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Abstract. Ergodic Optimization is the process of finding invariant probability measures
that maximize the integral of a given function. It has been conjectured that “most” func-
tions are optimized by measures supported on a periodic orbit, and it has been proved in
several separable spaces that an open and dense subset of functions is optimized by measures
supported on a periodic orbit. All known positive results have been for separable spaces.
We give in this paper the first positive result for a non-separable space, the space of super-
continuous functions on the full shift, where the set of functions optimized by periodic orbit
measures contains an open dense subset.

1. Introduction

Given an expansive map T : Ω→ Ω and a continuous function f , we say that a T -invariant
probability measure µ optimizes f if ∫

f dµ ≥
∫
f dν

for all T -invariant probability measures ν. If y is a periodic point (i.e., T iy = y for some i),
let µy be the unique T -invariant probability measure supported on Oy, the orbit of y. We
call µy a periodic orbit measure. If µy optimizes f , we will also say that f is optimized by
the periodic point y.

General Belief. “Most” functions are optimized by measures supported on a periodic orbit.

“Most” can take various meanings, but for our purposes, we consider “most” to be an
open dense set or a residual set.

Conjecture 1. In an expansive dynamical system, the set of Lipschitz functions optimized by
periodic orbit measures contains an open set that is dense in the class of Lipschitz functions.

Analogs to Conjecture 1 have been shown false in the general case of continuous functions
[6], however they have been shown true in a handful of separable spaces. Further, various
numerical experiments on many important dynamical systems support this conjecture (and
hint towards some very interesting relationships between parameterized families of functions
and the period of optimizing orbits) [4, 5, 8].

We present a non-separable space where the analog of Conjecture 1 holds true. Let Ω = AN

be the one-sided shift space on a finite alphabet. For a sequence An ↘ 0, define a metric
dA(x, y) = An if x and y first differ in the nth place (i.e. (x)i = (y)i for 0 ≤ i < n;
(x)n 6= (y)n). Let CA(Ω) denote the set of Lipschitz functions with respect to the dA
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metric, equipped with the dA-Lipschitz norm. If {An} satisfies the additional property that
An+1/An → 0, we call f ∈ CA(Ω) super continuous.

Theorem 2. Suppose A = {An} and An+1/An → 0. For a periodic orbit measure µy
supported on Oy, let Py = {f ∈ CA(Ω) : µy is the unique maximizing measure}. Then,⋃
y periodic(Py)

◦ is dense in all of CA(Ω) under the A-norm topology (where (Py)
◦ is the interior

of Py).

We will briefly survey the most well-known positive results. A function f is a Walters
function (introduced by Walters in [7]) if for every ε > 0 there exists a δ > 0 so that for all
n ∈ N and x and y,

max
0≤i<n

{d(T ix, T iy)} ≤ δ =⇒ |Snf(x)− Snf(y)| < ε,

where Snf(w) =
∑n−1

i=0 f(T iw). Bousch shows for Walters functions, the analog of Conjecture
1 holds [2].

Contreras, Lopes, and Thieullen showed in [3] that when using a Hölder norm external to
a particular union of Hölder spaces, the analog of Conjecture 1 for Hölder spaces holds. Yuan
and Hunt made significant progress towards proving Conjecture 1, though the full result has
not yet been proved.

Presented are the already-established theorems for comparison. Note that although the
theorems are stated in a variety of contexts (expanding maps of the circle, one-sided shifts
etc.), the essence of the problem is present in the simple setting of the one-sided shift.

Theorem (Bousch [2]). Let T : X → X be the one-sided shift map and let W denote the set
of Walters functions on X. If P ⊂ W is the set of Walters functions optimized by measures
supported on periodic points, then P contains an open set dense in W with respect to the
Walters norm.

Theorem (Contreras-Lopes-Thieullen [3]). Let T be a C1+α expanding map of the circle.
Let Hβ be the set of β-Hölder functions on S1 and let Fα+ =

⋃
β>αHβ. Let Pα+ ⊂ Fα+ be

the subset of functions uniquely optimized by measures supported on a periodic point. Then
Pα+ contains a set that is open and dense in Fα+ under the Hα topology (i.e., the α-Hölder
norm).

