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Abstract. We use analytic tools to study a simple family of
piecewise isometries of the plane parameterized by an angle param-
eter. In previous work we showed the existence of large numbers
of periodic points, each surrounded by a ‘periodic island’. We also
proved conservativity of the systems as infinite measure-preserving
transformations. In experiments it is observed that the periodic is-
lands fill up a large part of the phase space and it has been asked
whether the periodic islands form a set of full measure. In this
paper we study the periodic islands around an important family
of periodic orbits and and demonstrate that for all angle parame-
ters that are irrational multiples of π the islands have asymptotic
density in the plane of 3 log 2− π2/8 ≈ 0.846.

1. Introduction

We consider a simple family of piecewise isometries studied previ-
ously by Goetz and Quas [11]. The maps have a single parameter θ
and can be conveniently expressed in terms of a complex variable:

Tθ(z) =

{

e2πiθ(z + 1) if Im (z) ≥ 0;

e2πiθ(z − 1) if Im (z) < 0.

Systematic studies of piecewise isometries began in [10] and con-
tinued in many publications by a variety of authors. One reason for
studying them is that as the pieces are simply isometries, any complex-
ity that appears in a piecewise isometric dynamical system is there as
a result of the discontinuity. Piecewise isometries therefore form a test
case for the study of discontinuous dynamical systems. They also have
been applied as simple models for behaviour of electronic circuits [6, 7].
The family (Tθ) that we study was introduced in [9] and shown in [11]

to have interesting behaviour that can be understood using elementary
techniques (see Figure 1 for an example of a phase portrait). In [11] it
was shown that for all values of θ the map Tθ has an infinite collection of
periodic orbits that accumulate at infinity. It was also shown that even
though Lebesgue measure is an infinite invariant measure under Tθ for
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Figure 1. A typical phase portrait for Tθ for an irra-
tional θ value: Many different orbits are plotted

each θ, the transformation is in fact conservative (so that a Poincaré
Recurrence Theorem is satisfied).
In this paper we restrict our attention to the case where θ is irrational

as this will allow us to make use of uniform distribution techniques from
ergodic theory. The rational case, both for this map and others is also
interesting. Since the techniques used in the rational case are different
that those used in the irrational case we plan to make a comprehensive
study of density in the rational case in a subsequent article. It should
be mentioned that the rational case is closely related to polygonal dual
billiards maps on regular polygons (see work of Vivaldi and Shaidenko
[15]) as well as to some rational piecewise affine maps studied by Adler,
Kitchens and Tresser in [1].
The dominant feature in the phase portrait (see Figure 1) is the

large number of discs that one sees. These have a simple explana-
tion: Suppose y is a periodic point of period q for Tθ and let r =
min{|Im T n

θ y| : n ∈ N}. Then an open disc of radius r about T j
θ y is

mapped rigidly by Tθ to an open disc of radius r about T j+1
θ y and

none of these discs intersects the discontinuity. Suppose now that z
lies outside the closed disk of radius r about some point T j

θ y on the

periodic orbit. Let R = d(z, T j
θ y). We claim that there exists an n

such that T nz and T j+n
θ y lie on opposite sides of the discontinuity. To

see this we start by assuming that T j
θ y is exactly at a distance r from

the discontinuity. Then assuming that z and T j
θ y lie on the same side

of the discontinuity for all n, we have in particular that T qn
θ z is at a
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distance R from T j
θ y for each n. Since T q

θ acts as an irrational rotation

by 2πqθ about T j
θ y on the domain of continuity containing T j

θ y there
will eventually exist (by denseness of orbits on the circle under irra-
tional rotations) an n such that T qn

θ z and T j
θ y lie on opposite sides of

the discontinuity.
Hence we have shown that for each periodic orbit there is an r such

that the open discs of radius r around each point on the orbit are rigidly
permuted (with rotation) and stay for all time on the same size of the
discontinuity as the periodic point whereas points outside the closed
disc of size r eventually fall on the opposite side of the discontinuity.
These discs will be referred to as periodic islands.
Given a point z in the plane we refer to its itinerary as the sequence of

elements of the partition (into pieces on which the map acts as an isom-
etry) that its orbit belongs to. That is we define I(z) = (s(T n

