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Class Degree and Relative Maximal Entropy

Mahsa Allahbakhshi
Anthony Quas

Abstract

Given a factor code π from a shift of finite type X onto an irre-

ducible sofic shift Y , and a fully supported ergodic measure ν on Y ,

we give an explicit upper bound on the number of ergodic measures

on X which project to ν and have maximal entropy among all mea-

sures in the fiber π
−1{ν}. This bound is invariant under conjugacy.

We relate this to an important construction for finite-to-one symbolic

factor maps.

1 Introduction

It is a well-known result that a 1-dimensional irreducible shift of finite type
on a finite alphabet has a unique measure of maximal entropy, the so-called
Parry measure [18]. If X̃ is a shift of finite type conjugate to X under a
conjugacy φ : X → X̃, then the image of the Parry measure on X under φ is
also the Parry measure on X̃ of the same entropy. In contrast, we consider
the relative case in which one is given a factor map π : X → Y from a
shift of finite type X to a sofic shift Y , and a measure ν on Y . In this case
measures on X in the fiber π−1{ν} having maximal entropy in the fiber,
so-called measures of relative maximal entropy, are not well understood.

Measures of relative maximal entropy appear frequently in different ar-
eas of Mathematics. One of the applications is providing some techniques
to compute Hausdorff dimension. This reveals the connections of measures
of relative maximal entropy with functions of Markov chains [1, 2, 3, 17],
measures that maximize a weighted entropy functional [6, 25], the theory of
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pressure and equilibrium states [9, 10, 22], relative pressure and relative equi-
librium states [14, 15, 27], and compensation functions [2, 27]. Other uses of
such measures arise from their application in the mathematics of information
transfer [19] and information-compressing channels [17].

The connection between measures of relative maximal entropy and com-
putation of Hausdorff dimension is that rather than calculating the Hausdorff
dimension of a set directly, one instead attempts to maximize the Hausdorff
dimension of a measure supported on the set. Let f : M → M be an ex-
panding C2-diffeomorphism on a connected compact Riemannian manifold
M . Extending earlier results of Ruelle [23], Furstenberg [5], Hofbauer [8],
and Raith [21], Gatzouras and Peres show that if f ∈ C1 is conformal then
any compact f -invariant set K ⊆ M on which f is expanding, supports an
ergodic measure of the same Hausdorff dimension as K (measure of “full
Hausdorff dimension” for K) [7].

The question on measures of full Hausdorff dimension where f is non-
conformal is not, however, solved in the general case. Using the Ledrappier-
Young formula [15], Gatzouras and Peres translated the problem on seeking
measures of full Hausdorff dimension to a problem in symbolic dynamics [7]:
Let π : X → Y be a factor code from a shift of finite type X to a sofic shift
Y . Fix α > 0. Is there a unique ergodic measure µ on X which maximizes
the weighted entropy functional defined by h(µ) + αh(πµ)?

Shin approaches this problem in [25] using what is known about images
of Markov measures under factor codes (functions of Markov chains [1] or
metrically sofic measures [17]). To understand when a Markov measure on Y
has a Markov measure in its pre-images on X , Boyle and Tuncel introduced
the idea of a compensation function [2], which is developed further by Walters
[27]: Given a factor code π : X → Y from a shift space X to a shift space
Y , F ∈ C(X) is a compensation function for π if and only if sup{h(µ) +
∫

F dµ : µ ∈ π−1{ν}} = h(ν) for all ν ∈ M(Y ), where M(Y ) stands for the
set of invariant measures on Y .

For F ∈ C(X) the topological pressure P (F ) is given by P (F ) = sup{h(µ)+
∫

F dµ : µ ∈M(X)} and a measure µ ∈M(X) is an equilibrium state for F if
P (F ) = h(µ) +

∫

F dµ. It is shown by Shin that if there is a saturated com-

pensation function G ◦ π, then for any α > 0 the set of all invariant measures
µ which maximize the weighted entropy functional is the set of equilibrium
states for the function (α/(α + 1))G ◦ π [25].
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Motivated by Shin’s result, Yayama in [31] studies the uniqueness of an
equilibrium state of a saturated compensation function to discuss the mea-
sures of full Hausdorff dimension for a compact invariant set K of an expand-
ing nonconformal map given by a diagonal matrix. She proves the uniqueness
of an equilibrium state of some saturated compensation functions when a fac-
tor code π : X → Y has a “singleton clump” (some symbol in the alphabet
of Y has only one pre-image in the alphabet of X) using a theorem proved
by Petersen, Quas, and Shin [20]: when X is a 1-step SFT, and π : X → Y is
a 1-block factor map, then the minimum number of pre-images of a symbol
b as b runs over the symbols in the alphabet of Y is an upper bound on the
number of measures of relative maximal entropy. This number was the best
known bound for the number of measures of relative maximal entropy. How-
ever, it suffers from not being invariant under conjugacy while the number of
ergodic measures of relative maximal entropy is invariant under conjugacy.
To avoid this issue one possibility is to take the minimum of this bound over
all irreducible shifts of finite type X̃ which are conjugate to X . This obvi-
ously improves the original bound but is very hard to compute whether two
shifts of finite type are conjugate, see [12, 13].

In this work we find a more satisfactory conjugacy-invariant upper bound
defined intrinsically to the shift of finite type. We define an equivalence
relation on the set of pre-images of a point y ∈ Y and study the number,
N(y), of equivalence classes of pre-images of y. We show that for a.e. y ∈ Y
we have N(y) = min{N(z) : z ∈ Y } and the minimum number of such
equivalence classes is an upper bound on the number of measures of relative
maximal entropy.

2 Background

Throughout the paper, the triple (X, Y, π) is called a factor triple when π :
X → Y is a factor code (onto and shift-commuting map) from a shift of
finite type (SFT) X on a finite alphabet to a sofic shift Y . The alphabet of
a shift space X is denoted by A(X) and the σ-algebra on X generated by
measurable rectangles is denoted by BX . The set of all n-blocks that occur
in points of X is denoted by Bn(X), and the language of X is the collection
L (X) =

⋃∞
n=0 Bn(X). Let x ∈ X and G ⊆ Z, then the configuration which

occurs in x on G is denoted by xG. If G = {i, . . . , j} is a connected subset of
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Z we sometimes denote xG by x[i,j]. By recoding if necessary, we may assume
thatX is a 1-step SFT and π is a 1-block code, so that the triple (X, Y, π) can
be described by a directed labeled graph. We say two factor triples (X, Y, π)
and (X̃, Ỹ , π̃) are conjugate, and denote it by (X, Y, π) ∼ (X̃, Ỹ , π̃), if X̃ is
conjugate to X under a conjugacy φ, Ỹ is conjugate to Y under a conjugacy
ψ, and π ◦ φ = ψ ◦ π̃. Let (X, Y, π) be a factor triple where π is a 1-block
factor code induced by the map πsb : A(X) → A(Y ) (sb stands for sliding
block). The map πsb naturally extends to blocks in Bn(X) for each n ∈ N.
Above every Y -block W of length n there is a set of X-blocks W ′ of length
n which are sent to W by πsb; i.e., πsb(W

′) = W . Given 0 ≤ i ≤ n− 1, set

d(W, i) = |{a ∈ A(X) : ∃W ′ with πsb(W
′) = W, W ′

i = a}|,

and let
d∗π = min{d(W, i) : W ∈ L (Y ), 0 ≤ i ≤ |W | − 1}.

A magic block is a block W such that d(W, i) = d∗π for some 0 ≤ i ≤ |W | − 1.
Such an index i is called a magic coordinate of W . A factor code π has a
magic symbol if there is a magic word of π of length 1.

Proposition 2.1. Let (X, Y, π) be a factor triple. There is a factor triple
(X̃, Ỹ , π̃) conjugate to (X, Y, π) such that X̃ is a 1-step SFT and π̃ is a
1-block code with a magic symbol.

