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Abstract

Given a factor code m from a shift of finite type X onto an irre-
ducible sofic shift Y, and a fully supported ergodic measure v on Y,
we give an explicit upper bound on the number of ergodic measures
on X which project to ¥ and have maximal entropy among all mea-
sures in the fiber 77 '{v}. This bound is invariant under conjugacy.
We relate this to an important construction for finite-to-one symbolic
factor maps.

1 Introduction

It is a well-known result that a 1-dimensional irreducible shift of finite type
on a finite alphabet has a unique measure of maximal entropy, the so-called
Parry measure [18]. If X is a shift of finite type conjugate to X under a
conjugacy ¢ : X — X, then the image of the Parry measure on X under ¢ is
also the Parry measure on X of the same entropy. In contrast, we consider
the relative case in which one is given a factor map 7 : X — Y from a
shift of finite type X to a sofic shift ¥, and a measure v on Y. In this case
measures on X in the fiber 77'{v} having maximal entropy in the fiber,
so-called measures of relative maximal entropy, are not well understood.

Measures of relative maximal entropy appear frequently in different ar-
eas of Mathematics. One of the applications is providing some techniques
to compute Hausdorff dimension. This reveals the connections of measures
of relative maximal entropy with functions of Markov chains [I], 2, [3, [17],
measures that maximize a weighted entropy functional [6, 25], the theory of
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pressure and equilibrium states [9, 10} 22], relative pressure and relative equi-
librium states [14] [15] 27], and compensation functions [2), 27]. Other uses of
such measures arise from their application in the mathematics of information
transfer [19] and information-compressing channels [17].

The connection between measures of relative maximal entropy and com-
putation of Hausdorff dimension is that rather than calculating the Hausdorff
dimension of a set directly, one instead attempts to maximize the Hausdorff
dimension of a measure supported on the set. Let f : M — M be an ex-
panding O?-diffeomorphism on a connected compact Riemannian manifold
M. Extending earlier results of Ruelle [23], Furstenberg [5], Hofbauer [§],
and Raith [21], Gatzouras and Peres show that if f € C! is conformal then
any compact f-invariant set K C M on which f is expanding, supports an
ergodic measure of the same Hausdorff dimension as K (measure of “full

Hausdorff dimension” for K) [7].

The question on measures of full Hausdorff dimension where f is non-
conformal is not, however, solved in the general case. Using the Ledrappier-
Young formula [I5], Gatzouras and Peres translated the problem on seeking
measures of full Hausdorff dimension to a problem in symbolic dynamics [7]:
Let 7 : X — Y be a factor code from a shift of finite type X to a sofic shift
Y. Fix a > 0. Is there a unique ergodic measure p on X which maximizes
the weighted entropy functional defined by h(u) + ah(mp)?

Shin approaches this problem in [25] using what is known about images
of Markov measures under factor codes (functions of Markov chains [I] or
metrically sofic measures [17]). To understand when a Markov measure on Y’
has a Markov measure in its pre-images on X, Boyle and Tuncel introduced
the idea of a compensation function [2], which is developed further by Walters
[27]: Given a factor code 7 : X — Y from a shift space X to a shift space
Y, F € C(X) is a compensation function for m if and only if sup{h(p) +
JFdu:pen vy} =h(v) forall v € M(Y), where M(Y) stands for the

set of invariant measures on Y.

For F' € C(X) the topological pressure P(F) is given by P(F') = sup{h(u)+
J Fdu: pe M(X)} and a measure € M(X) is an equilibrium state for F if
P(F)=h(p)+ [ F dp. It is shown by Shin that if there is a saturated com-
pensation function GG o 7, then for any v > 0 the set of all invariant measures
4 which maximize the weighted entropy functional is the set of equilibrium

states for the function (a/(av +1))G o7 [25].



Motivated by Shin’s result, Yayama in [31] studies the uniqueness of an
equilibrium state of a saturated compensation function to discuss the mea-
sures of full Hausdorff dimension for a compact invariant set X of an expand-
ing nonconformal map given by a diagonal matrix. She proves the uniqueness
of an equilibrium state of some saturated compensation functions when a fac-
tor code m : X — Y has a “singleton clump” (some symbol in the alphabet
of Y has only one pre-image in the alphabet of X) using a theorem proved
by Petersen, Quas, and Shin [20]: when X is a 1-step SFT, and 7 : X — Y is
a 1-block factor map, then the minimum number of pre-images of a symbol
b as b runs over the symbols in the alphabet of Y is an upper bound on the
number of measures of relative maximal entropy. This number was the best
known bound for the number of measures of relative maximal entropy. How-
ever, it suffers from not being invariant under conjugacy while the number of
ergodic measures of relative maximal entropy is invariant under conjugacy.
To avoid this issue one possibility is to take the minimum of this bound over
all irreducible shifts of finite type X which are conjugate to X. This obvi-
ously improves the original bound but is very hard to compute whether two
shifts of finite type are conjugate, see [12] [13].

In this work we find a more satisfactory conjugacy-invariant upper bound
defined intrinsically to the shift of finite type. We define an equivalence
relation on the set of pre-images of a point y € Y and study the number,
N(y), of equivalence classes of pre-images of y. We show that for a.e. y € Y
we have N(y) = min{N(z): z € Y} and the minimum number of such
equivalence classes is an upper bound on the number of measures of relative
maximal entropy.

2 Background

Throughout the paper, the triple (X,Y, ) is called a factor triple when 7 :
X — Y is a factor code (onto and shift-commuting map) from a shift of
finite type (SF'T) X on a finite alphabet to a sofic shift Y. The alphabet of
a shift space X is denoted by A(X) and the o-algebra on X generated by
measurable rectangles is denoted by Ax. The set of all n-blocks that occur
in points of X is denoted by B, (X), and the language of X is the collection
ZL(X)=U,—yBn(X). Let z € X and G C Z, then the configuration which
occurs in z on G is denoted by z¢. If G = {i,...,j} is a connected subset of



Z we sometimes denote xg by x; ;. By recoding if necessary, we may assume
that X is a 1-step SFT and 7 is a 1-block code, so that the triple (X, Y, 7) can
be described by a directed labeled graph. We say two factor triples (X, Y, )
and (X,Y,7) are conjugate, and denote it by (X,Y,7) ~ (X,Y,7), if X is
conjugate to X under a conjugacy ¢, Y is conjugate to Y under a conjugacy
¥, and To ¢ =Y om. Let (X,Y,7) be a factor triple where 7 is a 1-block
factor code induced by the map my, : A(X) — A(Y) (sb stands for sliding
block). The map 7y, naturally extends to blocks in B, (X) for each n € N.
Above every Y-block W of length n there is a set of X-blocks W’ of length
n which are sent to W by my,; i.e., mgp(W') = W. Given 0 < i <n —1, set

A(W,i) = [{a € A(X): IV’ with mg(W') = W, W/ = a}],

and let
d: =min{d(W,i) : W € Z(Y), 0<i<|W|-1}.

