has Oseledets subspaces which cannot
be found algebraically.

Algorithm. [Approximation of the Oseledets subspaces W;(w) at w € Q.]
Let A : ZT x Q x R — R? be a matrix cocycle over an invertible ergodic
measure-preserving transformation s of a probability space (2, F,P).

1. Choose M, N > 0 and form
q/(M)(S—Nw) = (A(M)(S—Nw)TA(M)(S—Nw))l/QJVI

as an approximation to the standard limiting matrix

1/2M
B(s™Mw) := lim (A(M)(S_Nw)TA(M)(S_Nw))

M—oo

appearing in the Multiplicative Ergodic Theorem.

2. Calculate the orthonormal eigenspace decomposition of ¥ (M) (s7Nw), denoted
by Ui(M)(s_Nw), 1=1,..., ¢

3. Define WM (W) = A (s V) UM (s-Nw) via the push forward under

3
the matrix cocycle.

4. Wi(M’N) (w) is our numerical approximation to W;(w).
Remarks.

1. For fixed N € Z, the limit Wi(OO’N)(w) = limy oo Wi(M’N)(w) exists by

the standard MET (eg. [A98, Theorem 3.4.1]). Theorem 4.1 states that
Wi(oo’N) (w) — W;(w) as N — oc.

2. This algorithm also provides an efficient numerical method for calculating the
Oseledets subspaces for two-sided linear cocycles.
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3. There is freedom in the choice of relative sizes of M and N: in order to sample
equal numbers of positive and negative terms of w, we take M = 2N.

The numerical approximation of the Oseledets subspaces has been considered by
a variety of authors in the context of (usually invertible) nonlinear differentiable
dynamical systems, where the linear cocycle is generated by Jacobian matrices
concatenated along trajectories of the nonlinear system. Froyland et al. [FJM95]
approximate the Oseledets subspaces in invertible two-dimensional systems by
multiplying a randomly chosen vector by A®)(s~Nw) (pushing forward) or
AN (sNw) (pulling back). Trevisan and Pancotti [TP98] calculate eigenvectors
of UM)(w) for the three-dimensional Lorenz flow, increasing M until numerical
convergence of the eigenvectors is observed. Ershov and Potapov [EP98] use an
approach similar to ours, combining eigenvectors of a W(M) with pushing forward
under AN). Ginelli et al. [G407] embed the approach of [FIM95] in a QR-
decomposition methodology to estimate the Oseledets vectors in higher dimensions.

In the numerical experiments we describe next, we have found our approach to
work very well, with fast convergence in terms of both M and N.

Ezample. To illustrate this technique, we calculate the Oseledets subspaces Wa(w),
w € 0O, for a non-periodic map cocycle, created from the maps of Theorem 5.1
and the sequence space © of Theorem 6.1. Unlike the example of Theorem 2,
this example does not have a simple structure that makes it possible to relate the
Oseledets subspaces to those of a single autonomous transformation.

Let 7 = {T;}%_, denote the collection of piecewise-affine expanding maps of
the circle consisting of the three maps 71,75,75 defined in Theorem 5.1 and the
three maps Ty = po Ty, T5 = po Ty and Ts = p o T3, where p : S — S' is
the rotation p(z) = = + 1/3 (mod 1) as before. The graphs of the maps in 7 are
shown in Figures 1 and 5. Let ® : Zt x © x S — S! be the map cocycle over
o : © — O generated by 7. The collection 7 has a common Markov partition
B={[(i-1)/9,i/9) : i =1,...,9}. We expect to find an exceptional Lyapunov
spectrum since the cocycle has a coherent structure similar to that of Theorem 2,
built around the family of intervals J : © — J given by

] Jues if wg < 3;
Jw) = { Juo—z, if wy > 3.

We generate a test sequence in © as follows. Let &* € {0,1}Y be the fractional
part of the binary expansion of 7:

&* =(0,0,1,0,0,1,0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,0,1,0,1,0,0, . ..),

and extend it to a two-sided sequence a* € {0,1}% by defining o} = 0 for i < 0.
We define w* = h=1(012°a*), where h is the 3-to-1 factor defined in Section 6, and
we take the inverse branch with wj = 1. Note that w* € O has the form

w*=(...,1,2,3,1,2,3,4,...,5,4,6,2,3,1,5,4,3,1,5,1,5,4,6,2,6,5,1,...),

where the zeroth term is underlined.
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T T5 T

FIGURE 5. Graphs of Ty, T5 and Tg.