Theorem (Yuan and Hunt [9]). Let T : M → M be an Axiom A map or an expanding
map from a manifold to itself and let CLip denote the class of Lipschitz continuous functions.
For any f ∈ CLip optimized by a measure generated by an aperiodic point, there exists an
arbitrarily small perturbation of f such that that measure is no longer an optimizing measure.
Further, any f ∈ CLip optimized by a periodic orbit measure can be perturbed to be stably
optimized by this periodic orbit measure.

With the inclusion of this paper, the current state of the standing conjecture is some-
what curious. Notice that super-continuous functions are Lipschitz functions and Lipschitz
functions are Walters functions. So, for both a larger and a smaller class than Lipschitz
functions, analogs of Conjecture 1 have shown to be true, and yet proof of the Lipschitz case
remains elusive.

1.1. Notation & Definitions. For some finite alphabet A, let Ω = AN be the space of
one-sided infinite sequences on A. For us N includes 0.
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T : Ω → Ω is the usual shift operator, with T -invariant Borel probability measures on Ω
denoted M. We write Ox for the orbit of x under T , and we say S is a segment of Ox if it
is an ordered list of the form (T ix, T i+1x, . . . , T i+p−1x) for some i, p. Abusing notation, we
may say S ⊂ Ox.

We use d to denote the standard metric on sequences. That is, d(x, y) = 2−k where
k = inf{i : (x)i 6= (y)i} and (z)i is the ith symbol of z. We follow the convention that
2−∞ = 0.

Definition 3 (Shadowing). For two points x, y, we say that x ε-shadows a segment S =
(Tmy, . . . , Tm+n−1y) ⊂ Oy if

d(T ix, T i+my) ≤ ε

for all 0 ≤ i < n.

Definition 4 (ε-close). A point x is said to stay ε-close to a set Y for p steps if for all
0 ≤ i < p,

d(T ix, Y ) ≤ ε.

Notation 5 (Ergodic Average). For a function f and a point x,

〈f〉 (x) = lim
N→∞

1

N

N−1∑
i=0

f(T ix),

when the limit exists.

Notation 6. If x = a0a1a2 · · · is a point,

(x)ji = aiai+1 · · · aj−1aj
is the subword of x from position i to j.

2. Summable Variation

Definition 7 (Variation). The variation of a function over level k cylinder sets is the max-
imum a function changes in a distance of 2−k. That is, if f is a function

vark(f) = sup{|f(x)− f(y)| : d(x, y) ≤ 2−k}.

Note that in a shift space, we have additional structure because distances can only take
values of the form 2−k.

Definition 8 (Summable Variation). The function f is of summable variation if

∞∑
k=0

vark(f) <∞.

Notation 9. Vk(f) represents the tail sum of the variation of f over distances smaller than
2−k+1. That is

Vk(f) =
∞∑
j=k

varj(f).
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Functions of summable variation form a much larger class than Lipschitz functions. How-
ever the general method used in this paper to show Theorem 2 is to perturb functions by
a small multiple of some canonical “sharpest” function. Yuan and Hunt used this strategy
when dealing with Lipschitz functions by perturbing by −d(x,Oy) [9]. But, for functions
of summable variation (with the natural norm of ‖f‖ = V0(f) + ‖f‖∞), there is no such
“sharpest” function. Using the A-norms gives us these sharpest functions again.

We will frequently refer to A-metrics and A-norms as briefly introduced earlier.

Definition 10 (A-sequence). An A-sequence, (An)∞n=0, is a decreasing sequence of positive
numbers with An → 0.

If there exists 0 < δ < 1 such that An+1/An < 1− δ for each n, then we say that (An) is
lacunary.

Recall that the metric dA is defined by dA(x, y) = An if (x)i = (y)i for 0 ≤ i < n but
(x)n 6= (y)n.

