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Abstract. We present an analysis of one-dimensional models of dynamical systems

that possess “coherent structures”; global structures that disperse more slowly than

local trajectory separation. We study cocycles generated by expanding interval

maps and the rates of decay for functions of bounded variation under the action of

the associated Perron–Frobenius cocycles.

We prove that when the generators are piecewise affine and share a common

Markov partition, the Lyapunov spectrum of the Perron–Frobenius cocycle has at

most finitely many isolated points. Moreover, we develop a strengthened version of

the Multiplicative Ergodic Theorem for non-invertible matrices and construct an

invariant splitting into Oseledets subspaces.

We detail examples of cocycles of expanding maps with isolated Lyapunov

spectrum and calculate the Oseledets subspaces, which lead to an identification

of the underlying coherent structures.

Our constructions generalise the notions of almost-invariant and almost-cyclic

sets to non-autonomous dynamical systems and provide a new ensemble-based

formalism for coherent structures in one-dimensional non-autonomous dynamics.

1. Introduction

Transport and mixing processes play an important role in many natural phenomena

and their mathematical analysis has received considerable attention in the last

two decades. The geometric approach to transport includes the study of invariant

manifolds, which may act as barriers to particle transport and inhibit mixing. So-

called Lagrangian coherent structures were introduced ([HY00, H01]) as finite-

time proxies for invariant manifolds in non-autonomous settings. The ergodic-

theoretic approach to transport includes the study of relaxation of initial ensemble
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2 G. Froyland, S. Lloyd and A. Quas

densities to an invariant density, with a special focus on initial densities that

relax more slowly than suggested by the rate of local trajectory separation.

Such slowly decaying ensembles have been studied as “strange eigenmodes”

([LH04, PP03, PPE07] in fluids and have been used to identify almost-invariant

sets [DJ99, F05, FP08, F08]). Until now, a suitable framework for the ergodic-

theoretic approach that deals with truly non-autonomous dynamics has been

lacking. The main aim of this work is to develop the fundamental structures and

results that will support a non-autonomous theory for an ensemble-based approach

to coherent structures.

We study non-autonomous one-dimensional dynamical systems that are given

by compositions of expanding interval maps, and their action on ensembles

represented by probability densities. The time evolution of a density is given by

the Perron–Frobenius operator. For a single piecewise C2 expanding map that is

topologically mixing these densities converge to a unique equilibrium distribution

which is absolutely continuous (see [B00]). Thus the equilibrium distribution is an

eigenfunction of the Perron–Frobenius operator with eigenvalue 1. The exponential

rate of convergence to equilibrium is governed by the spectrum of the Perron–

Frobenius operator. When restricted to the space of functions of bounded variation

(BV), the Perron–Frobenius operator is quasicompact (see [HK82]), meaning that

each point in the spectrum of modulus greater than the essential spectral radius is

an isolated eigenvalue of finite multiplicity. It is known that in the BV setting

the essential spectral radius equals the long-term rate of separation of nearby

trajectories, which we denote by θ (see Section 2.1). We will say an eigenvalue is

exceptional if it is different from 1 and has modulus greater than θ. Eigenfunctions

corresponding to exceptional eigenvalues relax more slowly to equilibrium than

suggested by the local separation of trajectories, and their existence has been

attributed to the presence of “almost-invariant sets” (see [DJ99, DFS00, F07]).

Exceptional eigenvalues have previously been found by considering piecewise-

affine expanding maps with a Markov partition ([B96], [DFS00], [KR04]). When

restricted to the space of step-functions constant on the Markov partition intervals,

the associated Perron–Frobenius operator becomes a finite dimensional operator.

In the present work we extend these results to the non-autonomous setting. Instead

of iterating a single map, we consider a cocycle of maps and its associated Perron–

Frobenius cocycle. The appropriate way to describe exponential rate of convergence

to equilibrium is via the Lyapunov spectrum of the Perron–Frobenius cocycle. As

the Perron–Frobenius operator is a Markov operator, the Lyapunov spectrum is

contained in the interval [−∞, 0]. In analogy with the autonomous case, we look

for exceptional Lyapunov exponents, namely those negative exponents greater than

the long-term exponential rate of separation of nearby trajectories, which we denote

by ϑ (see Section 2.2).

We obtain a Lyapunov spectral decomposition for the Perron–Frobenius cocycle

into invariant subspaces with given Lyapunov exponents (see Corollary 4.1). This

relies on a new version of the Multiplicative Ergodic Theorem (see Theorem 4.1),

which provides an invariant splitting into Oseledets spaces even when the generators

Prepared using etds.cls



Coherent structures for Perron–Frobenius cocycles 3

are non-invertible. Our new version strengthens the standard Multiplicative

Ergodic Theorem (see, for example [A98, Theorem 3.4.1]) where only an invariant

flag of nested subspaces is supplied.

We demonstrate the existence of slow-mixing coherent structures by constructing

periodic (see Theorem 5.1) and non-periodic (see Theorem 6.1) examples

of Lebesgue measure-preserving one-sided cocycles with exceptional Lyapunov

exponents. In each case, we calculate algebraically the Oseledets subspaces

associated with the largest exceptional exponent and verify that the second largest

Oseledets space captures the coherent structures.

Finally, we present an algorithm for approximating the Oseledets splitting, which

is based on a computational approach suggested by the proof of Theorem 4.1. We

demonstrate the effectiveness of the algorithm, by approximating some Oseledets

subspaces numerically.

2. Preliminaries

We study the Perron–Frobenius operator for compositions of expanding maps. We

first introduce the necessary notation and relevant results for autonomous systems,

and then extend these to the non-autonomous case.

2.1. Autonomous systems We say that T : I → I, where I = [0, 1] or I = S1 =

[0, 1]/(0 ∼ 1), is an expanding map if there exist points 0 = a0 < a1 < . . . < am = 1

such that, for each i = 1, . . . ,m, T |(ai−1,ai) is continuous and extends to a C2 map

on [ai−1, ai] satisfying |DT|(ai−1,ai)| ≥ γ, for some γ > 1.

The Perron–Frobenius operator for an expanding map T : I → I is defined, for

an L1 function f : I → R, by

Pf(x) =
∑

y∈T−1(x)

f(y)

|DT (y)| . (1)

In [LY73], the Perron–Frobenius operator is used to prove that expanding maps

have an absolutely continuous invariant probability measure. The key step of

their proof is to show that the Perron–Frobenius operator contracts the norm on a

suitable space of functions: the functions of bounded variation.

The variation of a function f : I → R on a subinterval A ⊂ I is defined by

var
A

f := var
x∈A

f(x) = sup

k
∑

i=1

|f(pi) − f(p′i)|,

where the supremum is taken over all finite collections {pi, p
′
i}k

i=1 such that pi and

p′i are the endpoints of an interval Ii ⊂ A and Ii ∩ Ij = ∅ for i 6= j. Given

f ∈ L∞ ⊂ L1, the variation is defined by varI f = inf{varI g : f = g a.e. }. We

denote by BV = BV(I) the Banach space

BV =
{

f ∈ L∞ : var
I

f < ∞
}

,

Prepared using etds.cls



4 G. Froyland, S. Lloyd and A. Quas

equipped with the norm ‖f‖ = max{‖f‖L1 , varI f}. We denote Lebesgue measure

on I by m, and f ∈ BV is called a (probability) density if f ≥ 0 on I (and

‖f‖L1 = 1).

The Perron–Frobenius operator is Markov : that is, if f ∈ L1 is a density, then

Pf is also a density and ‖Pf‖L1 = ‖f‖L1 . A probability density f∗ satisfying

Pf∗ = f∗ is an invariant probability density for T .

Keller [K84] shows that the Perron–Frobenius operator of an expanding map

has at most countably many exceptional eigenvalues.

Theorem (Keller, 1984). Given an expanding interval map T : I → I, its Perron–

Frobenius operator P acting on BV has essential spectral radius

θ := lim
n→∞

sup
x∈I

(

1

|D(Tn)(x)|

)1/n

, (2)

and there are at most countably many points in the spectrum of modulus greater

than θ, each an isolated eigenvalue of finite multiplicity.

Exceptional eigenvalues have a distinguished dynamical significance as their

eigenfunctions are associated with relaxation to equilibrium at exponential rates

slower than the rate suggested by the average local separation of trajectories θ. For

example, if Pg = λg with θ < |λ| < 1 then an initial density f∗ + αg, α 6= 0 will

relax to f∗ at a rate slower than θ.

Dellnitz and Junge [DJ99] suggested that positive real Perron–Frobenius

eigenvalues near to 1 correspond to almost-invariant sets; more precisely, they

suggested the sets A+ := {g > 0} and A− := {g ≤ 0} formed an almost-invariant

partition of the state space. Dellnitz et al. [DFS00] showed the converse, presenting

a class of interval maps with almost-invariant sets and proving the existence of

exceptional eigenvalues. Froyland [F07] constructed a two-dimensional hyperbolic

map with almost-invariant sets and proved the existence of an exceptional

eigenvalue. Numerical methods have been developed ([DJ99, F05, F08]) for

the computation of exceptional eigenfunctions and almost-invariant sets; these

have been applied successfully in molecular dynamics ([SHD99]), astrodynamics

([D+05]), and ocean circulation ([F+07]).

Our intent in the present work is to generalise the notion of almost-invariant sets

in autonomous systems to that of coherent structures in non-autonomous systems.

The latter will represent structures that are perhaps quite mobile, but disperse at

rates slower than suggested by local trajectory separation.

