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A SEMI-INVERTIBLE OSELEDETS THEOREM WITH

APPLICATIONS TO TRANSFER OPERATOR COCYCLES

GARY FROYLAND, SIMON LLOYD, AND ANTHONY QUAS

Abstract. Oseledets’ celebrated Multiplicative Ergodic Theorem (MET) [V.I.
Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, expo-

nents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210.]
is concerned with the exponential growth rates of vectors under the action
of a linear cocycle on R

d. When the linear actions are invertible, the MET
guarantees an almost-everywhere pointwise splitting of R

d into subspaces of
distinct exponential growth rates (called Lyapunov exponents). When the lin-
ear actions are non-invertible, Oseledets’ MET only yields the existence of a
filtration of subspaces, the elements of which contain all vectors that grow
no faster than exponential rates given by the Lyapunov exponents. The au-
thors recently demonstrated [G. Froyland, S. Lloyd, and A. Quas, Coherent
structures and exceptional spectrum for Perron–Frobenius cocycles, Ergodic
Theory and Dynam. Systems (to appear).] that a splitting over R

d is guar-
anteed without the invertibility assumption on the linear actions. Motivated
by applications of the MET to cocycles of (non-invertible) transfer operators
arising from random dynamical systems, we demonstrate the existence of an
Oseledets splitting for cocycles of quasi-compact non-invertible linear opera-
tors on Banach spaces.

1. Introduction

Oseledets-type ergodic theorems deal with dynamical systems σ : Ω → Ω where
for each ω ∈ Ω there is an operator (or in the original Oseledets case a matrix)
Lω acting on a linear space X . One then studies the properties of the operator

L(n)
ω = Lσn−1ω ◦ · · · ◦Lω, giving an ω-dependent decomposition of X into subspaces

with a hierarchy of expansion properties.
Prior to the previous work of the current authors, [10], all of the Oseledets-type

theorems in the literature split into two cases according to the hypotheses: the
invertible and non-invertible cases.

Invertible case: In this case the base dynamical system σ is assumed to be
invertible and the operators Lω are assumed to be invertible (or in some
cases just injective). Integrability conditions may be imposed on ‖L−1

ω ‖.
The conclusion here is that the space X admits an invariant splitting

E1(ω)⊕E2(ω)⊕ · · · , finite or countable, possibly with a ‘remainder’ in the
infinite-dimensional case. Non-zero vectors in Ei(ω) expand exactly at rate
λi.

Non-invertible case: In the non-invertible case no assumptions are made
about invertibility of the base nor about injectivity of the operators. The
weaker conclusion here is that X admits an invariant filtration V1(ω) ⊃
V2(ω) ⊃ · · · such that vectors in Vi(ω) \ Vi+1(ω) expand at rate λi.
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The conclusion in the invertible case may be seen to be much stronger as one
obtains an invariant family of complements to Vi+1(ω) in Vi(ω). These are in general
finite-dimensional so that one ‘sees the vectors responsible for λi expansion’. This
is of considerable importance in applications.

Our principal contribution here is to focus on the semi-invertible case. Here
assumptions are made about the invertibility of the base transformation, but there
are no assumptions about invertibility or injectivity of the operators Lω. In spite of
this we are able to show that one can obtain an invariant splitting rather than the
weaker invariant filtration, for the setting investigated by Thieullen [27] where the
random compositions have some quasi-compactness properties. In [10] we obtained
an analagous result for the original Oseledets setting of matrices acting on R

d.

1.1. Set-up. Let (Ω,F ,P) be a probability space and (X, ‖ · ‖) a Banach space. A
random dynamical system is a tuple R = (Ω,F ,P, σ,X,L), where σ is an invertible
measure-preserving transformation of (Ω,F ,P), called the base transformation, and
L : Ω → L(X,X) is a family of bounded linear maps of X , called the generator.
We will later impose suitable measurability conditions on L.

For notational convenience, we write L(ω) as Lω . A random dynamical system
defines a cocycle N× Ω → L(X,X):

(1) (n, ω) 7→ L(n)
ω := Lσn−1ω ◦ · · · ◦ Lσω ◦ Lω .

We define the Lyapunov exponent in direction v, λ(ω, v), by

(2) λ(ω, v) = lim sup
n→∞

1

n
log ‖L(n)

ω v‖, ω ∈ Ω, v ∈ X.

Lyapunov exponents have the following well-known properties. For all ω ∈ Ω,
u, v ∈ X and α 6= 0:

(i) λ(ω, 0) = −∞;
(ii) λ(ω, αv) = λ(ω, v);
(iii) λ(ω, u + v) ≤ max{λ(ω, u), λ(ω, v)} with equality if λ(ω, u) 6= λ(ω, v);
(iv) λ(σω,Lωv) = λ(ω, v).

We call the set Λ(ω) = {λ(ω, v) : v ∈ X} the Lyapunov spectrum. For α ∈ R, the
set Vα(ω) := {v ∈ X : λ(ω, v) ≤ α} is a linear subspace of X , LωVα(ω) ⊂ Vα(σω)
and if α′ < α, then Vα′(ω) ⊂ Vα(ω). For each ω ∈ Ω, the quantity λ(ω) is defined
by

(3) λ(ω) = lim sup
n→∞

1

n
log ‖L(n)

ω ‖.

Definition 1. Let R = (Ω,F ,P, σ,X,L) be a random dynamical system.

• We say that R is quasi-compact if for almost every ω there is an α < λ(ω)
such that Vα(ω) is finite co-dimensional. Of particular interest is the infimal
α with this property. We call this quantity α(ω).

• For each isolated Lyapunov exponent r ∈ Λ(ω), let ǫr > 0 be small enough
that Λ(ω) ∩ (r − ǫr, r) = ∅. If the codimension d of Vr−ǫr(ω) in Vr(ω) is
finite, then we say r is a Lyapunov exponent of multiplicity d.

• The Lyapunov exponents greater than α(ω) are said to be exceptional.

As they are isolated, the exceptional Lyapunov exponents {λi(ω)}p(ω)
i=1 are

either finite in number (p(ω) < ∞) or else they are countably infinite
(p(ω) = ∞), accumulating only at α(ω). We shall always enumerate the
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exceptional Lyapunov exponents in decreasing order λ1(ω) > λ2(ω) > · · · .
The exceptional Lyapunov spectrum, EX(R)(ω) = {(λi(ω), di(ω))}p(ω)

i=1 , con-
sists of all exceptional Lyapunov exponents paired with their multiplicities.

In the setting where P is ergodic and the generator L satisfies suitable measur-
ability conditions, λ(ω) = λ∗, α(ω) = α∗ and the exceptional Lyapunov spectrum
will be independent of ω P-a.e.

If X is a finite dimensional space, then α(ω) = −∞ for each ω and so all
Lyapunov exponents are exceptional. Since the sets Vα(ω) are subspaces for each
α ∈ R, the number of Lyapunov exponents counted with multiplicity is bounded
by the dimension of X , and so each is isolated and of finite multiplicity.

We are interested in Banach space analogues of the multiplicative ergodic the-
orem. In order to make sense of this it will be necessary to put a topology on
suitable collections of subspaces of Banach spaces. The Grassmannian G(X) of a
Banach space X is defined to be the set of complemented closed subspaces E of
X (that is, those for which there is a second closed subspace F with the property
that X = E ⊕ F ). Since every finite dimensional subspace of X is closed and
complemented, the collection of d-dimensional subspaces of X forms a subset of
G(X), which we denote by Gd(X). Also, finite codimensional subspaces are nec-
essarily complemented, so the collection of closed c-codimensional subspaces of X
forms a subset of G(X), which we denote by respectively Gc(X). More details on
the Grassmannian are given in Section 2 along with proofs of some basic theorems
concerning Grassmannians that we shall need later.

Definition 2. Consider a random dynamical systemR = (Ω,F ,P, σ,X,L) with er-
godic base, and supposeR is quasi-compact with exceptional spectrum {(λi, di)}pi=1

(where 1 ≤ p ≤ ∞). A Lyapunov filtration for R is a collection of maps (Vi : Ω →
Gci(X))pi=1, such that for all ω in a full measure σ-invariant subset Ω′ ⊂ Ω and for
each i = 1, . . . , p:

(1) X = V1(ω) ⊃ · · · ⊃ Vi(ω) ⊃ Vi+1(ω);
(2) Vα(ω)(ω) ⊆

⋂p
i=1 Vi(ω) with equality if and only if p = ∞;

(3) LωVi(ω) = Vi(σω);

(4) λ(ω, v) = limn→∞(1/n) log ‖L(n)
ω v‖ = λi if and only if v ∈ Vi(ω)\Vi+1(ω),

where we set Vp+1(ω) := Vα(ω)(ω) if p < ∞. An Oseledets splitting for R is a
Lyapunov filtration (Vi : Ω → Gci(X))pi=1 together with an additional collection of
maps (Ei : Ω → Gdi

(X))pi=1 (with di = ci+1 − ci), called Oseledets subspaces, such
that for all ω in a full measure σ-invariant subset Ω′ ⊂ Ω and for each i = 1, . . . , p:

(5) Vi(ω) = Ei(ω)⊕ Vi+1(ω);
(6) LωEi(ω) = Ei(σω);

(7) λ(ω, v) = limn→∞(1/n) log ‖L(n)
ω v‖ = λi if v ∈ Ei(ω)\{0}.

We say a Lyapunov filtration is measurable if the maps Vi : Ω → Gci(X) are
measurable with respect to the Borel σ-algebra on G(X) for each 1 ≤ i ≤ p, where
the topology will be defined in the next section. We say an Oseledets splitting is
measurable if, in addition, the maps Ei : Ω → Gdi

(X) are measurable.

1.2. Multiplicative Ergodic Theorems. The first result on the existence of Lya-
punov filtrations and Oseledets splittings in the finite dimensional setting is the
Multiplicative Ergodic Theorem of Oseledets. Throughout, we define log+(x) =
max{0, logx}.
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Theorem 3 (Oseledets [22]). Let R = (Ω,F ,P, σ,Rd,L) be a random dynami-
cal system with ergodic base, and suppose that the generator L is measurable and
∫

log+ ‖Lω‖ dP < +∞. Then R admits a measurable Lyapunov filtration.

Moreover, if the base is invertible, Lω is invertible a. e. and
∫

log+ ‖L±1
ω ‖ dP <

+∞, then R admits a measurable Oseledets splitting.

This situation may be summarized by saying that Oseledets splittings can be
found when the base is invertible and the linear actions in the cocycle are invertible
with bounded inverses, whereas in the non-invertible linear action cases the theorem
only guarantees a Lyapunov filtration. This situation persisted in all subsequent
versions [24, 19, 27] and extensions of the Oseledets theorem, to our knowledge,
until the result stated below by the current authors which obtained a Oseledets
splitting in the semi-invertible case where the base is invertible but the operators
themselves are not assumed to be invertible (or they are invertible but there is no
bound on the logarithmic norms of their inverses).

Theorem 4 (Froyland, Lloyd and Quas [10]). Let R = (Ω,F ,P, σ,Rd,L) be a ran-
dom dynamical system with an invertible ergodic base, and suppose L is measurable
and

∫

log+ ‖Lω‖ dP < +∞. Then R admits a measurable Oseledets splitting.