Definition 11 (A-norm). If (An) is an A-sequence, the Lipschitz constant of f is LipA(f) =
supk vark(f)/Ak. The A-norm is defined by ‖f‖A = LipA(f) + ‖f‖∞.

Of course if A is the sequence (2−n)∞n=0, we recover the standard distance and Lipschitz
norm. We write the set of Lipschitz functions with respect to dA as CA(Ω) or simply CA.

Notice that since A satisfies An → 0, CA(Ω) ⊂ C(Ω) is a subset of the continuous functions
on Ω. Further, CA is a non-separable Banach space as the functions fx(·) = d(x, ·) for x ∈ Ω
are an uncountable uniformly discrete set.

3. Preliminary lemmas

We will first establish several results that do not depend on super continuity.

Definition 12 (In Order for One Step). For points x, y, let S = (T jy, T j+1y, . . . , T j+ky) ⊂
Oy, and suppose that there is a unique closest point y′ ∈ S to x. That is,

d(x, y′) < d(x, S\{y′}).
We say that x follows S in order for one step if Ty′ ∈ S and Ty′ is the unique closest point
to Tx. That is Ty′ ∈ S and

d(Tx, Ty′) < d(Tx, S\{Ty′}).

Definition 13 (In Order). For some point y, let S = (T jy, T j+1y, . . . , T j+ky) ⊂ Oy. For
some point x, we say that x follows S in order for p steps if x, Tx, . . . , T p−1x each follow S
in order for one step.

Following in order is very similar to the concept of shadowing except that the distance
requirement in shadowing is replaced by a uniqueness requirement. The following In Order
Lemma is due to Yuan and Hunt [9].

Lemma 14 (In Order Lemma). Let y be a periodic point of period p, and let

ρ ≤ min
0≤i<j<p

d(T iy, T jy)/4.

For any point x, if x stays ρ-close to Oy for k + 1 steps, then x follows Oy in order for k
steps. That is, there exists some i′ such that for 0 ≤ j ≤ k,

d(T jx, T i
′+jy) ≤ ρ.
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Proof. Let γ = min0≤i<j<p d(T iy, T jy). We first derive a fact about the shift space due to
its ultrametric properties. Suppose y′, y′′ ∈ Oy and for some point x, d(x, y′), d(x, y′′) ≤ γ/2.
By the ultrametric triangle inequality we have

(1) d(y′, y′′) ≤ max(d(x, y′), d(x, y′′)) ≤ γ/2.

Since γ was the smallest distance between points in Oy, equation (1) gives y′ = y′′. This
shows that for any point x, if d(x,Oy) ≤ γ/2, then there is a unique closest point in Oy to
x.

Let x be a point that stays ρ-close to Oy for k + 1 steps. By definition, we have

d(x,Oy) ≤ ρ ≤ γ/4.

Since γ is the minimum distance between points in Oy, there is a unique i′ such that

d(x, T i
′
y) ≤ ρ.

We then have that
d(Tx, T i

′+1y) ≤ 2ρ ≤ γ/2,

and so T i
′+1y is the unique closest point to Tx. Thus, x follows Oy in order for one step.

But, by assumption we have d(Tx,Oy) ≤ ρ, so d(Tx,Oy) = d(Tx, T i
′+1y) gives us that Tx

follows Oy in order for one step and so x follows Oy in order for two steps. Continuing by
induction, we see that x follows Oy in order for k steps; that is

d(T jx, T i
′+jy) ≤ ρ for 0 ≤ j ≤ k.

Lemma 15 (Shadowing Lemma). For a point y, let S = (T iy, T i+1y, . . . , T i+k−1y) be a
segment of Oy. For any ρ < 1, if a point x ρ-shadows S for k steps, the distance from T jx
to S for 0 ≤ j < k is bounded by

d(T jx, T i+jy) ≤ ρ2−((k−1)−j).

Proof. Let l = inf{w : 2−w ≤ ρ} and note ρ < 1 implies l ≥ 1. Since x ρ-shadows S for k
steps, we have (T jx)l−10 = (T i+jy)l−10 for 0 ≤ j ≤ k − 1, and so (x)k+l−20 = (T iy)k+l−20 , which
gives the result.