Proof. By recoding, without loss of generality, we may assume X is a 1-step
SFT and π is a 1-block factor code. Let W be a magic block of π of length n
with a magic coordinate t. Define two n-blocks U and V inX to be equivalent
if π(U) = π(V ) and Ut = Vt. This obviously defines an equivalence relation
on Bn(X). Denote the equivalence class containing U by C(U). Let X̃ be the
new 1-step SFT whose alphabet consists of equivalence classes of blocks in
Bn(X), and the legal transitions between the equivalence classes be defined
by saying C(U) can be followed by C(V ) if and only if there are U ′ ∈ C(U)
and V ′ ∈ C(V ) such that U ′

i+1 = V ′
i for i = 0, . . . , n− 2. Let φ : X̃ → X be

the 1-block code induced by the map φsb which takes C(U) to Ut. Then φ
does map X̃ into X , since whenever C(U)C(V ) is a 2-block in X̃ , then UtVt
is a 2-block in X . Moreover, φ is a conjugacy with the inverse n-block code
induced by the map which takes U to C(U). Therefore, X̃ is a 1-step SFT
conjugate to X .
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Let Ỹ be the nth higher block presentation of Y and let ψ : Ỹ → Y be
the n-block code induced by the map ψsb which takes y0 . . . yn−1 to yt. Define

π̃ = ψ−1 ◦ π ◦ φ : X̃ → Ỹ .

Observe that π̃ is a 1-block code induced by the well-defined map which
projects a symbol C(U) in A(X̃) to πsb(U) (regarding πsb(U) as a symbol of
Ỹ ).

Note that if B is a m-block of Ỹ then it is of the form E(0)E(1) . . . E(m−1)

where E(i) is a n-block of Y . Then B corresponds to the (n+m− 1)-block

E
(0)
1 E

(0)
2 . . . E

(0)
n−1E

(1)
n−1E

(2)
n−1 . . . E

(m−1)
n−1

of Y . For each 0 ≤ i ≤ m− 1 we have

dπ̃(B, i) = dπ̃(E
(0)E(1) . . . E(m−1), i)

= |{C(U) ∈ A(X̃) : ∃F ∈ L (X̃) with π̃sb(F ) = B, Fi = C(U)}|

= |{a ∈ A(X) : ∃K ∈ L (X) with πsb(K) = B, Ki+t = a}|

= dπ(E
(0)
1 E

(0)
2 . . . E

(0)
n−1E

(1)
n−1E

(2)
n−1 . . . E

(m−1)
n−1 , i+ t).

Hence d∗π̃ ≥ d∗π. Since dπ̃(W, 0) = dπ(W, t) it follows that W is a magic
symbol of π̃.

Proposition 2.2. Let π : X → Y be a 1-block factor code from a 1-step SFT
X to a sofic shift Y with a magic symbol. Let W be a n-block of Y which
begins and ends with magic symbols, and let V be a n-block of X. Then
πsb(V ) = W only if for every y ∈ Y with y[0,n−1] = W there exists u ∈ π−1(y)
with u[0,n−1] = V .

Proof. Let W be an n-block of Y where W0 and Wn−1 are magic symbols.
Let V be an n-block of X mapping to W under πsb. Let y be a point in
Y with y[0,n−1] = W . Observe that there is a point x ∈ π−1(y) such that
x0 = V0 since otherwise for some k ≥ 0, d(y[−k,k], 0) is less than the number
of pre-images of W0. This contradicts the assumption that W0 is a magic
symbol of π. Similarly there is z ∈ π−1(y) with zn−1 = Vn−1. Form the new
point u where

ui =











xi if −∞ < i < 0

Vi if 0 ≤ i ≤ n− 1

zi if n− 1 < i <∞.
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The facts that x0 = V0, zn−1 = Vn−1 and X is a 1-step SFT guarantee that
u is a point of X . Moreover, from the construction we have π(u) = y which
completes the proof.

3 Uniform Conditional Distribution

It is a well-known result of Parry [18], generalizing an earlier result of Shan-
non [24], that in one dimension every irreducible shift of finite type on a
finite alphabet has a unique measure of maximal entropy. Burton and Steif
[4] give a counterexample to this statement in higher dimensions. However,
they show that such measures all have the uniform conditional distribution
property stated in Theorem 3.1. Given a finite set G ⊆ Z

d, the boundary of
the complement of G is ∂Gc = {i ∈ Gc : ∃j ∈ G with ‖i− j‖ = 1}.

Theorem 3.1. [4, Proposition 1.19] Let µ be a measure of maximal entropy
for a SFT in d dimensions. Then the conditional distribution of µ on any
finite set G ⊆ Z

d given the configuration on Gc is µ-a.s. uniform over all
configurations on G which extend the configuration on ∂Gc.

Given a factor triple (X, Y, π) and an ergodic measure ν on Y , there can
exist more than one ergodic measure of relative maximal entropy over ν; i.e.,
there can be more than one ergodic measure onX which projects to ν and has
maximal entropy among all measures in the fiber π−1{ν}, see [20, Example
3.3]. We use Lemma 3.2 and follow techniques developed by Burton and Steif
in the proof of Theorem 3.1 to show the uniform conditional distribution
property for measures of relative maximal entropy in Theorem 3.3.

Lemma 3.2. [26, Theorem 4.7] Let (X,B, µ) be a probability space. Let
A be a finite sub-algebra of B and let (Fn)

∞
n=1 be an increasing sequence of

sub-σ-algebras of B with
∨∞

n=1 Fn = F . Then H(A|Fn) → H(A|F ).

Theorem 3.3. Let π : X → Y be a 1-block factor code from a 1-step SFT X
to a sofic shift Y , ν an invariant measure on Y , and µ an invariant measure
of relative maximal entropy over ν. Then the conditional distribution of µ
on any finite set G ⊆ Z given the configuration on Gc is µ-a.s. uniform over
all configurations on G which extend the configuration on ∂Gc and map to
the same configuration in Y under the factor code π.
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Proof. Let G ⊆ Z be finite. Let ∆ be a configuration of Y on G. Pick a
configuration η of X on ∂Gc such that µ(η ∩ π−1(∆)) > 0. Starting from
µ, we define a measure γ̃ on X by uniformizing over pre-images of ∆ that
have η on the boundary. We then show that if µ does not have the required
uniform conditional distribution property then γ̃ has greater entropy than µ,
but still is an element of the fiber π−1{ν}. This is a contradiction and will
thus establish the required uniform conditional distribution property of µ.

Let D = {α1, . . . , αL} be the set of all configurations on G which extend
η and map to ∆ under the factor code π. Let R = {−m, . . . ,m− 1} be large
enough so that G∪ ∂Gc ⊆ R and (Rn)n∈Z be the partition of Z by translates
of R (R0 = R), i.e. Rn = {(2n− 1)m, . . . , (2n+ 1)m− 1}. Let Gn and ∂Gc

n

be the corresponding translates of G and ∂Gc in Rn. If S ⊆ Z let P(XS)
be the partition of X generated by the configurations of X on S, and σ(XS)
be the σ-algebra generated by P(XS). When S = {a, . . . , b} is a connected
subset of Z we sometimes denote XS by Xb

a. Considering R above, σ(Xm−1
−m )

is the finite σ-algebra generated by the partition

P(Xm−1
−m ) = {−m[x−mx−m+1 . . . xm−1]m−1 : x−mx−m+1 . . . xm−1 ∈ L (X)},

and σ(X−m−1
−∞ ) = σ(X−m−1

−3m ) ∨ σ(X−3m−1
−5m ) ∨ . . . .

Let γ be the measure obtained from µ and η as follows. Define Φ :
X ×DZ → X by

Φ(x, ζ)Gn
=

{

ζn if x∂Gc
n
= η and xGn

∈ D

xGn
otherwise,

and Φ(x, ζ)Gc
n∩Rn

= xGc
n∩Rn

for each n ∈ Z. Since ζn ∈ D and each element
of D extends η, the assumption that X is a 1-step SFT implies Φ(x, ζ) ∈ X .
For each ζ ∈ DZ we have π(x) = π(Φ(x, ζ)) since Φ(x, ζ) and x are the same
except having alternative αi’s in the same positions (αi ∈ π−1

sb (∆)). Let C ∈
BX . Define γ(C) = (µ × λ)Φ−1(C) where λ is the Bernoulli (1/L, . . . , 1/L)
measure on DZ. The measure γ is not necessarily invariant under T ; however,
for each C ∈ BX we have γ(C) = γ(T−2m(C)). So the new measure γ̃ on
X defined by γ̃(C) = 1

2m
(γ(C) + · · ·+ γ(T−2m+1(C))) is T -invariant. Since

for each E ∈ BY we have γ(π−1(E)) = (µ × λ)(π−1(E) × DZ) = ν(E), we
deduce that both measures γ and γ̃ are in the fiber π−1{ν}.