θ z))n∈Z
where s(z) is 1 if Im (z) ≥ 0 and −1 otherwise. It is straightforward
to see that a point has a periodic itinerary if and only if it belongs to
a periodic island. If a point has an aperiodic itinerary we refer to it as
aperiodically coded.
A helpful heuristic for understanding the action of Tθ is that given a

point with absolute value r and argument 2πφ its image has approxi-
mately the same radius but argument approximately 2π(φ+ θ−C/r).
To understand this notice that the map Tθ is the composition of a ro-
tation by 2πθ with a ‘shear’ sliding the two parts of the plane relative
to each other. The effect of the shear part is to diminish the argument
whether the point lies in the upper or lower half plane. The amount
that the argument is reduced depends on the radius, as well as on the
distance of the point from the discontinuity. The second dependence
tends to average out and so Tθ can be thought of as approximately a
twist map (r, 2πφ) 7→ (r, 2π(φ+ θ−C/r)). If r satisfies θ−C/r = p/q
that one might expect Tθ acting on a neighbourhood of a circle of ra-
dius r about the origin to behave as a rotation by 2πp/q and hence to
have periodic orbits with period q. Our previous paper [11] developed
this idea and showed rigorously the existence of orbits arising in this
way.
A key concept in that paper is that of a rotationally-coded periodic

orbit. Throughout the paper we will use the notation e(θ) = e2πiθ. We
say that a point z has a rotationally-coded orbit for Tθ if there exist a
rational p/q (in lowest terms) and a point y whose Rp/q-orbit does not
intersect the discontinuity such that s(T n

θ z) = s(Rn
p/qy) for all n ∈ Z,

where Rθ(y) = e(θ)y is the rotation of the plane by 2πθ about the
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origin. In this case we say that orbit of z is p/q-coded and the rotation
number of z will be p/q.
In order to avoid repeating ourselves too much we make the fol-

lowing natural convention: when speaking about rationals p/q we will
always assume that they are expressed in lowest terms even if we avoid
explicitly mentioning it.
Notice that for the map Rp/q, if the plane is divided up by the preim-

ages of the real axis under Rp/q into conical regions then two points
have the same itinerary if and only if they lie in the same cone. If q is
even there are q cones whereas if q is odd there are 2q cones (the dif-
ference arises because the negative real axis and positive real axis have
disjoint orbits in the odd case). If q is even Rp/q permutes the cones
transitively whereas if q is odd the cones alternate between two families
and the rotation sends each family to itself. For q even there is therefore
exactly one p/q-coded itinerary up to shifts (namely (s(Rn

p/qe(
1
2q
)))n∈Z)

whereas for q odd there are exactly two p/q-coded itineraries up to
shifts (namely (s(Rn

p/qe(
1
4q
)))n∈Z and (s(Rn

p/qe(−
1
4q
)))n∈Z). The first of

these spends (q + 1)/2 steps per period in the upper half plane and
(q− 1)/2 steps in the lower half plane whereas for the second orbit the
situation is reversed.
A key question for the family (Tθ) as well as for other piecewise

isometries has been to rigorously prove quantitative theorems about the
size of the set of aperiodically coded points. In our setting, letting A
denote the set of aperiodically coded points (a measurable set because
it is the complement of a countable family of discs), one is interested
in the density of A in the plane:

ρ(A) = lim
R→∞

Leb(A ∩ BR)

Leb(BR)
.

If the limit in the above expression fails to exist one may instead talk
about the upper density ρ(A) in which the limit is replaced by a limit
superior and the lower density ρ(A) in which the limit is replaced by
a limit inferior.
Ashwin has performed computer experiments suggesting that ρ̄(A) is

positive ([3, 4]) but other authors have conjectured that ρ̄(A) is 0. We
do not resolve this conjecture here, but instead we study quantitative
properties of Prot, the set of points with rotationally-coded orbits. See
also recent work of Lowenstein and Vivaldi [13] for an approach to a
related problem involving density estimates for a PWI on a compact
region with parameter values θ close to 1/4.
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Our main theorem in this paper is the following (see Section 5 for a
precise statement).

Theorem. Let θ be irrational. Then the set Prot has upper density at
least 3 log 2 − π2/8. Moreover there is a naturally defined subset P0 of
Prot such that ρ(P0) = 3 log 2− π2/8.