As before, we denote by P; the matrix representation of the Perron—Frobenius
operator Pi|y(z) of Tj, i = 1,...,6, with respect the basis x(B), and denote by
A:ZF x O x S — S! the matrix cocycle with the generator A(w) = P,,,. The
Multiplicative Ergodic Theorem states that for almost every w, (M )(w) converges
to a limit B(w) as M — oo, and moreover A(A) = logspec(B).

Calculating ¥M) (w*) for M = 40, we find that ¥(™)(w*) has a simple eigenvalue
Ao == 0.81, suggesting that P has exceptional Lyapunov exponent approximately
equal to log0.81.

In order to approximate the Oseledets subspace Wy(w*) numerically, we set
M = 2N = 40, form the matrix ¥*N)(¢=Nw*) and denote by uéﬂv)(U’Nw*) the
eigenvector corresponding to the eigenvalue A\,. We then calculate

AW (UﬁNw*)uézN) (0™ Nw*)

(2N,N)

and normalize to give the vector ws (w*). The unit vector wgzN’N)(w*)

is our
approximation to a unit vector spanning the subspace W (w*).

Although Theorem 4.1 holds only for a full p-measure subset of ©, and so can
tell us nothing about a particular sequence such as w*, we can still check whether
its conclusions hold in this case. Taking N = 20, we calculate for £k = 0,...,7, a
vector wéQN’N)(akw*) spanning WZ(QN’N)(Ukw*) (see Figure 6).

Recall that {w;}7_, = {1,5,1,5,4,6,2,6}. For k = 0,...,7, by examining
Figure 6, and comparing with the list (J(c*w*))7_, given by

([0,1/3],[1/3,2/3],10,1/3], [1/3,2/3], [0, 1/3], [2/3, 1], [1/3,2/3], [2/3,1]),

we see that the interval J(o*w*) is approximately picked up by the support of the
positive part of wéQN’N)(
In order to check property (iii) of Theorem 4.1, that is, whether
A(w*)WQ(QN’N) (w*) is close to WQ(ZN’N) (ow™), we calculate the quantity
Ll}

* (2N1N) *
ACNN) (w*) := min { H <w§2N’N) (ow™) £ Alw )12)22N ) C) >
(AW )wy™ " (@) | 1

aFuw*).

for N =1,...,20 (see Figure 7).

Prepared using etds.cls



Coherent structures for Perron—Frobenius cocycles 21

1 2 3

2+ 2 2+

[HD HD W) e ) W
4 |
P et o o

FIGURE 6. The graph of (wé2N’N)(okw*)) fork=0,...,7.
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FIGURE 7. Graph showing log;o ACN:N)(w*) against N for N = 1,...,20.

Thus for N = 20, there are unit L'-norm functions spanning the WQ(ZN’N)(Uw*)

and P(w )W) (w*) subspaces whose difference in L'-norm is less than 1075,

Recall that for the cocycle in Theorem 2, the Oseledets subspace Wa(w) is in
fact independent of w; for 4 # 0. This contrasts with the current example: to see
that here the Oseledets spaces Wa(w) do not depend only on wy, it is enough to
observe, for example, that wp = we = 1 but wéZN’N) (w*) and wéQN’N)(UQw*) are
markedly dissimilar.

8. Proof of the Multiplicative Ergodic Theorem for non-invertible matrices
In this section we present a strengthened version of the Multiplicative Ergodic
Theorem (MET) for the case of non-invertible matrices. Let s be an invertible
measure-preserving transformation of the probability space (€2, F,P) and consider
a linear cocycle P : ZT x Q x R? — R?. Note that even though the matrices
may be non-invertible, the invertibility of s is crucial to the argument. If the
matrices are invertible then the two-sided cocycle is naturally defined as a map
P:7ZxQxR*— R?,

Recall that in the case of a one-sided linear cocycle (satisfying certain
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integrability conditions), the MET provides an invariant flag of subspaces of R?
characterising the exponential growth rates of all vectors. For a two-sided cocycle,
one obtains an invariant splitting of R? into Oseledets spaces by considering
the intersection of each subspace in the flag of the forward cocycle with the
corresponding subspace of the flag of the backward cocycle. Non-zero vectors v
in the jth Oseledets space W;(w) satisfy lim,,—, 4+ (1/n)log || P(n,w,v)| — A;.