A magic block is a block W such that d(W,i) = d* for some 0 < i < |[W|—1.
Such an index ¢ is called a magic coordinate of W. A factor code 7 has a
magic symbol if there is a magic word of 7 of length 1.

Proposition 2.1. Let (X,Y,7) be a factor triple. There is a factor triple
(X,Y,7) conjugate to (X,Y,m) such that X is a 1-step SF'T and 7 is a
1-block code with a magic symbol.

Proof. By recoding, without loss of generality, we may assume X is a 1-step
SFT and 7 is a 1-block factor code. Let W be a magic block of 7 of length n
with a magic coordinate ¢t. Define two n-blocks U and V in X to be equivalent
if 7(U) = n(V') and U; = V;. This obviously defines an equivalence relation
on B, (X). Denote the equivalence class containing U by C(U). Let X be the
new l-step SF'T whose alphabet consists of equivalence classes of blocks in
B,(X), and the legal transitions between the equivalence classes be defined
by saying C'(U) can be followed by C'(V) if and only if there are U' € C(U)
and V' € C(V) such that U/, = V/ fori =0,...,n —2. Let ¢ : X — X be
the 1-block code induced by the map ¢g, which takes C(U) to U;. Then ¢
does map X into X, since whenever C'(U)C/(V) is a 2-block in X, then U,V
is a 2-block in X. Moreover, ¢ is a conjugacy with the inverse n-block code
induced by the map which takes U to C(U). Therefore, X is a l-step SFT
conjugate to X.



Let Y be the nth higher block presentation of Y and let ¢ : Y — Y be
the n-block code induced by the map g, which takes yq...y,_1 to ;. Define

F=¢ylorod: X >Y.
Observe that 7 is a 1-block code induced by the well-defined map which
projects a symbol C(U) in A(X) to 7y, (U) (regarding 7y, (U) as a symbol of
Y).

Note that if B is a m-block of Y then it is of the form E©E® gm=1)
where E@ is a n-block of Y. Then B corresponds to the (n 4+ m — 1)-block

EVE®  EO EW E®  EmY
of Y. For each 0 <4 < m — 1 we have

d+(B,i) = dx(EQEW . EMm=Y )
= |{C(U) € A(X): 3F € Z(X) with 7,(F) = B, F; = C(U)}|
= |{a € A(X): 3K € Z(X) with ny,(K) = B, K;1+ = a}|
=d (EQEY .. O EW ED B 4y,

—1+n— n—1-""

Hence di > di. Since dz(W,0) = d.(W.t) it follows that W is a magic
symbol of 7. 0

Proposition 2.2. Let 7 : X — Y be a 1-block factor code from a 1-step SF'T
X to a sofic shift Y with a magic symbol. Let W be a n-block of Y which
begins and ends with magic symbols, and let V be a n-block of X. Then
(V) =W only if for everyy € Y with yj,,—1) = W there exists u € 7~ (y)
with u[O,n—l} =V.

Proof. Let W be an n-block of Y where Wy and W,,_; are magic symbols.
Let V be an n-block of X mapping to W under my,. Let y be a point in
Y with yj,—1) = W. Observe that there is a point 2 € 7~ !(y) such that
xo = Vp since otherwise for some k > 0, d(y[—xx),0) is less than the number
of pre-images of W,. This contradicts the assumption that W, is a magic
symbol of 7. Similarly there is z € 771(y) with z,_; = V,,_;. Form the new
point u where
r;, if—oco<i<O
uy=qV, f0<i<n—-1

z ifn—1<1i<oo.

>



The facts that zog = V4, 2,1 = V,,_1 and X is a 1-step SFT guarantee that
u is a point of X. Moreover, from the construction we have m(u) = y which
completes the proof. O

3 Uniform Conditional Distribution

It is a well-known result of Parry [I8], generalizing an earlier result of Shan-
non [24], that in one dimension every irreducible shift of finite type on a
finite alphabet has a unique measure of maximal entropy. Burton and Steif
[4] give a counterexample to this statement in higher dimensions. However,
they show that such measures all have the uniform conditional distribution
property stated in Theorem Bl Given a finite set G C Z?, the boundary of
the complement of G is 0G¢ = {i € G°: 3j € G with ||i — j|| = 1}.

Theorem 3.1. [, Proposition 1.19] Let u be a measure of mazimal entropy
for a SFT in d dimensions. Then the conditional distribution of p on any
finite set G C Z* given the configuration on G¢ is u-a.s. uniform over all
configurations on G which extend the configuration on 0G°.

Given a factor triple (X, Y, 7) and an ergodic measure v on Y, there can
exist more than one ergodic measure of relative maximal entropy over v; i.e.,
there can be more than one ergodic measure on X which projects to v and has
maximal entropy among all measures in the fiber 771{v}, see [20, Example
3.3]. We use Lemma [3.2land follow techniques developed by Burton and Steif
in the proof of Theorem [B.J] to show the uniform conditional distribution
property for measures of relative maximal entropy in Theorem [3.3

Lemma 3.2. [26, Theorem 4.7] Let (X, %, u) be a probability space. Let
A be a finite sub-algebra of B and let (%,)5°, be an increasing sequence of
sub-o-algebras of B with \/.~_, F, = F. Then H(A|.%,) — H(A|.F).

Theorem 3.3. Letm: X — Y be a 1-block factor code from a 1-step SF'T X
to a sofic shift Y, v an invariant measure on'Y , and pu an invariant measure
of relative maximal entropy over v. Then the conditional distribution of
on any finite set G C Z given the configuration on G is ji-a.s. uniform over
all configurations on G which extend the configuration on 0G° and map to
the same configuration in'Y under the factor code .



Proof. Let G C Z be finite. Let A be a configuration of Y on G. Pick a
configuration 1 of X on G such that pu(n N7~ *(A)) > 0. Starting from
1, we define a measure 4 on X by uniformizing over pre-images of A that
have 1 on the boundary. We then show that if ;4 does not have the required
uniform conditional distribution property then 7 has greater entropy than pu,
but still is an element of the fiber 7='{r}. This is a contradiction and will
thus establish the required uniform conditional distribution property of pu.

Let D ={ay,...,ar} be the set of all configurations on G which extend
n and map to A under the factor code w. Let R = {—m,...,m —1} be large
enough so that GUOG® C R and (R,),,., be the partition of Z by translates
of R (Ry=R),ie. R,={(2n—1)m,...,(2n+ 1)m — 1}. Let G,, and 9G¢,
be the corresponding translates of G and 0G° in R,,. If S C Z let P(Xg)
be the partition of X generated by the configurations of X on S, and o(Xg)
be the o-algebra generated by P(Xg). When S = {a,...,b} is a connected
subset of Z we sometimes denote Xg by X°. Considering R above, o(X™")
is the finite o-algebra generated by the partition

PX™ ) ={ ltm® it Tma] i TomT s -+ Tt € ZL(X)},
and o(X- 2 D =o(X Y vo(X 2 v, ...