Further we present a conjecture that we have verified numerically in
a large number of cases that would ensure that P0 = Prot.
The principal ingredients of the paper are some elementary geometric

and combinatorial facts about the periodic orbits established in our
previous paper [11] together with a number of deductions from uniform
distribution. The result is established by first showing that the density
of periodic islands is given by the sum of the limits as R approaches
∞ of Godd(θ, R) +Geven(θ, R), where these are defined by

Godd(θ, R) =
1

2R2

∑

q

π2R
<{qθ}< 1

2

gcd(q,⌊qθ⌋)=1
q odd

q cot2(πqθ); and

Geven(θ, R) =
1

4R2

∑

{qθ}> q

π2R

gcd(q,⌊qθ⌋)=1
q even

q tan2

(

πqθ

2

)

.

These are the approximate total densities in a disc of radius R about
the origin of the periodic islands with odd period and the periodic
islands with even period. Our previous paper gives exact information
on the radii of the periodic islands. In this paper we use uniform
distribution techniques to approximately locate the periodic islands
(so that we are able to decide those terms that should be included and
those that should be excluded). This allows us to compare the density
ρ(P0) with limR→∞(Godd(θ, R) +Geven(θ, R)) in Section 5.
In computing the limits of the above quantities we use uniform dis-

tribution two further times: firstly (in Section 4) we find the density of
S = {q : q and ⌊qθ⌋ are coprime}. It turns out S has density 4/π2 in
the even integers and 8/π2 in the odd integers. This is a mild general-
ization of a theorem of Estermann [8], which in turn is closely related to
a well-known theorem of Mertens [14] on the density of visible points
in the square lattice. Secondly (in Section 3) we develop some the-
orems about summation in the presence of uniform distribution that
essentially allow us to replace all the terms in the summation by their
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Figure 2. Schematic diagram of the proof

averages provided that the functions being summed are Riemann inte-
grable.
Since in our case the functions being summed have singularities we

need to deal with the contributions from the singularities separately
(Section 5).
A schematic diagram of the proof is shown in Figure 2.

2. Piecewise Isometry Lemmas

We collect in this section a number of lemmas from our previous
paper [11] concerning periodic orbits of maps of the form Tθ. We shall
use the notation e(x) to denote e2πix. If ǫ ∈ {±1}Z we write σ(ǫ) for
the shift of ǫ: (σ(ǫ))n = ǫn+1.
We will write S±1

θ (z) = e(θ)(z ± 1) and let P+1 = {z : Im z ≥ 0}
and P−1 = {z : Im z < 0}. If ǫ is a periodic ±1-valued sequence with
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period q we set

F (θ, ǫ) =
1

e(−qθ)− 1

q−1
∑

j=0

ǫje(−jθ).

One can check that Sǫ0
θ (F (θ, ǫ)) = F (θ, σ(ǫ)).

Lemma 1 (Criterion for existence of periodic points: Lemma 9 [11]).
Let ǫ be a periodic word with period q in {±1}Z. Then Tθ has a periodic
point with itinerary ǫ if and only if F (θ, σjǫ) ∈ Pǫj for each 0 ≤ j < q.
If this condition is satisfied then the periodic point is given by F (θ, ǫ).

We refer to F (θ, ǫ) as a potential periodic orbit with itinerary θ. If
the conditions of Lemma 1 are satisfied then it is a true periodic orbit
with itinerary θ.
As described above for p/q ∈ Q, there are two periodic p/q-coded

itineraries if q is odd and one itinerary if q is even. For q odd and let
Zq = {1

4
, 3
4
, . . . , q − 1

4
} whereas if q is even let Zq = {1

2
, 3
2
, . . . , q − 1

2
}.

These elements represent the central angle of each of the 2q cones
discussed earlier for the map Rp/q in the case where q is odd and the
central angle of each of the q cones for Rp/q in the case where q is even.

In either case we let
(

ǫ
(a)
p/q

)

n
= s(Rn

p/q(e(a/q))) and let z
(a)
p/q = F (θ, ǫ

(a)
p/q),

so that provided the conditions of the lemma above are satisfied z
(a)
p/q

behaves under Tθ like the a point with angle 2πa/q under the map Rp/q.
If gcd(p, q) = 1 and p/q < θ < (p+ 1