Remark 5. It is natural to ask whether one can obtain an invariant splitting in
the absence of invertibility of either the base or the operators. In section 3.3 we
show that if the base is non-invertible then even in the case where the operators
are invertible one cannot in general obtain an invariant splitting.

The result of Oseledets has been extended by many authors. Of particular
relevance to us are the result of Ruelle [24] dealing with the case where X is a
Hilbert space and the result of Mañé [19] on random dynamical systems of compact
operators in Banach spaces. This was subsequently extended to the quasi-compact
case by Thieullen [27]. Thieullen’s result will be stated precisely in Section 3. A key
requirement for Thieullen’s extension is that the dependence of the operator Lω on
ω is required to be P-continuous (the definition follows in Section 3) and it is upon
this that we build. It should be pointed out that this is a significant limitation as
many natural random dynamical systems fail to satisfy this condition (e.g. if Tω

is a family of Lasota–Yorke maps, it is almost never the case that their Perron–
Frobenius operators depend in a P-continuous way on ω). A parallel approach was
taken in the recent thesis of Lian [17] where the measurability condition is relaxed
to the weaker ‘strongly measurable’ condition (meaning that for each fixed x ∈ X ,
the map ω 7→ Lωx is measurable). The cost (which is again heavy from the point of
view of applications) is that in order to obtain suitable measurability Lian imposes
the condition that the Banach space X be separable.

Our main theorem is related to Thieullen’s theorem in exactly the way that
our theorem from [10] is related to Oseledets’ Theorem: it provides an Oseledets
splitting for the category of a quasi-compact linear action in the semi-invertible case
where the base is invertible without any invertibility assumptions on the operators.
We include the statement here, but defer some relevant definitions to section 3.

Main Theorem (Theorem 17). Let Ω be a Borel subset of a separable complete
metric space, F the Borel sigma-algebra and P a Borel probabilty. Let X be a
Banach space and consider a random dynamical system R = (Ω,F ,P, σ,X,L) with
base transformation σ : Ω → Ω an ergodic homeomorphism, and suppose that the
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generator L : Ω → L(X,X) is P-continuous and satisfies
∫

log+ ‖Lω‖ dP < +∞.

If κ(ω) < λ(ω) (where κ is the “index of compactness” of L) for almost every ω,
then R is quasi-compact and admits a unique P-continuous Oseledets splitting.

1.3. Overview. An outline of the paper is as follows. In Section 2 we prove some
basic results concerning Grassmanians. In Section 3 we describe the result of
Thieullen [27] and introduce the key notions of P-continuity and index of com-
pactness from that work. We then prove our main result. Section 4 describes two
applications of our main result: Perron–Frobenius cocycles generated by random
“Rychlik” maps (generalisations of Lasota–Yorke maps), and transfer operator co-
cycles generated by subshifts of finite type with random weight functions.

2. The Grassmannian of a Banach Space

Let X be a Banach space and suppose that E,F ⊂ X are subspaces forming a
direct (algebraic) sum: that is, E + F = X and E ∩ F = {0}. This decomposition
specifies a linear map PrF�E(e + f) = f with range F and kernel E, called the
projection onto F along E. Conversely, any projection P : X → X (that is, a linear
map satisfying P 2 = P ) determines a decomposition X = ker(P ) + ran(P ), where
ker(P ) ∩ ran(P ) = {0}.

Unlike in finite dimensions, not all projections in infinite-dimensional Banach
spaces are continuous. A necessary (and sufficient) condition for a projection to be
continuous is that it has a closed range. Since every continuous linear map has a
closed kernel, it follows that every continuous projection determines a topological
direct sum: a direct sum decomposition into complementary closed subspaces. We
denote the topological direct sum of subspaces E,F ⊂ X by E ⊕ F . Conversely, it
follows from the Closed Graph Theorem that if E ⊂ X is a closed subspace with a
closed complementary subspace F ⊂ X , then PrF�E is continuous.

As mentioned before the Grassmannian of X , denoted G(X), is the collection
of complemented closed subspaces of X . The set G(X) admits a Banach manifold
structure as follows. Given E0 ∈ G(X), fix any F0 ∈ G(X) for which E0 ⊕ F0 = X .
We can use F0 to define a neighbourhood of E0: we set UF0 = {E ∈ G(X) :
E ⊕ F0 = X}. We then define an isomorphism φE0,F0 from UF0 to the Banach
space L(E0, F0) by φE0,F0(E) = PrF0�E |E0. The triples {UF0 , φE0,F0 , L(E0, F0)}
form an atlas for G(X) showing that near E0, G(X) is locally modelled on L(E0, F0).
The (E0, F0)-local norm on UF0 is defined by

(4) ‖E‖(E0,F0) := ‖PrF0�E |E0‖.
We now prove some basic properties of the Grassmannian G(X).

Lemma 6. Let X be a Banach space and let Ω be a topological space. Suppose that
for each ω ∈ Ω there are closed subspaces V (ω) and W (ω) whose topological direct
sum is X. Suppose further that V (ω) and W (ω) depend continuously on ω.

Let R(ω) = PrV (ω)�W (ω) be the projection of X onto V (ω) along W (ω). Then the
mapping ω 7→ R(ω) is continuous (with respect to the operator norm on L(X,X)).

Proof. Let ω0 ∈ Ω. Since V (ω) and W (ω) are continuous families of subspaces,
there exists a neighbourhood N1 of ω0 such that for all ω ∈ N1, V (ω)⊕W (ω0) = X
and V (ω0)⊕W (ω) = X .
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SinceX = V (ω0)⊕W (ω0), both ‖PrV (ω0)�W (ω0)‖ and ‖PrW (ω0)�V (ω0)‖ are finite.
Let C be the greater of the two.

Given any ǫ > 0, since V (ω) and W (ω) are continuous there is a neighbourhood
N2 of ω0 contained in N1 such that for ω ∈ N2 one has

‖PrW (ω0)�V (ω)|V (ω0)‖ < ǫ; and

‖PrV (ω0)�W (ω)|W (ω0)‖ < ǫ.

Let x be in X . We now have x = PrV (ω)�W (ω)(x) + PrW (ω)�V (ω)(x). Write the
right side as x1 + x2. Now we split x1 and x2 into parts lying in V (ω0) and
W (ω0) as x1 = x11 + x12 and x2 = x21 + x22 so that x = x11 + x12 + x21 +
x22 = (x11 + x21) + (x12 + x22). We have PrV (ω)�W (ω)(x) = x1 = x11 + x12 and
PrV (ω0)�W (ω0)(x) = x11 + x21 so that the difference is x12 − x21.

Rearranging we have x22 = x2 − x21 so that −x21 = PrV (ω0)�W (ω)(x22) so that
‖x21‖ < ǫ‖x22‖. Similarly ‖x12‖ < ǫ‖x11‖.

We have ‖x11 + x21‖ = ‖PrV (ω0)�W (ω0)(x)‖ ≤ C‖x‖ so that ‖x11‖ ≤ C‖x‖ +
‖x21‖ < C‖x‖ + ǫ‖x22‖ and similarly ‖x22‖ < C‖x‖ + ǫ‖x11‖. Summing and
rearranging we obtain ‖x11‖+‖x22‖ < 2C/(1− ǫ)‖x‖. From the previous equations
we obtain ‖R(ω)(x) − R(ω0)(x)‖ ≤ ‖x12‖ + ‖x21‖ < 2Cǫ/(1 − ǫ)‖x‖. Since ǫ may
be chosen arbitrarily small, this establishes continuity of R at ω0. �

Lemma 7. Let R : Ω → L(X,X) and E : Ω → G(X) be continuous. Then ω 7→
‖R(ω)|E(ω)‖ is continuous.

Proof. Let ǫ > 0 and let ω0 ∈ Ω. Choose a δ > 0 such that δ+2δ‖R(ω0)‖/(1−δ) < ǫ
and 2δ‖R(ω0)‖+ δ < ǫ.

Fix an F0 such that E(ω0) ⊕ F0 = X . Choose a neighbourhood N of ω0 such
that for ω ∈ N , E(ω)⊕ F0 = X , ‖PrF0�E(ω)|E(ω0)‖ < δ and ‖R(ω)−R(ω0)‖ < δ.

Let x ∈ BE(ω), the closed unit ball of E(ω). Since E(ω0) ⊕ F0 = X , x may be
expressed uniquely as a + b with a ∈ E(ω0) and b ∈ F0. We have a = x − b so
that PrF0�E(ω)(a) = −b yielding ‖b‖ < δ‖a‖. We have ‖a‖ ≤ ‖x‖ + ‖b‖ so that
‖a‖ < 1/(1− δ).

We now have

‖R(ω)x‖ − ‖R(ω0)((1 − δ)a)‖
≤ ‖R(ω)x−R(ω0)((1− δ)a)‖
≤ ‖R(ω)x−R(ω0)x‖+ ‖R(ω0)(x− (1− δ)a)‖
≤ ‖R(ω)−R(ω0)‖ · ‖x‖+ ‖R(ω0)‖ · ‖b+ δa‖
≤ δ + 2δ‖R(ω0)‖/(1− δ) ≤ ǫ.

It follows that ‖R(ω)|E(ω)‖ < ‖R(ω0)|E(ω0)‖+ ǫ.

Conversely let x ∈ BE(ω0). We have x = PrF0�E(ω)x + PrE(ω)�F0
x, which we

write as c+ d. By assumption ‖c‖ < δ so that ‖d‖ < 1 + δ. We have

‖R(ω0)x‖ − ‖R(ω)d/(1 + δ)‖
≤ ‖R(ω0)x−R(ω)d/(1 + δ)‖
≤ ‖R(ω0)x−R(ω0)d/(1 + δ)‖ + ‖R(ω0)d/(1 + δ)−R(ω)d/(1 + δ)‖
≤ ‖R(ω0)‖ · ‖x− d+ δd/(1 + δ)‖+ ‖R(ω0)−R(ω)‖ · ‖d/(1 + δ)‖
≤ 2δ‖R(ω0)‖+ δ < ǫ.
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It follows that ‖R(ω0)|E(ω0)‖ < ‖R(ω)|E(ω)‖ + ǫ, which establishes the required
continuity. �

Lemma 8. Suppose that the map V : Ω → G(X) is continuous and that there are
elements E0 and F0 of the Grassmannian such that V (ω0) ⊕ E0 ⊕ F0 = X. Then
there is a neighbourhood N of ω0 such that on N , ω 7→ V (ω)⊕ F0 is continuous.

Proof. Since E0 ⊕ F0 is a topological complementary subspace of V (ω0), by conti-
nuity there is a neighbourhood N1 of ω such that for ω ∈ N1, V (ω)⊕E0 ⊕F0 = X .
In particular we see that E0 is a topological complementary subspace to V (ω)⊕F0

for ω ∈ N1. Let ω1 ∈ N1 be fixed. We need to establish that for ω sufficiently
close to ω1, ‖PrE0�V (ω)⊕F0

|V (ω1)⊕F0
‖ is small. We demonstrate this by writing the

operator as the composition of three parts: two of them bounded and the third one
small.