2.2. Non-autonomous systems We will examine exceptional spectral points in

the non-autonomous case, and study compositions of expanding maps taken from

a finite collection, and composed in order according to given sequences.

Let s be an invertible transformation of a probability space (Ω,F , P) that

preserves the probability P. Given a measurable/topological/vector space X, a

(one-sided) cocycle over s is a function H : Z
+ × Ω × X → X with the properties

that for all ω ∈ Ω and x ∈ X:
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• H(0, ω, x) = x;

• for all m,n ∈ Z
+, H(m + n, ω, x) = H(m, snω,H(n, ω, x)).

We sometimes write H(n)(ω)(x) for H(n, ω, x), and H(ω)(x) for H(1, ω, x). The

generator of a cocycle H is the mapping H̃ : Ω → End(X) given by H̃(ω) = H(ω).

Since the cocycle is uniquely determined by H̃, we occasionally refer to H̃ itself as

the cocycle when no confusion can occur.

In the sequel, our probability space will frequently be a (bi-infinite) sequence

space (Σ,H, p) on K symbols {1, . . . ,K}, and our invertible transformation a (left)

shift σ, defined by (σω)i = ωi+1, i ∈ Z, where Σ ⊂ {1, . . . ,K}Z is invariant under

σ.

Definition. Let {Ti}K
i=1 be a set of expanding maps of I, and let Pi : BV → BV be

the Perron–Frobenius operator associated to Ti : I → I. The map cocycle generated

by {Ti}K
i=1, denoted by Φ : Z

+ × Σ × I → I, is defined to be the one-sided cocycle

with generator Φ̃(ω) = Tω0
∈ {Ti}K

i=1. Associated to Φ is the Perron–Frobenius

cocycle P : Z
+ × Σ × BV → BV, which is defined to be the one-sided cocycle with

generator P̃(ω) = Pω0
∈ {Pi}K

i=1 for ω ∈ Σ.

Notice that even though we use a two-sided shift space, we only form one-sided

cocycles not two-sided cocycles. This is because expanding maps are not invertible,

and nor are their Perron–Frobenius operators.

We say a cocycle is periodic if the underlying sequence space Σ is generated by

a single element: that is, there exists R ∈ N, called the period, and ω ∈ Σ such

that Σ = {ω, σω, . . . , σR−1ω}; we say a cocycle is autonomous if Σ contains a single

element.

3. Quasicompactness of the Perron–Frobenius cocycle

Information about the exponential decay rates of the Perron–Frobenius cocycle is

given by its Lyapunov spectrum.

Definition. We denote by λ(ω, f) the (forward) Lyapunov exponent of f ∈ BV at

ω ∈ Σ, defined by

λ(ω, f) = lim sup
n→∞

1

n
log ‖P(n)(ω)f‖.

We define the Lyapunov spectrum Λ(P(ω)) ⊂ R of the Perron–Frobenius cocycle

at ω ∈ Σ to be the set

Λ(P(ω)) := {λ(ω, f) : f ∈ BV}.
The exponential rate of decay that can be expected purely from the local

expansion at ω ∈ Σ is

ϑ(ω) := lim sup
n→∞

1

n
log sup

x∈I

1

|D(Φ(n)(ω))(x)| , (3)

If σ : Σ → Σ is ergodic, then (1/n) log supx∈I(1/|D(Φ(n)(ω))(x)|) converges to ϑ(ω)

by Kingman’s subadditive ergodic theorem (see [A98, Theorem 3.3.2]) and, since

ϑ is σ-invariant, ϑ(ω) = ϑ p-almost everywhere.
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6 G. Froyland, S. Lloyd and A. Quas

If Φ is a composition of expanding maps, then ϑ(ω) < 0. Comparing with (2),

we have ϑ = log θ for autonomous systems.

Points in Λ(P(ω)) that are greater than ϑ(ω) indicate the presence of large-scale

structures that reduce the rate of mixing of the system, except for the maximal

Lyapunov exponent, 0, which is associated with an invariant density. We refer to

Lyapunov exponents in the interval (ϑ(ω), 0) as exceptional.

In order to find systems with exceptional Lyapunov spectrum, we restrict our

attention to map cocycles generated by piecewise-affine maps with a Markov

partition. We say an expanding map T : I → I is piecewise-affine if there exists

a partition A = {Ai}m
i=1 of I into intervals such that T has constant derivative on

each interval Ai. A refinement B = {Bi}M
i=1 of the partition A into intervals is called

a Markov partition if for each pair 1 ≤ i, j ≤ M such that int(Bi) ∩ T (Bj) 6= ∅, we

have int(Bi) ⊂ T (Bj). Associated to T is a transition matrix Γ = (γi,j)1≤i,j≤M ,

where γi,j = 1 if T (Bj) ⊃ int(Bi) and 0 otherwise.

For a Markov partition B, we let χ(B) denote the space of step-functions I → R

that are constant on the intervals of B. We say B is a common Markov partition

for a collection of maps {Ti}K
i=1 if it is a Markov partition for each map Ti.

We now fix a collection T := {Ti}K
i=1 of piecewise-affine expanding maps and

denote by Φ the associated map cocycle and by P the Perron–Frobenius cocycle

acting on BV. Suppose the generators T have a common Markov partition

B = {B1, . . . , BM}, where Bi = [bi−1, bi]. Then F = χ(B) ⊂ BV is an invariant

subspace for P. We may consider the quotient space Q = Q(I) = BV(I)/F , which

is a Banach space with the quotient norm ‖f + F‖Q := infs∈F ‖f − s‖.
Given f ∈ BV we construct a step function π(f) ∈ F such that:

1. for i = 1, . . . ,M − 1, (f − π(f))(bi−) = (f − π(f))(bi+);

2. (f − π)(0+) = 0,

where we denote h(x+) = limy↓x h(y) and h(x−) = limy↑x h(y). Condition (1)

ensures that varI(f − π(f)) = infs∈F varI(f − s). Additionally, using condition (2)

we have that ‖f − π(f)‖L1 ≤ varI(f − π(f)). An explicit formula for π : BV → F

is

π(f) =
M
∑

i=1

hi(f)χBi
, hi(f) = f(bi−1+) −

i−1
∑

j=1

(f(bj−) − f(bj−1+)) .

Thus the map π is linear, and is a projection onto F since π(χBi
) = χBi

,

i = 1, . . . ,M . We define τ = Id − π. Since π2 = π, we see τ2 = Id − 2π + π = τ ,

and so τ is also a projection. Thus

‖f + F‖Q = ‖τf‖ = var
I

τf, f ∈ BV. (4)

Lemma 3.1. The projection τ satisfies the following identity for any ω ∈ Σ and

any n ∈ N:

τP(n)(ω) = τP(n)(ω)τ = τ(Pτ)(n)(ω), (5)

where we denote (Pτ)(n)(ω) = P(σn−1ω)τ · · · P(σω)τP(ω)τ .
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Proof. We have, for any n ∈ N,

τP(n)(ω) = τP(n)(ω)(τ + π) = τP(n)(ω)τ + τP(n)(ω)π = τP(n)(ω)τ (6)

since τF = {0}, giving the left identity. In particular τP(ω) = τP(ω)τ , and so by

induction

τ(Pτ)(n)(ω) = τ(Pτ)(n−1)(σω)(P(ω)τ)

= τP(n−1)(σω)(P(ω)τ), assuming τ(Pτ)(n−1)(ω) = τP(n−1)(ω)

= τP(n)(ω)τ

= τP(n)(ω), by (6).

2

For the rest of this section, we consider functions of I = [0, 1]. By (4) we have

‖f + F‖Q =
M
∑

i=1

var
Bi

f, f ∈ BV(I). (7)

We denote by Bn(ω) the refinement
∨n−1

i=0 [Φ(i)(ω)]−1B. We show that ϑ is an

upper bound for the Lyapunov spectrum of the quotient cocycle.

Lemma 3.2. For each ω ∈ Σ,

Λ(PQ(ω)) ⊂ [−∞, ϑ(ω)], (8)

where PQ is the quotient cocycle on the space Q = BV([0, 1])/F .

Proof. For A ∈ B(n)(ω), the support of P(n)(ω)(fχA) is contained in the interval

Φ(n)(ω)A, which is equal to the closure of a union of elements of B. Thus by (7),

for f ∈ BV([0, 1]) we have

‖P(n)(ω)f + F‖Q =
∑

B∈B

var
B

P(n)(ω)f

≤
∑

A∈B(n)(ω)

var
Φ(n)(ω)A

P(n)(ω)(fχA)

=
∑

A∈B(n)(ω)

var
A

f

|DΦ(n)(ω)|

≤ max
A∈B(n)(ω)

(

1

|DΦ(n)(ω)|A|

)

∑

A∈B(n)(ω)

var
A

f,

since DΦ(n)(ω)|A is constant for each A ∈ B(n)(ω). So

‖P(n)(ω)f + F‖Q ≤ sup
I

(

1

|DΦ(n)(ω)|

)

∑

B∈B

var
B

f

=sup
I

(

1

|DΦ(n)(ω)|

)

‖f + F‖Q.

Hence

lim sup
n→∞

1

n
log ‖P(n)(ω)‖Q ≤ lim sup

n→∞

1

n
log sup

I

(

1

|DΦ(n)(ω)|

)

= ϑ(ω), (9)

as required. 2
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Remark. Quasicompactness of the autonomous Perron–Frobenius operator has been

proven for a variety of Banach spaces (e.g. [R89], [BKL02], [GL06]). It would be

natural to consider bounds analogous to Lemma 3.2 for these other spaces in the

cocycle setting.