4
)/q then we showed in [11] that

the conditions of Lemma 1 are satisfied and hence there is a p/q-coded
orbit (or a pair of such orbits if q is odd). In the case where there is
a pair of itineraries, the orbit corresponding to one is sent to the orbit
corresponding to the other by rotation by π so that they are either
both present or both absent.
When the conditions of the lemma are satisfied the points of the

orbit satisfy Tθ(z
(a)
p/q) = z

(a+p mod q)
p/q for any a in the set of allowable a’s

listed above. In the case where q is odd one orbit consists of the points

{z
(n+1/4)
p/q : 0 ≤ n < q} and the other orbit consists of {z

(n−1/4)
p/q : 0 ≤ n <

q}. We call the first of these the +-orbit and the second the −-orbit.
We showed in [11] that if p/q < θ < (p+ 1/4)/q then the p/q-coded

periodic orbit(s) ‘look like’ orbits of the rotation by 2πp/q in the sense
that the arguments of z(a) increase monotonically as a goes from 0 to
q along the appropriate sequence and the periodic orbit(s) are mapped
in an order-preserving way to itself/themselves by Tθ. The periodic
orbits have another property in this case that will be of importance to
us.
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Figure 3. The 2/7-coded periodic islands for Tθ where
θ = 0.3219 labeled with their indices in Z7.

Let θ and p/q be given. If q is odd and there are a pair of p/q-coded
orbits, the orbits are said to be well-behaved if the closest points on the
+-orbit to the discontinuity are z(1/4) and z(q/2−1/4). These two points
are shown in [11] to be the same distance from the discontinuity. In
this case of course the closest points on the −-orbit to the discontinuity
are z(−1/4) and z(q/2+1/4). In the case where q is even the four points
z(±1/2) and z(q/2±1/2) are all at the same distance from the discontinuity.
If these points are the closest points on the orbit to the discontinuity
the orbit is again said to be well-behaved. It is shown in [11] that if
p/q < θ < (p + 1/4)/q then the p/q-coded orbit is well-behaved. This
is illustrated in Figure 3.
The significance of this condition is that it is possible using an anal-

ysis of the codes ǫ(a) one can obtain exact expressions for the distance
of these four points to the discontinuity. By the earlier observation this
determines the radius of the periodic islands surrounding the points on
the periodic orbit(s) and hence their area.

Lemma 2 (Size of periodic islands: Lemma 9 [11]). Let gcd(p, q) = 1
and θ be irrational.
If q is odd then z

(1/4)
p/q and z

(q/2−1/4)
p/q have imaginary component cot(πqθ)/2;

while z
(−1/4)
p/q and z

(q/2+1/4)
p/q have imaginary component − cot(πqθ)/2.

If q is even then z
(q/2−1/2)
p/q and z

(1/2)
p/q have imaginary component

− tan(πqθ/2)/2; while z
(−1/2)
p/q and z

(q/2+1/2)
p/q have imaginary component

tan(πqθ/2)/2.

In particular if q is odd and {qθ} ∈ (1/2, 1) then z
(1/4)
p/q lies in the

wrong half-plane and so there is no p/q-coded orbit. Notice that if q
is even then by assumption p is odd so that if p/q < θ < (p + 1)/q
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then πqθ/2 ∈ (πp/2, π(p + 1)/2) which ensures that − tan(πqθ/2) is
positive.

Lemma 3 (Relative Positions of Periodic Points: Lemma 7 [11]). Let
θ = (p+h)/q with 0 < h < 1 and let (z(a))a∈Zq

be the points constructed
above.
If q is even, there is a collection of points y(a) (for a ∈ Zq) lying

on a circle centred at the origin with Arg(y(a)) = 2π a
q
so that for each

a ∈ Zq, there exists an r satisfying |r| ≤ q/4 such that

(1) z(a) − z(a−1) = e(r h
q
)(y(a) − y(a−1)).

If q is odd, there is a collection of points y(n) (for a ∈ Zq) lying on a
circle centred at the origin with Arg(y(a)) = 2π a

q
so that for each a ∈ Zq

there exists an r satisfying |r| ≤ q/2 such that

(2) z(a) − z(a−1/2) = e(r h
q
)(y(a) − y(a−1/2)).

3. Results on Uniform Distribution

In this section we develop a number of basic results about uniform
distribution modulo 1. While the results that we prove are tailored to
the particular applications that we study in this paper there is a general
meta-principle at work here: in the presence of uniform distribution
modulo 1 one can replace each term in a sum by its average.
A sequence of numbers (xn) is said to be uniformly distributed modulo

1 if for each interval [a, b] ⊂ [0, 1], |{n ≤ N : {xn} ∈ [a, b]}|/N → b− a
as N → ∞.
We shall need to make use of Weyl’s Criterion [16].