Define an equivalence relation on X as follows; suppose x, x′ ∈ X , say
x ∼0 x

′ if either xR = x′R or else xR∩Gc = x′R∩Gc , x∂Gc = x′∂Gc = η, and
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xG, x
′
G ∈ D. Denote the equivalence class containing x by C0(x). Such

equivalence classes form a sub-partition of P(Xm−1
−m ). Let A be the σ-algebra

generated by these equivalence classes. We show Hγ̃(T ) ≥ Hµ(T ) as follows,
using a lemma which appears below;

Hγ̃ (T ) =
1

2m
Hγ̃

(

T 2m
)

(3.1)

=
1

2m
Hγ

(

T 2m
)

=
1

2m
Hγ

(

σ(Xm−1
−m )|σ(X−m−1

−∞ )
)

=
1

2m
Hγ

(

A|σ(X−m−1
−∞ )

)

+
1

2m
Hγ

(

σ(Xm−1
−m )|σ(X−m−1

−∞ ) ∨ A
)

=
1

2m
Hγ

(

A|σ(X−m−1
−∞ )

)

+
1

2m
Hγ

(

σ(Xm−1
−m )|A

)

by Lemma 3.4(a)

≥
1

2m
Hγ

(

A|σ(X−m−1
−∞ )

)

+
1

2m
Hµ

(

σ(Xm−1
−m )|A

)

by Lemma 3.4(b)

≥
1

2m
Hµ

(

A|σ(X−m−1
−∞ )

)

+
1

2m
Hµ

(

σ(Xm−1
−m )|A

)

by Lemma 3.4(c)

≥
1

2m
Hµ

(

A|σ(X−m−1
−∞ )

)

+
1

2m
Hµ

(

σ(Xm−1
−m )|σ(X−m−1

−∞ ) ∨ A
)

=
1

2m
Hµ

(

σ(Xm−1
−m )|σ(X−m−1

−∞ )
)

=
1

2m
Hµ

(

T 2m
)

= Hµ (T ) .

Lemma 3.4. Reusing previous notations, we have

(a) Hγ

(

σ(Xm−1
−m )|σ(X−m−1

−∞ ) ∨ A
)

= Hγ

(

σ(Xm−1
−m )|A

)

.

(b) Hγ

(

σ(Xm−1
−m )|A

)

≥ Hµ

(

σ(Xm−1
−m )|A

)

. Equality occurs if and only if

µ(α ∩ Ā)

µ(Ā)
= 1/L,

where α ∈ D and Ā ∈ P(A) is an equivalence class in which for each
x ∈ Ā we have x∂Gc = η and xG ∈ D.

(c) Hγ

(

A|σ(X−m−1
−∞ )

)

≥ Hµ

(

A|σ(X−m−1
−∞ )

)

.

8



Proof. By definition, for ρ ∈ {µ, γ} we have

Hρ

(

σ(Xm−1
−m )|A

)

= −
∑

i,k

ρ(Oi ∩ Ak) log
ρ(Oi ∩Ak)

ρ(Ak)

where Oi ∈ P
(

Xm−1
−m

)

and Ak ∈ P(A) (If ρ(Oi ∩ Ak) = 0 define ρ(Oi ∩

Ak) log
ρ(Oi∩Ak)
ρ(Ak)

= 0). Let x ∈ Ak. If x∂Gc 6= η or xG /∈ D then for every

Oi ∈ P
(

Xm−1
−m

)

we have either Oi ∩ Ak = ∅ or Oi ∩ Ak = Ak which both

imply ρ(Oi ∩ Ak) log
ρ(Oi∩Ak)
ρ(Ak)

= 0. Let {Ā1, . . . , ĀM} ⊆ P(A) be the set of

equivalence classes in which for x ∈ Āk we have x∂Gc = η and xG ∈ D. Then

Hρ(σ(X
m−1
−m )|A) = −

∑

i,k

ρ(Oi ∩ Āk) log
ρ(Oi ∩ Āk)

ρ(Āk)
.

There are exactly L disjoint sets Oi ∈ P
(

Xm−1
−m

)

defined by blocks which
agree everywhere except on G, and form a partition of Āk. Let these sets be
denoted by Ok,1, . . . , Ok,L where Ok,i = αi∩ Āk for each 1 ≤ i ≤ L. It follows
that

Hρ(σ(X
m−1
−m )|A) = −

∑

k,i

ρ(Ok,i ∩ Āk) log
ρ(Ok,i ∩ Āk)

ρ(Āk)

= −
∑

k,i

ρ(αi ∩ Āk) log
ρ(αi ∩ Āk)

ρ(Āk)
.

(3.2)

Let n ≥ 1. By definition of γ, for each α ∈ D, P ∈ P
(

X−m−1
−(2n+1)m

)

, and

1 ≤ k ≤M we have

γ(α ∩ P ∩ Āk)

γ(P ∩ Āk)
=
γ(α ∩ Āk)

γ(Āk)
=

1

L
.

It follows that

Hγ

(

σ
(

Xm−1
−m

)

|σ
(

X−m−1
−(2n+1)m

)

∨ A
)

= −
∑

i,j,k

γ(αi ∩ Pj ∩ Āk) log
γ(αi ∩ Pj ∩ Āk)

γ(Pj ∩ Āk)

= logL
∑

i,k

γ(αi ∩ Āk)

= Hγ

(

σ
(

Xm−1
−m

)

|A
)

9



(use the same argument we had before Equation (3.2) to get the first equality

above). Then (a) follows from Lemma 3.2 and the fact that
(

σ
(

X−m−1
−(2n+1)m

))∞

n=1

is an increasing sequence of σ-algebras with
∨∞

n=1 σ
(

X−m−1
−(2n+1)m

)

= σ
(

X−m−1
−∞

)

.

To show (b) note that

Hµ

(

σ
(

Xm−1
−m

)

|A
)

= −
∑

i,k

µ(αi ∩ Āk) log
µ(αi ∩ Āk)

µ(Āk)

= −
∑

k

µ(Āk)

L
∑

i=1

µ(αi ∩ Āk)

µ(Āk)
log

µ(αi ∩ Āk)

µ(Āk)

=
∑

k

µ(Āk)
L
∑

i=1

ψ

(

µ(αi ∩ Āk)

µ(Āk)

)

where ψ(x) = −x log x (ψ(0) = 0) on the interval [0, 1]. Since ψ(x) is a
strictly concave function it follows thatHµ(σ(X

m−1
−m )|A) attains its maximum

if and only if for each 1 ≤ k ≤M and α ∈ D we have

µ(α ∩ Āk)

µ(Āk)
= 1/L.

Therefore

Hµ

(

σ
(

Xm−1
−m

)

|A
)

≤ logL
∑

k,i

µ(αi ∩ Āk)

= logL
∑

k,i

γ(αi ∩ Āk)

= Hγ

(

σ
(

Xm−1
−m

)

|A
)

,

with equality if and only if µ(α∩Āk)

µ(Āk)
= 1/L for each α ∈ D and 1 ≤ k ≤M .

We prove (c) by showing that

Hγ(A|σ
(

X−m−1
−∞ )

)

= Hµ(A|A−m−1
−∞ ) (3.3)

where A−m−1
−∞ =

∨∞
n=1 T

−2nmA (the choice of notation is intended to re-
mind the reader that A−m−1

−∞ is a sub-σ-algebra of σ(X−m−1
−∞ )). The fact that

A−m−1
−∞ ⊆ σ(X−m−1

−∞ ) implies

Hµ(A|A−m−1
−∞ ) ≥ Hµ(A|σ(X−m−1

−∞ ))
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which will complete the proof.

Define an equivalence relation ∼n on X as follows; say x ∼n x
′ provided

that for all −n ≤ i ≤ −1 we either have xRi
= x′Ri

or else xRi∩Gc
i
= x′Ri∩Gc

i
,

x∂Gc
i
= x′∂Gc

i
= η, and xGi

, x′Gi
∈ D. Denote the equivalence class containing

x by Cn(x). Such equivalence classes form a sub-partition of P
(

X−m−1
−(2n+1)m

)

and these equivalence classes generate the σ-algebra A−m−1
−(2n+1)m = T−2mA ∨

· · · ∨ T−2nmA. Let x ∈ X , then x ∈ E for some E ∈ P
(

A−m−1
−(2n+1)m

)

.