We now prove that the exceptional Lyapunov spectrum of the cocycle P(ω)

is contained in Λ(P|χ(B)(ω)). For the autonomous case, see for example [BK98,

Lemma 3.1].

Proposition 3.1. Let σ be an invertible ergodic measure-preserving shift of the

sequence space (Σ,H, p), and P : Z
+ × Σ × BV([0, 1]) → BV([0, 1]) be the Perron–

Frobenius cocycle associated to a map cocycle over σ generated by piecewise-affine

expanding maps with a common Markov partition B. Let F = χ(B) be the finite

dimensional subspace spanned by {χB : B ∈ B}. Then, for almost every ω ∈ Σ,

Λ(P(ω)) ∩ (ϑ, 0] ⊂ Λ(P|F (ω)),

where P|F is the finite dimensional cocycle induced on F . In particular, P(ω) has

at most dim F = #B exceptional Lyapunov exponents for almost every ω ∈ Σ.

Proof. For each ω ∈ Σ and f ∈ BV([0, 1]), since f = πf + τf , we have

λ(ω, f) ≤ max{λ(ω, πf), λ(ω, τf)} (10)

with equality if λ(ω, πf) 6= λ(ω, τf). So either λ(ω, f) = λ(ω, πf) ∈ Λ(P|F (ω)) or

else λ(ω, f) ≤ λ(ω, τf). In the latter case, applying (10) to λ(σω,P(ω)τf) we have

that either λ(ω, f) = λ(σω, πP(ω)τf) ∈ Λ(P|F (σω)) or

λ(ω, f) = λ(σω,P(ω)f) ≤ λ(σω,P(ω)τf) ≤ λ(σω, τP(ω)τf).

Inductively, we have that either λ(ω, f) ∈ ⋃∞
n=0 Λ(P|F (σnω)) or else

λ(ω, f) ≤ inf
n≥0

λ(σnω, τ(Pτ)(n)(ω)f)

≤ lim sup
n→∞

1

n
log ‖τ(Pτ)(n)(ω)f‖

= lim sup
n→∞

1

n
log ‖τP(n)(ω)f‖, by Lemma 3.1

= lim sup
n→∞

1

n
log ‖P(n)(ω)f + F‖Q

≤ ϑ(ω), by Lemma 3.2.

Clearly
⋃∞

n=0 Λ(P|F (σnω)) = Λ(P|F (ω)) for almost every ω. Thus by the standard

MET (see [A98, Theorem 3.4.1]), we have that for almost every ω the number of

exceptional exponents of P(ω) is no greater than #Λ(P|F (ω)) ≤ #B. 2

Remark. For f ∈ BV(S1), let f̃ ∈ BV([0, 1]) be the map obtained by considering f

as a function on [0, 1]. Notice that for f ∈ BV(S1),

var
[0,1]

f̃ ≤ var
S1

f = var
[0,1]

f̃ + |f̃(1−) − f̃(0+)| ≤ 2 var
[0,1]

f̃ . (11)
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Thus, we have two equivalent norms on Q(S1) = BV(S1)/F : ‖f + F‖Q(S1) and

‖f +F‖′Q(S1) := ‖f̃ +F‖Q([0,1]), for f ∈ BV(S1). Therefore, we see that Lemma 3.2

and Proposition 3.1 hold for the case f ∈ BV(S1) by following the proofs applied

to f̃ ∈ BV([0, 1]) and then using the norm equivalence.

4. A stronger Multiplicative Ergodic Theorem for non-invertible matrices

By Proposition 3.1, for almost every ω ∈ Σ, all exceptional Lyapunov exponents

of P(ω) are contained in the Lyapunov spectrum Λ(P|χ(B)(ω)). We now represent

P(ω)|χ(B) as a matrix cocycle.

The set {χBi
}M

i=1 forms a basis for χ(B), and thus each f ∈ χ(B) may be

written as f =
∑M

i=1 viχBi
in a unique way. Similarly, given v ∈ R

M , we write

〈v〉 :=
∑M

i=1 viχBi
for the corresponding function in BV.

For T ∈ T , the matrix P = (pi,j)1≤i,j≤M , where

pi,j =
γj,i

|DT|Bj
| =

m(T−1(Bi) ∩ Bj)

m(Bj)
, 1 ≤ i, j ≤ M,

represents the Perron–Frobenius operator for T with respect to the basis {χ(Bi)}M
i=1

of χ(B) (see, for example, [BG97, p.176]). That is, for each v ∈ R
M we have

P 〈v〉 = 〈Pv〉 .

Let Pi denote the matrix representing the restricted Perron–Frobenius operator

Pi|χ(B) with respect to the basis {χBi
}M

i=1 of χ(B). The matrix cocycle

A : Z
+ × Σ × R

M → R
M is the one-sided cocycle with generator Ã(ω) = Pω0

.

Thus for almost every ω ∈ Σ, all exceptional Lyapunov exponents of P(ω) are

captured by the Lyapunov spectrum of the cocycle Λ(A(ω)) = Λ(P|χ(B)(ω)).

The Multiplicative Ergodic Theorem for one-sided matrix cocycles (see, for

example, [A98, Theorem 3.4.1]) provides us with a description of the asymptotic

behaviour of the cocycle A(ω). It reveals that the Lyapunov spectra 0 = λ1 >

λ2 > · · · > λℓ ≥ −∞ of the A(ω) coincide for all ω in a σ-invariant Σ̃ ⊂ Σ of full

p-measure. Moreover, it states that for each ω ∈ Σ̃, a Lyapunov exponent λ(ω, v) of

v ∈ R
M for A(ω) is determined by the position of v within a flag of nested subspaces

{0} = Vℓ(ω) ⊂ · · · ⊂ V2(ω) ⊂ V1(ω) = χ(B). Specifically, for each i = 1, . . . , ℓ,

λ(ω, v) = λi ⇐⇒ v ∈ Vi(ω) \ Vi+1(ω). (12)

In addition, the flag of subspaces is preserved by the action of the cocycle: for

i = 1, . . . , ℓ,

A(ω)Vi(ω) ⊂ Vi(σω).

For two-sided matrix cocycles (see, for example, [A98, Theorem 3.4.11]), by

intersecting the corresponding subspaces of the flags for the cocycle and for its

inverse, one obtains an Oseledets splitting : that is, for each ω ∈ Σ we have a

decomposition R
M =

⊕ℓ
i=1 Wi(ω) such that for i = 1, . . . , ℓ,

v ∈ Wi(ω) \ {0} ⇐⇒ lim
n→±∞

1

n
log ‖A(n)(ω)v‖ = λi,
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10 G. Froyland, S. Lloyd and A. Quas

where A(−n)(ω) := A−1(σ−nω) · · ·A−1(σ−1ω) for n > 0, and

A(ω)Wi(ω) = Wi(σω).

Our cocycle A(ω) sits between these two extremes: the shift σ is invertible, but

the matrices {Pi}K
i=1 generating A(ω) are not. Because of the non-invertibility of

the cocycle, we cannot use the standard approach described above to define an

Oseledets splitting.

The following new result relies on a push-forward approach to prove the existence

of an Oseledets splitting even when the generators are non-invertible. We state

and prove the theorem for an arbitrary matrix cocycle over an invertible ergodic

measure-preserving transformation of a probability space. Afterwards, we apply the

theorem to the special case of a Perron-Frobenius cocycle over a shift of a sequence

space.

Theorem 4.1. Let s be an invertible ergodic measure-preserving transformation

of the probability space (Ω,F , P). Let A : Ω → Md(R) be a measurable family of

matrices satisfying
∫

log+ ‖A(ω)‖dP(ω) < ∞.

Then there exist λ1 > λ2 > · · · > λℓ ≥ −∞ and dimensions m1, . . . ,mℓ, with

m1 + · · · + mℓ = d, and a measurable family of subspaces Wi(ω) ⊆ R
d such that

for P-almost every ω ∈ Ω the following hold:

1. dimWi(ω) = mi;

2. R
d =

⊕ℓ
i=1 Wi(ω);

3. A(ω)Wi(ω) ⊆ Wi(sω) (with equality if λi > −∞);

4. for all v ∈ Wi(ω) \ {0}, one has

lim
n→∞

1

n
log ‖A(sn−1ω) · · ·A(ω)v‖ = λi.

Proof. See Section 8. 2

Remarks.

1. It follows from part (iv) of Theorem 4.1 that for almost every ω ∈ Ω, we can

determine the Lyapunov exponent for any vector v ∈ R
d \ {0} by

λ(ω, v) = λi ⇐⇒ v ∈
ℓ+1
⊕

k=i

Wk(ω) \
ℓ+1
⊕

k=i+1

Wk(ω),

where we set Wℓ+1(ω) = {0} for all ω ∈ Ω.
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Coherent structures for Perron–Frobenius cocycles 11

2. If the family A : Ω → Md(R) is non-invertible on a set of positive measure,

then we can obtain a lower bound for the dimension of the subspace Wℓ(ω)

corresponding to the lowest exponent λℓ = −∞ using the nullities of the

generator as follows. Let Ωc = {ω ∈ Ω : dim kerA(snω) ≥ c for some n ∈ N}.
Since s−1Ωc ⊂ Ωc, we have that P(Ωc) = 0 or 1 by ergodicity. Choose the

maximal c ∈ N for which P(Ωc) = 1. Then, by Theorem 4.1 dimWℓ(ω) is

constant almost everywhere, and so dim Wℓ(ω) ≥ c for almost every ω ∈ Ω.