Lemma 16 (Parallel Orbit Lemma). For a function of summable variation f , if Tmx 2−r-
shadows Oy for k steps (i.e., there exists i so d(Tm+jx, T i+jy) ≤ 2−r for 0 ≤ j < k), then
for r > 0,

k−1∑
j=0

∣∣f(Tm+jx)− f(T i+jy)
∣∣ ≤ Vr(f).

Proof. Suppose x, y are points such that d(Tm+jx, T i+jy) ≤ 2−r where r ≥ 1 for 0 ≤ j < k.
The Shadowing Lemma (Lemma 15) gives us that

d(Tm+jx, T i+jy) ≤ 2−(r+(k−1)−j).

We then have
k−1∑
j=0

|f(Tm+jx)− f(T i+jy)| ≤
r+k−1∑
j=r

varj(f) ≤ Vr(f).
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4. Mañé-Conze-Guivarc’h normal form and main result

Heuristically, let us consider the following: Suppose f is optimized by µmax and
∫
fdµmax =

0. We will define a function f ∗ to represent the “payoff of going backwards to infinity.” Before
we describe what f ∗ means, let us consider the payoff of going backwards a finite number
of steps. For a point x, there is some point a11x ∈ T−1x such that f(a11x) ≥ f(b1x) for any
symbol b1. In other words, a11x is a maximal one-step backwards extension of x. Continuing,
there is some point a22a

2
1x ∈ T−2x so that f(a22a

2
1x) + f(a21) ≥ f(b2b1x) + f(b1x) for any word

b2b1, making a22a
2
1x a maximal two-step backwards extension of x. It is important to note

that the symbol a21 need not be the same as the symbol a11, and so it is in no way immediate
that there should be some convergent way to pick an infinite maximal backwards extension
of x.

However, ignoring these issues for the moment, one can imagine that n-step backwards
extensions of x look more and more like generic points of µmax (if µmax is a periodic orbit
measure, this should be especially plausible). We now informally define f ∗ as

f ∗(x) = f(a∞1 x) + f(a∞2 a
∞
1 x) + f(a∞3 a

∞
2 a
∞
1 x) + · · · ,

where · · · a∞3 a∞2 a∞1 x is an infinite maximal backwards extension of x. Since
∫
fdµmax = 0,

it is reasonable to expect that if f ∗ converges, it is bounded above. Ignoring any issues of
convergence, consider

f ∗ ◦ T − f ∗.

Suppose x = x0x1 · · · is a point with maximal backwards extension · · · a2a1x0x1 · · · . We
immediately see (f ∗ ◦ T − f ∗)(x) ≥ f(x), since either the maximal backwards extension of
Tx = x1x2 · · · is · · · a2a1x0x1 · · · , which would give us (f ∗ ◦T − f ∗)(x) = f(x), or there is an
alternative backwards extension of Tx that yields a bigger payoff than · · · a2a1x0x1 · · · and
so (f ∗ ◦ T − f ∗)(x) > f(x).

Since f ∗◦T−f ∗ is a co-boundary (a function of the form h−h◦T ) and so integrates to zero

with respect to any invariant measure, the function f̂ = f−(f ∗◦T −f ∗) is co-homologous to

f (and so
∫
fdµ =

∫
f̂dµ for all invariant measures µ), with the added property that f̂ ≤ 0.

The Mañé-Conze-Guivarc’h procedure is a way of producing a well defined f ∗. We use a
method due to Bousch [1], which produces f ∗ as a fixed point of an operator that reflects
the idea of a maximal backwards extension.

For f ∈ CA, define the operator Φf : CA → CA by

(Φfg)(x) = max
y∈T−1x

{(f + g)(y)}.

Proposition 17 (Bousch). Let (An) be a lacunary A-sequence. For a fixed function f ∈ CA
with supµ∈M

∫
fdµ = 0, the operator Φf as defined above has a fixed point.