In the case of a one-sided cocycle it clearly makes no sense to consider the limit
lim,_—,_ o (1/n)log||P(n,w,v)|. Nevertheless one may still hope for an invariant
splitting of R? rather than an invariant flag. This distinction is important if one is
interested in the vector corresponding to the one of the top characteristic exponents:
the flag would only provide an invariant family of high-dimensional subspaces with
the property that most vectors in the space have the correct expansion rate, whereas
a splitting would provide an invariant family of low-dimensional subspaces, whose
vectors are responsible for all expansion at the chosen rate.

In this section present the proof of Theorem 4.1: we obtain a decomposition
into Oseledets subspaces for a one-sided forward cocycle over an invertible
transformation by means of a push-forward limit argument. Let || - || denote the
matrix operator norm with respect to the Euclidean norm on R¢.

LEMMA 8.1. Let B: Q@ — My(R) be a measurable mapping into the space of
symmetric matrices such that for almost all w, B(w) has real eigenvalues py >
- > ug with multiplicities my,--- ,my. Then there exists a measurable family

(eg (w)) of vectors such that the (6? (w)) form an orthonormal basis
1<j<e, 1<i<m;
of R? and e (w) lies in the u; eigenspace of B(w).

Proof. Consider the map R that takes a matrix and applies a single step of a row-
reduction algorithm (e.g. find the first column that is not in row-reduced echelon
form; transpose rows to put a non-zero entry in the correct place; divide so the
leading coefficient is 1; subtract multiples of that row from all of the others; repeat)
or does nothing in the case that the matrix is already in row-reduced echelon form.
The domains of the pieces are measurable and therefore R is measurable. For all
matrices A, R™(A) is a convergent sequence so the limit RRE(A) is a measurable
function of the matrix.

A collection of vectors spanning the kernel of a row-reduced matrix may be
obtained in a measurable way. These vectors may then be measurably converted to
an orthonormal set by applying the Gram—Schmidt orthogonalization algorithm.

We apply this by taking a symmetric matrix B with eigenvalues p1, ..., ug with
multiplicities mq,...,my. We find an orthogonal set of vectors with each of the
eigenvalues by applying the above procedures to B — p;I. Since all operations are
measurable the proof is complete. O

LEMMA 8.2. Let s: Q@ — Q be an invertible ergodic measure-preserving
transformation and let (f,)%, be a subadditive sequence of functions (that is a
sequence such that for everyw € Q and each m andn, foiym(w) < fo(w)+fm(s"w)).
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Assume further that max(f1,0) is an L' function. Then there is a C € [—00,00)
such that for almost every w one has fn(w)/n — C and fp(s "w)/n — C.

Proof. The fact that there is a C such that f,,/n — C is Kingman’s subadditive
ergodic theorem. Letting g,(w) = fn(s "w), we see that g,imw) < gn(w) +
gm(s7"w) so that the subadditive ergodic theorem applies to g, also (with the
measure-preserving transformation being s~1) and there is a constant D such that
gn(w)/n — D for almost all w.

Since f,/n converges pointwise to C it also converges to C' in measure. Similarly
gn/n converges in measure to D. Since f,,/n and g, /n have the same distribution,
the constants to which they converge in measure must be equal. O

We say a tuple A = (aq,...,a,) is decreasing if a; > a;41 for 1 <i < n.

LEMMA 8.3. Let s: & — Q be an invertible ergodic measure-preserving
transformation and let A: Q — My(R) be a measurable family of matrices satisfying

/ log™ | A(w)]] dp(w) < oc.

Let S be the decreasing d-tuple of Lyapunov exponents counting multiplicities. Given
w e Q, let SV (w) be the decreasing d-tuple of logarithms of the nth roots of
the singular values of A" (s~"w). Then for almost every w, SV (w) — S
elementwise.

Proof. Consider the family w +— AT (w) with respect to the dynamical system s~ 1.