Set Kx = {−n ≤ k ≤ −1: x∂Gc
k
= η, xGk

∈ D}. There are exactly L|Kx|

disjoint blocks P1, . . . , PL|Kx| of the partition P
(

X−m−1
−(2n+1)m

)

which are the

same except having alternative αi’s in the same positions and they form a
partition of E. Let A ∈ A. By definition of γ for each 1 ≤ j ≤ L|Kx| we have

γ(A ∩ Pj)

γ(Pj)
=
L−|Kx|γ(A ∩ E)

L−|Kx|γ(E)
=
γ(A ∩ E)

γ(E)
=
µ(A ∩ E)

µ(E)
.

It follows that

Eγ

(

1A|σ
(

X−m−1
−(2n+1)m

))

= Eµ

(

1A|A
−m−1
−(2n+1)m

)

. (3.4)

Let x ∈ X , F ∈ A−m−1
−∞ , and ζ ∈ DZ. Then the two sided implication

Φ(x, ζ) ∈ F if and only if x ∈ F implies that 1F ◦ Φ(x, ζ) = 1F (x). Let
g be a bounded A−m−1

−∞ -measurable function. Since there is a sequence of
A−m−1

−∞ -measurable simple functions converging uniformly to g we deduce
that g ◦ Φ(x, ζ) = g(x) and moreover,

∫

F

g dγ =

∫

F

g d(µ× λ)(Φ−1) =

∫

F×DZ

g ◦ Φ d(µ× λ) =

∫

F

g dµ. (3.5)

In particular if g = Eµ

(

1A|A
−m−1
−∞

)

for some A ∈ P(A) then we have

Hγ

(

A|σ
(

X−m−1
−(2n+1)m

))

=

∫

X

∑

A∈P(A)

ψ
(

Eγ

(

1A|σ
(

X−m−1
−(2n+1)m

)))

dγ

=

∫

X

∑

A∈P(A)

ψ
(

Eµ

(

1A|A
−m−1
−(2n+1)m

))

dγ by (3.4)

=

∫

X

∑

A∈P(A)

ψ
(

Eµ

(

1A|A
−m−1
−(2n+1)m

))

dµ by (3.5)

= Hµ

(

A|A−m−1
−(2n+1)m

)

.
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Then Lemma 3.4(c) follows from Lemma 3.2 and the fact that
(

σ
(

X−m−1
−(2n+1)m

))∞

n=1

and
(

A−m−1
−(2n+1)m

)∞

n=1
are both increasing sequences with

∨∞
n=1 σ

(

X−m−1
−(2n+1)m

)

=

σ
(

X−m−1
−∞

)

and
∨∞

n=1A
−m−1
−(2n+1)m = A−m−1

−∞ .

Proof of Theorem 3.3 (continued). Since µ is an invariant measure of rel-
ative maximal entropy it follows that all of the inequalities in Equation
(3.1) are forced to be equalities. In particular, we have Hµ

(

σ
(

Xm−1
−m

)

|A
)

=
Hγ

(

σ
(

Xm−1
−m

)

|A
)

. Then Lemma 3.4(b) implies that

µ
(

α ∩ Ā
)

µ(Ā)
= 1/L, (3.6)

for each α ∈ D and Ā ∈ P(A) in which for each x ∈ Ā we have x∂Gc = η
and xG ∈ D. Note that given a finite set G ⊆ Z, both configurations
∆ ∈ BY on G and η ∈ BX on ∂Gc with µ(η ∩ π−1(∆)) > 0 are cho-
sen arbitrarily. By choosing different configurations and noting that Ā ∈
P (π−1(σ(YG))

∨

σ(XR∩Gc)) = P (π−1(σ(YR))
∨

σ(XR∩Gc)), Equation (3.6)
implies that for any configuration α of X occurring at G we have

E
(

1α|π
−1(σ(YR)) ∨ σ(XR∩Gc)

)

(x) =

{

1
L(x,G)

if α extends x∂Gc , xG ∈ π−1
sb (πsb(α))

0 otherwise.

where L(x,G) is the number of configurations of X occurring at G which
extend x∂Gc and project to πsb(xG).

Now for t ∈ N let R(t) = {−(m + t), . . . , m + t − 1}, and (R
(t)
n )n∈Z be

the partition of Z by translates of R(t) where R
(t)
0 = R(t), i.e. R

(t)
n = {(2n−

1)(m + t), . . . , (2n + 1)(m + t) − 1}. Let R(0) = R. Since (σ (YR(t)))
∞
t=0

and (σ (XR(t)∩Gc))
∞
t=0 are increasing sequences with

∨∞
t=0 σ(YR(t)) = BY and

∨∞
t=0 σ(XR(t)∩Gc) = σ(XGc) it follows from Levy’s Upward Theorem that

E
(

1α|π
−1(BY )∨σ(XGc)

)

(x) =

{

1
L(x,G)

if α extends x∂Gc , xG ∈ π−1
sb (πsb(α))

0 otherwise.
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4 Degree of an infinite-to-one factor code

When π is a finite-to-one factor code from a SFT X to a sofic shift Y , there
is a uniform upper bound on the number of pre-images of points in Y , see
[16, Theorem 8.1.16]. The minimal number of π-pre-images of points in Y
is called the degree of the code and denoted by dπ. Theorem 4.1 states that
when Y is irreducible then there are exactly dπ points in the pre-image of a
typical point of Y .

Theorem 4.1. [16, Theorem 9.1.11] Let π : X → Y be a finite-to-one
factor code from a SFT X to an irreducible sofic shift Y . Then every doubly
transitive point of Y has exactly dπ pre-images. If (X̃, Ỹ , π̃) is a factor triple
conjugate to (X, Y, π) then dπ = dπ̃.

Definition 4.2. Blocks E(1), . . . , E(k) of length n are mutually separated if,
for each 0 ≤ i ≤ n− 1, E

(1)
i , . . . , E

(k)
i are all distinct.

Proposition 4.3. [16, Proposition 9.1.9] Let π : X → Y be a finite-to-one
1-block factor code from a 1-step SFT to an irreducible sofic shift Y with a
magic symbol w, then we have dπ = |π−1

sb (w)|. Moreover, if V is a block of Y
which begins and ends with magic symbols then V has exactly dπ pre-images.
These pre-images are mutually separated.

We will find a quantity analogous to the degree when π is an infinite-to-
one factor code. This will be done by developing the following equivalence
relation on X . Figure 1 illustrates Definition 4.4.

Definition 4.4. Suppose (X, Y, π) is a factor triple and x, x′ ∈ X. We say
there is a transition from x to x′ and denote it by x → x′ if, for each n ∈ Z,
there exists v ∈ X so that

1. π(v) = π(x) = π(x′), and

2. vn−∞ = xn−∞, v∞i = x′∞i for some i ≥ n.

Write x9 x′ if the above conditions do not hold. We write x ∼ x′, and say
x and x′ are in the same transition equivalence class if x → x′ and x′ → x.
It is left to the reader to check that ∼ is an equivalence relation. Denote the
set of transition equivalence classes in X over y ∈ Y by Cπ(y). Sometimes
we denote Cπ(y) by only C (y) when there is no ambiguity in understanding

13



x

x′

y n i

v

π

Figure 1: Transition from point x to x′

π. We say [x] → [x′] if x → x′ (well-defined); use the notation [x] 9 [x′]
otherwise.

The following fact is derived from Definition 4.4 immediately.

Fact 4.5. Let π : X → Y be a 1-block factor code from a 1-step SFT X to
a sofic shift Y , and y ∈ Y . Let x, x′ ∈ π−1(y) with xai = x′ai where (ai)i∈N is
a strictly increasing sequence in Z. Then we have x ∼ x′.

We mention that Fact 4.5 gives an obvious case when two points lie in
the same equivalence class. Example 4.6 illustrates a more complicated case
when two points are equivalent without having a common symbol at the same
time.

Example 4.6. Let XF ⊆ {a, b}Z be a SFT with F = {bb}. Let π : XF →
{0}Z, as shown by the labeled graph in Figure 2.

0 0

a b

Figure 2: Graph for Example 4.6

Observe that points x = . . . aba
∗

baba . . . and x′ = . . . bab
∗
abab . . . (where ∗

indicates the 0-th position) have no common symbol at the same time but are
equivalent. To see there is a transition from x to x′, let n ∈ Z and consider
the point v where

vi =











xi i ≤ n

b i = n+ 1

x′i i > n+ 1.
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It is clear that v holds the conditions in Definition 4.4. That x′ → x is shown
similarly.