3. Let γ(u, v) denote the angle between non-zero vectors u, v ∈ R
d. As R

d =
∑ℓ

i=1 Wi(ω), we may decompose u, v as u =
∑ℓ

i=1 ui(ω) and v =
∑ℓ

i=1 vi(ω),

where ui(ω), vi(ω) ∈ Wi(ω). Let i(ω, u) := min{i : ui(ω) 6= 0}. Since γ is

bounded, we have lim supn→∞(1/n) log γ(A(n)(ω)u,A(n)(ω)v) ≤ 0. In fact

limn→∞(1/n) log γ(A(n)(ω)u,A(n)(ω)v) exists, and it is negative if and only

if ui(ω,u)(ω) and vi(ω,v)(ω) are linearly dependent (see [A98, Corollary 5.3.7]).

We now apply Theorem 4.1 to our cocycle A(ω) induced by P(ω)|χ(B). Consider

the part of the Lyapunov spectrum of A(ω) that is greater than ϑ. Let 1 ≤ r ≤ ℓ

satisfy λr+1 ≤ ϑ < λr. Thus, the part of Λ(P|χ(B)(ω)) strictly greater than

ϑ is precisely λ1 > λ2 > · · · > λr. It follows from Proposition 3.1 that

the exceptional Lyapunov spectrum of P(ω) is precisely λ2, . . . , λr. By defining

Wi(ω) = {〈v〉 : v ∈ Wi(ω)} for 1 ≤ i ≤ r, we transfer the splitting of R
M obtained

from Theorem 4.1 into a splitting of χ(B) and obtain the following result:

Corollary 4.1. Let σ be an invertible ergodic measure-preserving shift of the

sequence space (Σ,H, p), and P : Z
+ × Σ × BV → BV be the Perron–Frobenius

cocycle associated to a map cocycle over σ generated by piecewise-affine expanding

maps with a common Markov partition B. Let ∅ 6= {λi}r
i=1 = Λ(P(ω)) ∩ (ϑ, 0] be

the Lyapunov exponents of P(ω) greater than ϑ, where 0 = λ1 > · · · > λr > ϑ.

Then there exists a forward invariant full p-measure subset Σ̃ ⊂ Σ and

m1, . . . ,mr ∈ N, satisfying m1 + · · · + mr ≤ #B, such that for all ω ∈ Σ̃:

1. there exist subspaces Wi(ω) ⊂ χ(B), dimWi(ω) = mi;

2. P(ω)Wi(ω) = Wi(σω);

3. f ∈ Wi(ω) \ {0} =⇒ λ(ω, f) = λi.

5. Construction of periodic cocycles with exceptional Lyapunov spectrum

In this section we build a periodic map cocycle for which the Perron–Frobenius

cocycle has an exceptional Lyapunov spectrum.

In [DFS00] individual maps are constructed for which the Perron–Frobenius

operator has exceptional eigenvalues. The construction uses so-called ‘almost-

invariant’ sets. Given a map T : I → I with an absolutely continuous invariant

probability measure µ, a subset U ⊂ I is almost-invariant if

µ(U ∩ T−1U)

µ(U)
≈ 1.
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12 G. Froyland, S. Lloyd and A. Quas

For a map with an almost-invariant set U , the transfer of mass between U and

I \ U is low, and so we expect to find that a mean-zero function positive on U

and negative on I \ U decays to zero slowly. It is shown that for piecewise-affine

Markov maps, one often obtains an almost-invariant set from the support of either

the positive or negative part of the eigenfunction associated to the second largest

eigenvalue of the Perron–Frobenius operator.

For this first example, we construct a cocycle over a periodic shift space of period

3 that has a cyclic coherent structure. More precisely, we take three maps, each

having a distinct interval from the partition J = {[0, 1/3], [1/3, 2/3], [2/3, 1]} of

S1 as an almost-invariant set. Post-composing these maps with the rotation by

1/3, we form three new maps which we apply in sequence repeatedly, thus forming

a periodic map cocycle Φ. In this way, each generator Φ̃(ω) of the map cocycle

moves the majority of the mass of one distinguished interval J(ω) ∈ J into another

interval J(σω) ∈ J with some small dissipation. Thus a map J : Σ → J specifies

the location of our coherent structure.

Theorem 5.1. There exists a collection of three piecewise-affine expanding maps

T1, T2, T3 : S1 → S1 with a common Markov partition B that generates a map

cocycle Φ : Z
+ × Σ × S1 → S1 over the shift σ on the periodic sequence space

Σ ⊂ {1, 2, 3}Z generated by α = 123 with the following properties for i = 1, 2, 3:

1. each map Ti preserves Lebesgue measure;

2. ϑ = log 1/3;

3. each finite dimensional restriction Pi|χ(B) of the Perron–Frobenius operator

of Ti has no exceptional eigenvalues;

4. P(ω) has an exceptional Lyapunov spectrum that is independent of ω and

satisfies

Λ(P) ∩ (ϑ, 0) ⊃
{

log

(

3
√

8 ± 2
√

11

3

)}

.

5. the Oseledets subspace W2(ω) corresponding to the largest exceptional

Lyapunov exponent exists for all ω ∈ Σ, and depends only on ω0.

For periodic map cocycles, one can find Lyapunov spectral points from the

eigenvalues of the cyclic composition of Perron–Frobenius operators.

Lemma 5.1. Consider a periodic map cocycle Φ : Z
+ ×Σ× I → Ω× I of period R.

If η is an eigenvalue of the Perron–Frobenius operator P(R)(ω), then

log η

R
∈ Λ(P(ω)).

Proof. There exists a function 0 6= f ∈ BV such that P(R)(ω)f = ηf . Hence for

any k ∈ N and 0 ≤ r < R,

min
0≤i<R

{‖P(i)(ω)f‖} ≤ ‖P(kR+r)(ω)f‖
ηk

≤ max
0≤i<R

{‖P(i)(ω)f‖},

and the result follows. 2
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Proof. [Proof of Theorem 5.1] Consider the partition J = {J1, J2, J3} of S1 into

the subintervals Ji = [(i−1)/3, i/3]. Let Φ : Z
+ ×Σ×S1 → S1 be the map cocycle

with generator Φ̃(ω) = Tω0
, where the maps T = {T1, T2, T3} are given by

Ti(x) = 3x − j

3
+

Gi,j

9
(mod 1), x ∈ Bj =

[

j − 1

9
,
j

9

)

, j = 1, . . . , 9,

where

G =





6 7 6 1 3 0 4 3 0

3 6 5 0 0 8 3 6 2

0 6 7 1 0 6 3 3 4



 .

The graphs of T1, T2, T3 are shown in Figure 1: note that, by construction, each

map Ti largely maps the interval Ji into the interval Ji+1, taking indices modulo

3: in fact, for i ∈ 1, 2, 3,
m(Ji ∩ T−1

i Ji+1)

m(Ji)
=

8

9
.

Thus we have a coherent structure built around the family of intervals J : Σ → J
given by J(ω) = Jω0

.

T1 T2 T3

Figure 1. Graphs of T1, T2, T3.

Note also that each map Ti is piecewise-affine expanding and there is a common

Markov partition for T given by B = {Bi : i = 1, . . . , 9}. Notice that for each map

T ∈ T and interval B ∈ B, DT |B = 3, and so ϑ(ω) = log 1/3 for each ω ∈ Σ.

Moreover, for each map T ∈ T and interval B ∈ B, the preimage T−1B has

precisely three components, each of one third of the length of B. Thus each T ∈ T
preserves Lebesgue measure, and hence each Φ(n)(ω), ω ∈ Σ and n ∈ N, does also.

As before, let Pi denote the matrix of the restriction Pi|χ(B) with respect to the

basis {χ(B)}9
i=1. Here Pi = ΓTi

/3 is the one third scaling of the transition matrix

ΓTi
, which is itself easily observed from the graph of Ti: the (p, q)th entry of the 0-1

matrix Γi is 1 if and only if the graph of Ti intersects the (p, q)th square of B × B.

Each matrix Pi has a simple eigenvalue 1, and all other non-zero eigenvalues lie on

the circle of radius 1/3:

spec(P1) = (1,−1/3,−1/3, 0, . . . , 0)

spec(P2) = (1, 1/3, 0, . . . , 0)

spec(P3) = (1,−1/3,−1/6 ± i
√

3/6, 0, . . . , 0).
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14 G. Froyland, S. Lloyd and A. Quas

Unlike in Theorem 6.1 in the following section, the maps used here cannot be

expressed as different rotations of a single map.

We can find slowly decaying functions by examining the triple composition

Φ(3)(α) = T3 ◦ T2 ◦ T1. The Perron–Frobenius operator P(3)(α), when restricted

to the space χ(B), can be represented by the matrix A(3)(α) = P3P2P1. We have

spec(A(3)(α)) =

(

1,
2

27
(4 ± 2

√
11), 0, . . . , 0

)

Since the cocycle is periodic, we find that the spectrum of A(3)(ω) is independent of

ω ∈ Σ. Applying Lemma 5.1 we have that Λ(P) has the two exceptional elements

with approximate values

λ2 ≈ log 0.8153, λ3 ≈ log 0.3699.