Theorem 4. (Weyl’s Criterion) Let (xn) be a sequence of real numbers.
Then the following are equivalent:

(1) (xn) is uniformly distributed mod 1;
(2) For each Riemann-integrable function f ,

lim
N→∞

1

N

N
∑

n=1

f({xn}) =

∫ 1

0

f ;

(3) For each non-zero integer k,

lim
N→∞

1

N

N
∑

n=1

e2πikxn = 0.

Lemma 5 (Uniform distribution and weighted means). Suppose that
(xn) is a sequence of numbers in [0, 1) and that S is a subset of N with
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density α. Suppose further that {(xn)n∈S} is uniformly distributed mod
1. Let f be a Riemann integrable function. Then

1

R2

∑

n≤R, n∈S

nf(xn) →
α

2

∫ 1

0

f as R → ∞.

Proof. Let ǫ > 0. We have for all T exceeding some T0,
∣

∣

∣

∣

∣

∑

n≤T, n∈S

f(xn)− αT

∫ 1

0

f

∣

∣

∣

∣

∣

< ǫT.

Summing this for T up to R and using the triangle inequality, we obtain
∣

∣

∣

∣

∣

∑

n≤R,n∈S

(R− (n− 1))f(xn)− α
R(R + 1)

2

∫ 1

0

f

∣

∣

∣

∣

∣

< T 2
0 ‖f‖+ǫ

R(R + 1)

2
.

Dividing by R2 and taking a limit superior as R → ∞ we see

lim sup

∣

∣

∣

∣

∣

1

R2

∑

n≤R, n∈S

(R + 1− n)f(xn)−
α

2

∫ 1

0

f

∣

∣

∣

∣

∣

≤ ǫ.

Since ǫ is arbitrary we obtain

lim
R→∞

1

R2

∑

n≤R, n∈S

(R + 1− n)f(xn) =
α

2

∫ 1

0

f.

By simple algebraic manipulation (using limR→∞(R+ 1)/R = 1) we
have

lim
R→∞

1

R2

∑

n≤R, n∈S

(R + 1)f(xn) = α

∫ 1

0

f.

Taking the difference of the last two equations gives the required result.
�

Lemma 6 (Moving weighted averages and uniform distribution). Let
0 < β < γ and let (xn) and S be as in the previous lemma. Then

lim
R→∞

1

R2

∑

βR≤n≤γR, n∈S

nf(xn) =
γ2 − β2

2
α

∫ 1

0

f.

Proof. From Lemma 5 (with R replaced by γR) we obtain

lim
R→∞

1

R2

∑

n≤γR, n∈S

nf(xn) =
γ2

2
α

∫ 1

0

f.

Obtaining a similar expression with β and subtracting gives the result.
�
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Lemma 7 (Weighted averages of slowly varying functions). Let S be
a subset of the integers of density α. Let (xn) be such that (xn)n∈S
is uniformly distributed on [0,1) and let f be a Riemann integrable
function on [0, 1). Then

lim
R→∞

1

R2

∑

n≤R, n∈S

nf(xn)1[n/R,1)(xn) =
α

2

∫ 1

0

x2f(x) dx.

Proof. We note that it is sufficient to prove the lemma in the case where
f is a continuous function, as a Riemann integrable function may be
approximated above and below by continuous functions whose integrals
differ by an arbitrarily small amount.
We assume without loss of generality that f is a non-negative func-

tion. Let ǫ > 0 be given and let M > ‖f‖/ǫ satisfy |f(x) − f(y)| ≤ ǫ
whenever |x− y| ≤ 1/M .
Let f0, f1, . . . , fM be the sequence of Riemann integrable functions

defined by

fi(x) =

{

f(x) if x ≥ i/M ;

0 if x < i/M.

Using Lemma 6 we can choose R0 such that for all R ≥ R0, all i and
j,

∣

∣

∣

∣

∣

∣

∣

∣

1

R2

∑

(i−1)R/M<n≤iR/M
n∈S

nfj(xn)−
(i2 − (i− 1)2)

2M2
α

∫ 1

0

fj

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ/M.

For n between (i− 1)R/M and iR/M , we have the inequality

nfi(xn) ≤ nf(xn)1[n/R,1)(xn) ≤ nfi−1(xn).