Let ǫ > 0. We note that PrE0�V (ω)⊕F0
|F0 is zero so that we can rewrite

PrE0�V (ω)⊕F0
|V (ω1)⊕F0

as PrE0�V (ω)⊕F0
|V (ω1) ◦PrV (ω1)�F0

. We further decompose
PrE0�V (ω)⊕F0

as PrE0�F0
◦ PrE0⊕F0�V (ω) so that

PrE0�V (ω)⊕F0
|V (ω1)⊕F0

= PrE0�F0
◦ PrE0⊕F0�V (ω)|V (ω1) ◦ PrV (ω1)�F0

.

Since V (ω1) ⊕ F0 and E0 ⊕ F0 are topological direct sums it follows that C =
‖PrV (ω1)�F0

‖ and C′ = ‖PrE0�F0
‖ are finite. By continuity of V (ω) there is a

neighbourhood N2 of ω1 on which ‖PrE0⊕F0�V (ω)|V (ω1)‖ < ǫ/(CC′). Multiplying
the norms we see that for ω ∈ N2, ‖PrE0�V (ω)⊕F0

‖ < ǫ as required. �

Lemma 9. Let the maps V : Ω → Gd(X) and W : Ω → Gd′(X) be continuous and
suppose that V (ω)∩W (ω) = {0} for each ω ∈ Ω. Then the map ω 7→ V (ω)⊕W (ω)
is continuous.

Proof. Fix ω0 ∈ Ω. Let F0 be a topological complement of V (ω0) ⊕ W (ω0) (this
exists as all finite-dimensional subspaces have a topological complement). In order
to demonstrate continuity we need to show that PrF0�V (ω)⊕W (ω)|V (ω0)⊕W (ω0) has
small norm. Since V (ω0)⊕W (ω0) is a topological direct sum it is sufficient to show
that PrF0�V (ω)⊕W (ω)|V (ω0) is of small norm with a similar result for the restriction
to W (ω0). We write

PrF0�V (ω)⊕W (ω)|V (ω0) = PrF0�W (ω) ◦ PrF0⊕W (ω)�V (ω)|V (ω0).

We have from Lemmas 6 and 8 that ω 7→ PrF0⊕W (ω)�V (ω) is continuous in
a neighbourhood of ω0 and from Lemma 7 that ω 7→ ‖PrF0+W (ω)�V (ω)|V (ω0)‖ is
continuous on this neighbourhood. Since ‖PrF0+W (ω)�V (ω)|V (ω0)‖ = 0 when ω =
ω0, it follows that this norm is arbitrarily small for ω in a neighbourhood of ω0.

It remains to show that ‖PrF0�W (ω)‖ remains bounded on a neighbourhood of
ω0. To see this we note from Lemma 6 that PrF0⊕V (ω0)�W (ω) is continuous on
a neighbourhood of ω0 and PrF0�V (ω0) is a bounded operator since F0 ⊕ V (ω0)
is a topological direct sum. Composing these two operators gives the required
result. �

Lemma 10. Let X be a Banach space, K a compact metrizable space and let
E : K → Gd(X) be a continuous map. Let P be a finite measure on K. Then there
exists an open and dense measurable subset U of K with full P-measure and maps
e1, . . . , ed : K → X with ei|U continuous, i = 1, . . . , d such that for each ω ∈ U ,
e1(ω), . . . , ed(ω) is a basis for E(ω).
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Furthermore, the basis can be chosen so that for each ω ∈ U and all a ∈ R
d,

‖a‖2 ≤
∥

∥

∥

∥

∥

d
∑

i=1

aiei(ω)

∥

∥

∥

∥

∥

≤ 4
√
d‖a‖2.

Proof. Given ω0 ∈ K, there exists Fω0 ∈ Gd(X) such that E(ω0) ⊕ Fω0 = X .
By continuity of E(ω), there exists an open neighourhood Uω0 of ω0 such that
E(ω) ⊕ Fω0 = X for all ω ∈ Uω0 . By a theorem of F. John (see [5, Chapter 4
Theorem 15] for example), there exists a basis v1, . . . , vd for E(ω0) satisfying

2‖a‖2 ≤
∥

∥

∥

∥

∥

d
∑

i=1

aivi

∥

∥

∥

∥

∥

≤ 2
√
d‖a‖2,(5)

for all a ∈ R
d, where ‖a‖2 = (

∑d
i=1 a

2
i )

1/2 is the Euclidean norm on R
d. Define

eω0

i : Uω0 → X for each i = 1, . . . , d, by setting eω0

i (ω) = PrE(ω)�Fω0
vi. Notice that

these vectors depend continuously on ω by Lemma 6. Replacing Uω0 by a smaller
neighbourhood of ω0 if necessary, we may assume that for all ω ∈ Uω0 and a ∈ R

d,

‖a‖2 ≤
∥

∥

∥

∥

∥

d
∑

i=1

aie
ω0

i (ω)

∥

∥

∥

∥

∥

≤ 4
√
d‖a‖2.

It follows that the vectors are linearly independent and hence form a basis for E(ω).
We have that {Uω : ω ∈ K} is an open cover of K. Let ρ be a metric on K

compatible with the topology and let δ > 0 be the Lebesgue number of the cover:
that is, for every 0 < r < δ and ω ∈ K, there exists ω′ ∈ Ω such that Br(ω), the
open ball of radius r centred at ω, is contained in Uω′ . Fix 0 < r0 < δ and consider
the open cover {Br0(ω) : ω ∈ K} of K. By compactness, we have a finite subcover
{Br0(ωi) : i = 1, . . . , k}. For each i = 1, . . . , k, the collection {∂Br(ωi) : r0 < r < δ}
is an uncountable family of pairwise disjoint sets (contained in the sphere of radius
r about ωi), and so there exists r ∈ (r0, δ) such that P(∂Br(ωi)) = 0 for each i.

We have that {Bi := Br(ωi) : i = 1, . . . , k} is a cover of K by open sets whose
boundaries have zero P-measure. These sets have the additional property that for
each i = 1, . . . , k, there exists ω′

i ∈ K such that Bi ⊂ Uω′

i
. Set Di = Bi\

⋃

j<i Bj

and let U =
⋃k

i=1 int(Di). Since K\U ⊂ ⋃k
i=1 ∂Bi, U is an open dense set of full

P-measure and {Di : i = 1, . . . , k} is a partition of K. Setting ei(ω) = e
ω′

j

i (ω)
for ω ∈ Dj , for each i = 1, . . . , d and j = 1, . . . , k gives maps with the required
properties. �

3. Oseledets splitting

Thieullen [27] in his work on multiplicative ergodic theorems for operators in-
troduced a framework on which this paper will be based. A key notion introduced
in that paper is P-continuity.

Definition 11. For a topological space Ω, equipped with a Borel probability P, a
mapping f from Ω to a topological space Y is said to be P-continuous if Ω can be
expressed as a countable union of Borel sets such that the restriction of f to each
is continuous.

Remark 12. As noted in [27], if Ω is homeomorphic to a Borel subset of a separable
complete metric space, then a function f : Ω → Y is P-continuous if and only if
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there exists a sequence (Kn)n≥0 of pairwise disjoint compact subsets of X such that
µ(
⋃

n≥0 Kn) = 1 and the restriction f |Kn
is continuous for each n ≥ 0.

We shall call a Lyapunov filtration or Oseledets splitting P-continuous if all of
the exponents and all maps into the Grassmannian are P-continuous (with respect
to the topology defined in Section 2 in the case of maps into the Grassmannian).

Remark 13. If P is a Radon measure on Ω (that is, locally finite and tight) and Y is
a metric space, then a map f : Ω → Y is P-continuous if and only if it is measurable
(see [9]). In particular, this is the case in the ‘Polish noise’ setting (see, for example,
[15, 1]), where Ω is a separable topological space with a complete metric, F is the
Borel sigma-algebra and P is any Borel probability.

Consider a random dynamical system R = (Ω,F ,P, σ,X,L). If σ is invertible
with a measurable inverse, we say R has an invertible base. If Ω is a Borel subset of
a complete separable metric space, F is the Borel sigma-algebra and σ is continuous
(or a homeomorphism), we say R has a continuous (or homeomorphic) base.

Suppose R is a random dynamical system with a homeomorphic base. Provided

ω 7→ Lω is P-continuous we see that ω 7→ ‖L(n)
ω ‖ is P-continuous and hence F -

measurable. We shall assume throughout that
∫

log+ ‖Lω‖ dP(ω) < ∞. Since

log ‖L(n)
ω ‖ is a subadditive sequence of functions it follows from the subadditive

ergodic theorem that for almost every ω, 1
n log ‖L(n)

ω ‖ is convergent and hence the
quantity λ(ω) defined in (3) may be re-expressed as

λ(ω) = lim
n→∞

(1/n) log ‖L(n)
ω ‖.

The boundedness of
∫

log+ ‖Lω‖ dP(ω) ensures that λ(ω) is finite P-almost every-
where.

Proposition 14. For each ω ∈ Ω, we have supΛ(ω) = λ(ω).

Proof. Clearly supΛ(ω) ≤ λ(ω), so we show that supΛ(ω) ≥ λ(ω). Fix ω ∈ Ω, let

r > supv∈X λ(ω, v). Set AN = {v ∈ X : ‖L(n)
ω v‖ ≤ Nenr, ∀n ∈ N}. The set AN is

closed, and by the choice of r, we have
⋃

N∈N
AN = X for each ω ∈ Ω. Thus by the

Baire Category Theorem, there exists an AN containing an interior point u. Let
δ > 0 be small enough that Bδ(u) ⊂ AN . For any v ∈ Bδ(0) and n > 0, we have

‖L(n)
ω v‖ ≤ ‖L(n)

ω (v − u)‖ + ‖L(n)
ω u‖. So ‖L(n)

ω ‖ ≤ (2N/δ)enr, and hence λ(ω) ≤ r.
Since r is an arbitrary quantity greater than Λ(ω), the result follows. �

We concentrate on the setting in which σ is ergodic. The function λ(ω) is then
constant along orbits, and thus essentially constant. We denote by λ∗ ∈ R the
constant satisfying λ(ω) = λ∗ for almost every ω ∈ Ω.

A second key concept introduced by Thieullen is that of the index of compactness
of a random composition of operators. For a bounded operator A, ‖A‖ic is defined
to be the infimal r such that A(BX) may be covered by a finite number of r-balls,
where BX is the unit ball in X . We have ‖AA′‖ic ≤ ‖A‖ic‖A′‖ic for any bounded
linear operators on X . One can check that |‖A‖ic−‖A′‖ic| ≤ ‖A−A′‖ so that ‖A‖ic
is a continuous function of the operator. In particular for each n, ω 7→ ‖Ln

ω‖ic is P-
continuous and hence F -measurable. By sub-additivity we have (1/n) log ‖L(n)

ω ‖ic
is convergent.
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Definition 15. The limit κ(ω) := limn→∞(1/n) log ‖L(n)
ω ‖ic is called the index of

compactness of the random composition of operators.

Since κ(ω) is σ-invariant it is equal almost everywhere to a constant which we
call κ∗.

Theorem 16 (Thieullen [27]). Let R = (Ω,F ,P, σ,X,L) be a random dynamical
system with an ergodic continuous base, and suppose ω 7→ Lω is P-continuous, and
that

∫

log+ ‖Lω‖ dP < +∞. If κ∗ < λ∗, then R is quasi-compact, with α(ω) = κ∗

a. e., and admits a P-continuous Lyapunov filtration.
Moreover, if the base is invertible and Lω is injective a. e., then R admits a

P-continuous Oseledets splitting.