Let the Lyapunov exponents be the decreasing d-tuple S’. This means that letting
SV'(™)(w) be the decreasing d-tuple of logarithms of nth roots of singular values
of AT(s7"w)--- AT(s7'w), one has SV'(™(w) — S’ for almost every w € Q2 by the
standard one-sided MET, discussed in Section 4. Since singular values are preserved
by taking transposes we see that SV'(")(w) = SV (™ (w). Thus it suffices to prove
S =5’ To see this, note that (1/n)log || A* A®™ (w)|| converges to the sum of the
first (that is, largest) k members of S, and (1/n)log || A" AT (s "w) - - AT (s w)||
converges to the sum of the first & members of S/, but these limits are equal by
Lemma 8.2. O

Proof. [Proof of Theorem 4.1] In the course of the proof we shall repeatedly use the
symbol C' to denote various constants depending only on w.

We write A" (w) for the matrix product A(s" 'w)---A(w). From standard
proofs of the MET, we have that [A™) (w)T A (w)]'/ 2" is convergent to a positive
semi-definite matrix B(w), for almost all w, with eigenvalues e > --. > e* with
the correct multiplicities. We therefore let (¢! (w)) be as in Lemma 8.1 and let
U;(w) be the subspace of R? spanned by {e/(w): 1 < i < m;}. The standard proofs
of the MET show that if one lets V;(w) = EBf: ; Ui(w) then the vector spaces Vj(w)
satisfy:

1. Aw)V;(w) C Vj(sw);

2. For all v € Vj(w) \ Vj41(w), lim,—.oo L log [|A™ (w)v]| — Aj;
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For j < ¢, let Wj(n)(w) = A (s7"w)U;(s "w) and let Wy(w) = Uy(w). Then we
claim the following;:

1. For j < ¢, Wj(") (w) converges to an m -dimensional subspace W;(w);
2. A(w)Wj(w) € Wj(sw);

3. If & € Wj(w) \ {0}, then & log AT (W)z|| — A

4 Vi (@) 8 Wy (@) = V; ().

Notice that Wj("ﬂ)(sw) = A(w)Wj(n) (w) so that in the case j < ¢, (2) follows from
(1) and the definition. For j = ¢, (2) and (3) follow from the standard MET proofs.

Fix a j < ¢ and consider a basis Bo(w) = {ei(w): k > j, i < my} for
Vit1(w) and a basis Bi(w) = {e}(w): i < my;} for Uj(w). The union of By(w)
and B (w) gives an orthonormal basis for Vj(w). Since A(w)Vji1(w) C Vjt1(sw)
and A(w)V;(w) C Vj(sw), it follows that if we express the linear transformation
represented by A(w) with respect to the bases By (w)U By(w) and By (sw)U By (sw),
the matrix is of the form

All(w) O )
L(w) = ,
@) (Alo(w) Ago(w)
where if V41 (w) is of dimension ¢ = mj41 + - - - + my, the matrices A1 (w), A1o(w)
and Ago(w) have dimensions m; x mj, ¢ x m; and ¢ x g respectively. Notice that
since the dimension of V?(w) is almost surely independent of w € Q, the matrix
A11(w) is almost everywhere invertible.

By definition, L™ (w) = L(s" 'w) - -- L(w). By analogy with the above we name
the components of this matrix as follows:

" A (w 0
L (w) = ( e )
Ajp (w) Ay (w)
We will need the following matrix identities:

Claim A. With AZ(»?) defined as above we have

AV (W) = An (" 'w) - An () (15)

AS (W) = Ago(s"w) -+ Ao (w) (16)
n—1

A () =3 AR (5" Fw) A (s" 1wy AT (W), (17)
k=0

Proof. The first two equalities are immediate and the third follows by induction on
n. O

Claim B. For almost every w € 2, (1/n)log ||A(()g)(w)|| — Ajy1 as n — oo.
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Proof. One has for each i > j and 1 < k < m;, (1/n)log|[A™ (w)el| — N,
by the MET. It follows that considering A(™(w) as a linear map on Vji;(w),
(1/n)log AT (@)]v,., )| = Aj1- Thus (1/n)log [|ATS (@)] = Ajsa. o

Claim C. For every € > 0 and for almost every w € Q, there is D;(w) such that
IIASZ)(S‘%)II < Dy (w)e™Xi+119) for all n > 0.