Let ~ be the measure obtained from g and 7 as follows. Define ® :
X x D? — X by

Cn if 9ge = n and zg, € D

(I)(LL’, C)Gn = {

xg, otherwise,

and ®(z,()aenr, = Taenr, for each n € Z. Since ¢, € D and each element
of D extends 7, the assumption that X is a 1-step SFT implies ®(z,() € X.
For each ¢ € D% we have 7(x) = w(®(z,()) since ®(x,() and x are the same
except having alternative ;s in the same positions (o, € 7, (A)). Let C €
Bx . Define v(C) = (u x \)@~1(C') where X is the Bernoulli (1/L,...,1/L)
measure on D?. The measure 7 is not necessarily invariant under 7'; however,
for each C' € ZBx we have v(C) = ~(T~?™(C)). So the new measure 7 on
X defined by 3(C) = 2= (y(C) 4 -+ - + y(T~?"+1(C))) is T-invariant. Since
for each £ € %By we have y(n7H(E)) = (u x \) (7 1(E) x D%) = v(E), we
deduce that both measures v and 7 are in the fiber 7=1{v}.

Define an equivalence relation on X as follows; suppose =,z € X, say
x ~o o' if either xp = 2 or else Trnge = Thage, Toge = Thge = 1, and
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g, T € D. Denote the equivalence class containing = by Cy(z). Such
equivalence classes form a sub-partition of P(X™1). Let A be the o-algebra
generated by these equivalence classes. We show H5(T') > H,(T") as follows,
using a lemma which appears below;

Hy (1) = 5 Hy (1) 3
= o i, (T°7)
= o (o (X o (X2 )
= oy (Alo(X27) 4 5 Hy (o (X Do (X2 7) v A)
= o Hy (Al (XZ2) + o H, (0(X751)1A) by Lemma Edla)
> L (Al (XZ27) + 5 H (0(X751)1A)
> L H (Alo(X227) 4 5 H (0(X75)1A)
> o, (Alo(XZ27) + 5, (X2 (X227 v A)
= o (o (Xl (X2 )
=, (1)
— H,(T).

Lemma 3.4. Reusing previous notations, we have
(a) H, (o(X"D]o(XZ2YVA) = H, (o(X™,1)]A).
(b) H, (o(X" " A) > H, (o(X", )| A). Equality occurs if and only if

pland)
way

where a € D and A € P(A) is an equivalence class in which for each
x € A we have xyge =1 and xg € D.

(¢c) Hy (Alo(X-Z7Y) > H, (Alo(X=27).

by Lemma [B4I(b)

by Lemma [3.4)c)



Proof. By definition, for p € {u,~} we have

p(O; N A)

H, (o(X™ 1| A) = — Z p(Oi N Ag) log o(Ar)

where O; € P (X™.") and A, € P(A) (If p(O; N Ay) = 0 define p(O; N
Ag)log £ 3(2’4;") =0). Let x € Ay. If zgge # n or xg ¢ D then for every
0O; € P (X_m 1) we have either O, N A, = 0 or O; N A, = Aj, which both
imply p(O; N Ay) log% = 0. Let {A;,..., Ay} C P(A) be the set of

equivalence classes in which for x € A;, we have zyge = 7 and 2 € D. Then

p(O; N Ay)

H,(o (X" 1) A Zp (0: 1 Ay) log” v

There are exactly L disjoint sets O; € P (XT,;l) defined by blocks which
agree everywhere except on G, and form a partition of A. Let these sets be
denoted by O, ..., O where Oy ; = a; N Ay for each 1 <1 < L. It follows
that

oo (X DMA) = = 3 (O 1 A o %

(OéZ N Ak)
p(Ar)

(3.2)
= —Zp alﬂAk)log

ki

Let n > 1. By definition of ~, for each a € D, P € P (X rgnil) ), and
1 <k < M we have

YenPnAy) A(endy) 1
(PN A) v(A) L

It follows that
v(o; N Py N Ay)

H, (o (X2 o (Xt ) VA) = = 30 90 P Ay log

1,5,k

=log LY ~y(a; N Ay)
ik

v(P; N Ay)

=M, (U tXTy;l) |A)

9



(use the same argument we had before Equation (B.2)) to get the first equality

above). Then (a) follows from Lemma[B.2land the fact that ( ( X il) ))00 1

is an increasing sequence of o-algebras with \/ > | (X ~on. il) ) =0 (XZ27).

To show (b) note that

H, (o (X" 1) |A) = Zu Q; ﬂAk)log%
N A S AN a0 Ay
=2 2 T e
_ 1 p(ai N Ay)
‘;“(A’“’;w( )

where ¥(z) = —xlogz (¥(0) = 0) on the interval [0,1]. Since ¢(x) is a
strictly concave function it follows that H,(o(X™,1)|.A) attains its maximum
if and only if for each 1 < k < M and a € D we have

pu(an Ay)

wAy) L

Therefore

H, (o (X™1) [A) <log LY p(a; N Ay)

ki

=log LY y(a; N Ay)
ki
= H, (o (X7,") |A) .

with equality if and only if M =1/L for each « € D and 1 < k < M.

1(Ar)
We prove (c) by showing that
H,(Alo (XZ71)) = Hu(AJAZLT) (3-3)
where A7 = \/°2 T2 A (the choice of notation is intended to re-

mind the reader that A7 " is a sub-c-algebra of (X -7"')). The fact that
A~ C o(XZ2) implies

H,(AJAZZTY) > Hy(Alo(X=57)
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which will complete the proof.

Define an equivalence relation ~,, on X as follows; say x ~, 2’ provided
that for all —n <4 < —1 we either have xp, = x, or else Trnge = T ce,
Toce = Tpge = 1), and 7g,, T, € D. Denote the equivalence class containing

x by C,(z). Such equivalence classes form a sub-partition of P <X m-l )

(2n+1)m
and these equivalence classes generate the o-algebra A~7" “(on +1) =T2mAV
VT 2" A Let x € X, then o+ € E for some E € P(A gn}rl) )

Set K, = {-n < k < —1: wpqc = 1, g, € D}. There are exactly LKzl
disjoint blocks P, ..., Pk, of the partition P <X Tgnil ) which are the
same except having alternative «;’s in the same positions and they form a

partition of E. Let A € A. By definition of 7 for each 1 < j < L¥+l we have
YANP) _ LKh(ANE) _4(ANE) _ w(ANE)
V(F;) LKl (E) V(E) u(E)
It follows that

B, (Lalr (X)) = Ba (LabAT5L ) (3.4)

Let r € X, F € A7"' and ¢ € D% Then the two sided implication
®(z,() € F if and only if z € F implies that 1p o ®(z,() = 1p(z). Let
g be a bounded A~" !-measurable function. Since there is a sequence of
A~ !_measurable simple functions converging uniformly to g we deduce
that g o ®(x, () = g(z) and moreover,