Our main result in this article is the extension of Thieullen’s theorem to show
that one obtains an Oseledets splitting in Thieullen’s setting without making the
assumption of invertibility of the Lω.

Theorem 17. Let Ω be a Borel subset of a separable complete metric space, F
the Borel sigma-algebra and P a Borel probabilty. Let X be a Banach space and
consider a random dynamical system R = (Ω,F ,P, σ,X,L) with base transfor-
mation σ : Ω → Ω an ergodic homeomorphism, and suppose that the generator
L : Ω → L(X,X) is P-continuous and satisfies

∫

log+ ‖Lω‖ dP < +∞.

If κ∗ < λ∗ for almost every ω, then R is quasi-compact and admits a unique P-
continuous Oseledets splitting.

The proof of this theorem (which makes extensive use of Theorem 16) is given
in the next two subsections, in which existence and uniqueness of the Oseledets
splitting, respectively, are proved.

3.1. Existence of an Oseledets splitting. Consider a random dynamical sys-
tem R = (Ω,F ,P, σ,X,L) with an ergodic homeomorphic base. Suppose L is
P-continuous and

∫

log+ ‖Lω‖ dP < +∞. Let EX(R) = {(λi, di)}pi=1 be the excep-
tional Lyapunov spectrum of R, and (Vi : Ω → G∞(X))pi=1 the Lyapunov filtration.

Following Thieullen, we construct an extension Banach space X̃, and a new
generator L̃ : Ω → L(X̃, X̃) whose cocycle retains all the dynamical information of

the original system but has the advantage that L̃ω is injective.
The extended random dynamical system R̃ = (Ω,F ,P, σ, X̃, L̃) is defined as

follows:

X̃ = {(vn)∞n=0 : ∀n, vn ∈ X, supn‖vn‖ < ∞} ,
L̃ω(v0, v1, v2, . . .) = (Lωv0, α0v0, α1v1, α2v2, . . .),

for a positive sequence (αn)
∞
n=0 decaying to zero. We endow X̃ with the norm

‖ṽ‖X̃ = supn ‖vn‖X where ṽ = (vn)
∞
n=0. Every L̃ω is injective on X̃. In Thieullen’s

article sufficient conditions on the speed of decay of the sequence (αn) are given to

ensure that the indices of compactness of R̃ and R are equal (κ̃∗ = κ∗) and that

λ̃∗ = λ∗. In fact we check in Subsection 3.4 that this holds for any sequence (αn)
of positive numbers tending to 0.

Provided κ∗ < λ∗, we may apply the invertible form of Thieullen’s Theorem
to R̃ to obtain the σ-invariant subset Ω′ ⊂ Ω, P(Ω′) = 1, P-continuous Lyapunov
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filtration (Ṽi : Ω → G∞(X̃))pi=1 and Oseledets subspaces (Ẽi : Ω → G∞(X̃))pi=1.

We denote by λ̃(ω, v) := limn→∞ log ‖L̃(n)
ω ṽ‖ the Lyapunov exponents for R̃.

Let π : X̃ → X denote the (continuous) mapping onto the zeroth coordinate.

We have L◦π = π◦L̃. Thieullen proves that for all ω ∈ Ω′ and ṽ ∈ X̃, λ(ω, π(ṽ)) =

λ̃(ω, ṽ), and that R and R̃ have the same expectional exponents. He then defines

Vi(ω) = π(Ṽi(ω)) and proves that the (Vi : Ω → G∞(X))pi=1 form a Lyapunov
filtration for the one-sided system.

For each 1 ≤ i ≤ p, we define Ei(ω) = πẼi(ω). As the linear image of a
finite dimensional space, Ei(ω) is a closed subspace. We now demonstrate that
(Ei : Ω → G(X))pi=1 is the splitting we seek.

Claim 18. The maps (Ei : Ω → G(X))pi=1 form a P-continuous Oseledets splitting
for R = (Ω,F ,P, σ,X,L).

Proof. Let v ∈ Vi+1(ω)∩Ei(ω). Then v = π(ṽ) with ṽ ∈ Ṽi+1(ω) so that λ(ω, v) =

λ̃(ω, ṽ) ≤ λi+1. On the other hand if v 6= 0, then v = π(ṽ′) for some ṽ′ ∈ Ẽi(ω)\{0}.
In this case we obtain λ(ω, v) = λ̃(ω, ṽ′) = λi. Since this contradicts the fact that

λ(ω, v) ≤ λi+1 it follows that Vi+1(ω)∩Ei(ω) = {0}. Since Ṽi(ω) = Ṽi+1(ω)+Ẽi(ω),
any v ∈ Vi(ω) can be written as u + w with u ∈ Vi+1(ω) and w ∈ Ei(ω). By the
triviality of the intersection this decomposition is unique. Since both spaces are
closed (Vi+1(ω) by Thieullen’s theorem and Ei(ω) by finiteness of dimension) we
obtain Vi(ω) = Vi+1(ω)⊕ Ei(ω).

We now show that dimEi(ω) = dim Ẽi(ω). If ṽ ∈ X̃ satisfies π(ṽ) = 0, then

λ̃(ω, ṽ) = −∞, and so ker(π) ∩ Ẽi(ω) = {0}. Since Ei(ω) = π(Ẽi(ω)), we see that

dimEi(ω) ≤ dim Ẽi(ω). Suppose the subspace Ẽi(ω) is k-dimensional and can be

written as Ẽi(ω) = 〈ṽ1, . . . , ṽk〉. Then 〈vi0 := π(ṽi) : i = 1, . . . , k〉 = Ei(ω). If we
had c1v

1
0+ · · ·+ckv

k
0 = 0 for some c ∈ R

k\{0}, then we would have c1ṽ
1+ · · · ckṽk ∈

ker(π) ∩ Ẽi(ω) = {0}, contradicting linear independence of the ṽ1, . . . , ṽk. Hence,

v10 , . . . , v
k
0 , are also linearly independent, and so di = dimEi(ω) = dim Ẽi(ω).

We end by proving the P-continuity of the subspaces Ei. Since the function
Ẽi : Ω → Gdi

(X̃) is P-continuous, there exists a sequence (Kn)n≥0 of pairwise

disjoint compact subsets of Ω such that P(
⋃

n≥0 Kn) = 1 and Ẽi|Kn
is continuous

for each n ≥ 0. By Lemma 10, for each n ≥ 0 there exists an open and dense
subset Un ⊂ Kn, P(Un) = P(Kn) and continuous functions ẽi,nj : Un → X̃, j =

1, . . . , di, with ẽi,n1 (ω), . . . , ẽi,ndi
(ω) forming a basis for Ẽi(ω) for each ω ∈ Un. Since

π : X̃ → X is continuous, the functions ei,nj := π ◦ ẽi,nj : Un → X are continuous,

and ei,n1 (ω), . . . , ei,ndi
(ω) forms a basis for Ei(ω) as shown above. Take functions

eij : Ω → X , j = 1, . . . , di, satisfying eij(ω) = ei,n1 (ω) for ω ∈ Un, n ≥ 0. Applying

Lemma 9 inductively we see that ω 7→ 〈ei1(ω), . . . , eidi
(ω)〉 ∈ Gdi

(X) is continuous
on Un, for each n ≥ 0 and so P-continuous on Ω, which shows that Ei : Ω → Gdi

(X)
is P-continuous. �

3.2. Uniqueness of the Oseledets splitting. Consider R = (Ω,F ,P, σ,X,L),
a quasi-compact random dynamical system, and assume that σ is ergodic and
∫

log+ ‖Lω‖ dP(ω) < ∞. Let EX(R) = {(λi, di)}pi=1 be the exceptional Lyapunov
spectrum, (Vi : Ω → Gci(X))pi=1 the Lyapunov filtration and (Ei : Ω → Gdi

(X))pi=1

the Oseledets subspaces constructed above.
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The following lemma gives us exponential uniformity in a finite-dimensional sub-
space all of whose Lyapunov exponents are equal. A result of this type first ap-
peared in the Euclidean case in a paper of Barreira and Silva [4] (see also [10] for
an independent proof). The proof here follows by choosing a suitable basis.

Lemma 19. Let B : Ω → L(X,X) be a P-continuous family of operators and
let E : Ω → Gd(X) be P-continuous. Suppose that B(ω) maps E(ω) bijectively to

E(σω). If for almost every ω, limn→∞(1/n) log ‖B(n)
ω v‖ → λ for all v ∈ E(ω)\{0}

(i.e. if all Lyapunov exponents of B are equal to λ) then

lim
n→∞

1

n
log inf

x∈SE(ω)

‖B(n)
ω x‖ = lim

n→∞

1

n
log sup

x∈SE(ω)

‖B(n)
ω x‖ = λ,

where SE(ω) denotes the unit sphere {x ∈ E(ω) : ‖x‖ = 1}.
Proof. By Lemma 10, since E : Ω → Gd(X) is P-continuous, we have P-continuous
functions fi : Ω → X satisfying

(6) ‖a‖2 ≤
∥

∥

∥

∥

∥

d
∑

i=1

aifi(ω)

∥

∥

∥

∥

∥

≤ 4
√
d‖a‖2,

where ‖ · ‖2 represents the Euclidean norm on R
d. Let A(ω) : Rd → E(ω) be the

map given by A(ω)a =
∑d

i=1 aifi(ω). By (6) we have ‖a‖2 ≤ ‖A(ω)a‖ ≤ 4
√
d‖a‖2.

The linear map A is invertible a. e. and satisfies 1/(4
√
d)‖v‖ ≤ ‖A(ω)−1v‖2 ≤ ‖v‖

for v ∈ E(ω). We have a cocycle τ on R
d given by τ (n)(ω) := A(σnω)−1B

(n)
ω A(ω).

If a ∈ R
d, then

‖τ (n)(ω)a‖2 ≤ ‖A(σnω)−1‖ · ‖B(n)
ω A(ω)a‖

≤ ‖B(n)
ω (A(ω)a)‖ and

‖τ (n)(ω)a‖2 ≥ ‖B(n)
ω (A(ω)a)‖/‖A(σnω)‖

≥ 1

4
√
d
‖B(n)

ω (A(ω)a)‖.

Since A(ω) is a bijection, it follows that limn→∞(1/n) log ‖τ (n)(ω)a‖2 = λi for each
a ∈ R

d\{0}. Applying the theorem of Barreira and Silva [4, Theorem 2] (or see [10,
Proof of Theorem 4.1] ), we have that

lim
n→∞

(1/n) log inf{‖τ (n)(ω)a‖2 : a ∈ R
d, ‖a‖2 = 1}

= lim
n→∞

(1/n) log sup{‖τ (n)(ω)a‖2 : a ∈ R
d, ‖a‖2 = 1} = λ.

Reusing the above inequalities the proof of the Lemma is complete. �

A sequence (vn)n∈Z is called a full orbit at ω ∈ Ω if L(σnω)vn = vn+1 for all
n ∈ Z. For full orbits, we may consider growth rates as n → −∞.

Lemma 20. Let (vn)n∈Z ⊂ X be a full orbit for ω ∈ Ω′ and suppose vn ∈ Vi(σ
nω)

for all n ∈ Z. Then

lim inf
n→∞

(1/n) log ‖v−n‖ ≥ −λi.