Proof. Let f,(w) =log ||Aég) (w)|l. This is a sub-additive sequence of functions and
fn(w)/n — Ajt1 for almost every w by Claim B. Applying Lemma 8.2 we see that
fa(s7"w)/n — Xj41 for almost every w. The claim follows. a

Claim D. For every € > 0 and for almost every w € €, there is a Dy(w) < 0o such
that for all n > 0 one has ||A19(s™"w)|| < Da(w)e™

Proof. By hypothesis log || A(w)]| is an integrable function and hence by a standard
corollary of Birkhoff’s theorem one has (1/n)log ||A(s™"w)|| — 0. It follows that
|A(s™"w)|| < Da(w)e™ for a suitable Ds(w). Since ||A19(w)|| < [|A(w)]| the result
follows. O

. 1/(2n)
Claim E. Under the above conditions, <A§?)(w) AW (w)) — Ny,

Proof. To see this it is sufficient to show that every non-zero vector in Uj;(w) has
growth rate A;. Let u € Uj(w) have expansion v = Zz‘gmj viel (w).

First we show that A" (w)v doesn’t grow any faster than A{}? (w)v. Note that
1AC) @)ul]* = | (@)o][*+ [ A5 (@)l so that we have [| 4[5 (w)o]| +]| AT (@)v]
grows at rate A;. Applying the MET to Aﬁb) (w), we see that Ag’{) (w)v grows at some
rate A. We will show that Agg)(w)v grows at a rate no greater than max(A, Ajy1).
It will follow that A = A;.

Equality (17) gives
7 k n— n— k—
ALY (w) ||<Z||Aéo> )|l Aro (8" F ) 1A TE D ()|
k=0

Fix an arbitrary € > 0. Claim C shows that ||Aé’8)(s"*kw)|| < Dy (s"w)elPirite),
Using Claim D also, we see

||A(7L)( ) || <D1 S w D2 Ze J+1+e e(n— kfl)e(AjLe)(nfkfl)'

There exists M such that D (w) < M on a positive measure subset of 2. By the
ergodicity of s, there are infinitely many n for which D, (s"w) < M. For these n, the
right hand side of the inequality is bounded above by Dy (w)Mne™(max(Xi+1,0)+2€)
It follows that lim inf log HA%) (w)v|[/™ < max(\;41,A) and thus

lim inf log || A™ (w)u||*/™ < max(\j;1, A).
Since on the other hand lim log | A (w)u||}/™ = A;, we conclude that A > );. Since
AT (w)ul > HA(")( Jv|| we have A\; > A so that A = \; as required. a

Prepared using etds.cls



26 G. Froyland, S. Lloyd and A. Quas

We now estimate

A(n) —-n
() = e LA G0l
veSt [l A3y (sTmw)||
where S7 denotes the unit sphere in R™7. Note that by scale-invariance one could

equivalently define g,, by taking the maximum over R™J \ {0}.
We have

Z;é A(()IS) (kaW)Alo(Si(kﬂ)w)A({{_k_l) (s "w)v

vEST HA%Z)(S_"(U)U‘
nt AR () Awo(s ) AL (s
< max [ k—1
N Y R
n—1 HAé]S)(s‘kw)Alo(s_(k+1)w)u“
= max —
£~ ues) Al )(87(;”1)&})““

n—-1 maXqyes,

A(()IB)(kaw)Alo(Sf(kH)”)uH

k=0 mingeg,

AlETD (s—(k“)w)uH

Note that in the third line we are making use of the fact that Ag?_k_l)(s_”w)
is invertible.
Let € < (Aj — Aj+1)/4 be fixed for the remainder of the proof. By Lemma 8.3

and Claim E the kth roots of the singular values of Agli) (s7*w) all converge to e*i.

It follows that there is a C' > 0 depending on w such that for all k,

min
u€eSy

Ag’iﬂ)(s_(kﬂ)w)uH > Ceki=e), (18)

We remark that similar uniform lower bounds appear in the paper of Barreira and
Silva [BS05]. Using Claim C and Claim D there exists a C’ depending on w such
that for all k,

max A(()]S)(s_kw)Alo(s_(kH)w)uH < Ok Pirite) gek

u€ES

Combining the estimates we see
C,, n—1
e
k=0

Since 3e < Aj—\; 11 it follows that defining M (w) = sup,, gn(w), one has M (w) < oo
for almost all w.