Jatr=[adwxn@n=[ govipxn=[gdn @5

In particular if g = E, (1A\A:m_1) for some A € P(A) then we have
i, (Alo (X750, / Z (B, (1alo (X520)))
/X v (B (145 L,,)) & by @)

AeP(A)
/ IEM <1A|A (2n+1 )) du by (B3
X AeP(a)
Hy (AATG L,

11



Then LemmalB4(¢) follows from Lemma B2 and the fact that (a (X el ))O@

—(2n+1)m el

and (.A:g;}rl)m) __ are both increasing sequences with \/>” | o (X :{Qn;il)m

o (XZ%™) and VoL, AT L), = AZT O
Proof of Theorem (continued). Since p is an invariant measure of rel-
ative maximal entropy it follows that all of the inequalities in Equation
(B1I) are forced to be equalities. In particular, we have H, (0 (XT,;l) |A) =
H, (o (X™,") |A). Then Lemma B.Z4(b) implies that

SRS VA (3.6)

for each a € D and A € P(A) in which for each # € A we have xpgc = 7
and r¢ € D. Note that given a finite set G C Z, both configurations
A € By on G and n € PBx on IG® with pu(n N7~ 1(A)) > 0 are cho-
sen arbitrarily. By choosing different configurations and noting that A €
P(nHo(Ye) Vo(Xrage)) = P (r7H(o(Yr)) V 0(Xrnce)), Equation (3.6)
implies that for any configuration o of X occurring at G we have

Lz,0)

E (1o " (0(YR)) V 0(Xpnge)) (z) = { if @ extends zoge, za € 75 (Te())

0 otherwise.

where L, ) is the number of configurations of X occurring at G' which
extend zyge and project to g, (zq).

Now for t € Nlet RO = {—(m+1),...,m+t— 1}, and (R{),ez be
the partition of Z by translates of R® where R\ = R® ie. R = {(2n —
D(m+1),....,2n+ 1)(m +t) —1}. Let R© = R. Since (6 (Yzm))iey
and (0 (Xgpimnage)) oo are increasing sequences with \/;2jo(Yzn) = Ay and
ViZoo(Xpwnge) = 0(Xge) it follows from Levy’s Upward Theorem that

1

E(Lalm (#y)Vo(Xa)) (x) = {

if @ extends zpge, T € Ty (Tep())

0 otherwise.
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4 Degree of an infinite-to-one factor code

When 7 is a finite-to-one factor code from a SFT X to a sofic shift Y, there
is a uniform upper bound on the number of pre-images of points in Y, see
[16, Theorem 8.1.16]. The minimal number of m-pre-images of points in Y
is called the degree of the code and denoted by d.. Theorem [4.1] states that
when Y is irreducible then there are exactly d, points in the pre-image of a
typical point of Y.

Theorem 4.1. [16, Theorem 9.1.11] Let m : X — Y be a finite-to-one
factor code from a SFT X to an irreducible sofic shift Y. Then every doubly
transitive point of Y has exactly d, pre-images. If (X, Y, 7) is a factor triple
congugate to (X, Y, ) then d, = dx.

Definition 4.2. Blocks EV ... E® of length n are mutually separated if,
for each 0 <i<mn-—1, EZ-(l), cee E™ are all distinct.

2

Proposition 4.3. [1d, Proposition 9.1.9] Let 7 : X — Y be a finite-to-one
1-block factor code from a 1-step SFT to an irreducible sofic shift Y with a
magic symbol w, then we have d, = |r;'(w)|. Moreover, if V is a block of Y
which begins and ends with magic symbols then V' has exactly d,. pre-images.
These pre-images are mutually separated.

We will find a quantity analogous to the degree when 7 is an infinite-to-
one factor code. This will be done by developing the following equivalence
relation on X. Figure [Il illustrates Definition [£.4]

Definition 4.4. Suppose (X,Y, ) is a factor triple and x, 2’ € X. We say
there is a transition from x to x' and denote it by x — x’ if, for each n € Z,
there exists v € X so that

1. w(v) = w(x) = 7w(2'), and

n v = 2 for some i > n.

n —
2. 0" =2,

Write © - ' if the above conditions do not hold. We write x ~ z', and say
x and z’ are in the same transition equivalence class if xt — x’ and ¥’ — =x.
It is left to the reader to check that ~ is an equivalence relation. Denote the
set of transition equivalence classes in X over y € Y by €,(y). Sometimes
we denote € (y) by only € (y) when there is no ambiguity in understanding

13



Yy n 1

Figure 1: Transition from point x to z’

m. We say [x] — [2'] if v — &' (well-defined); use the notation [x] - [2']
otherwise.

The following fact is derived from Definition 4] immediately.

Fact 4.5. Let m: X — Y be a I1-block factor code from a 1-step SFT X to
a sofic shift Y, andy € Y. Let x, 2’ € 7~ (y) with x,, = «, where (a;)ien is
a strictly increasing sequence in Z. Then we have x ~ 2.

We mention that Fact gives an obvious case when two points lie in
the same equivalence class. Example illustrates a more complicated case
when two points are equivalent without having a common symbol at the same
time.

Example 4.6. Let X7 C {a,b}? be a SFT with F = {bb}. Letm: X5 —
{0}%, as shown by the labeled graph in Figure 2.

— T
a b D
v
0 0
Figure 2: Graph for Example

Observe that points x = ...abababa ... and «’ = ...bababab... (where *
indicates the 0-th position) have no common symbol at the same time but are
equivalent. To see there is a transition from x to x’, let n € Z and consider
the point v where

T, 1<n
v, =<b i=n+1
x, i>n+ 1.
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It is clear that v holds the conditions in Definition[{.4 That 2’ — x is shown
similarly.

Theorem [.7] shows that every point of Y has a finite number of transition
equivalence classes. Later in Theorem [£.20 we show that this number is
constant over every right transitive point of Y.

Theorem 4.7. Let m : X — Y be a 1-block factor code from a 1-step SFT
X to a sofic shift Y. Then |€(y)| < oo for eachy € Y.

Proof. Let y € Y. Since there are only finitely many symbols in A(Y") there
is a symbol w € A(Y') and a strictly increasing sequence of integers (a;);en
such that y,, = w for each j € N. We show that |€(y)| < |7, (w)].

Let |7, (w)| = d and suppose 7~ !(y) contains d + 1 distinct equivalence
classes C1,...,Cqyq. Form a set A = {xy,..., 4.1} where z; is an arbitrary
point of C;. Since 7' (w) contains exactly d symbols, it follows that for each
J € N there are at least two points in A with the same a;th coordinate. The
Pigeonhole Principle implies that there is a subsequence (by)gen of (a;)jen
and at least two points x and 2’ in A with z;, = xj,_for each k € N. Fact
implies that = ~ /. This contradicts the assumption that x and 2’ are in
different equivalence classes. O

Corollary 8 is derived directly from the proof of Theorem 1

Corollary 4.8. Let m: X — Y be a 1-block factor code from a 1-step SFT
X to a sofic shift Y. Let v be a measure on'Y and w be a symbol of Y with
v([w]) > 0. Let y be a right transitive point of Y. Then | (y)| < |7, (w)].