The proof follows standard lines with minor adaptations for the case of A-norms rather
than Lipschitz norms. We briefly summarize the steps, referring the reader to Bousch [1] for
more details.
Proof sketch. Let An+1/An < 1− δ for all n (where 0 < δ < 1). We claim that Φf maps
C = {g : LipA(g) ≤ LipA(f)/δ} into itself. We do part of this step in detail since we need
a fact from it later. Let g ∈ C and let x and x′ differ first in their (n − 1)st coordinates.
Using the notation ix to denote the sequence with its first symbol defined by (ix)0 = i and
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all remaining symbols defined by (ix)k+1 = xk, we have

Φf (g)(x)− Φf (g)(x′) = max
i

(f(ix) + g(ix))−max
j

(f(jx′) + g(jx′))

≤ max
i

(f(ix) + g(ix)− f(ix′)− g(ix′))

≤ varn(f) + varn(g)

By symmetry we deduce

(2) varn−1(Φf (g)) ≤ varn(f) + varn(g).

Straightforward manipulation then shows that Φf (g) ∈ C.
Taking a quotient of C by the relation ∼ where two functions g and g′ are related if they

differ by a constant, one obtains a compact (with respect to the quotient of the supremum
norm topology) convex set C/ ∼ on which Φf acts continuously. Hence, there is a fixed
point. This fixed point corresponds to a function h ∈ C such that Φf (h) = h + β for some
constant β. One then shows that supµ∈M

∫
f dµ = 0 implies β = 0

Theorem 18. Let (An) be a lacunary A-sequence. There exists a constant γA > 1, dependent
only on the choice of A-sequence, such that for all f ∈ CA with supµ∈M

∫
fdµ = 0, there

exists a co-homologous function f̂ with f̂ ≤ 0 and

‖f̂‖A ≤ γA‖f‖A Vnf̂ ≤ γA‖f‖AAn.

Proof. Suppose An+1/An < 1 − δ for all n (for some 0 < δ < 1). By Proposition 17, we
may find h, a fixed point of Φf with

‖h‖A ≤
LipA(f)

δ
+ ‖h‖∞ ≤ (A0 + 1)

‖f‖A
δ

.

However, from (2) we have

varn−1(h) = varn−1(Φfh) ≤ varn(f) + varn(h).

This gives
varn(h ◦ T )

An
≤ varn−1(h)

An
≤ varn(f) + varn(h)

An
,

and so ‖h ◦ T‖A ≤ ‖f‖A + ‖h‖A. Let f̂ = f + h− h ◦ T . f̂ has the desired properties and

‖f̂‖A ≤ ‖f‖A + ‖h‖A + ‖h ◦ T‖A ≤ 2‖f‖A + 2‖h‖A ≤
2(A0 + 1 + δ)

δ
‖f‖A.

Let us now focus on finding a constant such that Vnf̂ ≤ K‖f‖AAn. From our bound on

‖f̂‖A, we know varkf̂ ≤ 2(A0+1+δ)
δ

‖f‖AAk. Ak+1/Ak < 1− δ for all k gives that
∑

k≥nAk ≤
An/δ and so

Vnf̂ ≤
2(A0 + 1 + δ)

δ2
‖f‖AAn

Letting γA = 2(A0 + 1 + δ)/δ2 completes the proof.
It should be noted that Theorem 18 can trivially be applied to functions f where supµ∈M

∫
fdµ =

β 6= 0 by letting f̂ = f̂ − β + β.

Corollary 19. Theorem 18 holds with the weakened assumption that lim supAn+1/An < 1.
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Proof. Since lim supAn+1/An < 1, we can construct a sequence Bn such that Bn+1/Bn <
1− δ for some 0 < δ < 1 and Bi = Ai for i > N for some finite N . Since we only changed a
finite number of terms of A to produce B, ‖ · ‖A and ‖ · ‖B are equivalent. Let M be such
that ‖f‖A ≤M‖f‖B for all f ∈ CA and M ′ = maxAn/Bn. Letting γA = MM ′γB completes
the proof.

Though not dependent on Theorem 18, it is convenient to note that γA from Theorem 18
also bounds Vnf in the expected way.