Theorem 4.7 shows that every point of Y has a finite number of transition
equivalence classes. Later in Theorem 4.20 we show that this number is
constant over every right transitive point of Y .

Theorem 4.7. Let π : X → Y be a 1-block factor code from a 1-step SFT
X to a sofic shift Y . Then |C (y)| <∞ for each y ∈ Y .

Proof. Let y ∈ Y . Since there are only finitely many symbols in A(Y ) there
is a symbol w ∈ A(Y ) and a strictly increasing sequence of integers (aj)j∈N
such that yaj = w for each j ∈ N. We show that |C (y)| ≤ |π−1

sb (w)|.

Let |π−1
sb (w)| = d and suppose π−1(y) contains d+ 1 distinct equivalence

classes C1, . . . , Cd+1. Form a set A = {x1, . . . , xd+1} where xi is an arbitrary
point of Ci. Since π

−1
sb (w) contains exactly d symbols, it follows that for each

j ∈ N there are at least two points in A with the same ajth coordinate. The
Pigeonhole Principle implies that there is a subsequence (bk)k∈N of (aj)j∈N
and at least two points x and x′ in A with xbk = x′bk for each k ∈ N. Fact 4.5
implies that x ∼ x′. This contradicts the assumption that x and x′ are in
different equivalence classes.

Corollary 4.8 is derived directly from the proof of Theorem 4.7.

Corollary 4.8. Let π : X → Y be a 1-block factor code from a 1-step SFT
X to a sofic shift Y . Let ν be a measure on Y and w be a symbol of Y with
ν([w]) > 0. Let y be a right transitive point of Y . Then |C (y)| ≤ |π−1

sb (w)|.

Definition 4.9. Let π : X → Y be a 1-block factor code from a 1-step SFT
X to a sofic shift Y . Let y ∈ Y and n ∈ Z. The relative follower set of
i ∈ π−1

sb (yn), denoted by F (i, y∞n+1), is the set of equivalence classes in C (y)
containing a point whose nth coordinate is i; i.e.,

F (i, y∞n+1) = {C ∈ C (y) : there is x ∈ C with xn = i}.

Say i ∈ A(X) belongs to a transition equivalence class C at time n, and
denote it by i ∈ Sn(C), if F (i, y∞n+1) = {D ∈ C (y) : C → D}. Say i is
transient at time n if there is no C ∈ C (y) for which i ∈ Sn(C).

Example 4.10 clarifies the definition above.
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Example 4.10. Consider the directed labeled graph in Figure 3 which presents
a 1-block factor code π : X → Y where X ⊆ {a, b, c, d, e, f, g}Z and

Y ⊆ {0, 1}Z. Let y be the point · · · 01
∗

01010 · · · in Y . By Definition 4.4,
there are 3 distinct classes in C (y) as follows:

1

0 1

0

0

0

1 1
a b c

d

e

f

g

Figure 3: Graph for Example 4.10

1. Class C1 = [x1] = {x1} where x1 = · · · ba
∗

babab · · · .

2. Class C2 = [x2] where x2 ∈ X is a point in π−1(y) which does not
contain symbols e or g but contains only d’s and f ’s from some time

onwards; for example: x2 = · · · ba
∗

bcdfd · · · .

3. Class C3 = [x3] where x3 ∈ X is a point in π−1(y) which does not
contain symbols d or f but contains only e’s and g’s from some time

onwards; for example: x3 = · · · eg
∗
egege · · · .

Clearly C1 → C2 and C1 → C3, but not vice versa. C2 9 C3, C3 9 C2, and
symbol c is transient at any time.

Definition 4.11. Let (X, Y, π) be a factor triple. The minimal number of
transition equivalence classes over points of Y is called the class degree of π
and denoted by cπ.

Theorem 4.12 shows that conjugate factor triples have the same class
degree.

Theorem 4.12. Let (X, Y, π) and (X̃, Ỹ , π̃) be conjugate factor triples. Then
we have cπ = cπ̃.

Proof. By Proposition 2.1, without loss of generality, we may assume X
is a 1-step SFT and π is a 1-block factor code. Let φ : X → X̃ be a
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conjugacy induced by φsb so that φ(x)i = φsb(x[i−m,i+t]) for some m, t ∈ N,

and ψ : Y → Ỹ be a conjugacy from Y to Ỹ . Let y ∈ Y and u, v ∈ π−1(y).
Since π̃ ◦ φ = ψ ◦ π then φ(u), φ(v) ∈ π̃−1(ψ(y)). We show that there is a
transition from u to v if and only if there is a transition from φ(u) to φ(v).
Let n ∈ Z, then u→ v implies that there is x ∈ π−1(y) where

xj =

{

uj if −∞ < j ≤ n+ t

vj if i ≤ j <∞

for some i ≥ t + n. Clearly φ(x) ∈ π̃−1(ψ(y)). Moreover, we have

φ(x)j =

{

φ(u)j if −∞ < j < n

φ(v)j if i+m ≤ j <∞.

Having an arbitrary n ∈ Z implies that φ(u) → φ(v), and since φ is invertible
the other implication follows similarly. This shows that C is a transition
equivalence class in Cπ(y) if and only if φ(C) is a transition equivalence class
in Cπ̃(ψ(y)). It also shows that for every C1, C2 ∈ Cπ(y) we have C1 → C2 if
and only if φ(C1) → φ(C2) which implies the equality of cπ and cπ̃.

Theorem 4.13 shows that in the case of a finite-to-one factor code the
degree of the code and the class degree of the code are the same.

Theorem 4.13. Let π : X → Y be a finite-to-one factor code from a SFT
to an irreducible sofic shift Y . Then cπ = dπ.

Proof. Theorem 4.1 and Theorem 4.12 imply that the degree of a code and
a class degree of a code are both invariant under conjugacy. So by using
Proposition 2.1, without loss of generality, we may assume X is a 1-step
SFT and π is a 1-block factor code with a magic symbol w. Let y be a
right transitive point of Y . There is a strictly increasing sequence of integers
(ai)i∈N such that yai = w. Proposition 4.3 implies that for each i ∈ N, y[a1,ai]
has exactly dπ pre-images which are mutually separated. It follows that for
each x, x′ ∈ π−1(y) with xa1 = x′a1 we must have x[a1,∞) = x′[a1,∞) which
implies x ∼ x′. Since ya1 = w has exactly dπ pre-images we conclude that
there are exactly dπ transition equivalence classes over y.

We show when π : X → Y is a factor code from a SFTX to an irreducible
sofic shift Y then there are exactly cπ transition equivalence classes over a
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typical point of Y . In order to show this, we introduce another quantity c∗π
in Definition 4.14, defined concretely in terms of blocks. Proposition 2.1 and
Theorem 4.12 allow us to focus only on a triple (X, Y, π) where X is a 1-step
SFT and π is a 1-block factor code with a magic symbol.

Definition 4.14. Let π : X → Y be a 1-block factor code from a 1-step
SFT X to a sofic shift Y with a magic symbol. Let W be a Y -block of
length p + 1 which begins and ends with magic symbols. Let n be a positive
integer less than p, and M be a subset of π−1

sb (Wn). We say U ∈ π−1
sb (W )

is routable through a ∈ M at time n if there is a block U ′ ∈ π−1
sb (W ) with

U ′
0 = U0, U

′
n = a, and U ′

p = Up. A triple (W,n,M) is called a transition

block of π if every block in π−1
sb (W ) is routable through a symbol of M at

time n. The cardinality of the set M is called the depth of the transition
block (W,n,M).

While Definition 4.14 seems complicated, Figure 4 illustrates it more
clearly.

U

V

K

U ′

V ′

K ′

a1

a2

W0 Wp

π

n

Figure 4: (W,n,M) is a transition block with M = {a1, a2}. The blocks
U, V, K ∈ π−1

sb (W ) are routable through members of M at time n via blocks
U ′, V ′, K ′ ∈ π−1

sb (W ).

Definition 4.15. Reusing notations of Definition 4.14, define

c∗π = min{|M | : (W,n,M) is a transition block of the factor code π}.

A minimal transition block of a 1-block factor code π from a 1-step SFT to a
sofic shift is a transition block of depth c∗π.
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Example 4.16. In figure 5, we display an example of a labeled graph which
defines an infinite-to-one 1-block factor code π. We see that (1001, 2, {b})
is a minimal transition block of π of depth 1. For example, observe that block

1 0

0

1
a

b

cd

Figure 5: Graph for Example 4.16

U = daac is routable through b at time 2 by considering U ′ = dabc.