Definition 4.9. Let 7 : X — Y be a 1-block factor code from a 1-step SF'T
X to a sofic shift Y. Lety € Y and n € Z. The relative follower set of
i € 7, (yn), denoted by F (i, Y1), s the set of equivalence classes in € (y)
containing a point whose nth coordinate s i; i.e.,

F(i,ypsq) = {C € €(y): there is x € C with x,, = i}.
Say i € A(X) belongs to a transition equivalence class C' at time n, and
denote it by 1 € S,(C), if Z(i,yp0.) = {D € €(y) : C — D}. Say i is
transient at time n if there is no C' € € (y) for which i € S,,(C).

Example .10 clarifies the definition above.
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Example 4.10. Consider the directed labeled graph in Figure[d which presents
a I1-block factor code @ : X — Y where X C {a, b, c, d, e, f, g}% and

Y C {0, 1}2. Let y be the point -..0101010--- in Y. By Definition
there are 3 distinct classes in € (y) as follows:

d/—‘\f
a . C
o 1

Figure 3: Graph for Example

1. Class Cy = [11] = {x1} where x; = - - -bababab - - - .

2. Class Cy = [x3] where o € X is a point in 7 *(y) which does not
contain symbols e or g but contains only d’s and f’s from some time
onwards; for example: xo = ---babcdfd - - -.

3. Class Cy = [z3] where z3 € X is a point in 7 '(y) which does not
contain symbols d or f but contains only e’s and g’s from some time
onwards; for example: x3 = -- -egégege e

Clearly C; — Cy and Cy — Cs, but not vice versa. Cy - C3, C3 - Cs, and
symbol ¢ is transient at any time.

Definition 4.11. Let (X,Y,m) be a factor triple. The minimal number of
transition equivalence classes over points of Y is called the class degree of
and denoted by c;.

Theorem [A.12] shows that conjugate factor triples have the same class
degree.

Theorem 4.12. Let (X, Y, 7) and (X, Y, %) be conjugate factor triples. Then
we have ¢; = Cx.

Proof. By Proposition ] without loss of generality, we may assume X
is a l-step SFT and 7 is a 1-block factor code. Let ¢ : X — X be a
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conjugacy induced by ¢ so that ¢(z); = @sp(2[i—m,i+q) for some m,t € N,
and ¢ : Y — Y be a conjugacy from Y to Y. Let y € Y and u,v € 71 (y).
Since 7 o ¢ = 1 o7 then ¢(u),p(v) € 71 (¢(y)). We show that there is a
transition from u to v if and only if there is a transition from ¢(u) to ¢(v).
Let n € Z, then u — v implies that there is x € 7=!(y) where

T; =
! v; ifi<j<oo

for some ¢ >t +n. Clearly ¢(x) € 7~ 1(x)(y)). Moreover, we have

o) = {gb(v)j ifi+m<j<oo.

Having an arbitrary n € Z implies that ¢(u) — ¢(v), and since ¢ is invertible
the other implication follows similarly. This shows that C' is a transition
equivalence class in € (y) if and only if ¢(C) is a transition equivalence class
in €z (v (y)). It also shows that for every Cy,Cy € €, (y) we have C7; — Cy if
and only if ¢(Cy) — ¢(C3y) which implies the equality of ¢, and cz. O

Theorem [.T13 shows that in the case of a finite-to-one factor code the
degree of the code and the class degree of the code are the same.

Theorem 4.13. Let 7 : X — Y be a finite-to-one factor code from a SFT
to an irreducible sofic shift Y. Then ¢, = d.

Proof. Theorem 1] and Theorem imply that the degree of a code and
a class degree of a code are both invariant under conjugacy. So by using
Proposition 2.1, without loss of generality, we may assume X is a 1-step
SFT and 7 is a 1-block factor code with a magic symbol w. Let y be a
right transitive point of Y. There is a strictly increasing sequence of integers
(ai)ien such that y,, = w. Proposition B3 implies that for each i € N, y[q, 4,]
has exactly d, pre-images which are mutually separated. It follows that for
each z,2’ € n7'(y) with z,, = 2/, we must have [y, o) = Ty, 00) Which
implies x ~ /. Since y,, = w has exactly d, pre-images we conclude that
there are exactly d, transition equivalence classes over y. O

We show when 7 : X — Y is a factor code from a SF'T X to an irreducible
sofic shift Y then there are exactly ¢, transition equivalence classes over a
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typical point of Y. In order to show this, we introduce another quantity c;
in Definition [.14], defined concretely in terms of blocks. Proposition 2.1l and
Theorem allow us to focus only on a triple (X, Y, m) where X is a 1-step
SFT and 7 is a 1-block factor code with a magic symbol.

Definition 4.14. Let m : X — Y be a 1-block factor code from a 1-step
SFT X to a sofic shift Y with a magic symbol. Let W be a Y -block of
length p + 1 which begins and ends with magic symbols. Let n be a positive
integer less than p, and M be a subset of 7, (W,). We say U € n,' (W)
is routable through a € M at time n if there is a block U € 7 (W) with
Uy = U, U, = a, and U, = U,. A triple (W,n, M) is called a transition
block of m if every block in 7rs_bl(W) 1s routable through a symbol of M at
time n. The cardinality of the set M 1is called the depth of the transition
block (W,n, M).

While Definition T4 seems complicated, Figure Ml illustrates it more
clearly.

Figure 4: (W,n, M) is a transition block with M = {a;,as}. The blocks
U, V, K € 7 (W) are routable through members of M at time n via blocks
U, V', K e€ny (W).
Definition 4.15. Reusing notations of Definition[{.14), define

e =min{|M|: (W,n, M) is a transition block of the factor code m}.

A minimal transition block of a 1-block factor code m from a 1-step SFT to a
sofic shift is a transition block of depth c.
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Example 4.16. In figure[d, we display an example of a labeled graph which
defines an infinite-to-one 1-block factor code m. We see that (1001, 2, {b})
s a minimal transition block of m of depth 1. For example, observe that block

0

I

~ aw c

O

Figure 5: Graph for Example [4.16
U = daac is routable through b at time 2 by considering U' = dabc.

We need to develop some lemmas to prove Theorem [4.20] below.

Lemma 4.17. Let 7: X — Y be a 1-block factor code from a 1-step SFT X
to a sofic shift Y. Lety € Y and x € 7' (y). There is an integer m < oo
such that for each n > m the symbol x, is not transient. In fact, m can be
found in such a way that for each n > m, x, belongs to the class [x] at time
n, i.e., , € Sy([z]).