Moreover, these Lyapunov exponents are achieved by the corresponding

eigenvectors of A(3)(ω). For ω = α, the space W2(α) is spanned by the second

eigenvector w2 of the matrix A(3)(α) = P3P2P1, with approximate entries

w2 = (0.105, 0.193, 0.193, 0.008,−0.059,−0.059,−0.113,−0.134,−0.134),

and the graph of 〈w2〉 ∈ χ(B), which spans W2(α), is shown in Figure 2. For

1

-2

-1

1

2

〈w2〉

Figure 2. The graph of 〈w2〉 ∈ χ(B) for Theorem 1.

i = 1, 2, W2(σ
iα) is spanned by 〈w2〉 ◦ ρ−i, where ρ : S1 → S1 is the rotation

ρ(x) = x + 1/3 (mod 1). 2

Evidence of the cyclic coherent structure is visible in the second eigenfunction

of the Perron–Frobenius operator. Note that J(α) = [0, 1/3] supports the majority

of the mass of the positive part of 〈w2〉. Similarly, the distinguished interval

J(σiα) = [(i − 1)/3, i/3], i = 1, 2, is picked up by 〈w2〉 ◦ ρ−i.

6. Construction of non-periodic cocycles with exceptional Lyapunov spectrum

We now construct a non-periodic map cocycle with exceptional Lyapunov spectrum.

The map cocycle is generated by six maps, including T1 used in the previous

example. The shift space is taken to be a subshift of finite type that has the

Bernoulli shift on two symbols as a factor.
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Let Θ ⊂ {1, . . . , 6}Z be the subshift of finite type

Θ := {ω ∈ {1, . . . , 6}Z : ∀k ∈ Z, Eωk,ωk+1
= 1},

with transition matrix

E = (Ei,j)1≤i,j≤6 =



















0 1 0 0 1 0

0 0 1 0 0 1

1 0 0 1 0 0

0 0 1 0 0 1

1 0 0 1 0 0

0 1 0 0 1 0



















.

We let σ : Θ → Θ be the left shift, and p the uniform measure on Θ. As an

indication of the complexity, notice that the full two-shift ζ : {1, 2}Z → {1, 2}Z is a

factor of σ : Θ → Θ via the mapping

h(ω)i =

{

1, ωi ∈ {1, 2, 3},
2, ωi ∈ {4, 5, 6}.

The six maps {Si}6
i=1 are obtained from T1 by rotations, and constructed so that

m(Ji ∩ S−1
i Ji+1)

m(Ji)
=

8

9
for i = 1, 2, 3, (13)

m(Ji ∩ S−1
i Ji−1)

m(Ji)
=

8

9
for i = 4, 5, 6. (14)

From these maps we construct a map cocycle with a non-periodic coherent structure

that is responsible for the slow decay.

Theorem 6.1. There exists a collection S of six piecewise-affine expanding maps

S1, . . . , S6 : S1 → S1 with a common Markov partition B that generate a map

cocycle Φ : Z
+ × Θ × S1 → S1 over the shift σ : Θ → Θ with the following

properties for i = 1, . . . , 6:

1. each map Si preserves Lebesgue measure;

2. ϑ = log 1/3;

3. the restricted Perron–Frobenius operator Pi|χ(B) has no exceptional

eigenvalues;

4. for each ω ∈ Θ, Λ(P(ω)) contains a unique exceptional exponent

log
1 +

√
2

3
.

5. there exists an Oseledets decomposition for all ω ∈ Θ, and the Oseledets

subspace W2(ω) depends only on ω0.
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16 G. Froyland, S. Lloyd and A. Quas

Proof. Let ρ : S1 → S1 be the rotation x 7→ x + 1/3 (mod 1) and let S : S1 → S1

be the map given by

S(x) = 3x − j

3
+

gj

9
(mod 1), x ∈ Bj =

[

j − 1

9
,
j

9

)

, j = 1, . . . , 9,

where g = (3, 4, 3, 7, 0, 6, 1, 0, 6). The interval J1 = [0, 1/3] is an almost-invariant

subset of S1, with m(J1 ∩ S−1J1)/m(J1) = 8/9. Let PS be the matrix of PS |χ(B)

with respect to the basis χ(B). The spectrum of PS is

spec(PS) =

(

1,
1 ±

√
2

3
, 0, . . . , 0

)

.

We define the collection of maps S = {Si}6
i=1 in terms of S and ρ:

S1 = ρ ◦ S S4 = ρ2 ◦ S

S2 = ρ2 ◦ S ◦ ρ2 S5 = S ◦ ρ2

S3 = S ◦ ρ S6 = ρ ◦ S ◦ ρ.

The graphs of S1, . . . , S6 are shown in Figure 3. Note that the graph of S1 is the

S1 S2 S3

S4 S5 S6

Figure 3. Graphs of S1, . . . , S6.

same as that of T1 shown in Figure 1.

Let Φ : Z
+ × Θ × S1 → S1 be the map cocycle with generator Φ̃(ω) = Sω0

∈ S.

Let J = {Ji}3
i=1, where Ji = [(i−1)/3, i/3]. As a consequence of (13) and (14), we

have a coherent structure built around the family of intervals J : Θ → J , where

J(ω) =

{

Jω0
, if ω0 ≤ 3;

Jω0−3, if ω0 > 3.
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Let Pi be the Perron–Frobenius operator of Si. Let P : Z
+ × Θ × S1 → S1

the Perron–Frobenius cocycle associated to Φ. Let Pi be the matrix representing

Pi|χ(B) with respect to the basis χ(B) and let A : Z
+ × Θ × S1 → S1 be the

matrix cocycle with generator Ã(ω) = Pω0
. Let R denote the matrix with Ri,j = 1

if i − j = 3 (mod 9) and 0 otherwise. Note that R3 is the identity matrix. For

i = 1, . . . , 6, the formula for Pi is obtained directly from the formula for Si by

replacing ρ by R and replacing S by PS . Thus, for i = 1, . . . , 6, we may write

Pi = RliPSRri , where l = (1, 2, 0, 2, 0, 1) and r = (0, 2, 1, 0, 2, 1).

One may confirm that

spec(Pi) =

{

(1,−1/3,−1/3, 0, . . . , 0), if i ≤ 3;

(1, 0, . . . , 0), if i > 3,

and so no map in S has exceptional eigenvalues.

Note that whenever Ei,j = 1, we find li + rj = 0 (mod 3). Hence for any ω ∈ Θ,

we have that

A(n)(ω) = Rlωn−1 (PS)n Rrω0 ,

with all inner R factors cancelling.

Hence for any v ∈ R
M ,

‖A(n)(ω)v‖ = ‖Rlωn−1 (PS)nRrω0 v‖
= ‖(PS)nRr(ω0)v‖
= ‖(PS)nv′‖,

where v′ = Rr(ω0)v. So Λ(A) is precisely the set of logarithms of the eigenvalues of

PS , and in particular, is independent of ω. Thus, Λ(P) has a unique exceptional

exponent log(1 +
√

2)/3 with approximate value log 0.8047 for every ω ∈ Θ.

Let w2 be an eigenvector of PS corresponding to the second largest eigenvalue

(1 +
√

2)/3. The graph of 〈w2〉 ∈ χ(B), which spans W2(α), is shown in

Figure 4. Moreover, we have an Oseledets splitting for every ω ∈ Θ: for each

1

-2

-1

1

2

〈w2〉

Figure 4. The graph of 〈w2〉 ∈ χ(B) for Theorem 2.

ω ∈ Θ, the function 〈R−r(ω0)w2〉 spans the Oseledets subspace W2(ω) associated

to log(1 +
√

2)/3 and thus W2(ω) depends only on ω0. 2
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18 G. Froyland, S. Lloyd and A. Quas

As in the periodic example, the coherent structure responsible for the slow decay

is detected by the second eigenfunction of the Perron–Frobenius operator. When

ω0 = 1, J(ω) = [0, 1/3] is the distinguished interval for Φ(ω), and this interval

supports the majority of the mass of the positive part of the function 〈w2〉 spanning

W2(ω). More generally, for ω ∈ Θ, the positive part of 〈w2〉◦ρ−r(ω0) = 〈R−r(ω0)w2〉
is supported approximately on the interval J(ω).

7. Numerical approximation of Oseledets subspaces

In this section we outline a numerical algorithm to approximate the Wi(ω)

subspaces. The Oseledets splittings for the cocycles in Theorem 5.1 and Theorem

6.1 were explicitly constructed as eigenvectors. In general, the Oseledets splittings

are difficult to compute. The algorithm is based on the push-forward limit argument

developed in the proof of Theorem 4.1. After stating the algorithm for an arbitrary

matrix cocycle, we apply it to an example of a finite dimensional Perron–Frobenius

cocycle over a non-periodic shift space that has Oseledets subspaces which cannot

be found algebraically.

Algorithm. [Approximation of the Oseledets subspaces Wi(ω) at ω ∈ Ω.]

Let A : Z
+ × Ω × R

d → R
d be a matrix cocycle over an invertible ergodic

measure-preserving transformation s of a probability space (Ω,F , P).

1. Choose M,N > 0 and form

Ψ(M)(s−Nω) := (A(M)(s−Nω)TA(M)(s−Nω))1/2M

as an approximation to the standard limiting matrix

B(s−Nω) := lim
M→∞

(

A(M)(s−Nω)TA(M)(s−Nω)
)1/2M

appearing in the Multiplicative Ergodic Theorem.

2. Calculate the orthonormal eigenspace decomposition of Ψ(M)(s−Nω), denoted

by U
(M)
i (s−Nω), i = 1, . . . , ℓ.

3. Define W
(M,N)
i (ω) := A(N)(s−Nω)U

(M)
i (s−Nω) via the push forward under

the matrix cocycle.

4. W
(M,N)
i (ω) is our numerical approximation to Wi(ω).

Remarks.