We define a distance D between two subspaces of R? of the same dimension by
the Hausdorff distance of their intersections with the unit ball By in RY. We now
estimate D (Wj(n) (w), Wj(m) (w)) for m > n.

Prepared using etds.cls



Coherent structures for Perron—Frobenius cocycles 27

Let z belong to the unit sphere of Wj(") (w) (the distance is always maximized
by points on the boundary). Then x = A (s™"w)u for some u € U;(s "w). Since
for almost all w, the matrix AgTﬁn)(s_mw) is invertible, there exists almost surely
au € Uj(s w) such that A(m_")(s_mw)u' = u + z where z € Vji1(s "w).
Let v be the coordinates of u' with rebpect to the basis Bij(s ™w). Then
1A ™™ (sw)'|| = ||2|| and HA"" M (sTmw)|| = Jul. 1t follows that |z <
M(s~"w)|jull. Let y = A (s™™w)u’ so that y € W (w) We then have
y =z + A (s~ "w)z. By Claim C we have

IA™) (s7"w)2|| < Celritanz]
< CeMr I M (570 Ju (19)
for a C depending only on w. On the other hand, (18) implies that
1= |lz)l = [|A™ (s W) | > €= u] (20)
for another C’ depending just on w. Let K = C'/C" and a = Aj — Aj41 — 2¢ > 0.
Dividing (19) by (20) we see
ly — |l =A™ (s "w)2|| < Ke™*"M(s™"w).

The closest point of Wj(m)(w) N By to x is just the orthogonal projection of x onto

Wj(m) (w) (which lies in By) so that the distance from z to Wj(m) (w)N By is bounded
above by |ly — z|| which in turn is bounded above by Ke *"M (s "w).

Conversely let y € B; N Wj(m) (w). Then we have y = A (s~ ™w)u' for some
u' € Uj(s™™w). Let A=) (s7™w)u’ be decomposed into u+ z with u € Uj(s™"w)
and z € Vj41(s7"w). Let = A (s™"w)u. Since sup,, gn(w) = M(w), we have
lIz|l < M(s™"w)||ul|. So using (18) again, we get

||A(n)(s—nw)z|| < KM(S—nw)e—om”A(n)(s—nw)un. (21)
We also have
1A®) (s™w)ul| < |4 (s7"w)(u + 2)] + [[A™ (s7w)2]
<1+ KM(s7"w)e | A™ (s7"w)ul.

So A (s~mw)u|| < 1/(1 — KM (s~ "w)e~ "), provided KM (s "w)e " < 1.
Combining this estimate with (21) gives

H KM( ) —an
T 11— KM(s mw)e—on’

lz —yll = AT (s "w)2

As before it follows that the closest point of Wj(n) (w) N By to y is at a distance
at most KM (s "w)e " /(1 — KM(s "w)e”*"). In particular, provided that
KM(s™"w)e *" < 1, we have

(n) (m) KM(s™"w)e” "
D (Wj (W), W; (w)) = 1— KM(s~"w)e—an’
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Obviously for m, m’ > n one then has

’ 2KM —n —an
(m)(w)) < (s "w)e

D (w!™ ‘ :
(WJ (@), W T 1-KM(s "w)e—an

Since M (w) is measurable and s is ergodic, there exist for almost all w arbitrarily
large values of n such that M(s™"w) < A for some fixed A > 0. It follows that the
sequence of subspaces is Cauchy and hence convergent to a subspace W;(w).

Let = belong to the unit sphere of Wj(n) (w). Then 2 = A (s "w)u. As before,
writing z as y + z with y € U;(w) and z € Vj41(w), we have ||z|| < M (w)]||y||. Since
Iyl + 12112 = 1, we have [[y|2(1+ M(w)?) = 1 so that [ly| 2 1/y/T+ M) = B.
Thus each point of the unit sphere of W;(w) has a component in U, (w) of norm at
least B. It follows that V;(w) = Vj41(w) @& W;(w), which completes the proof. O
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