Proof. Consider C' € €(y) with [x] - C. It follows that there exists i < oo
such that for z € 77! (y) if z; = z; then 2z ¢ C. Denote the smallest such i
by i¢ and let m = max{i® : C € €(y), [r] » C} (m < oo since |€(y)| <
o0). Let n > m. The above shows that if C' € ¥(y) and [z] - C then
C & F(Tn, Yjn+1,00))- On the other hand if C' € €'(y) satisfies [z] — C let 2
be a point in C with z, = x,, therefore C' € % (2, Ypn+1,00)). Hence we have
Tn € Sp([z]). We mention that m can be —oo. O

Lemma 4.18. Let 7 : X — Y be a 1-block factor code from a 1-step SFT X
to a sofic shift Y. Let y € Y. There is an integer m < oo such that for each
n >m and C € €(y) there is a symbol i € 7' (y,) with i € S,(C).

Proof. Let €(y) = {Cy,...,C4} for some d < co. Let A = {zW, ... 2@}
be a set containing an arbitrary point () € C; for each C; € €(y). By
Lemma [.17] there is a finite ne, € Z such that for each n > ng, we have

aP) e Sn(C;). Let m = max{n¢,: 1 < i < d}. Then m < oo and for each
n > m and C; we have ¥ € Sn(Cy). O
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Proposition 4.19. Let 7 : X — Y be a 1-block factor code from a 1-step
SFT X to a sofic shift Y. Let v be an invariant measure on Y, then

v({y € Y:VC € €(y),Vn € Z there is i € my)' (y,) with i € S,(C)}) = 1.

Proof. Let v be an invariant measure on Y and y € Y. Let m(y) < oo be
the infimum of the set of m’s with the properties given in the statement of
Lemma [LI8 We show v ({y € Y: m(y) = —oc0}) = 1. Note that C' € €(y)
if and only if T(C) € €(T(y)). This implies that m(T(y)) = m(y) — 1.
For k < oo let Ay = {y € Y : m(y) = k} so that T(A) = Ag_1. Since v
is T-invariant it follows that v(Ag) = 0. Therefore m(y) = —oo for v-a.e.
yey. O

Theorem 4.20. Let 7 : X — Y be a factor code from a SFT X to an
wrreducible sofic shift Y. There are exactly ¢, transition equivalence classes
over every right transitive point of Y.

Proof. First we show that |¢'(y)| > ¢t for every y € Y. This implies that
¢ = inf{|€(y)|: y € Y} > . Then we prove |€(y)| < ¢t when y € Y is
right transitive. This implies ¢, < ¢f. Then it follows that for each right
transitive y € Y we have |€(y)| = & = ¢,.

By Theorem [£.12] ¢, is invariant under conjugacy. So by Proposition [2.1]
without loss of generality, we may assume X is a 1l-step SFT, and 7 is a
1-block factor code with a magic symbol.

We prove |€(y)| > ¢ by showing that if h = |€(y)| < ¢ then there
is a transition block of depth h occurring in y. This gives a contradiction
to the assumption that a minimal transition block of the code 7 is of depth
ct. We find such a transition block of y in the following 4 stages; suppose
€ (y) = {C1,...,C}. Choose a finite integer ng satisfying properties given
in the statement of Lemma such that y,, is a magic symbol.

Stage 1. We claim there is n; € [ng, 00) such that for each x € 77(y),
x; is not transient for some ny < ¢ < n;. Suppose there is no such n;. It
follows that for each j > ng there is 2) € 7=1(y) such that z is transient
for all ng <1 < j. Consider the sequence (z()) jez, and let x be the limit of
a convergent subsequence of it. Clearly x € 7~ 1(y). However, z; is transient
for each [ > ng; contradicting Lemma ETT

Stage 2. We claim there is ny € [ny,00) and a set of symbols M’ =
{ai,...,ap} with a. € S,,,(C;) such that for each i € S,,,(C,) there is a block
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U € 7rs_bl (YnyYny+1 - - - Yns—1Yn,) Which begins with ¢ and ends with a.. See
Figure 6. Let C, € €(y) and z¢ € C,. For each i € S,,(C.) (non-empty by

o ni n2

Figure 6: An example illustrating Stage 2. €' (y) = {C1, Cs, Cs}, 11, 1o, i3 €
Sn1(01)7 14 € Snl(Cg), 15, 16 € Snl(Cg), and M’ = {al, az, CL3}.

the choice of ng) by the definition of a transition equivalence class, there is a
point z* € C, with z, = i, and 2 is matching 2 from some time k' € [ny, c0).
Let k¢ = max{k' : i € S,,(Ce)} < o0 and ny = max{k®: C, € €(y)} < oo.
Rename xj, for each C. € €(y) as a., and let M’ = {ay, ..., a5}

Stage 3. We claim there is n3 € [ng,00) such that for each = € 7 '(y)
there is @’ € 7~ !(y) so that 2. = x, for every r € (—o0, ng] U [n3, 00), and
xl, € M'. See Figure 7. Let x € n7'(y). By stage 1 there is ng <t < my
such that z; is not transient; i.e., x; € S;(C.) for some C, € € (y). It
follows that there is a point u € C, with u; = z;. Then the new block
e Dy e Tyl - . Uy, belongs to £ (X) (X is a 1-step SFT) and maps to
<o Yt -Yn,- Moreover, by Stage 2 there is a path starting at u,, € S,,(Ce)
ending at a., say Up,Vny+1 - - - Uny—1@e MAPPINg to Yy, ... Yn,. Connect these
two paths at w,, to get ... &,y .. TyUpyr - UpyVnyg1 - - - Upy—10e 0 Z(X). Ob-
serve that having z, € S;(C,) implies that x must belong to a class Cy € € (y)
with C. — C. On the other hand having a. € S5,,(C.) implies that there
is a point b € Ce With b_oo ny) = -+ Ty o Tglyg - o U Vpy41 - - - Upy—10e
which matches x from some time j onwards for some ny, < j < oco. Let
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Un) ni ng ns

Figure 7: Graph for Stage 3. M’ = {ay, as, az}. z,2’ € 77 (y), .. = z, for
each r € (—o0,n0] U [n3,00), and x;,, € M'. Same for z, 2’ and o, 0.

n, = min{ny < j < oo : 32’ € 77 (y) with 2/, = =z, for all r € (—o0,ny] U
[j,00), @, = a.} < 0o. We claim that there is n® < oo such that for each
r € 7 '(y) with z; € S;(C,) for some ny < t < ny, there exists a point
2’ € m7(y) with 2] = x, for each r € (00, ng] U [n°, 00), and 2, = a.. Then

letting ng = max{n°®: C, € €(y)} < oo will complete the proof of Stage 3.

Suppose, to derive a contradiction, that there does not exist such n°. It
follows that there is a sequence () with xﬁf’ € S, (C,) for some ng < t; < ny,
such that lim;_,,, n,1 = co. Let 2* be the limit of a convergent subsequence
of . Clearly x* € 7~'(y). However, ng. = oo since if n,« = g < 0o then
for every point k in the given subsequence of #() with d(z* k) < 1/29 we
have ny = g which contradicts the assumption that lim; ,., n,0 = co.