We need to develop some lemmas to prove Theorem 4.20 below.

Lemma 4.17. Let π : X → Y be a 1-block factor code from a 1-step SFT X
to a sofic shift Y . Let y ∈ Y and x ∈ π−1(y). There is an integer m < ∞
such that for each n ≥ m the symbol xn is not transient. In fact, m can be
found in such a way that for each n ≥ m, xn belongs to the class [x] at time
n, i.e., xn ∈ Sn([x]).

Proof. Consider C ∈ C (y) with [x] 9 C. It follows that there exists i < ∞
such that for z ∈ π−1(y) if zi = xi then z /∈ C. Denote the smallest such i
by iC and let m = max{iC : C ∈ C (y), [x] 9 C} (m < ∞ since |C (y)| <
∞). Let n ≥ m. The above shows that if C ∈ C (y) and [x] 9 C then
C /∈ F (xn, y[n+1,∞)). On the other hand if C ∈ C (y) satisfies [x] → C let z
be a point in C with zn = xn, therefore C ∈ F (xn, y[n+1,∞)). Hence we have
xn ∈ Sn([x]). We mention that m can be −∞.

Lemma 4.18. Let π : X → Y be a 1-block factor code from a 1-step SFT X
to a sofic shift Y . Let y ∈ Y . There is an integer m <∞ such that for each
n ≥ m and C ∈ C (y) there is a symbol i ∈ π−1

sb (yn) with i ∈ Sn(C).

Proof. Let C (y) = {C1, . . . , Cd} for some d < ∞. Let A = {x(1), . . . , x(d)}
be a set containing an arbitrary point x(i) ∈ Ci for each Ci ∈ C (y). By
Lemma 4.17 there is a finite nCi

∈ Z such that for each n ≥ nCi
we have

x
(i)
n ∈ Sn(Ci). Let m = max{nCi

: 1 ≤ i ≤ d}. Then m < ∞ and for each

n ≥ m and Ci we have x
(i)
n ∈ Sn(Ci).
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Proposition 4.19. Let π : X → Y be a 1-block factor code from a 1-step
SFT X to a sofic shift Y . Let ν be an invariant measure on Y , then

ν
(

{y ∈ Y : ∀C ∈ C (y), ∀n ∈ Z there is i ∈ π−1
sb (yn) with i ∈ Sn(C)}

)

= 1.

Proof. Let ν be an invariant measure on Y and y ∈ Y . Let m(y) < ∞ be
the infimum of the set of m’s with the properties given in the statement of
Lemma 4.18. We show ν ({y ∈ Y : m(y) = −∞}) = 1. Note that C ∈ C (y)
if and only if T (C) ∈ C (T (y)). This implies that m(T (y)) = m(y) − 1.
For k < ∞ let Ak = {y ∈ Y : m(y) = k} so that T (Ak) = Ak−1. Since ν
is T -invariant it follows that ν(Ak) = 0. Therefore m(y) = −∞ for ν-a.e.
y ∈ Y .

Theorem 4.20. Let π : X → Y be a factor code from a SFT X to an
irreducible sofic shift Y . There are exactly cπ transition equivalence classes
over every right transitive point of Y .

Proof. First we show that |C (y)| ≥ c∗π for every y ∈ Y . This implies that
cπ = inf{|C (y)| : y ∈ Y } ≥ c∗π. Then we prove |C (y)| ≤ c∗π when y ∈ Y is
right transitive. This implies cπ ≤ c∗π. Then it follows that for each right
transitive y ∈ Y we have |C (y)| = c∗π = cπ.

By Theorem 4.12, cπ is invariant under conjugacy. So by Proposition 2.1,
without loss of generality, we may assume X is a 1-step SFT, and π is a
1-block factor code with a magic symbol.

We prove |C (y)| ≥ c∗π by showing that if h = |C (y)| < c∗π then there
is a transition block of depth h occurring in y. This gives a contradiction
to the assumption that a minimal transition block of the code π is of depth
c∗π. We find such a transition block of y in the following 4 stages; suppose
C (y) = {C1, . . . , Ch}. Choose a finite integer n0 satisfying properties given
in the statement of Lemma 4.18 such that yn0 is a magic symbol.

Stage 1. We claim there is n1 ∈ [n0,∞) such that for each x ∈ π−1(y),
xt is not transient for some n0 ≤ t ≤ n1. Suppose there is no such n1. It
follows that for each j ≥ n0 there is x(j) ∈ π−1(y) such that x

(j)
l is transient

for all n0 ≤ l ≤ j. Consider the sequence (x(j))j∈Z, and let x be the limit of
a convergent subsequence of it. Clearly x ∈ π−1(y). However, xl is transient
for each l ≥ n0; contradicting Lemma 4.17.

Stage 2. We claim there is n2 ∈ [n1,∞) and a set of symbols M ′ =
{a1, . . . , ah} with ae ∈ Sn2(Ce) such that for each i ∈ Sn1(Ce) there is a block
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U ∈ π−1
sb (yn1yn1+1 . . . yn2−1yn2) which begins with i and ends with ae. See

Figure 6. Let Ce ∈ C (y) and xe ∈ Ce. For each i ∈ Sn1(Ce) (non-empty by

C1

C2

C3

i1
i2

i3

i4

i5

i6

a1

a2

a3

n0 n1 n2
y

π

Figure 6: An example illustrating Stage 2. C (y) = {C1, C2, C3}, i1, i2, i3 ∈
Sn1(C1), i4 ∈ Sn1(C2), i5, i6 ∈ Sn1(C3), and M

′ = {a1, a2, a3}.

the choice of n0) by the definition of a transition equivalence class, there is a
point zi ∈ Ce with z

i
n1

= i, and zi is matching xe from some time ki ∈ [n1,∞).
Let ke = max{ki : i ∈ Sn1(Ce)} < ∞ and n2 = max{ke : Ce ∈ C (y)} < ∞.
Rename xen2

for each Ce ∈ C (y) as ae, and let M ′ = {a1, . . . , ah}.

Stage 3. We claim there is n3 ∈ [n2,∞) such that for each x ∈ π−1(y)
there is x′ ∈ π−1(y) so that x′r = xr for every r ∈ (−∞, n0] ∪ [n3,∞), and
x′n2

∈ M ′. See Figure 7. Let x ∈ π−1(y). By stage 1 there is n0 ≤ t ≤ n1

such that xt is not transient; i.e., xt ∈ St(Ce) for some Ce ∈ C (y). It
follows that there is a point u ∈ Ce with ut = xt. Then the new block
. . . xn0 . . . xtut+1 . . . un1 belongs to L (X) (X is a 1-step SFT) and maps to
. . . yt . . . yn1. Moreover, by Stage 2 there is a path starting at un1 ∈ Sn1(Ce)
ending at ae, say un1vn1+1 . . . vn2−1ae mapping to yn1 . . . yn2. Connect these
two paths at un1 to get . . . xn0 . . . xtut+1 . . . un1vn1+1 . . . vn2−1ae in L (X). Ob-
serve that having xt ∈ St(Ce) implies that xmust belong to a class Cf ∈ C (y)
with Ce → Cf . On the other hand having ae ∈ Sn2(Ce) implies that there
is a point b ∈ Ce with b(−∞, n2] = . . . xn0 . . . xtut+1 . . . un1vn1+1 . . . vn2−1ae
which matches x from some time j onwards for some n2 ≤ j < ∞. Let
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C1

C2

C3

x

z

o

x′

z′
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Figure 7: Graph for Stage 3. M ′ = {a1, a2, a3}. x, x
′ ∈ π−1(y), x′r = xr for

each r ∈ (−∞, n0] ∪ [n3,∞), and x′n2
∈M ′. Same for z, z′ and o, o′.

nx = min{n2 ≤ j < ∞ : ∃x′ ∈ π−1(y) with x′r = xr for all r ∈ (−∞, n0] ∪
[j,∞), x′n2

= ae} < ∞. We claim that there is ne < ∞ such that for each
x ∈ π−1(y) with xt ∈ St(Ce) for some n0 ≤ t ≤ n1, there exists a point
x′ ∈ π−1(y) with x′r = xr for each r ∈ (∞, n0] ∪ [ne,∞), and x′n2

= ae. Then
letting n3 = max{ne : Ce ∈ C (y)} <∞ will complete the proof of Stage 3.