Summing we have

α
i2 − (i− 1)2

2M2

∫ 1

0

fi − ǫ/M ≤
1

R2

∑

(i−1)R/M<n≤iR/M
n∈S

nf(xn)1[n/R,1)(xn)

≤ α
i2 − (i− 1)2

2M2

∫ 1

0

fi−1 + ǫ/M.

Note that
∫ 1

0
fi =

∫ 1

i/M
f for each i.
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Summing this over i shows that
M
∑

i=1

α
i2 − (i− 1)2

2M2

∫ 1

i/M

f − ǫ ≤
1

R2

∑

n≤R, n∈S

nf(xn)1[n/R,1)(xn)

≤
M
∑

i=1

α
i2 − (i− 1)2

2M2

∫ 1

(i−1)/M

f + ǫ.

These lower and upper bounds may be rewritten as

α

2M2

(

12
∫ 2/M

1/M

f + 22
∫ 3/M

2/M

f + . . .+ (M − 1)2
∫ 1

(M−1)/M

f

)

− ǫ; and

α

2M2

(

12
∫ 1/M

0

f + 22
∫ 2/M

1/M

f + . . .+M2

∫ 1

(M−1)/M

f

)

+ ǫ.

The upper and lower bounds differ by at most α(2M+1)‖f‖/(2M2)+
2ǫ < 5ǫ.
Since

∫ (i+1)/M

i/M
f differs from f(i/M)/M by at most ǫ/M , the upper

and lower bounds are within constant multiples of ǫ of the quantity

α

2

M
∑

i=1

(i/M)2f(i/M)/M.

This is a Riemann sum approximation of (α/2)
∫ 1

0
x2f(x) dx. As ǫ is

shrunk to 0 and M grows to ∞, the two bounds converge giving the
required limiting value.

�

Remark. To see that Lemma 7 is an instance of the meta-principle
stated at the beginning of the section, applying this principle to the
quantity in Lemma 7, we expect the left hand side to be replaced by

lim
R→∞

(1/R2) dens(S)
∑

n≤R

n

∫ 1

n/R

f = α lim
R→∞

R
∑

n=1

(1/R)(n/R)

∫ 1

n/R

f

= α

∫ 1

0

(

x

∫ 1

x

f(t) dt

)

dx = α

∫ 1

0

(

f(t)

∫ t

0

x dx

)

dt

=
α

2

∫ 1

0

t2f(t) dt

which is confirmed by Lemma 7.

For the next lemma we regard [0, 1) as the unit circle, so that addition
and subtraction are interpreted modulo 1. We will write Ta for the
translation operator on functions so that Taf(x) = f(x− a).



PIECEWISE ISOMETRIES, UNIFORM DISTRIBUTION AND 3 log 2− π2/8 13

Lemma 8 (Averages of slowly varying functions). Let f and g be Rie-
mann integrable functions on the circle. Let A > 0 and let (xn) be
uniformly distributed modulo 1. Then the quantity

1

N

N−1
∑

n=0

f(xn + an/N)g(xn)−
1

N

N−1
∑

n=0

∫ 1

0

f(t+ an/N)g(t) dt

converges to 0 uniformly for a ∈ [−A,A] as N → ∞.

Proof. Clearly it is sufficient to prove the lemma in the case when f
and g are non-negative functions. We further claim that it is sufficient
to prove the lemma in the case where f and g are continuous functions.
To see this we note that if f and g are Riemann integrable then we may
approximate them arbitrarily closely above and below by continuous
functions. This then gives arbitrarily close lower and upper bounds for
(1/N)

∑

n≤N f(xn + an/N)g(xn) completing the proof of the lemma.
We make one further simplifying assumption for the proof, namely

that xn = nθ mod 1 for a fixed irrational θ. This is not essential for the
proof, but provides a simplification at one point. Further the lemma
will only be applied in this case in the sequel.
Now let ǫ > 0. There exists δ > 0 such that if |c − d| ≤ δ then

‖Tcf − Tdf‖ < ǫ/(4‖g‖). Let M = ⌈A/δ⌉ and for −M ≤ j ≤ M
let hj(x) = (Tjδf)(x)g(x). By unique ergodicity of the rotation by θ
applied to each of the continuous functions hj, there exists a K > 0
such that for any N ≥ K, any x ∈ [0, 1) and any |j| ≤ M , we have

|(1/N)
∑

n≤N hj(x+ nθ)−
∫ 1

0
hj | < ǫ/4.