Stage 4. Let ny = min{i > ns3 : y; is a magic symbol}. Form the block
V = Yny---Yn,- We show that V is a transition block of depth h. Let
U € 7,(V). By Proposition there is @ € 7 (y) with @}, g = U.
Then by Stages 1, 2, and 3 there is a point 2’ € 7~ !(y) with z/. = z, for
each r € (—o0,n9| U [n3,00), and x;,, € M'. Having z, = wn,, 7;, € M,

x, = x,, and st(z’[ = V simply means that U = x[,,, »,) is routable

n no, nal )

through a symbol of M’ at time ny. Since U € ;' (V) is arbitrary it follows
that V' is a minimal transition block.
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Now we apply the same method we used in the proof of Theorem [4.7]
to show that if y is a right transitive point of Y then |€'(y)| < ¢f. Let
(W,n, M) with |W| = p+ 1 be a minimal transition block of the factor
code m. Since y is a right transitive point there is a sequence of integers
(tm)men With tm,,41 > p + t,, such that v, ... Yy, = W for each m € N.
Suppose € (y) contains more than ¢! transition equivalence classes and A be
a set containing one point from each of these equivalence classes. By the
definition of minimal transition block, for each u € A there exists a point
r € (y, [W]) with z, = wy,,, Tpis,, € M, and 2,44, = Upys,,. Denote
such a point by 2™ . We construct a new point « which agrees with u
everywhere except at positions t,,, ..., s + t,, where it agrees with z(*™ for
each m € N. In other words we have

(u,m)

€T, ift, <i<s+t,.

2

, {ul if —co<i<ty, s+it,<i<tni

The assumption that X is a 1-step SFT guarantees that u’ belongs to X,
and Fact implies that u’ ~ u. For each element u of A construct such
a point v’ and collect them in a set denoted by A’. Since |M| = ¢ < |4/
then for each m € N there must be at least two points in A’ that agree in
the (n + t,,)th position. It follows that there exists a subsequence (k;)en
of (ty)men and two distinct points u/,v" € A’ such that for each | € N we
have u, . = v .. Then by Fact we have v’ ~ v' and consequently
u ~ v, contrary to the fact that the points u and v are chosen from distinct
transition equivalence classes. O

5 Bounding the number of ergodic measures
of relative maximal entropy

In Section Bl we mentioned that although every 1-dimensional irreducible SF'T
has a unique ergodic measure (Parry measure) of maximal entropy, there
can be more than one ergodic measure of relative maximal entropy over an
ergodic measure; i.e., given a factor triple (X,Y,7) and a fully supported
ergodic measure v on Y, there can exist more than one ergodic measure on
X that projects to v under m and have maximal entropy among measures
in the fiber 7=1{v}, see [20, Example 3.3]. In this section we show that the
number of such measures can be no more than the class degree of 7.
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Since entropy is a conjugacy invariant the following observation follows
immediately;

Observation 5.1. Let (X,Y,n) and (X,Y,7) be conjugate factor triples.
Let v be an ergodic measure on'Y and U be its corresponding ergodic measure
on'Y. The number of ergodic measures of relative mazimal entropy over v
is the same as the number of ergodic measures of relative mazimal entropy
over D.

In 2003, Petersen, Quas, and Shin [20] found an upper bound on the
number of measures of relative maximal entropy;

Theorem 5.2. [20, Corollary 1] Let m : X — Y be a 1-block code from a
1-step SFT X to a sofic shift Y. Let v be a fully supported ergodic measure
onY and N(r) = min{r_'(b): b € A(Y)}. The number of ergodic measures
of maximal entropy over v is at most N(m).

This bound suffers from being invariant under conjugacy. For example,
the full 2-shift and any higher block presentation of it give different bounds
on the number of ergodic measures of maximal entropy which map to the
trivial measure on the full 1-shift.

One possibility to avoid having a non-invariant upper bound is to take the
minimum of the bound in [20] over all conjugate factor triples with 1-block
factor codes. This even improves the original bound. However knowing that
two SFTs are conjugate is not easy. Williams’ Classification Theorem [30]
gives an algebraic criterion for the conjugacy of shifts of finite type: two shifts
of finite type X4 and X are conjugate if and only if their transition matrices
A and B are strong shift equivalent. However, there is no known general
algorithm for deciding whether two matrices are strong shift equivalent. Kim
and Roush [I1] showed some theoretical procedures that will decide whether
or not two matrices are shift equivalent, but the question of whether shift
equivalence implies strong shift equivalence, known as the “Shift Equivalence
Problem” or “Williams’ Conjecture” was open for more than twenty years.
In 1999 Kim and Roush [13] solved the Shift Equivalence Problem in the
negative by constructing two irreducible SF'Ts that are shift equivalent but
not strong shift equivalent. Earlier they had found a reducible example [12].

Here we show that the class degree of a factor code is an upper bound on
the number of measures of relative maximal entropy over a fully supported
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ergodic measure. Theorem above verifies that this bound is invariant
under conjugacy and Proposition below shows that it beats the bound
mentioned above obtained by minimizing the bound in [20] over conjugate
factor triples.

Proposition 5.3. Let m: X — Y be a 1-block factor code from a SFT X to
a sofic shift Y. Then ¢, < min{N(7): (X,Y,n) ~ (X,Y,7), 7 is 1-block}.
Equality holds if m is 1-block and finite-to-one.

Proof. Let d = min{N(7): (X,Y,7) ~ (X,Y,7), 7 is 1-block} occur at a
factor triple (X,Y,7) (i.e., N(#) = d) and min{7_'(b): b € A(Y)} occur
at a symbol b € A(Y/) Let v be a fully supported ergodic measure on Y.
Note that the v’s corresponding measure on Y is also fully supported and
ergodic, so with respect to this measure the block [b] has a positive measure
and almost every point of Y is right transitive. Let y be a right transitive
point of Y. There is a strictly increasing sequence of integers (a;)ien with
Yo, = b. Corollary implies that |€(y)| < |7, (b)] = d and therefore
cz = |€(y)| < d. The first part of the Proposition follows from Theorem [£.12]
which states that ¢, = ¢;.

Now suppose m : X — Y is 1-block and finite-to-one. Since the class
degree is invariant under conjugacy, without loss of generality, we may assume
7 has a magic symbol denoted by w (Proposition 2.1J). Since 7 is finite-to-
one Proposition implies that |7,'(w)| = d;. Then by the definition
of a magic symbol and the fact that d, is invariant under conjugacy we
have min{ N (7): (X,Y,7) ~ (X,Y,7), 7 is 1-block} = |7, (w)]. Since by

Theorem dr = ¢, it follows that min{N(7): (X,Y,7) ~ (X,Y,7)} =
Cr. O

Note that the equality in Proposition does not always hold. For
example, consider the trivial factor code 7 : {0,1}% — {0}%2. Then ¢, = 1;

however, if (X, {0}2, 7?) is a factor triple conjugate to ({0,1}%,{0}%, x) then
A(X) must be strictly greater than 1 and therefore N (7) > 1.