Fact 20. If (An) is a lacunary A-sequence, then for f ∈ CA
Vnf ≤ γA‖f‖AAn,

where γA is as in Theorem 18.

We now have machinery in place to give a quick proof of Proposition 21, which establishes
a relationship between the number of points in the support of a periodic orbit measure and
how close such measures come to optimizing a fixed function. This result was first established
by Yuan and Hunt (without using the Mañé-Conze-Guivarc’h Lemma) in [9] for Lipschitz
functions.

Proposition 21 (Yuan and Hunt). Let (An) be a lacunary A-sequence. Let f ∈ CA and x
be an optimal orbit for f (i.e., a typical point of a maximizing measure). Let y be a point
of period p, and r > 0. If a segment of Ox 2−r-shadows Oy for one period (i.e., there exist
m,m′ such that d(T i+mx, T i+m

′
y) ≤ 2−r for 0 ≤ i < p), then

〈f〉 (x)− γA‖f‖AAr/p ≤ 〈f〉 (y) ≤ 〈f〉 (x),

where γA is as in Theorem 18.

Proof. Let y be a period p point with the property that a segment of Ox 2−r-shadows Oy
for p steps. By renaming some T jy as y, without loss of generality we may assume that a
segment of Ox 2−r-shadows y. That is, there exists some m so that d(Tm+ix, T iy) ≤ 2−r for
0 ≤ i < p. Let x′ = Tmx.

By Theorem 18, we may find f̂ co-homologous to f with f̂(Ox) = f̂(Ox′) = 〈f〉 (x). Since
for 0 < i ≤ p we have

d(T ix′, T iy) ≤ 2−(r+(p−1−i)),

we may apply the Parallel Orbit Lemma (16) to get∣∣∣∣∣
p−1∑
i=0

(
f̂(T ix′)− f̂(T iy)

)∣∣∣∣∣ =

∣∣∣∣∣
(
p−1∑
i=0

f̂(T ix′)

)
− p

〈
f̂
〉

(y)

∣∣∣∣∣ ≤ Vrf̂ .

The proposition follows from the fact that f̂(T ix′) = 〈f〉 (x) and that by Theorem 18 Vrf̂ ≤
γA‖f‖AAr.

Using methods similar to those in Yuan and Hunt[9], one can show that Proposition 21
holds for any function f of summable variation, and one can produce a slightly stronger
bound of 〈f〉 (x)− 4Vrf/p ≤ 〈f〉 (y) ≤ 〈f〉 (x).

We are now ready to prove Theorem 2 by using dA(·,Oy) as a “sharpest” function that
will penalize any measure that gives mass to (Oy)c.

Theorem (Theorem 2). Let (An) be an A-sequence satisfying An+1/An → 0. For a periodic
orbit measure µy supported on Oy, let Py = {f ∈ CA(Ω) : µy is the unique maximizing measure}.
Then,

⋃
y periodic(Py)

◦ is dense in CA(Ω) (where (Py)
◦ is the interior of Py).
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Proof. We will show that for any function f , there exists an arbitrarily small perturbation,
f̃ , of f and a periodic orbit measure µy, such that all functions in an open neighbourhood

of f̃ are uniquely optimized by µy.
Since lim inf An+1/An = 0, by Corollary 19, passing to an equivalent norm if necessary, we

may assume An+1/An ≤ 1/2 for all n. Fix f ∈ CA and let µmax be an optimizing measure

for f . Fix x ∈ supp(µmax). Without loss of generality, assume 〈f〉 (x) = 0 and let f̂ be

co-homologous to f with f̂ ≤ 0.
Suppose we showed that an arbitrarily small perturbation f̂ + g of f̂ were such that the

open ball of radius ε about f̂ +g is uniquely optimized by a periodic orbit measure µy. Since

f̂ and f are co-homologous, this means that f + g is uniquely optimized by µy and in fact
the open ball of radius ε about f + g is uniquely optimized by µy. Thus, it is sufficient to

only consider small perturbations of f̂ .
Fix 0 < ε < 1. For a fixed k (to be determined later), find a minimal recurrence in x of a

block of k symbols. That is, find i < j such that d(T ix, T jx) ≤ 2−k but for i ≤ i′ < j′ < j,
we have d(T i