Now let N be such that ⌊Nδ⌋ > K and K‖f‖‖g‖/N < ǫ/4. Assume
without loss of generality that a > 0 and let ni = min(⌊Niδ/a⌋, N).
Then for nj−1 ≤ n < nj we have |an/N − jδ| < δ. Let s = ⌈a/δ⌉. We
then have

1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

f(nθ + an/N)g(nθ)−
N
∑

n=1

∫ 1

0

f(t + an/N)g(t) dt

∣

∣

∣

∣

∣

≤
1

N

s
∑

j=1

∣

∣

∣

∣

∣

∣

nj−1
∑

n=nj−1

(

f(nθ + an/N)g(nθ)−

∫ 1

0

f(t+ an/N)g(t) dt

)

∣

∣

∣

∣

∣

∣

≤
ǫ

2
+

1

N

s
∑

j=1

∣

∣

∣

∣

∣

∣

nj−1
∑

n=nj−1

(

hj(nθ)−

∫ 1

0

hj(t) dt

)

∣

∣

∣

∣

∣

∣

≤
ǫ

2
+

Nǫ/4 +K‖f‖‖g‖

N
≤ ǫ,
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where the K‖f‖‖g‖ is an upper bound for the error that may arise if
the final block is of length less than K. �

4. Visible Points

We will in later sections be summing over rotationally coded orbits,
that is over pairs (p, q) of coprime integers. More specifically given an
irrational slope θ we need some analytic information about the density
of the points (p, q) with coprime coordinates in the strip {(m,n) : θm−
1 < n ≤ θm}. We collect in this section the results that we shall need.
It is well-known that the set of visible points in the plane (those

points in Z2 satisfying gcd(p, q) = 1) is of density 6/π2. That is, in a
disc of size R about the origin the ratio of the number of visible points
to the area of the disc tends to 6/π2 as R approaches ∞. Indeed this
result was originally proved by Mertens [14] in the 19th century.
A generalization of this result was obtained by Estermann [8] using

techniques of analytic number theory where the density 6/π2 of visi-
ble points was shown to hold for any infinite strip in the plane with
irrational slope. More precisely

Theorem 9 (Estermann). Let θ be irrational and let a < b. Then we
have
(3)

lim
N→∞

1

N
#{(q, r) : gcd(q, r) = 1; q ≤ N, θq−b ≤ r < θq−a} =

6(b− a)

π2

We make use of the following convention: We identify the circle with
[0, 1) and if g is a function defined on the unit circle when we write g(x),
we mean g(x mod 1). A corollary of Estermann’s theorem, convenient
for our purposes, is the following.

Theorem 10. Let θ be irrational and let g be a Riemann integrable
function on the unit circle. Then we have

(4) lim
N→∞

1

N

∑

q≤N
gcd(q,⌊qθ⌋)=1

g(qθ) =
6

π2

∫ 1

0

g.

We shall give a proof of this theorem using uniform distribution and
supplement it with an extension that we need in the remainder of the
paper. We initially consider the strip Sθ = {(x, y) : θx−1 < y ≤ θx} of
height 1 and slope θ. For an irrational number θ, define fθ : N → {0, 1}
by

fθ(q) =

{

1 if gcd(q, ⌊qθ⌋) = 1;

0 otherwise.
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This function records whether or not Sθ contains a primitive lattice
point with x-coordinate q.
We remark that Theorem 10 can be informally described as saying

that the value of the fractional part of qθ is independent of whether q
and ⌊qθ⌋ are coprime.
Our approach to proving Theorem 10 will be to split fθ up into a

regular part and a small part. The two lemmas that follow then control
the average values of these two parts. For r ≥ 1, define the regular part,

f
(r)
θ as follows:

f
(r)
θ (q) =

{

0 if there exists p < 2r such that p|q and p|⌊qθ⌋;

1 otherwise.

Notice that f
(r)
θ dominates fθ and the sequence (f

(r)
θ )r decreases

pointwise to fθ.

Lemma 11. Let θ be irrational and let k ∈ Z. Then

lim
Q→∞

1

Q

Q
∑

q=1

f
(r)
θ (q)e(kqθ) =

{

∏

p<2r

(

1− 1
p2

)

if k = 0

0 otherwise.

(In the above formula the product is taken over primes p less than 2r.)