1. For fixed N ∈ Z, the limit W
(∞,N)
i (ω) := limM→∞ W

(M,N)
i (ω) exists by

the standard MET (eg. [A98, Theorem 3.4.1]). Theorem 4.1 states that

W
(∞,N)
i (ω) → Wi(ω) as N → ∞.

2. This algorithm also provides an efficient numerical method for calculating the

Oseledets subspaces for two-sided linear cocycles.
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3. There is freedom in the choice of relative sizes of M and N : in order to sample

equal numbers of positive and negative terms of ω, we take M = 2N .

The numerical approximation of the Oseledets subspaces has been considered by

a variety of authors in the context of (usually invertible) nonlinear differentiable

dynamical systems, where the linear cocycle is generated by Jacobian matrices

concatenated along trajectories of the nonlinear system. Froyland et al. [FJM95]

approximate the Oseledets subspaces in invertible two-dimensional systems by

multiplying a randomly chosen vector by A(N)(s−Nω) (pushing forward) or

A(−N)(sNω) (pulling back). Trevisan and Pancotti [TP98] calculate eigenvectors

of Ψ(M)(ω) for the three-dimensional Lorenz flow, increasing M until numerical

convergence of the eigenvectors is observed. Ershov and Potapov [EP98] use an

approach similar to ours, combining eigenvectors of a Ψ(M) with pushing forward

under A(N). Ginelli et al. [G+07] embed the approach of [FJM95] in a QR-

decomposition methodology to estimate the Oseledets vectors in higher dimensions.

In the numerical experiments we describe next, we have found our approach to

work very well, with fast convergence in terms of both M and N .

Example. To illustrate this technique, we calculate the Oseledets subspaces W2(ω),

ω ∈ Θ, for a non-periodic map cocycle, created from the maps of Theorem 5.1

and the sequence space Θ of Theorem 6.1. Unlike the example of Theorem 2,

this example does not have a simple structure that makes it possible to relate the

Oseledets subspaces to those of a single autonomous transformation.

Let T = {Ti}6
i=1 denote the collection of piecewise-affine expanding maps of

the circle consisting of the three maps T1, T2, T3 defined in Theorem 5.1 and the

three maps T4 = ρ ◦ T1, T5 = ρ ◦ T2 and T6 = ρ ◦ T3, where ρ : S1 → S1 is

the rotation ρ(x) = x + 1/3 (mod 1) as before. The graphs of the maps in T are

shown in Figures 1 and 5. Let Φ : Z
+ × Θ × S1 → S1 be the map cocycle over

σ : Θ → Θ generated by T . The collection T has a common Markov partition

B = {[(i − 1)/9, i/9) : i = 1, . . . , 9}. We expect to find an exceptional Lyapunov

spectrum since the cocycle has a coherent structure similar to that of Theorem 2,

built around the family of intervals J : Θ → J given by

J(ω) =

{

Jω0
, if ω0 ≤ 3;

Jω0−3, if ω0 > 3.

We generate a test sequence in Θ as follows. Let α̂∗ ∈ {0, 1}N be the fractional

part of the binary expansion of π:

α̂∗ = (0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, . . .),

and extend it to a two-sided sequence α∗ ∈ {0, 1}Z by defining α∗
i = 0 for i < 0.

We define ω∗ = h−1(σ120α∗), where h is the 3-to-1 factor defined in Section 6, and

we take the inverse branch with ω∗
0 = 1. Note that ω∗ ∈ Θ has the form

ω∗ = (. . . , 1, 2, 3, 1, 2, 3, 4, . . . , 5, 4, 6, 2, 3, 1, 5, 4, 3, 1, 5, 1, 5, 4, 6, 2, 6, 5, 1, . . .),

where the zeroth term is underlined.
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T4 T5 T6

Figure 5. Graphs of T4, T5 and T6.

As before, we denote by Pi the matrix representation of the Perron–Frobenius

operator Pi|χ(B) of Ti, i = 1, . . . , 6, with respect the basis χ(B), and denote by

A : Z
+ × Θ × S1 → S1 the matrix cocycle with the generator Ã(ω) = Pω0

. The

Multiplicative Ergodic Theorem states that for almost every ω, Ψ(M)(ω) converges

to a limit B(ω) as M → ∞, and moreover Λ(A) = log spec(B).

Calculating Ψ(M)(ω∗) for M = 40, we find that Ψ(M)(ω∗) has a simple eigenvalue

λ2 ≈ 0.81, suggesting that P has exceptional Lyapunov exponent approximately

equal to log 0.81.

In order to approximate the Oseledets subspace W2(ω
∗) numerically, we set

M = 2N = 40, form the matrix Ψ(2N)(σ−Nω∗) and denote by u
(2N)
2 (σ−Nω∗) the

eigenvector corresponding to the eigenvalue λ2. We then calculate

A(N)(σ−Nω∗)u
(2N)
2 (σ−Nω∗)

and normalize to give the vector w
(2N,N)
2 (ω∗). The unit vector w

(2N,N)
2 (ω∗) is our

approximation to a unit vector spanning the subspace W2(ω
∗).

Although Theorem 4.1 holds only for a full p-measure subset of Θ, and so can

tell us nothing about a particular sequence such as ω∗, we can still check whether

its conclusions hold in this case. Taking N = 20, we calculate for k = 0, . . . , 7, a

vector w
(2N,N)
2 (σkω∗) spanning W

(2N,N)
2 (σkω∗) (see Figure 6).

Recall that {ω∗
k}7

k=0 = {1, 5, 1, 5, 4, 6, 2, 6}. For k = 0, . . . , 7, by examining

Figure 6, and comparing with the list (J(σkω∗))7k=0 given by

([0, 1/3], [1/3, 2/3], [0, 1/3], [1/3, 2/3], [0, 1/3], [2/3, 1], [1/3, 2/3], [2/3, 1]),

we see that the interval J(σkω∗) is approximately picked up by the support of the

positive part of w
(2N,N)
2 (σkω∗).

In order to check property (iii) of Theorem 4.1, that is, whether

A(ω∗)W
(2N,N)
2 (ω∗) is close to W

(2N,N)
2 (σω∗), we calculate the quantity

∆(2N,N)(ω∗) := min

{∥

∥

∥

∥

∥

〈

w
(2N,N)
2 (σω∗) ± A(ω∗)w

(2N,N)
2 (ω∗)

‖〈A(ω∗)w
(2N,N)
2 (ω∗)〉‖L1

〉∥

∥

∥

∥

∥

L1

}

,

for N = 1, . . . , 20 (see Figure 7).
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Figure 6. The graph of 〈w
(2N,N)
2 (σkω∗)〉 for k = 0, . . . , 7.
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Figure 7. Graph showing log10 ∆(2N,N)(ω∗) against N for N = 1, . . . , 20.

Thus for N = 20, there are unit L1-norm functions spanning the W(2N,N)
2 (σω∗)

and P(ω∗)W(2N,N)
2 (ω∗) subspaces whose difference in L1-norm is less than 10−8.

Recall that for the cocycle in Theorem 2, the Oseledets subspace W2(ω) is in

fact independent of ωi for i 6= 0. This contrasts with the current example: to see

that here the Oseledets spaces W2(ω) do not depend only on ω0, it is enough to

observe, for example, that ω0 = ω2 = 1 but w
(2N,N)
2 (ω∗) and w

(2N,N)
2 (σ2ω∗) are

markedly dissimilar.

8. Proof of the Multiplicative Ergodic Theorem for non-invertible matrices

In this section we present a strengthened version of the Multiplicative Ergodic

Theorem (MET) for the case of non-invertible matrices. Let s be an invertible

measure-preserving transformation of the probability space (Ω,F , P) and consider

a linear cocycle P : Z
+ × Ω × R

d → R
d. Note that even though the matrices

may be non-invertible, the invertibility of s is crucial to the argument. If the

matrices are invertible then the two-sided cocycle is naturally defined as a map

P : Z × Ω × R
d → R

d.

Recall that in the case of a one-sided linear cocycle (satisfying certain
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integrability conditions), the MET provides an invariant flag of subspaces of R
d

characterising the exponential growth rates of all vectors. For a two-sided cocycle,

one obtains an invariant splitting of R
d into Oseledets spaces by considering

the intersection of each subspace in the flag of the forward cocycle with the

corresponding subspace of the flag of the backward cocycle. Non-zero vectors v

in the jth Oseledets space Wj(ω) satisfy limn→±∞(1/n) log ‖P (n, ω, v)‖ → λj .

In the case of a one-sided cocycle it clearly makes no sense to consider the limit

limn→−∞(1/n) log ‖P (n, ω, v)‖. Nevertheless one may still hope for an invariant

splitting of R
d rather than an invariant flag. This distinction is important if one is

interested in the vector corresponding to the one of the top characteristic exponents:

the flag would only provide an invariant family of high-dimensional subspaces with

the property that most vectors in the space have the correct expansion rate, whereas

a splitting would provide an invariant family of low-dimensional subspaces, whose

vectors are responsible for all expansion at the chosen rate.

In this section present the proof of Theorem 4.1: we obtain a decomposition

into Oseledets subspaces for a one-sided forward cocycle over an invertible

transformation by means of a push-forward limit argument. Let ‖ · ‖ denote the

matrix operator norm with respect to the Euclidean norm on R
d.