Suppose, to derive a contradiction, that there does not exist such ne. It
follows that there is a sequence x(l) with x

(l)
tl

∈ Stl(Ce) for some n0 ≤ tl ≤ n1,
such that liml→∞ nx(l) = ∞. Let x∗ be the limit of a convergent subsequence
of x(l). Clearly x∗ ∈ π−1(y). However, nx∗ = ∞ since if nx∗ = g < ∞ then
for every point k in the given subsequence of x(l) with d(x∗, k) < 1/2g we
have nk = g which contradicts the assumption that liml→∞ nx(l) = ∞.

Stage 4. Let n4 = min{i ≥ n3 : yi is a magic symbol}. Form the block
V = yn0 . . . yn4. We show that V is a transition block of depth h. Let
U ∈ π−1

sb (V ). By Proposition 2.2 there is x ∈ π−1(y) with x[n0, n4] = U .
Then by Stages 1, 2, and 3 there is a point x′ ∈ π−1(y) with x′r = xr for
each r ∈ (−∞, n0] ∪ [n3,∞), and x′n2

∈ M ′. Having x′n0
= xn0 , x

′
n2

∈ M ′,
x′n4

= xn4 and πsb(x
′
[n0, n4]

) = V simply means that U = x[n0, n4] is routable

through a symbol of M ′ at time n2. Since U ∈ π−1
sb (V ) is arbitrary it follows

that V is a minimal transition block.
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Now we apply the same method we used in the proof of Theorem 4.7
to show that if y is a right transitive point of Y then |C (y)| ≤ c∗π. Let
(W,n,M) with |W | = p + 1 be a minimal transition block of the factor
code π. Since y is a right transitive point there is a sequence of integers
(tm)m∈N with tm+1 > p + tm such that ytm . . . yp+tm = W for each m ∈ N.
Suppose C (y) contains more than c∗π transition equivalence classes and A be
a set containing one point from each of these equivalence classes. By the
definition of minimal transition block, for each u ∈ A there exists a point
x ∈ π−1( tm [W ] ) with xtm = utm , xn+tm ∈ M , and xp+tm = up+tm. Denote
such a point by x(u,m). We construct a new point u′ which agrees with u
everywhere except at positions tm, . . . , s+ tm where it agrees with x(u,m) for
each m ∈ N. In other words we have

u′i =

{

ui if −∞ < i < t1, s+ tm < i < tm+1

x
(u,m)
i if tm ≤ i ≤ s+ tm.

The assumption that X is a 1-step SFT guarantees that u′ belongs to X ,
and Fact 4.5 implies that u′ ∼ u. For each element u of A construct such
a point u′ and collect them in a set denoted by A′. Since |M | = c∗π < |A′|
then for each m ∈ N there must be at least two points in A′ that agree in
the (n + tm)th position. It follows that there exists a subsequence (kl)l∈N
of (tm)m∈N and two distinct points u′, v′ ∈ A′ such that for each l ∈ N we
have u′n+kl

= v′n+kl
. Then by Fact 4.5 we have u′ ∼ v′ and consequently

u ∼ v, contrary to the fact that the points u and v are chosen from distinct
transition equivalence classes.

5 Bounding the number of ergodic measures

of relative maximal entropy

In Section 3 we mentioned that although every 1-dimensional irreducible SFT
has a unique ergodic measure (Parry measure) of maximal entropy, there
can be more than one ergodic measure of relative maximal entropy over an
ergodic measure; i.e., given a factor triple (X, Y, π) and a fully supported
ergodic measure ν on Y , there can exist more than one ergodic measure on
X that projects to ν under π and have maximal entropy among measures
in the fiber π−1{ν}, see [20, Example 3.3]. In this section we show that the
number of such measures can be no more than the class degree of π.
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Since entropy is a conjugacy invariant the following observation follows
immediately;

Observation 5.1. Let (X, Y, π) and (X̃, Ỹ , π̃) be conjugate factor triples.
Let ν be an ergodic measure on Y and ν̃ be its corresponding ergodic measure
on Ỹ . The number of ergodic measures of relative maximal entropy over ν
is the same as the number of ergodic measures of relative maximal entropy
over ν̃.

In 2003, Petersen, Quas, and Shin [20] found an upper bound on the
number of measures of relative maximal entropy;

Theorem 5.2. [20, Corollary 1] Let π : X → Y be a 1-block code from a
1-step SFT X to a sofic shift Y . Let ν be a fully supported ergodic measure
on Y and N(π) = min{π−1

sb (b) : b ∈ A(Y )}. The number of ergodic measures
of maximal entropy over ν is at most N(π).

This bound suffers from being invariant under conjugacy. For example,
the full 2-shift and any higher block presentation of it give different bounds
on the number of ergodic measures of maximal entropy which map to the
trivial measure on the full 1-shift.

One possibility to avoid having a non-invariant upper bound is to take the
minimum of the bound in [20] over all conjugate factor triples with 1-block
factor codes. This even improves the original bound. However knowing that
two SFTs are conjugate is not easy. Williams’ Classification Theorem [30]
gives an algebraic criterion for the conjugacy of shifts of finite type: two shifts
of finite type XA and XB are conjugate if and only if their transition matrices
A and B are strong shift equivalent. However, there is no known general
algorithm for deciding whether two matrices are strong shift equivalent. Kim
and Roush [11] showed some theoretical procedures that will decide whether
or not two matrices are shift equivalent, but the question of whether shift
equivalence implies strong shift equivalence, known as the “Shift Equivalence
Problem” or “Williams’ Conjecture” was open for more than twenty years.
In 1999 Kim and Roush [13] solved the Shift Equivalence Problem in the
negative by constructing two irreducible SFTs that are shift equivalent but
not strong shift equivalent. Earlier they had found a reducible example [12].

Here we show that the class degree of a factor code is an upper bound on
the number of measures of relative maximal entropy over a fully supported
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ergodic measure. Theorem 4.12 above verifies that this bound is invariant
under conjugacy and Proposition 5.3 below shows that it beats the bound
mentioned above obtained by minimizing the bound in [20] over conjugate
factor triples.

Proposition 5.3. Let π : X → Y be a 1-block factor code from a SFT X to
a sofic shift Y . Then cπ ≤ min{N(π̃) : (X, Y, π) ∼ (X̃, Ỹ , π̃), π̃ is 1-block}.
Equality holds if π is 1-block and finite-to-one.

Proof. Let d = min{N(π̃) : (X, Y, π) ∼ (X̃, Ỹ , π̃), π̃ is 1-block} occur at a
factor triple (X̃, Ỹ , π̃) (i.e., N(π̃) = d) and min{π̃−1

sb (b) : b ∈ A(Ỹ )} occur
at a symbol b ∈ A(Ỹ ). Let ν be a fully supported ergodic measure on Y .
Note that the ν’s corresponding measure on Ỹ is also fully supported and
ergodic, so with respect to this measure the block [b] has a positive measure
and almost every point of Ỹ is right transitive. Let y be a right transitive
point of Ỹ . There is a strictly increasing sequence of integers (ai)i∈N with
yai = b. Corollary 4.8 implies that |C (y)| ≤ |π̃−1

sb (b)| = d and therefore
cπ̃ = |C (y)| ≤ d. The first part of the Proposition follows from Theorem 4.12
which states that cπ = cπ̃.

Now suppose π : X → Y is 1-block and finite-to-one. Since the class
degree is invariant under conjugacy, without loss of generality, we may assume
π has a magic symbol denoted by w (Proposition 2.1). Since π is finite-to-
one Proposition 4.3 implies that |π−1

sb (w)| = dπ. Then by the definition
of a magic symbol and the fact that dπ is invariant under conjugacy we
have min{N(π̃) : (X, Y, π) ∼ (X̃, Ỹ , π̃), π̃ is 1-block} = |π−1

sb (w)|. Since by
Theorem 4.13 dπ = cπ it follows that min{N(π̃) : (X, Y, π) ∼ (X̃, Ỹ , π̃)} =
cπ.

Note that the equality in Proposition 5.3 does not always hold. For
example, consider the trivial factor code π : {0, 1}Z → {0}Z. Then cπ = 1;

however, if
(

X̃, {0}Z, π̃
)

is a factor triple conjugate to
(

{0, 1}Z, {0}Z, π
)

then

A(X̃) must be strictly greater than 1 and therefore N(π̃) > 1.