′
x, T j

′
x) > 2−k. Notice that such a minimal recurrence exists for all k by the

pigeonhole principle.
Let p = j − i and let y be the point of period p satisfying (y)j−1i = (x)j−1i . Since

d(T ix, T jx) ≤ 2−k we see that (y)j+k−1i = (x)j+k−1i . It follows that the orbit segment
(T ix, . . . , T j−1x) 2−(k+1)-shadows T iy.

Let 2−l = mini≤i′<j′<j{d(T i
′
y, T j

′
y)} be the minimum distance between points in Oy and

notice that by construction of y and the ultrametric property, 2−l ≥ 2−(k−1).
Define the perturbation function g by g(t) = −dA(t,Oy), and let f̃ = f̂ − εg.
We will now show that provided k is sufficiently large, the measure supported on Oy is

the unique optimizing measure for functions lying in a ‖ · ‖A-open ball about f̃ .

Let Q = {f̃ + h : ‖h‖A < εσ} with σ < 1 to be determined later. Fix f̂ − εg + h ∈ Q and

let q be its normalization, q = f̂ − εg + h+ β where β = − supµ∈M
∫

(f̂ − εg + h)dµ.

Let γA be as in Theorem 18. Recall that γA > 1. We then have Vnf̂ ≤ γA‖f‖AAn.
Further, since ε, σ < 1, Fact 20 gives us Vn(εg),Vnh ≤ γAAn. Let L = γ2A(‖f‖A + 2). Since

Vn(f̂ − εg + h) = Vnq we have

Vnf̂ ,Vnf̃ ,Vnq ≤ LAn and γAVnf ≤ LAn,

with the second inequality following from Fact 20. Further, L only depends on A and ‖f‖A.
Since x 2−(k+1)-shadows Oy for p steps, we can get a good bound for β. By construction

〈q〉 (y) = 〈f〉 (y)− ε 〈g〉 (y) + 〈h〉 (y) + β ≤ 0,

and so

β ≤ −〈f〉 (y) + ε 〈g〉 (y)− 〈h〉 (y) = −〈f〉 (y)− 〈h〉 (y).

Proposition 21 gives us 〈f〉 (x)−γAVk+1(f)/p = −γAVk+1(f)/p ≤ 〈f〉 (y) so that −〈f〉 (y) ≤
LAk+1/p. Combining this with the fact that ‖h‖∞ ≤ ‖h‖A < εσ gives β < LAk+1/p + εσ.

Since q = f̂ − εg + h+ β and the first two terms are non-positive, we see that

h(ω) + β <
LAk+1

p
+ 2εσ for all ω ∈ Ω; and

q(ω) <
LAk+1

p
+ 2εσ for all ω ∈ Ω.

(3)
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Let q(n) be the co-cycle q(n)(z) = q(T n−1z)+q(T n−2z)+ · · ·+q(z), and note that if n > m,
q(n)(z)− q(m)(z) = q(n−m)(Tmz).

We know by Proposition 17 that there exists q∗, a fixed point of Φq. Let z ∈ Ω be arbitrary.
We know there exists some symbol a1 such that q∗(z) = q(a1z) + q∗(a1z). Iterating this
process, we may find an infinite sequence of preimages (ai) such that for any n > 0,

q∗(z) = q(a1z) + q(a2a1z) + · · ·+ q(an · · · a1z) + q∗(an · · · a1z)

= q(n)(an · · · a1z) + q∗(an · · · a1z).
(4)

Fix any such preimage infinite sequence (ai). We will now identify a (possibly finite)
sequence of times, (tn), by the following recursive procedure: For a time t, define ωt =
atat−1 · · · a1z. Let t0 be the smallest number (if it exists) such that d(ωt0 ,Oy) > 2−(k+1).
Given tn, let tn+1 > tn be the next smallest number (again, if it exists) so that d(ωtn+1 ,Oy) >

2−(k+1). Our goal is to show that the length of the sequence is finite. From this it follows
that the preimages ωt accumulate to Oy. It will then follow that the periodic orbit measure
supported on Oy is the unique maximizing measure.