Lemma 8.1. Let B : Ω → Md(R) be a measurable mapping into the space of

symmetric matrices such that for almost all ω, B(ω) has real eigenvalues µ1 >

· · · > µℓ with multiplicities m1, · · · ,mℓ. Then there exists a measurable family
(

ej
i (ω)

)

1≤j≤ℓ, 1≤i≤mj

of vectors such that the
(

ej
i (ω)

)

form an orthonormal basis

of R
d and ej

i (ω) lies in the µj eigenspace of B(ω).

Proof. Consider the map R that takes a matrix and applies a single step of a row-

reduction algorithm (e.g. find the first column that is not in row-reduced echelon

form; transpose rows to put a non-zero entry in the correct place; divide so the

leading coefficient is 1; subtract multiples of that row from all of the others; repeat)

or does nothing in the case that the matrix is already in row-reduced echelon form.

The domains of the pieces are measurable and therefore R is measurable. For all

matrices A, Rn(A) is a convergent sequence so the limit RRE(A) is a measurable

function of the matrix.

A collection of vectors spanning the kernel of a row-reduced matrix may be

obtained in a measurable way. These vectors may then be measurably converted to

an orthonormal set by applying the Gram–Schmidt orthogonalization algorithm.

We apply this by taking a symmetric matrix B with eigenvalues µ1, . . . , µℓ with

multiplicities m1, . . . ,mℓ. We find an orthogonal set of vectors with each of the

eigenvalues by applying the above procedures to B − µjI. Since all operations are

measurable the proof is complete. 2

Lemma 8.2. Let s : Ω → Ω be an invertible ergodic measure-preserving

transformation and let (fn)∞n=1 be a subadditive sequence of functions (that is a

sequence such that for every ω ∈ Ω and each m and n, fn+m(ω) ≤ fn(ω)+fm(snω)).
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Assume further that max(f1, 0) is an L1 function. Then there is a C ∈ [−∞,∞)

such that for almost every ω one has fn(ω)/n → C and fn(s−nω)/n → C.

Proof. The fact that there is a C such that fn/n → C is Kingman’s subadditive

ergodic theorem. Letting gn(ω) = fn(s−nω), we see that gn+m(ω) ≤ gn(ω) +

gm(s−nω) so that the subadditive ergodic theorem applies to gn also (with the

measure-preserving transformation being s−1) and there is a constant D such that

gn(ω)/n → D for almost all ω.

Since fn/n converges pointwise to C it also converges to C in measure. Similarly

gn/n converges in measure to D. Since fn/n and gn/n have the same distribution,

the constants to which they converge in measure must be equal. 2

We say a tuple A = (a1, . . . , an) is decreasing if ai ≥ ai+1 for 1 ≤ i < n.

Lemma 8.3. Let s : Ω → Ω be an invertible ergodic measure-preserving

transformation and let A : Ω → Md(R) be a measurable family of matrices satisfying
∫

log+ ‖A(ω)‖dp(ω) < ∞.

Let S be the decreasing d-tuple of Lyapunov exponents counting multiplicities. Given

ω ∈ Ω, let SV (n)(ω) be the decreasing d-tuple of logarithms of the nth roots of

the singular values of A(n)(s−nω). Then for almost every ω, SV (n)(ω) → S

elementwise.

Proof. Consider the family ω 7→ AT(ω) with respect to the dynamical system s−1.

Let the Lyapunov exponents be the decreasing d-tuple S′. This means that letting

SV ′(n)(ω) be the decreasing d-tuple of logarithms of nth roots of singular values

of AT(s−nω) · · ·AT(s−1ω), one has SV ′(n)(ω) → S′ for almost every ω ∈ Ω by the

standard one-sided MET, discussed in Section 4. Since singular values are preserved

by taking transposes we see that SV ′(n)(ω) = SV (n)(ω). Thus it suffices to prove

S = S′. To see this, note that (1/n) log ‖∧k
A(n)(ω)‖ converges to the sum of the

first (that is, largest) k members of S, and (1/n) log ‖∧k
AT(s−nω) · · ·AT(s−1ω)‖

converges to the sum of the first k members of S′, but these limits are equal by

Lemma 8.2. 2

Proof. [Proof of Theorem 4.1] In the course of the proof we shall repeatedly use the

symbol C to denote various constants depending only on ω.

We write A(n)(ω) for the matrix product A(sn−1ω) · · ·A(ω). From standard

proofs of the MET, we have that [A(n)(ω)TA(n)(ω)]1/(2n) is convergent to a positive

semi-definite matrix B(ω), for almost all ω, with eigenvalues eλ1 > · · · > eλℓ with

the correct multiplicities. We therefore let (ej
i (ω)) be as in Lemma 8.1 and let

Uj(ω) be the subspace of R
d spanned by {ej

i (ω) : 1 ≤ i ≤ mj}. The standard proofs

of the MET show that if one lets Vj(ω) =
⊕ℓ

i=j Ui(ω) then the vector spaces Vj(ω)

satisfy:

1. A(ω)Vj(ω) ⊆ Vj(sω);

2. For all v ∈ Vj(ω) \ Vj+1(ω), limn→∞
1
n log ‖A(n)(ω)v‖ → λj ;
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For j < ℓ, let W
(n)
j (ω) = A(n)(s−nω)Uj(s

−nω) and let Wℓ(ω) = Uℓ(ω). Then we

claim the following:

1. For j < ℓ, W
(n)
j (ω) converges to an mj-dimensional subspace Wj(ω);

2. A(ω)Wj(ω) ⊆ Wj(sω);

3. If x ∈ Wj(ω) \ {0}, then 1
n log ‖A(n)(ω)x‖ → λj .

4. Vj+1(ω) ⊕ Wj(ω) = Vj(ω).

Notice that W
(n+1)
j (sω) = A(ω)W

(n)
j (ω) so that in the case j < ℓ, (2) follows from

(1) and the definition. For j = ℓ, (2) and (3) follow from the standard MET proofs.

Fix a j < ℓ and consider a basis B0(ω) = {ei
k(ω) : k > j, i ≤ mk} for

Vj+1(ω) and a basis B1(ω) = {ei
j(ω) : i ≤ mj} for Uj(ω). The union of B0(ω)

and B1(ω) gives an orthonormal basis for Vj(ω). Since A(ω)Vj+1(ω) ⊂ Vj+1(sω)

and A(ω)Vj(ω) ⊂ Vj(sω), it follows that if we express the linear transformation

represented by A(ω) with respect to the bases B1(ω)∪B0(ω) and B1(sω)∪B0(sω),

the matrix is of the form

L(ω) =

(

A11(ω) 0

A10(ω) A00(ω)

)

,

where if Vj+1(ω) is of dimension q = mj+1 + · · ·+mℓ, the matrices A11(ω), A10(ω)

and A00(ω) have dimensions mj × mj , q × mj and q × q respectively. Notice that

since the dimension of V i(ω) is almost surely independent of ω ∈ Ω, the matrix

A11(ω) is almost everywhere invertible.

By definition, L(n)(ω) = L(sn−1ω) · · ·L(ω). By analogy with the above we name

the components of this matrix as follows:

L(n)(ω) =

(

A
(n)
11 (ω) 0

A
(n)
10 (ω) A

(n)
00 (ω)

)

.

We will need the following matrix identities:

Claim A. With A
(n)
ij defined as above we have

A
(n)
11 (ω) = A11(s

n−1ω) · · ·A11(ω) (15)

A
(n)
00 (ω) = A00(s

n−1ω) · · ·A00(ω) (16)

A
(n)
10 (ω) =

n−1
∑

k=0

A
(k)
00 (sn−kω)A10(s

n−k−1ω)A
(n−k−1)
11 (ω). (17)

Proof. The first two equalities are immediate and the third follows by induction on

n. 2

Claim B. For almost every ω ∈ Ω, (1/n) log ‖A(n)
00 (ω)‖ → λj+1 as n → ∞.
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Proof. One has for each i > j and 1 ≤ k ≤ mi, (1/n) log ‖A(n)(ω)ei
k‖ → λi,

by the MET. It follows that considering A(n)(ω) as a linear map on Vj+1(ω),

(1/n) log ‖A(n)(ω)|Vj+1(ω)‖ → λj+1. Thus (1/n) log ‖A(n)
00 (ω)‖ → λj+1. 2

Claim C. For every ǫ > 0 and for almost every ω ∈ Ω, there is D1(ω) such that

‖A(n)
00 (s−nω)‖ ≤ D1(ω)en(λj+1+ǫ) for all n ≥ 0.

Proof. Let fn(ω) = log ‖A(n)
00 (ω)‖. This is a sub-additive sequence of functions and

fn(ω)/n → λj+1 for almost every ω by Claim B. Applying Lemma 8.2 we see that

fn(s−nω)/n → λj+1 for almost every ω. The claim follows. 2

Claim D. For every ǫ > 0 and for almost every ω ∈ Ω, there is a D2(ω) < ∞ such

that for all n ≥ 0 one has ‖A10(s
−nω)‖ ≤ D2(ω)eǫn.

Proof. By hypothesis log ‖A(ω)‖ is an integrable function and hence by a standard

corollary of Birkhoff’s theorem one has (1/n) log ‖A(s−nω)‖ → 0. It follows that

‖A(s−nω)‖ ≤ D2(ω)eǫn for a suitable D2(ω). Since ‖A10(ω)‖ ≤ ‖A(ω)‖ the result

follows. 2

Claim E. Under the above conditions,

(

A
(n)
11 (ω)

T
A

(n)
11 (ω)

)1/(2n)

−→ eλj Imj
.

Proof. To see this it is sufficient to show that every non-zero vector in Uj(ω) has

growth rate λj . Let u ∈ Uj(ω) have expansion u =
∑

i≤mj
vie

j
i (ω).