Definition 5.4. Let π : X → Y be a 1-block factor code from a SFT X
to a sofic shift Y and ν be an ergodic measure on Y . Let µ1, . . . , µn be
invariant measures in the fiber π−1{ν}. The relatively independent joining

µ̃ = µ1 ⊗ · · · ⊗ν µn of µ1, . . . , µn over ν is defined as follows: if A1, . . . , An
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are measurable subsets of X then

µ̂(A1 × · · · ×An) =

∫

Y

n
∏

i=1

Eµi
(1Ai

|π−1
BY ) ◦ π

−1 dν.

Writing pi for the projection X
n → X onto the i’th coordinate, it follows

from the definition that for µ̂-almost every x̂ ∈ Xn, π(pi(x̂)) is independent
of i.

We will use Theorem 5.5 below which is the main theorem from [20] to
prove a stronger theorem (Theorem 5.6).

Theorem 5.5. [20, Theorem 1] Let π : X → Y be a 1-block factor code
from a 1-step SFT X to a sofic shift Y . Let ν be an ergodic measure on Y ,
and two distinct ergodic measures µ1 and µ2 be measures of relative maximal
entropy over ν. Then (µ1 ⊗ µ2){(u, v) ∈ X ×X : u0 = v0} = 0.

Theorem 5.6. Let (X, Y, π) be a factor triple. Let ν be an ergodic measure
on Y , and two distinct measures µ1 and µ2 be ergodic measures of relative
maximal entropy over ν. Then (µ1 ⊗ µ2){(u, v) ∈ X ×X : u ∼ v} = 0.

Proof. First we show that, without loss of generality, we may assume X is
a 1-step SFT and π is a 1-block factor code with a magic symbol. Suppose
(X̃, Ỹ , π̃) is a factor triple conjugate to (X, Y, π) and φ : X → X̃ is a conju-
gacy from X to X̃ . By Theorem 4.12 we have (φ× φ){(u, v) ∈ X ×X : u ∼
v} = {(φ(u), φ(v)) ∈ X̃ × X̃ : φ(u) ∼ φ(v)}. Moreover, the correspond-
ing measure to µ1 ⊗ µ2 under the conjugacy φ × φ : X × X → X̃ × X̃ is
µ̃1 ⊗ µ̃2 where µ̃1 and µ̃2 are corresponding measures to µ1 and µ2, corre-
spondingly, under φ. It follows that (µ1 ⊗ µ2){(u, v) ∈ X × X : u ∼ v} =
(µ̃1⊗ µ̃2){(φ(u), φ(v)) ∈ X̃ × X̃ : φ(u) ∼ φ(v)}. Therefore by Proposition 2.1
we may assume X is a 1-step SFT and π is a 1-block factor code with a
magic symbol.

Let (W,n,M) be a minimal transition block of the factor code π with
|W | = s + 1. Let u ∈ X , i ∈ Z, and a ∈ M . We say u potentially passes
through a at time i if the block u[i−n, i+s−n] ∈ π−1

sb (W ) and it is routable

through the symbol a (see Definition 4.14). Let v ∈ X , and write u
a
≈i v if

u ∼ v and both u and v potentially pass through a at time i (we mention

that the relation
a
≈i is not in general an equivalence relation on X). We have

{(u, v) : u ∼ v} =
⋃

a∈M

⋃

i∈Z

{

(u, v) : u
a
≈i v

}

.
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Suppose (µ1 ⊗ µ2){(u, v) : u ∼ v} > 0. There must be i ∈ Z and a symbol
a ∈M such that

(µ1 ⊗ µ2){(u, v) : u
a
≈i v} > 0.

By applying (T × T )−i, without loss of generality, we may assume i = 0.
Considering only blocks of length s+1, there must be blocks A, B ∈ π−1

sb (W )
such that

(µ1 ⊗ µ2)
{

(u, v) : u
a
≈0 v, u[−n, s−n] = A, v[−n, s−n] = B

}

> 0. (5.1)

Both A and B are routable through a at time n; i.e., there are blocks A′, B′ ∈
π−1
sb (W ) with A′

0 = A0, B
′
0 = B0, A

′
n = B′

n = a, A′
s = As, and B′

s = Bs.
Let G ⊆ Z be the set {−n, . . . ,−n + s}. Basic properties of conditional
expectation imply that

Eµ1

(

1[A]|π
−1(BY )

)

= E
(

Eµ1

(

1−n[A] |π
−1(BY ) ∨ σ(XGc)

)

|π−1(BY )
)

= E
(

Eµ1

(

1−n[A′] |π
−1(BY ) ∨ σ(XGc)

)

|π−1(BY )
)

= Eµ1

(

1[A′]|π
−1(BY )

)

,

(5.2)

where the second equality follows from Theorem 3.3. Similarly we have

Eµ2(1[B]|π
−1

BY ) = Eµ2(1[B′]|π
−1

BY ). (5.3)

Let D =
{

(u, v) : u
a
≈0 v, u[−n, s−n] = A, v[−n, s−n] = B

}

. Since D ⊆ −n[A] ×

−n[B] we have

µ(D) ≤ (µ1 ⊗ µ2)([A]× [B])

=

∫

Y

Eµ1(1[A]|π
−1

BY )Eµ2(1[B]|π
−1

BY ) ◦ π
−1 dν

=

∫

Y

Eµ1(1[A′]|π
−1

BY )Eµ2(1[B′]|π
−1

BY ) ◦ π
−1 dν using(5.2) and (5.3)

= (µ1 ⊗ µ2)([A
′]× [B′])

= 0

where the last equality follows from Theorem 5.5 since A′
n = B′

n = a. This
contradicts Equation (5.1).

Theorem 5.7. Let (X, Y, π) be a factor triple and ν be a fully supported
ergodic measure on Y . The number of ergodic measures of relative maximal
entropy over ν is at most cπ.
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Proof. By Observation 5.1, the number of ergodic measures of relative max-
imal entropy over ν is invariant under conjugacy. Therefore using Proposi-
tion 2.1, without loss of generality, we may assume X is a 1-step SFT and π
is a 1-block factor code with a magic symbol. Suppose, for a contradiction,
that there are n > cπ ergodic measures µ1, . . . , µn on X of relative maxi-
mal entropy over ν. Form the relatively independent joining µ̂ on Xn of the
measures µ1, . . . , µn. Since ν is a fully supported ergodic measure on Y it
follows that for µ̂-a.e. x̂ ∈ Xn, π(pi(x̂)) (which is independent of i), is a right
transitive point of Y . Then the assumption n > cπ implies that for µ̂-a.e.
x̂ = (x1, . . . , xn) ∈ Xn there are distinct i, j such that pi(x̂) ∼ pj(x̂); i.e.,

µ̂(
⋃

1≤i<j≤n

{x̂ = (x1, . . . , xn) : xi ∼ xj}) = 1.

At least one of the set Si,j = {(x1, . . . , xn) : xi ∼ xj} must have positive
µ̂-measure. It follows that

0 < µ̂(Si,j)

= µ̂({(x1, . . . , xn), xi ∼ xj})

= (µi ⊗ µj){(u, v) : u ∼ v}.

This contradicts Theorem 5.6.

6 Open Questions

Let (X, T ) be a one-sided topologically mixing shift of finite type. An invari-
ant measure µ on X is a Gibbs measure corresponding to f ∈ C(X) if there
are constants C1, C2 > 0 and P > 0 such that

C1 ≤
µ([x0x1 . . . xn−1])

exp (−Pn+ (Snf)(x))
≤ C2

for every x ∈ X and n ≥ 1, where (Snf)(x) =
∑n−1

k=0 f(T
k(x)).

Walters [28, 29] introduces a class Bow(X, T ) of functions that contains
the functions with summable variation, all of which have unique equilibrium
states. Let

varn(f) = sup{|f(x)− f(y)| : x, y ∈ X, xi = yi for all 0 ≤ i ≤ n− 1}.

Then Bow(X, T ) = {f ∈ C(X) : supn≥1 varn(Snf) <∞}.
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Theorem 6.1. [28, Theorem 2.16] Let f ∈ Bow(X, T ). Then f has a unique
equilibrium state µ which is a Gibbs measure.

The relative version of this result is an open question. We make the
following conjecture;

Conjecture 6.2. Let (X, Y, π) be a factor triple and ν be a fully supported
ergodic measure on Y . The number of ergodic measures of maximal pressure
in the fiber π−1{ν} is at most cπ.
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