Since 2−l ≥ 2−(k−1) (and so 2−l/4 ≥ 2−(k+1)), for times strictly between tn and tn−1, the
In Order Lemma (Lemma 14) gives that we 2−(k+1)-shadow Oy.

Suppose tn − tn−1 > 1 and let y′ ∈ Oy be the point that is 2−(k+1)-shadowed by ωtn for
tn − tn−1 − 1 steps (that is d(T iωtn , T

iy) ≤ 2−(k+1) for 0 < i < tn − tn−1). Summing along
this segment, the Parallel Orbit Lemma (Lemma 16) gives us∑

0<i<tn−tn−1

[
q(T iωtn)− q(T iy′)

]
≤ Vk+1(q) ≤ LAk+1.

so that ∑
0<i<tn−tn−1

q(T iωtn) ≤ LAk+1 +
∑

0<i<tn−tn−1

q(T iy′)

Grouping
∑

0<i<tn−tn−1
q(T iy′) in blocks of length p together with at most p− 1 singleton

terms and using (3), we see∑
0<i<tn−tn−1

q(T iωtn) ≤ LAk+1 +mp 〈q〉 (y) + (p− 1) (LAk+1/p+ 2εσ) ,

where m is the integer part of (tn − tn−1 − 1)/p. Since 〈q〉 (y) ≤ 0, we simplify to get

(5)
∑

0<i<tn−tn−1

q(T iωtn) ≤ 2LAk+1 + 2(p− 1)εσ.

Notice that this equation holds also (trivially) if tn = tn−1 + 1. We now evaluate q(ωtn):

q(ωtn) = f̂(ωtn)− εg(ωtn) + h(ωtn) + β.

By construction we have d(ωtn ,Oy) ≥ 2−k so that g(ωtn) ≥ Ak. Using (3) again and the fact

that f̂ ≤ 0 we have

(6) q(ωtn) ≤ −εAk +
LAk+1

p
+ 2εσ.

Combining equations (5) and (6) we get

q(tn−tn−1)(ωtn) ≤ −εAk + 3LAk+1 + 2pεσ,
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and so for σ ≤ Ak/(4p) we have

q(tn−tn−1)(ωtn) ≤ −ε
2
Ak + 3LAk+1.

Since L only depends on (An) and ‖f‖A, our assumption that Ak+1/Ak → 0 ensures that
there exists a k such that α = ε

2
Ak − 3LAk+1 > 0. Fix this k and fix σ = Ak/(4p). Let

(x)j−1i be the minimal recurrence segment identified in the proof and y be the corresponding

periodic orbit. This fixes the open ball Q whose centre is at a distance ε from f̂ .
We have shown that for any function in Q, its normalized version q satisfies q(ti−ti−1)(ωti) <
−α. Expanding using (4) now gives

q∗(ωt0)− q∗(ωtn) = q(tn−t0)(ωtn) =
n∑
i=1

q(ti−ti−1)(ωti) ≤ −nα.

But q∗ is a bounded function and so the number of terms in the sequence (tn) is finite.
Since z was chosen arbitrarily, this is sufficient to show the periodic orbit measure sup-

ported on Oy uniquely optimizes q. If not, then there would be points z and preimage
sequences (ai) satisfying (4) that do not eventually follow Oy, and so (tn) would be infinite.

Theorem 2 proves both (a) that a function optimized by an aperiodic point can be per-
turbed to be optimized by a periodic point and (b) that a function optimized by periodic
point can be perturbed to lie in an open set of functions optimized by the same periodic
point. Following the methods of Yuan and Hunt in [9], one can prove (b) in the general
context of A-norm spaces (dropping the assumption that An+1/An → 0 entirely).
Acknowledgments. We would like to thank the referee for a careful reading and very
useful suggestions.
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