If we have vn ∈ Ei(σ
nω) for all n ∈ Z, then we have the stronger statement

lim
n→∞

(1/n) log ‖v−n‖ = −λi.
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Proof. We have limn→∞(1/n) log ‖L(n)
ω |Vi(ω)‖ = λi, and by [10, Lemma 8.2], it

follows that limn→∞(1/n) log ‖L(n)(σ−nω)|Vi(σ
−nω)‖ = λi. Thus for any full orbit

{vn}n∈Z satisfying 0 6= vn ∈ Vi(σ
nω) for all n ∈ Z, we have

lim sup
n→∞

(1/n) log(‖L(n)(σ−nω)v−n‖/‖v−n‖) ≤ λi.(7)

Thus

lim inf
n→∞

1

n
log ‖v−n‖ = − lim sup

n→∞

1

n
log

‖v0‖
‖v−n‖

= − lim sup
n→∞

1

n
log

‖L(n)(σ−nω)v−n‖
‖v−n‖

≥ −λi.

For the second statement we shall assume that vn ∈ Ei(σ
nω) for all n ∈ Z.

The mapping Lω |Ei(ω) is a bijection, so we denote by S(ω) : Ei(σω) → Ei(ω) the

inverse map. We let S(n)(ω) := S(σ−nω) · · ·S(σ−1ω) = [L(n)
σ−nω|Ei(σ−nω)]

−1 denote

the cocycle for the map σ−1 generated by S. As log ‖S(n)(ω)‖ is a subadditive
sequence of functions over σ−1, using [10, Lemma 8.2] again we have

lim
n→∞

1

n
log ‖S(n)(ω)‖ = lim

n→∞

1

n
log ‖S(n)(σnω)‖

= − lim
n→∞

1

n
log inf

06=v∈Ei(ω)

‖L(n)
ω v‖
‖v‖

= −λi,

where the last equality follows from Lemma 19. Suppose now that 0 6= vn ∈
Ei(σ

nω) for all n ∈ Z. Then we have

lim sup
n→∞

1

n
log ‖v−n‖ = lim sup

n→∞

1

n
log

‖S(n)(ω)v0‖
‖v0‖

≤ −λi.

�

Claim 21. The P-continuous Oseledets splitting is unique on a full measure subset
of Ω.

Proof. Fix 1 ≤ i ≤ p. Consider a P-continuous map E′
i : Ω → Gdi

(X) satisfying
LωE

′
i(ω) = E′

i(σω) and E′
i(ω)⊕ Vi+1(ω) = Vi(ω) for almost every ω ∈ Ω. Assume

for a contradiction that there is a measurable subset J ⊂ Ω, P(J) > 0, such that
Ei(ω) 6= E′

i(ω) for all ω ∈ J .
Let Fi(ω) =

⊕

j<i Ej(ω). We have Vi+1(ω)⊕Ei(ω)⊕ Fi(ω) = X for all ω ∈ Ω′.

Let (Un)n≥0 be a sequence of measurable subsets of Ω, P(
⋃

n≥0 Un) = 1, such

that the maps Vi+1|Un
, Ei|Un

and Fi|Un
are continuous. By Lemma 9, the map

Ei ⊕ Fi is continuous on Un for each n ≥ 0. By Lemma 6, the map R(ω) :=
PrVi+1(ω)�Ei(ω)⊕Fi(ω) is continuous on Un for each n ≥ 0. Thus, by Lemma 7, the
mapping g(ω) = ‖R(ω)|E′

i
(ω)‖ is P-continuous, and in particular, is F -measurable.

We first prove that limn→∞ g(σnω) = 0 for almost all ω. Let ω ∈ Ω′ be given.
For any fixed u ∈ E′

i(ω) \ {0}, we have R(ω)u ∈ Vi+1(ω) so that for any ǫ > 0 there

exists a C < ∞ with ‖L(n)
ω R(ω)u‖ ≤ Cen(λi+1+ǫ) for all n > 0.

On the other hand since u ∈ Vi(ω) \ Vi+1(ω), there is a C′ > 0 such that

‖L(n)
ω u‖ ≥ C′en(λi−ǫ) for all n. Fix ǫ < 1

4 (λi − λi−1). We have for each fixed u
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there is a constant Cu such that

‖L(n)
ω R(ω)u‖
‖L(n)

ω u‖
≤ Cue

−n(λi−λi+1−2ǫ) for all n > 0.

We now use a Baire category argument. Define DN by

DN = {u ∈ E′
i(ω) : ‖L(n)

ω R(ω)u‖ ≤ Ne−n(λi−λi+1−2ǫ)‖L(n)
ω u‖ ∀n > 0}.

Since these sets are closed and their union is all of E′
i(ω), one of them must contain

a ball Bδ(u) ∩ E′
i(ω). By scale-invariance it contains a ball B1(u/δ) ∩ E′

i(ω). Set
u0 = u/δ and let x ∈ E′

i(ω) satisfy ‖x‖ = 1. Then we have for each n

‖L(n)
ω R(ω)(u0 + x)‖ ≤ Ne−n(λi−λi+1−2ǫ)‖L(n)

ω (u0 + x)‖
‖L(n)

ω R(ω)u0‖ ≤ Ne−n(λi−λi+1−2ǫ)‖L(n)
ω u0‖.

Using L(n)
ω R(ω) = R(σnω)L(n)

ω , subtracting the above two inequalities and using
the triangle inequality we obtain

‖R(σnω)L(n)
ω x‖ ≤ Ne−n(λi−λi+1−2ǫ)(‖L(n)

ω (u0 + x)‖ + ‖L(n)
ω u0‖).

Since L(n)
ω x/‖L(n)

ω x‖ is a general point of the intersection of the unit sphere with
E′

i(σ
nω) we obtain

g(σnω) ≤ Ne−n(λi−λi+1−2ǫ)
supx∈SE′

i
(ω)

‖L(n)
ω (u0 + x)‖ + ‖L(n)

ω u0‖

infx∈SE′

i
(ω)

‖L(n)
ω x‖

,

The numerator is bounded above by an expression of the form Cen(λi+ǫ). Similarly,
by Lemma 19 the denominator is bounded below by an expression of the form
C′en(λi−ǫ). It follows that g(σnω) ≤ (NC/C′)e−n(λi−λi+1−4ǫ). By our choice of ǫ
we see that g(σnω) → 0 as claimed.

Now let ω ∈ J and let (vn) be a full orbit over ω with v0 ∈ E′
i(ω)\Ei(ω). Such an

orbit exists since Lω maps E′
i(ω) bijectively to E′

i(σ(ω)). Let un = vn −R(σnω)vn
and wn = R(σnω)vn. Since E

′
i(ω) ⊂ Ei(ω)⊕Vi+1(ω) we see that un ∈ Ei(σ

nω) (i.e.
un has no component in Fi(σ

nω)). We also have wn ∈ Vi+1(σ
nω). Since w0 6= 0

we have wn 6= 0 for all n < 0.
We now have R(σ−nω)(w−n + u−n) = w−n. Lemma 20 tells us that ‖u−n‖ ≤

Ce−n(λi−ǫ) and that ‖w−n‖ ≥ C′e−n(λi+1+ǫ). We deduce that

lim inf
n→∞

g(σ−nω) = lim inf
n→∞

‖R(σ−nω)|E′

i
(σ−nω)‖

≥ lim inf
n→∞

‖w−n‖/(‖w−n‖+ ‖u−n‖) = 1.

If we consider the set A = {ω ∈ Ω : g(ω) < 1/2} we have for almost every ω,
σnω ∈ A for all large positive n whereas σnω 6∈ A for all large negative n. This
contradicts the Poincaré recurrence theorem, and hence the promised uniqueness
is established. �

3.3. Necessity of invertibility of the base. The Main Theorem provides an
invariant splitting in the absence of invertibility of the operators as long as the
base is invertible. It is natural to ask whether one can obtain an invariant splitting
in the absence of invertibility of the base. The following example establishes that
in general this is not possible.
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Example 22. Let Σ = {0, 1}Z be equipped with the shift-transformation σ and the
(12 ,

1
2 )-Bernoulli measure and let A0 and A1 be two non-commuting invertible 2× 2

matrices which we consider as operators on R
2. Let Lω : R

2 → R
2 be given by Lω =

Aω0 . We assume further that the two Lyapunov exponents of the random dynamical

system differ. As is standard we define for n > 0, L(−n)
ω = A−1

ω−n
◦ · · · ◦ A−1

ω−1
. We

call this random dynamical system R.
Oseledets’ theorem then guarantees that there is a decomposition R

2 = E1(ω)⊕
E2(ω) such that for v ∈ Ei(ω) \ {0}, (1/n) log ‖L(n)

ω v‖ → λi both as n → ∞ and
as n → −∞; and Lω(Ei(ω)) = Ei(σ(ω)) and L−1

σ−1ω(Ei(ω)) = Ei(σ
−1ω) for almost

every ω. By uniqueness (Theorem 17), this splitting is unique.
We define an inverse system R as follows: Σ = Σ where the base map is σ = σ−1.

We define the operators on this inverse system by Lω = A−1
ω−1

. Oseledets’ theorem

guarantees that the splitting E1(ω)⊕ E2(ω) also works for R.
We now define non-invertible systems R+ and R− obtained by truncating the

shifts in R and R to one-sided shifts. Σ+ is defined to be {0, 1}Z+

(where Z
+ =

{0, 1, 2, . . .}) and Σ− is defined to be {0, 1}Z−

(where Z
− = {−1,−2, . . .}). Let Σ+

and Σ− be equipped with their Borel σ-algebras B+ and B−. The maps σ and σ
factor naturally onto maps σ+ on Σ+ and σ− on Σ− through π+(ω) = (ωn)n∈Z+

and π−(ω) = (ωn)n∈Z− . Define L+
η for η ∈ Σ+ = Aη0 as before and similarly

L−
ξ = A−1

ξ−1
for ξ ∈ Σ− as before. Let R+ and R− be the two one-sided dynamical

systems.
Suppose now for a contradiction that there are Oseledets splittings for R+ and

R−: E+
1 (η)⊕ E+

2 (η) for η ∈ Σ+ and E−
1 (ξ)⊕ E−

2 (ξ) for ξ ∈ Σ− respectively.
Then one can check that E+

1 (π+(ω)) ⊕ E+
2 (π+(ω)) is an invariant splitting for

R which gives the correct rates of expansion as n → ∞. Theorem 17 guarantees
that there is only one such splitting and hence we see that

(8) Ei(ω) = E+
i (π+(ω)) for almost every ω.

Similarly E−
1 (π−(ω)) ⊕ E−

2 (π−(ω)) is an invariant splitting for R which gives the
correct rates of expansion as the power n of the inverse random dynamical system
approaches ∞. Since the splitting for R was the same as that for R we deduce that

(9) Ei(ω) = E−
i (π−(ω)) for almost every ω.

From (8) we deduce that Ei is F+-measurable where F+ = π+−1B+ whereas from

(9) we deduce that Ei is F−-measurable where F− = π−−1B−. It follows that
the Ei are F− ∩ F+-measurable. Since the intersection F− ∩ F+ is the trivial
sigma-algebra it follows that Ei is constant almost everywhere, equal to E∗

i say.
From this it follows that A0(E

∗
i ) = A1(E

∗
i ) = E∗

i so that A0 and A1 have com-
mon eigenspaces and hence are simultaneously diagonalizable. Since they do not
commute by assumption this is a contradiction.