First we show that A
(n)
10 (ω)v doesn’t grow any faster than A

(n)
11 (ω)v. Note that

‖A(n)(ω)u‖2 = ‖A(n)
11 (ω)v‖2+‖A(n)

10 (ω)v‖2 so that we have ‖A(n)
10 (ω)v‖+‖A(n)

11 (ω)v‖
grows at rate λj . Applying the MET to A

(n)
11 (ω), we see that A

(n)
11 (ω)v grows at some

rate Λ. We will show that A
(n)
10 (ω)v grows at a rate no greater than max(Λ, λj+1).

It will follow that Λ = λj .

Equality (17) gives

‖A(n)
10 (ω)v‖ ≤

n−1
∑

k=0

‖A(k)
00 (sn−kω)‖‖A10(s

n−k−1ω)‖‖A(n−k−1)
11 (ω)v‖

Fix an arbitrary ǫ > 0. Claim C shows that ‖A(k)
00 (sn−kω)‖ ≤ D1(s

nω)ek(λj+1+ǫ).

Using Claim D also, we see

‖A(n)
10 (ω)v‖ ≤ D1(s

nω)D2(ω)

n−1
∑

k=0

ek(λj+1+ǫ)eǫ(n−k−1)e(Λ+ǫ)(n−k−1).

There exists M such that D1(ω) < M on a positive measure subset of Ω. By the

ergodicity of s, there are infinitely many n for which D1(s
nω) < M . For these n, the

right hand side of the inequality is bounded above by D2(ω)Mnen(max(λj+1,Λ)+2ǫ).

It follows that lim inf log ‖A(n)
10 (ω)v‖1/n ≤ max(λj+1,Λ) and thus

lim inf log ‖A(n)(ω)u‖1/n ≤ max(λj+1,Λ).

Since on the other hand lim log ‖A(n)(ω)u‖1/n = λj , we conclude that Λ ≥ λj . Since

‖A(n)(ω)u‖ ≥ ‖A(n)
11 (ω)v‖ we have λj ≥ Λ so that Λ = λj as required. 2
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We now estimate

gn(ω) = max
v∈S1

‖A(n)
10 (s−nω)v‖

‖A(n)
11 (s−nω)v‖

,

where S1 denotes the unit sphere in R
mj . Note that by scale-invariance one could

equivalently define gn by taking the maximum over R
mj \ {0}.

We have

gn(ω) = max
v∈S1

∥

∥

∥

∑n−1
k=0 A

(k)
00 (s−kω)A10(s

−(k+1)ω)A
(n−k−1)
11 (s−nω)v

∥

∥

∥

∥

∥

∥
A

(n)
11 (s−nω)v

∥

∥

∥

≤
n−1
∑

k=0

max
v∈S1

∥

∥

∥A
(k)
00 (s−kω)A10(s

−(k+1)ω)A
(n−k−1)
11 (s−nω)v

∥

∥

∥

∥

∥

∥A
(k+1)
11 (s−(k+1)ω)A

(n−k−1)
11 (s−nω)v

∥

∥

∥

=

n−1
∑

k=0

max
u∈S1

∥

∥

∥
A

(k)
00 (s−kω)A10(s

−(k+1)ω)u
∥

∥

∥

∥

∥

∥A
(k+1)
11 (s−(k+1)ω)u

∥

∥

∥

≤
n−1
∑

k=0

maxu∈S1

∥

∥

∥
A

(k)
00 (s−kω)A10(s

−(k+1)ω)u
∥

∥

∥

minu∈S1

∥

∥

∥A
(k+1)
11 (s−(k+1)ω)u

∥

∥

∥

.

Note that in the third line we are making use of the fact that A
(n−k−1)
11 (s−nω)

is invertible.

Let ǫ < (λj − λj+1)/4 be fixed for the remainder of the proof. By Lemma 8.3

and Claim E the kth roots of the singular values of A
(k)
11 (s−kω) all converge to eλj .

It follows that there is a C > 0 depending on ω such that for all k,

min
u∈S1

∥

∥

∥A
(k+1)
11 (s−(k+1)ω)u

∥

∥

∥ > Cek(λj−ǫ). (18)

We remark that similar uniform lower bounds appear in the paper of Barreira and

Silva [BS05]. Using Claim C and Claim D there exists a C ′ depending on ω such

that for all k,

max
u∈S1

∥

∥

∥A
(k)
00 (s−kω)A10(s

−(k+1)ω)u
∥

∥

∥ ≤ C ′ek(λj+1+ǫ)eǫk.

Combining the estimates we see

gn(ω) ≤ C ′

C

n−1
∑

k=0

ek(λj+1−λj+3ǫ).

Since 3ǫ < λj−λj+1 it follows that defining M(ω) = supn gn(ω), one has M(ω) < ∞
for almost all ω.

We define a distance D between two subspaces of R
d of the same dimension by

the Hausdorff distance of their intersections with the unit ball B1 in R
d. We now

estimate D
(

W
(n)
j (ω),W

(m)
j (ω)

)

for m > n.
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Let x belong to the unit sphere of W
(n)
j (ω) (the distance is always maximized

by points on the boundary). Then x = A(n)(s−nω)u for some u ∈ Uj(s
−nω). Since

for almost all ω, the matrix A
(m−n)
11 (s−mω) is invertible, there exists almost surely

a u′ ∈ Uj(s
−mω) such that A(m−n)(s−mω)u′ = u + z where z ∈ Vj+1(s

−nω).

Let v′ be the coordinates of u′ with respect to the basis B1(s
−mω). Then

‖A(m−n)
10 (s−mω)v′‖ = ‖z‖ and ‖A(m−n)

11 (s−mω)v′‖ = ‖u‖. It follows that ‖z‖ ≤
M(s−nω)‖u‖. Let y = A(m)(s−mω)u′ so that y ∈ W

(m)
j (ω). We then have

y = x + A(n)(s−nω)z. By Claim C we have

‖A(n)(s−nω)z‖ ≤ Ce(λj+1+ǫ)n‖z‖
≤ Ce(λj+1+ǫ)nM(s−nω)‖u‖ (19)

for a C depending only on ω. On the other hand, (18) implies that

1 = ‖x‖ = ‖A(n)(s−nω)v′‖ ≥ C ′e(λj−ǫ)n‖u‖ (20)

for another C ′ depending just on ω. Let K = C/C ′ and α = λj − λj+1 − 2ǫ > 0.

Dividing (19) by (20) we see

‖y − x‖ = ‖A(n)(s−nω)z‖ ≤ Ke−αnM(s−nω).

The closest point of W
(m)
j (ω) ∩ B1 to x is just the orthogonal projection of x onto

W
(m)
j (ω) (which lies in B1) so that the distance from x to W

(m)
j (ω)∩B1 is bounded

above by ‖y − x‖ which in turn is bounded above by Ke−αnM(s−nω).

Conversely let y ∈ B1 ∩ W
(m)
j (ω). Then we have y = A(m)(s−mω)u′ for some

u′ ∈ Uj(s
−mω). Let A(m−n)(s−mω)u′ be decomposed into u+z with u ∈ Uj(s

−nω)

and z ∈ Vj+1(s
−nω). Let x = A(n)(s−nω)u. Since supn gn(ω) = M(ω), we have

‖z‖ ≤ M(s−nω)‖u‖. So using (18) again, we get

‖A(n)(s−nω)z‖ ≤ KM(s−nω)e−αn‖A(n)(s−nω)u‖. (21)

We also have

‖A(n)(s−nω)u‖ ≤ ‖A(n)(s−nω)(u + z)‖ + ‖A(n)(s−nω)z‖
≤ 1 + KM(s−nω)e−αn‖A(n)(s−nω)u‖.

So ‖A(n)(s−nω)u‖ ≤ 1/(1 − KM(s−nω)e−αn), provided KM(s−nω)e−αn < 1.

Combining this estimate with (21) gives

‖x − y‖ = ‖A(n)(s−nω)z‖ ≤ KM(s−nω)e−αn

1 − KM(s−nω)e−αn
.

As before it follows that the closest point of W
(n)
j (ω) ∩ B1 to y is at a distance

at most KM(s−nω)e−αn/(1 − KM(s−nω)e−αn). In particular, provided that

KM(s−nω)e−αn < 1, we have

D
(

W
(n)
j (ω),W

(m)
j (ω)

)

≤ KM(s−nω)e−αn

1 − KM(s−nω)e−αn
.
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Obviously for m,m′ > n one then has

D
(

W
(m)
j (ω),W

(m′)
j (ω)

)

≤ 2KM(s−nω)e−αn

1 − KM(s−nω)e−αn
.

Since M(ω) is measurable and s is ergodic, there exist for almost all ω arbitrarily

large values of n such that M(s−nω) < A for some fixed A > 0. It follows that the

sequence of subspaces is Cauchy and hence convergent to a subspace Wj(ω).

Let x belong to the unit sphere of W
(n)
j (ω). Then x = A(n)(s−nω)u. As before,

writing x as y + z with y ∈ Uj(ω) and z ∈ Vj+1(ω), we have ‖z‖ ≤ M(ω)‖y‖. Since

‖y‖2 + ‖z‖2 = 1, we have ‖y‖2(1 + M(ω)2) ≥ 1 so that ‖y‖ ≥ 1/
√

1 + M(ω)2 = B.

Thus each point of the unit sphere of Wj(ω) has a component in Uj(ω) of norm at

least B. It follows that Vj(ω) = Vj+1(ω) ⊕ Wj(ω), which completes the proof. 2
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