Definition 5.4. Let m : X — Y be a 1-block factor code from a SFT X
to a sofic shift Y and v be an ergodic measure on Y. Let jy,..., 1, be

invariant measures in the fiber 7=1{v}. The relatively independent joining
=1 Q- Qy by of p1,..., 1y over v is defined as follows: if Ay,..., A,
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are measurable subsets of X then

iAo x 4 = [ T[Bulia
Y i1

Writing p; for the projection X™ — X onto the ¢’th coordinate, it follows
from the definition that for ji-almost every & € X™, 7(p;(Z)) is independent
of 7.

We will use Theorem below which is the main theorem from [20] to
prove a stronger theorem (Theorem [5.6]).

Theorem 5.5. [20, Theorem 1] Let m : X — Y be a 1-block factor code
from a 1-step SFT X to a sofic shift Y. Let v be an ergodic measure on 'Y,
and two distinct ergodic measures p1 and py be measures of relative mazximal
entropy over v. Then (1 ® po){(u,v) € X x X: ug =109} = 0.

7 By) o dv.

Theorem 5.6. Let (X, Y, ) be a factor triple. Let v be an ergodic measure
on'Y, and two distinct measures iy and po be ergodic measures of relative
mazimal entropy over v. Then (p1 @ pa){(u,v) € X x X:u~v} =0.

Proof. First we show that, without loss of generality, we may assume X is
a 1-step SF'T and 7 is a 1-block factor code with a magic symbol. Suppose
(X,Y,7) is a factor triple conjugate to (X,Y,n) and ¢ : X — X is a conju-
gacy from X to X. By Theorem E12 we have (¢ x ¢){(u,v) € X x X: u ~
v} = {(o(u),0(v)) € X x X: ¢(u) ~ ¢(v)}. Moreover, the correspond-
ing measure to 1 ® pe under the conjugacy ¢ x ¢ : X x X — X x X is
[11 ® fiy where fi; and fip are corresponding measures to pq and pg, corre-
spondingly, under ¢. It follows that (u1 ® po){(u,v) € X x X:u ~ v} =
(i1 ® fi2){(6(u), (v)) € X x X : ¢(u) ~ ¢(v)}. Therefore by Proposition 211
we may assume X is a l-step SFT and 7 is a 1-block factor code with a
magic symbol.

Let (W,n, M) be a minimal transition block of the factor code 7 with
W|=s+1. Letu e X, 1 €Z, and a € M. We say u potentially passes
through a at time 7 if the block wy_p iys—n) € 7T8_b1(W) and it is routable

through the symbol a (see Definition B.14). Let v € X, and write u ~; v if
u ~ v and both u and v potentially pass through a at time ¢ (we mention

that the relation = is not in general an equivalence relation on X ). We have

{(u,v) :u~v} = U U{(u,v): uzg*lv}

aceM i€Z
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Suppose (p1 @ p2){(u,v) : u ~ v} > 0. There must be ¢ € Z and a symbol
a € M such that

(11 ® ) { (1, 0): w % 0} > 0.

By applying (7' x T)~%, without loss of generality, we may assume i = 0.
Considering only blocks of length s+ 1, there must be blocks A, B € 7' (W)
such that

a

(,Ul ® ,UQ){(U,’U): U Ry Uy U[—p,s—n] = A, U[—n, s—n] = B} > 0. (5.1)

Both A and B are routable through a at time n; i.e., there are blocks A’, B' €
7 (W) with A} = Ay, B, = By, A, = B!, = a, A, = A,, and B, = B,.
Let G C Z be the set {—n,...,—n + s}. Basic properties of conditional
expectation imply that

By (Laln™ (By)) = E (B (14|77 (By) V 0(Xce)) [77H(By))
=E (Eul (17,1[14/} |7T_1(<@y) V O'(XGc)) |7T_1(<@y)) (52)
=E,, (1|7 (%)),
where the second equality follows from Theorem 3.3l Similarly we have
EMQ(]_[B”?T_lﬁy) = Euz(l[B/”ﬂ'_l@y). (53)

Let D = {(u,v): U RV, Ul—p,s—n] = A, Vp,s-n] = B}. Since D C _,[A] x
_n[B] we have

(D) < (11 ® pa)([A] x [B])
B /YEM (1[/4} |7T_1'%Y>EM2(1[B} ‘ﬂ-_l'%y) on tdy

= / E, (1|7 By )E,, (L gy |7 By ) o n ™' dv using(5.2) and (5.3)
Y

= (11 ® p2)([A'] x [B])
=0

where the last equality follows from Theorem since A/, = B, = a. This
contradicts Equation (5.1]). O

Theorem 5.7. Let (X,Y,7) be a factor triple and v be a fully supported
ergodic measure on Y . The number of ergodic measures of relative maximal
entropy over v 1S at most c;.
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Proof. By Observation [5.I], the number of ergodic measures of relative max-
imal entropy over v is invariant under conjugacy. Therefore using Proposi-
tion 2.T], without loss of generality, we may assume X is a 1-step SF'T and 7
is a 1-block factor code with a magic symbol. Suppose, for a contradiction,
that there are n > ¢, ergodic measures py,..., i, on X of relative maxi-
mal entropy over v. Form the relatively independent joining £ on X™ of the
measures [iy, ..., [,. oince v is a fully supported ergodic measure on Y it
follows that for fi-a.e. & € X", m(p;(%)) (which is independent of 7), is a right
transitive point of Y. Then the assumption n > ¢, implies that for ji-a.e.
T = (x1,...,2,) € X" there are distinct 7, j such that p;(Z) ~ p;(2); i.e.,

| =@, m)m~a)) =1

1<i<j<n
At least one of the set S;; = {(z1,...,2,): ; ~ x;} must have positive
ji-measure. It follows that
0 < A(Siy)

=a({(z1,...,2), T ~x;})
= (s ® pi){(w,v): u ~ v}
This contradicts Theorem [5.6 0

6 Open Questions

Let (X, T') be a one-sided topologically mixing shift of finite type. An invari-
ant measure p on X is a Gibbs measure corresponding to f € C(X) if there
are constants C7, Cy > 0 and P > 0 such that

,U([l'ofl .. .In_l])
exp (—Pn + (Suf)(z))

for every € X and n > 1, where (S,f)(x) = Sp—g f(T*(x)).

Walters [28, 29] introduces a class Bow(X,T') of functions that contains
the functions with summable variation, all of which have unique equilibrium
states. Let

var,(f) =sup{|f(z) — f(y)|: z, ye X, x; =y; forall0 <i<n—1}.
Then Bow(X,T) = {f € C(X): sup,>, var, (S, f) < oo}.

<

1 =
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Theorem 6.1. [28, Theorem 2.16] Let f € Bow(X,T). Then f has a unique
equilibrium state p which is a Gibbs measure.

The relative version of this result is an open question. We make the

following conjecture;

Conjecture 6.2. Let (X,Y, ) be a factor triple and v be a fully supported
ergodic measure on 'Y . The number of ergodic measures of maximal pressure
in the fiber m={v} is at most c,.
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