3.4. Reduction to the invertible case in Thieullen’s Theorem. As men-
tioned above Thieullen deduces the non-invertible version of his theorem from the
invertible case by constructing an invertible extension of the given system. More
specifically if the original system has maps Lω acting on a Banach space X the new
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system has maps L̃ω acting on a Banach space X̃ where

X̃ = {(x0, x1, . . .) : xi ∈ X, sup ‖xi‖ < ∞}; and
L̃ω(x0, x1, . . .) = (Lω(x0), α0x0, α1x1, . . .).

Thieullen then defines γn =
∑

k≤n logαk and states conditions on the (αn) and

(γn) which suffice to ensure that the exceptional spectrum of the extension agrees
with the exceptional spectrum of the original system.

His conditions are as follows:

(1) (αn) is a strictly decreasing sequence converging to 0;
(2) limn→∞ γn/n = −∞;
(3) ∀µ < 0, sup{p ≥ 0: γp ≥ (n+ p)µ} = o(n).

We claim that Condition (1) implies the other two conditions. That (1) implies
(2) is immediate. We now indicate a brief proof that (2) implies (3).

Let µ < 0 and ǫ > 0 be given. Set M = −µ/ǫ − µ. By (2) there is a p0 such
that for p ≥ p0 we have γp/p < −M . At this point, choose an n. If γp ≥ (n + p)µ
then either (i) p < p0 or (ii) p ≥ p0 and therefore (n + p)µ ≤ γp < −pM . In the
latter case −pµ/ǫ = p(M +µ) ≤ −nµ. We then see that p ≤ min(p0, ǫn). Since ǫ is
arbitrary we see that sup{p ≥ 0: γp ≥ (n+ p)µ} = o(n) as required and Condition
(3) is established.

We remark that in Thieullen’s proofs it is sufficient to take a sequence (αk)
for which (2) is satisfied. Clearly the most natural way to do this is to take any
sequence satisfying (1).

4. Applications

The motivation for the development of Theorem 4 is the desire to extend transfer
operator approaches for the global analysis of dynamical systems from deterministic
autonomous dynamical systems to random or non-autonomous dynamical systems.

A common setting for deterministic systems is: M ⊂ R
m is a smooth manifold

and T : M → M a C1 map with some additional regularity properties. The
(deterministic) dynamical system T : M → M has an associated Perron–Frobenius
operator LT : X → X defined by LT f(x) =

∑

y∈T−1x f(y)/| detDT (y)|, where X is
a Banach space of complex-valued functions on M . The Perron–Frobenius operator
evolves density functions on M forward in time, just as the map T evolves single
points x ∈ M forward in time.

More generally, the “weight” 1/| detDT (y)| may be replaced with a sufficiently
regular generalised weight g(y) to form a transfer operator. Perron–Frobenius op-
erators and transfer operators have proven to be indispensable tools for studying
the long term behaviour of dynamical systems. An ergodic absolutely continuous
invariant probability measure (ACIP) describes the long term distribution of for-
ward trajectories {T kx}∞k=0 in M for Lebesgue almost-all initial points in x ∈ M .
An early use of Perron–Frobenius operators was to prove the existence of ACIMs
for piecewise C2 expanding maps [16]. A study of the peripheral spectrum of
LT yielded information on the number of ergodic ACIPs [13, 25]. The particular
weight function 1/| detDT (y)| is attuned to ACIPs. Other “equilibrium states”
can be read off from the leading eigenfunction of the transfer operator by varying
the weight function g (in statistical mechanics terms, g describes the local energy
of states in M).
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The spectrum of the Perron–Frobenius operator provides information on the ex-
ponential rate at which observables become temporally decorrelated. The essential
spectral radius of Perron–Frobenius operators [14] establishes a threshold beyond
which spectral values are necessarily isolated. Furthermore, this radius is typically
connected with the average rate at which nearby trajectories separate. Thus, these
isolated spectral values are of particular interest in applications because they pre-
dict decorrelation rates slower than one expects to be produced by local separation
of trajectories. The eigenfunctions associated with these isolated eigenvalues have
been used to detect slowly mixing structures in a variety of physical systems, see,
for example, [26, 8, 12, 7].

From a physical applications point of view, it is natural to study random or
time-dependent (non-autonomous) dynamical systems using a transfer operator
methodology. Theorem 4 considered this question in the setting of a finite num-
ber of piecewise linear, expanding interval maps, sharing a joint Markov partition,
where the Perron–Frobenius operators acted on the space of functions of bounded
variation. In the present work, in our first application, we remove the assumptions
of finiteness, piecewise linearity and Markovness, and allow random compositions
that are expanding-on-average. Our second application is to subshifts of finite type
with random continuously-parametrized weight functions.

4.1. Application I: Interval maps. We now show that Theorem 17 can be ap-
plied in the context of random compositions of expanding-on-average mappings
acting through their Perron–Frobenius operators on the space BV of functions of
bounded variation. In this context a major drawback of the Thieullen approach
becomes clear: if T1 and T2 are any two distinct expanding mappings then their
Perron–Frobenius operators LT1 and LT2 are far apart in the operator norm on
BV. In fact the set of Perron–Frobenius operators acting on BV is discrete. As a
consequence, in order for ω 7→ LTω

to be a continuous map on a compact space, the
maps range of ω 7→ Tω is forced to be finite. If we want ω 7→ LTω

to be P-continuous
then it can have at most countable range.

Let I = [0, 1] ⊂ R denote the closed unit interval, B denote the Borel σ-algebra
and m denote Lebesgue measure.

Definition 23. We say a map T : I → I is Rychlik if

(1) T is differentiable on a dense open subset UT ⊂ I of full measure;
(2) for each connected component B of UT , T |B extends to a homeomorphism

from B to a subinterval of I;
(3) the function gT : I → R has bounded variation, where

gT (x) =

{ 1
|DT (x)| x ∈ UT

0 otherwise.

The class of Rychlik maps is closed under composition. Recall that the variation
of a function f : I → R is the quantity

(10) var(f) := sup
0=p1<p2<...<pk=1

k
∑

i=1

|f(pi)− f(pi−1)|.

A function on the interval is said to be of bounded variation if var(f) < ∞.
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The Perron–Frobenius operator for a Rychlik map T is defined, for a function
f ∈ L1(I) by

(11) LT f(x) =
∑

y∈T−1(x)

gT (y)f(y).

The Perron–Frobenius operator is a Markov operator : that is, if f ∈ L1(I), then
∫

LT f dm =
∫

f dm, and if f ≥ 0, then LT f ≥ 0.
We consider the action of LT on the Banach space

BV :=
{

f ∈ L∞(I) : f has a version f̃ with var f̃ < ∞
}

with norm ‖f‖ := max(‖f‖1, inf{var(f̃) : f̃ is a version of f}). A version f̃ of

f ∈ BV has minimal variation if and only if f̃(x) ∈ [limy→x− f(y), limy→x+ f(y)]
for all x. We shall assume versions are chosen so as to satisfy this condition, unless
stated otherwise.

We shall need a lemma that is a combination of Lemmas 4, 5 and 6 from Rychlik
[25].

Lemma 24 (Rychlik [25]). Let T be a Rychlik map of the unit interval and let LT be
its Perron-Frobenius operator. Suppose ess infx |T ′(x)| > 1. Let a = 3/ ess inf |T ′|.
Then there is a partition P of the unit interval into finitely many subintervals and
a constant D such that for all f ∈ BV

varLT f ≤ a var f +D
∑

J∈P

∣

∣

∣

∣

∫

J

f

∣

∣

∣

∣

.

We define a random composition of Rychlik maps as follows. Let {Ti}i∈I , be
a finite or countably infinite set of Rychlik maps. Let I denote the one-point

compactification of I (with the discrete topology) and let S = I
Z

. Let σ : S →
S be the shift map and let P be an ergodic shift-invariant probability measure
supported on Ω = IZ. For ω ∈ Ω let Lω = LTω0

be the Perron–Frobenius operator
of the map Tω0 acting on the space BV. We make the further assumption that
∫

log+ ‖Lω‖ dP(ω) < ∞ (or equivalently
∑

i∈I P({i}) log ‖LTi
‖ < ∞). If these

conditions are satisfied we refer to the 6-tuple R = (Ω,F ,P, σ,BV,L) as a Rychlik
random dynamical system.

One can then verify that the system R satisfies the assumptions of Theorem 17.

We denote the n-fold composition Tσn−1ω ◦ · · ·Tσω ◦Tω by T
(n)
ω . It is well known

that the composition, L(n)
ω , of the Perron–Frobenius operators of Tω, Tσω, . . . , Tσn−1ω

is equal to the Perron–Frobenius operator of T
(n)
ω . A random composition may

also be considered as a single transformation on the space Ω × I which we endow
with the sigma-algebra F ⊗ B: the skew product Θ : Ω × I → Ω × I is given by
Θ(ω, x) = (σω, Tωx).

We shall need a well-known inequality relating the index of compactness to the
essential spectral radius. For a version of the converse inequality the reader is
referred to work of Morris [21]. Let A : X → X be a linear operator on a Banach
space. We write ‖A‖fr for inf{‖A − F‖ : F has finite rank}. Recall from earlier
‖A‖ic is defined to be inf{r : A(BX) may be covered by a finite number of r-balls}.

Lemma 25. For a linear operator A between Banach spaces ‖A‖ic ≤ ‖A‖fr.
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Proof. Let A = F + R where F has finite rank and ‖R‖ = r. Let ǫ > 0. Since
F (BX) is compact it may be covered by a finite number of ǫ-balls for any ǫ >

0,
⋃N

n=1 Bǫ(xn). Hence A(BX) ⊂ F (BX) + R(BX) ⊂ ⋃N
n=1 Bǫ(xn) + Br(0) =

⋃N
n=1 Br+ǫ(xn) so that for each ǫ > 0, ‖A‖ic ≤ r + ǫ. Since it is possible to find

decompositions with r arbitrarily close to ‖A‖fr the lemma follows. �

Keller [14] used Lemma 24 together with a supplementary argument to identify
the essential spectral radius of the Perron–Frobenius operator of an expanding
Rychlik map acting on the space of functions of bounded variation. We show that
Keller’s argument applies equally in our context of random dynamical systems.

Theorem 26. Let R = (Ω,F ,P, σ,BV,L) be a Rychlik random dynamical system.
Then there exists a χ such that for P-almost every ω,

(

1/ ess inf
∣

∣

∣
T (n)
ω

′
(x)
∣

∣

∣

)1/n

→ χ.(12)

Further if χ < 1 then ‖L(n)
ω ‖1/nic → χ.

Definition 27. We say that the Rychlik random dynamical system appearing in
the theorem is expanding-on-average if χ < 1.

Proof. We note that both ‖L(n)
ω ‖ic and an(ω) = 1/ ess infx

∣

∣

∣
T

(n)
ω

′
(x)
∣

∣

∣
are submulti-

plicative. It follows from the subadditive ergodic theorem that both of the limits
appearing in the statement of the theorem exist for P-almost every ω. In the case
where χ < 1 we claim the following inequalities:

(13) an(ω) ≤
∥

∥

∥
L(n)
ω

∥

∥

∥

ic
≤
∥

∥

∥
L(n)
ω

∥

∥

∥

fr
≤ 3an(ω) provided an(ω) < 1.

The middle inequality is Lemma 25. To see the upper bound, let P be the
partition of the interval into subintervals guaranteed by Lemma 24. Let EP be the
conditional expectation operator defined by

EPf(t) =
1

|J |

∫

J

f for t ∈ J.

We then have L(n)
ω = L(n)

ω ◦ (1−EP ) +L(n)
ω ◦EP . The second term has finite rank

and Lemma 24 guarantees that var(L(n)
ω ◦ (1 − EP)f) ≤ 3an(ω) var f . Since L(n)

ω

preserves integrals and (1 − EP)f has integral 0, it follows that L(n)
ω ◦ (1 − EP )f

has integral 0 and therefore that the L1 norm is bounded above by the variation.

This yields ‖L(n)
ω ◦ (1− EP)‖ ≤ 3an(ω) so that ‖L(n)

ω ‖fr ≤ 3an(ω).

For the lower bound fix an ǫ > 0 and suppose that 1/|T (n)
ω

′
(x)| > (1 − ǫ)an(ω)

for x in an interval J . Suppose further that J lies in a single branch of T
(n)
ω . Let

I and I ′ be two subintervals of J , with no endpoints in common and let fI = 1
21I

and fI′ = 1
21I′ . Then we have ‖L(n)

ω fI − L(n)
ω fI′‖ > 2(1 − ǫ)an(ω). It follows that

no (1 − ǫ)an(ω) ball contains more than two L(n)
ω fI ’s with distinct endpoints and

so in particular L(n)
ω BBV does not have a finite cover by (1− ǫ)an(ω) balls. We see

that
∥

∥

∥
L(n)
ω

∥

∥

∥

ic
≥ (1− ǫ)an(ω). Since ǫ is arbitrary, we see that (13) follows.

Taking nth roots and taking the limit, the theorem follows. �
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We now demonstrate that λ∗ = 0. As a Perron–Frobenius operator L(n)
ω is

a stochastic operator for each ω ∈ Ω, for any density 0 6≡ f ∈ BV we have

‖L(n)
ω f‖ ≥ ‖L(n)

ω f‖1 = ‖f‖1, which shows that λ(ω) ≥ 0. To show λ∗ ≤ 0,

since ‖Lω‖1 ≤ 1, it suffices to consider the growth of the variation of L(n)
ω f . As

χ < 1, for almost every ω ∈ Ω there exists n ∈ N, 0 < α < 1 and β ≥ 0 such

that varL(n)
ω f ≤ α var f + β‖f‖1 by Lemma 24. Iterating this inequality gives a

bound for the sequence (varL(kn)
ω )k∈N, and so lim infk→∞(1/(nk)) log ‖L(nk)

ω ‖ ≤ 0.

As limn→∞(1/n) log ‖L(n)
ω ‖ exists for P-almost every ω, we have λ∗ ≤ 0.

Corollary 28. Let R = (Ω,F ,P, σ,BV,L) be a Rychlik random dynamical system.
Assume that R is expanding-on-average. Then R is quasi-compact, with

κ∗ = lim
n→∞

1

n
log
(

1/ ess inf
x

∣

∣

∣
T (n)
ω

′
(x)
∣

∣

∣

)

< 0 = λ∗ for P-almost every ω.

The random dynamical system therefore admits a P-continuous Oseledets splitting.

The Oseledets splitting provides information on the invariant measures and rates
of mixing of the random system. A natural generalisation of the notion of ‘invari-
ant measure’ to the random setting is the concept of ‘sample measure’. A family
{µω}ω∈Ω of sample measures (see [2]), is a family of probability measures µω on I
satisfying

(1) for all U ∈ F , the map ω 7→ µω(U) is F -measurable.
(2) Tωµω = µσω for a. e. ω ∈ Ω.

Given a family {µω}ω∈Ω of sample measures, the measure µ on Ω × I given by
dµ(ω, x) := dµω(x)dP(ω) is an invariant probability for the associated skew prod-
uct Θ(ω, x) = (σω, Tωx). Conversely, any Θ-invariant probability measure µ with
marginal P on Ω may be disintegrated to give a family of sample measures for the
original system.

Sample measures for random compositions of expanding interval maps have pre-
viously been studied by Pelikan [23], Morita [20], and in a more general setting
by Buzzi [6]. He considers random compositions of Lasota–Yorke maps that have
neither too many branches nor too large distortion, and proves that the associ-
ated skew product transformation possesses a finite number of mutually singular
ergodic ACIPs µ, each giving a family {µω}ω∈Ω of sample measures with densities
of bounded variation. Returning to the present setting of a random composition
of Rychlik maps, any such family {fω}ω∈Ω of sample measures with densities of
bounded variation satisfies dµω/dm ∈ E1(ω) for P-almost every ω. It follows that
the number of such mutually singular ergodic ACIPs (whose sample measure den-
sities are necessarily linearly independent for P-a. e. ω) is bounded by d1, the
dimension of the Oseledets subspace E1(ω).

Furthermore, the exceptional Lyapunov spectral values strictly less than 0, and
their corresponding Oseledets subspaces, provide information on exponential decay
rates that are slower than the decay produced by local separation of trajectories.
The authors discuss and provide examples of such spectral values and Oseledets
subspaces in [10]. Corollary 28 provides conditions under which Oseledets subspaces
exist in much greater generality than in [10], removing the assumptions of piecewise
linearity and Markovness, and allowing the system to be expanding on average.
In non-rigorous numerical experiments, Oseledets subspaces have been shown to
effectively capture so-called “coherent sets” in aperiodic fluid flow [11]. The present
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work represents a first step toward making such calculations rigorous by extending
the study of Perron–Frobenius operator cocycles to Banach spaces that are more
representative of fluid flow.

4.2. Application II: Transfer Operators with Random Weights. Let Σ be a
one-sided 1-step shift of finite type on N symbols. We assume that for each symbol
j in the alphabet there is at least one i for which ij is a legal transition (if not we
restrict our attention to the subset of Σ obtained by deleting all symbols that have
no preimage). For x, y ∈ Σ we let ∆(x, y) be min{n : xn 6= yn} (or ∞ if x = y).
The θ-metric on Σ is dθ(x, y) = θ∆(x,y) (so that the standard metric is d1/2).

We will write S for the usual left shift map on Σ. If x ∈ Σ and v is a word of
some length k ≥ 1 in the alphabet such that vk−1x0 is a legal transition then we
will write vx for the point in S−kx obtained by concatenating v and x.

Let Cθ denote the set of θ-Lipschitz functions: those functions f for which there
is a C such that |f(x) − f(y)| ≤ Cdθ(x, y) for all x and y. We define |f |θ to be
the smallest C for which such an inequality holds. As usual we endow Cθ with the
topology generated by the norm ‖f‖θ = max(|f |θ, ‖f‖∞). Let Wθ be the collection
of those functions g in Cθ such that minx g(x) > 0.

Denote Pgf(x) =
∑

y∈S−1x f(y)g(y) and consider Pg as an operator on (Cθ, ‖·‖θ).
For the purposes of the following lemma we consider arbitrary g ∈ Cθ but we shall
later restrict to g ∈ Wθ.

Lemma 29. The map P : Cθ → L(Cθ, Cθ) is continuous with respect to the operator
norm on L(Cθ, Cθ).
Proof. P is clearly linear. Let g ∈ C. We want to bound ‖Pgf‖θ. We first estimate
‖Pgf‖∞. Let x ∈ Σ. Then |Pgf(x)| ≤

∑

y∈σ−1x |f(y)| · |g(y)| ≤ N‖f‖∞‖g‖∞ ≤
N‖f‖θ‖g‖θ. This yields
(14) ‖Pgf‖∞ ≤ N‖f‖θ‖g‖θ.

We now bound |Pgf |θ. Let x 6= y ∈ Σ. We need to estimate |Pgf(x) −
Pgf(y)|/dθ(x, y). If x0 6= y0 then the denominator is 1 and the numerator is at
most 2N‖g‖∞‖f‖∞ ≤ 2N‖g‖θ‖f‖θ. If x0 = y0 then

|Pgf(x)− Pgf(y)| =
∑

{i : ix0 legal}

(

g(ix)f(ix)− g(iy)f(iy)
)

≤ N(‖g‖∞|f |θ + ‖f‖∞|g|θ)dθ(ix, iy)
≤ 2N‖g‖θ‖f‖θθdθ(x, y).

Combined with the estimate in the case x0 6= y0, this shows |Pgf |θ ≤ 2N‖g‖θ · ‖f‖θ
and so ‖Pg‖ ≤ 2N‖g‖θ. �

Baladi’s book [3] contains a number of detailed calculations of the spectral radii
and essential spectral radii of Perron–Frobenius operators acting on the Lipschitz
spaces. We now develop some of these arguments in the case of random composi-
tions.

Suppose that G : Ω 7→ Wθ; ω 7→ gω is a continuous mapping. Since Ω will be
assumed to be compact there will be a constant γ such that gω(x) ≥ γ for all x ∈ Σ
and ω ∈ Ω. Similarly there will be a constant such that ‖gω‖θ ≤ C for all ω ∈ Ω.

We assume as usual that σ : Ω → Ω is ergodic. We write P
(n)
ω for the composition

of Perron-Frobenius operators Pg
σn−1ω

◦ · · · ◦ Pgω .
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A linear map on Cθ is said to be positive if it maps non-negative functions to
non-negative functions. In particular if g ∈ Wθ then Pg is positive.

Lemma 30. Let R = (Ω,F ,P, σ, Cθ, P ) be a continuous ergodic random dynamical
system of Perron-Frobenius operators with random weights on a shift of finite type
Σ. Suppose that Ω is compact and P : Ω → Wθ is continuous. Let Rn(ω) =

‖P (n)
ω 1‖∞. Then Rn(ω)

1/n converges P-almost everywhere to a constant R∗.

Proof. Since the operators Pg are positive (g being positive), we have P
(n+m)
ω 1 =

P
(n)
σmω(P

(m)
ω 1) ≤ P

(n)
σmωRm(ω)1 ≤ Rn(σ

mω)Rm(ω)1. It follows that logRn(ω) is
a subadditive sequence of functions so that by the subadditive ergodic theorem,
for P-almost all ω, Rn(ω)

1/n converges to a quantity R(ω). Since this quantity
is σ-invariant, there is a constant R∗ such that R(ω) = R∗ for P-almost every
ω ∈ Ω. �

Lemma 31 (Bounded Distortion). Let R be as in the previous lemma. Let g
(n)
ω (x)

denote the product gω(x)gσ(ω)(Sx) . . . gσn−1ω(S
n−1x). There exists a D > 0 such

that for all ω ∈ Ω, if x0 = y0 and v is a word of an arbitrary length k such that
vk−1x0 is a legal transition then

∣

∣

∣

∣

∣

1− g
(k)
ω (vy)

g
(k)
ω (vx)

∣

∣

∣

∣

∣

≤ Ddθ(x, y).

Proof. As mentioned above there is a γ > 0 such that gω(x) ≥ γ for all ω ∈ Ω and
all x ∈ Σ. Similarly there is a Γ such that gω(x) ≤ Γ for all ω and x and also a
C such that ‖gω‖θ ≤ C for all ω ∈ Ω. We make use of the fact that there exists a
constant K such that if γ < a, b < Γ then | log(b/a)| ≤ K|b− a|.

We then have
∣

∣

∣

∣

∣

log
g
(k)
ω (vy)

g
(k)
ω (vx)

∣

∣

∣

∣

∣

≤
k−1
∑

j=0

∣

∣

∣

∣

log
gσjω(S

j(vy))

gσjω(Sj(vx))

∣

∣

∣

∣

≤ K
k−1
∑

j=0

Cdθ(S
j(vx), Sj(vy))

= CK

k−1
∑

j=0

θk−jdθ(x, y)

≤ (CK/(1− θ))dθ(x, y),

Exponentiating we see g
(k)
ω (vy)/g

(k)
ω (vx) lies between the values exp(−rdθ(x, y))

and exp(rdθ(x, y)) where r = CK/(1 − θ). Since exp is Lipschitz on [−r, r] there
exists a D such that | exp(t)− 1| ≤ (D/r)|t| on [−r, r]. It follows that

∣

∣

∣

∣

∣

g
(k)
ω (vy)

g
(k)
ω (vx)

− 1

∣

∣

∣

∣

∣

≤ Ddθ(x, y)

as required. �

The next lemma appears as an exercise in the deterministic case in Baladi’s book
[3].



A SEMI-INVERTIBLE OSELEDETS THEOREM 23

Lemma 32. Let R be as above. Then there exists a constant K such that for
f ∈ Cθ

|P (n)
ω f |θ ≤ Rn(ω)(θ

n|f |θ +K‖f‖∞).

Proof. We need to estimate supx 6=y |P (n)
ω f(x)−P

(n)
ω f(y)|/dθ(x, y). If x and y differ

in the zeroth coordinate, the denominator is 1 and we bound the numerator above
by Rn(ω)‖f‖∞ giving a bound of the given form (with K=1).

If x and y agree in the zeroth coordinate then we estimate as follows. We let
Wn be the set of words v of length n such that vn−1x0 is legal.

|P (n)
ω f(x)− P (n)

ω f(y)|

=

∣

∣

∣

∣

∣

∑

v∈Wn

(

g(n)ω (vx)f(vx) − g(n)ω (vy)f(vy)
)

∣

∣

∣

∣

∣

≤
∑

v∈Wn

g(n)ω (vx) · |f(vx)− f(vy)|+
∑

v∈Wn

|f(vy)| · |g(n)ω (vx)− g(n)ω (vy)|

≤
∑

v∈Wn

g(n)ω (vx)

(

|f |θdθ(vx, vy) + ‖f‖∞
∣

∣

∣

∣

∣

1− g
(n)
ω (vy)

g
(n)
ω (vx)

∣

∣

∣

∣

∣

)

≤ Rn(ω) (|f |θθndθ(x, y) + ‖f‖∞Ddθ(x, y)) .

We therefore see that |P (n)
ω f |θ ≤ Rn(ω) (θ

n|f |θ +D‖f‖∞) as required. �

Let n > 0 and let [w1], . . . , [wk] be an enumeration of the n-cylinders. For each
1 ≤ j ≤ k, let xj be a point of [wj ]. Given these choices, define a finite rank
operator Πn : Cθ → Cθ by

(Πnf)(x) = f(xj) for x ∈ [wj ].

Lemma 33. For f ∈ Cθ and Πn as above we have

‖(I −Πn)f‖∞ ≤ θn|f |θ
|(I −Πn)f |θ ≤ max(2θ, 1)|f |θ.

Proof. Let Q : Cθ → Cθ denote I −Πn. Let x ∈ [wj ]. Then Qf(x) = f(x)− f(xj).
Since ∆(x, xj) ≥ n, we have |Qf(x)| ≤ |f |θθn.

Now let x, y ∈ Σ. If they lie in the same n-cylinder set then |Qf(x)−Qf(y)| =
|f(x)−f(y)| ≤ |f |θdθ(x, y). On the other hand if x and y lie in distinct n-cylinders,
[wi] and [wj ] respectively then we have

|Qf(x)−Qf(y)| = |(f(x)− f(xi))− (f(y)− f(xj))|
≤ |f(x)− f(xi)|+ |f(y)− f(xj)|.

Since ∆(x, xi) and ∆(y, xj) are each at least n the right side is bounded above by
2|f |θθn ≤ (2θ)|f |θdθ(x, y). �

Theorem 34. Let R be as above. Then there are C1 > 0 and C2 > 0 such that

Rn(ω) ≤ ‖P (n)
ω ‖ ≤ C1Rn(ω)

(1/4)θnRn(ω) ≤ ‖P (n)
ω ‖ic ≤ C2θ

nRn(ω).

In particular λ(ω) = R∗ and κ(ω) = θR∗ for P-almost every ω so that the random
dynamical system is quasi-compact.
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Proof. Let K be as in Lemma 32. Let f ∈ Cθ. We have |P (n)
ω f |θ ≤ (K +

1)Rn(ω)‖f‖θ. Also P
(n)
ω f ≤ P

(n)
ω (‖f‖∞1) ≤ Rn(ω)‖f‖∞. Combining these we

see that ‖P (n)
ω f‖θ ≤ (K + 1)Rn(ω)‖f‖θ.

On the other hand we have ‖P (n)
ω 1‖θ ≥ Rn(ω) while ‖1‖θ = 1 so the bounds on

‖P (n)
ω ‖ are established.

For the upper bound on ‖P (n)
ω ‖ic we use Lemma 25 to compare with ‖P (n)

ω ‖fr and
we let Πn be as above and give bounds on ‖P (n)

ω ◦ (I −Πn)‖. Let f ∈ Cθ. We have

‖P (n)
ω ◦(I−Πn)f‖∞ ≤ Rn(ω)‖(I−Πn)f‖∞ ≤ θnRn(ω)|f |θ where the last inequality

made use of Lemma 33. Using Lemmas 32 and 33 we see |P (n)
ω ((I − Πn)f)|θ ≤

Rn(ω)(θ
n max(2θ, 1)|f |θ + Kθn‖f‖∞). Combining these two inequalities leads to

an upper bound of the desired form for ‖P (n)
ω ‖ic.

For the lower bound on ‖P (n)
ω ‖ic there exists (by continuity) an open set U on

which P
(n)
ω 1(x) > Rn(ω)/2. We show that the index of compactness is large by

exhibiting an infinite collection of points in the unit sphere of Cθ whose images

under P
(n)
ω are uniformly separated.

Let u ∈ U and let Ck be the k-cylinder about u. Since U is open there exists
a k0 such that Ck0 ⊂ U . Since Σ is an irreducible shift of finite type there exists
an infinite sequence k0 < k1 < k2 < . . . such that Cki

is a proper subset of Cki−1

for all i ≥ 1. We let fi = θki+n−11Cki
◦ Sn. To check that ‖fi‖θ = 1 we note

that if x and y agree on at least the first ki + n symbols then fi(x) = fi(y). Since
the numerator of |fi(x) − fi(y)|/θ∆(x,y) takes only the values 0 and θki+n−1 the
maximum in this expression is obtained by taking x and y that agree for as many
symbols as possible, but for which fi(x) 6= fi(y). By the assumption on Σ and
choice of ki there are points agreeing for ki + n− 1 symbols but disagreeing on the
ki + n− 1st symbol for which fi(x) 6= fi(y) so that ‖fi‖θ = 1 as required.

We then calculate

P (n)
ω fi(x) =

∑

{wn−1
0 : wn−1x0 is legal}

g(n)ω (wx)θki+n−11Cki
◦ Sn(wx)

= θki+n−11Cki
(x)P (n)

ω 1(x).

Letting h = P
(n)
ω fi − P

(n)
ω fj , we have h = (θki+n−11Cki

− θkj+n−11Ckj
)P

(n)
ω 1.

Let i < j and pick x ∈ Ckj−1\Ckj
and y ∈ Cki−1\Cki

. Then we have ∆(x, y) =

ki − 1, h(x) = θki+n−1P
(n)
ω 1(x) ≥ (1/2)θki+n−1Rn(ω) whereas h(y) = 0 giving

‖h‖θ ≥ (1/2)θnRn(ω). It follows that no ball of radius less than (1/4)θnRn(ω) can

contain two P
(n)
ω fi’s and so ‖P (n)

ω ‖ic ≥ (1/4)θnRn(ω).
�

Example 35. Let σ : Ω → Ω be any homeomorphic dynamical system defined on

a compact space Ω preserving an ergodic probability measure P. Let Σ = {0, 1}Z+

.
Fix 0 < θ < 1 and let {hω : ω ∈ Ω} be a continuously-parameterized family of
antisymmetric monotonic elements of Cθ(Σ), where a function is antisymmetic if
it satisfies h(x̄) = −h(x) for x ∈ Σ, where x̄i = 1 − xi. A function will be called
monotonic if it satisfies h(x) ≤ h(y) whenever x � y, where x � y means xi ≤ yi
for each i.
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We will assume that ‖hω‖∞ < a < 1/2 for all ω ∈ Ω. We then define a continu-
ously parameterized family of elements gω of Wθ by

gω(1x) =
1
2 + hω(x)

gω(0x) =
1
2 − hω(x).

From the choice of gω, we see that Pω1 = 1 for all ω so that R∗ = 1 and λ(ω) = 1
for a.e. ω and hence κ(ω) = θ for a.e. ω by Theorem 34.

One can verify that the Pω map antisymmetric functions to antisymmetric func-
tions and monotonic functions to monotonic functions. Following Liverani [18] we
define a cone Ka = {f : f(x) > 0, ∀x; f(x)/f(y) ≤ eadθ(x,y), ∀x, y}. For suitably
large a, there is a′ < a such that Pω(Ka) ⊂ Ka′ . Since 1 is a fixed point the theory

of cones guarantees that if f is a positive function in Cθ, then P
(n)
ω f converges at

an exponential rate to a constant uniformly in ω. In particular an antisymmetric
function f can be written as the difference of two positive functions: f1− f2. Since

P
(n)
ω f1 converges exponentially fast to a constant C1(ω) and P

(n)
ω f2 converges ex-

ponentially to a constant C2(ω), the fact that P
(n)
ω f remains antisymmetric implies

that C1(ω) = C2(ω). It follows that P
(n)
ω f converges at an exponential rate to 0

uniformly over ω ∈ Ω.
Choosing f(x) = 1[1] − 1[0], f is both monotone and antisymmetric. It follows

that P
(n)
ω f decays exponentially. We are able to give a lower bound on the decay

rate that guarantees the presence of non-trivial exceptional spectrum. Specifically,
using the fact that gω(0x) + gω(1x) = 1, we have

Pωf(1111 . . .) = gω(1111 . . .)f(1111 . . .) + gω(0111 . . .)f(0111 . . .)

= gω(1111 . . .)f(1111 . . .) + (1− gω(1111 . . .))f(0000 . . .)

= (2gω(1111 . . .)− 1)f(1111 . . .).

If the hω are chosen in such a way that gω(1111 . . .) is uniformly close to 1 as ω
varies then we will ensure that there is non-trivial exceptional spectrum.
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