Lemma 12. Let θ be irrational. Then for all ǫ > 0 there exists an r0
such that for all r ≥ r0 we have

(5) lim sup
Q→∞

1

Q

Q
∑

q=1

(f
(r)
θ (q)− fθ(q)) < ǫ.

We now give a proof of Theorem 10 assuming the lemmas.

Proof of Theorem 10. Fix an irrational θ and let ǫ > 0. There exists an
r0 satisfying the conditions of Lemma 12. Since

∏

p prime(1 − 1/p2) =

6/π2 (see Hardy and Wright [12] for a proof that
∏

p prime(1−1/p2)−1 =

ζ(2) and Apostol [2] for a proof that ζ(2) = π2/6), there exists r ≥ r0
such that

∏

p<2r(1− 1/p2) < 6/π2 + ǫ.
By Weyl’s criterion it is sufficient to show that for any k ∈ Z,

lim
Q→∞

1

Q

Q
∑

q=1

fθ(q)e(kqθ) =

{

6/π2 if k = 0;

0 otherwise.
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Let k ∈ Z be fixed and let A be 6/π2 if k = 0 and 0 otherwise. We
have

lim sup
Q→∞

∣

∣

∣

∣

∣

1

Q

Q
∑

q=1

fθ(q)e(kqθ)−
1

Q

Q
∑

q=1

f (r)(q)e(kqθ)

∣

∣

∣

∣

∣

≤ lim sup
Q→∞

1

Q

Q
∑

q=1

(f
(r)
θ (q)− fθ(q)) < ǫ,

(6)

where the last inequality follows from Lemma 12.
By Lemma 11 we have

(7)

∣

∣

∣

∣

∣

lim
Q→∞

1

Q

Q
∑

q=1

f
(r)
θ (q)e(kqθ)−A

∣

∣

∣

∣

∣

< ǫ.

Combining (6) and (7) we get

lim sup
Q→∞

∣

∣

∣

∣

∣

1

Q

Q
∑

q=1

fθ(q)e(kqθ)− A

∣

∣

∣

∣

∣

< 2ǫ.

Since ǫ is arbitrary the proof is complete. �

Proof of Lemma 11. List the primes less than 2r as p1, p2, . . . , pk and
let P = p1p2 · · ·pk.
We then define a dynamical system on {0, 1, . . . , P − 1} × [0, P ) by

T (n, x) = (n+ 1 mod P, x+ θ mod P ). Define the function g : X → C
by

g(n, x) =

{

0 if there exists p < 2r such that p|n and p|⌊x⌋;

e(kx) otherwise.

We then claim that f
(r)
θ (q)e(kqθ) can be dynamically defined, namely

that f
(r)
θ (q)e(kqθ) = g(T q(0, 0)). To see this, note that the following

statements are pairwise equivalent

• f
(r)
θ (q) = 0.

• There exists p < 2r such that p|q and p|⌊qθ⌋.
• There exists p < 2r such that p|(q mod P ) and p|⌊qθ mod P ⌋.
• g(q mod P, qθ mod P ) = 0.
• g(T q(0, 0)) = 0.

If the functions do not take the value 0, then they both take the
value e(kqθ).
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1

Q

Q
∑

q=1

f
(r)
θ (q) =

1

Q

Q
∑

q=1

g(T q(0, 0)).

By unique ergodicity the right hand side converges to
∫

g dµ. If
k 6= 0, the integral is clearly 0. To evaluate this integral when k = 0,
we use the Chinese Remainder Theorem which states that there is a
ring isomorphism between ZP and Zp1 × . . .Zpk given by n → (n mod
p1, . . . , n mod pk). Under this isomorphism the elements divisible by
pi correspond to those elements of the right side with a 0 in the Zpi

coordinate.
Since [0, P ) is in measure-preserving bijection with {0, . . . , P − 1}×

[0, 1) (by t 7→ (⌊t⌋, {t})), we see that {0, 1, . . . , P − 1} × [0, P ) is in
measure-preserving bijection with

∏

i≤k Z
2
pi
×[0, 1). Under this bijection

the support of g is mapped to
∏

i≤k(Z
2
pi
\ {(0, 0)})× [0, 1). Since the

measure of this set is
∏k

i=1(1− 1/p2i ) the lemma is proven. �

Lemma 13 (Counting visible points in parallelograms). Consider a
parallelogram of the form S = {(x, y) : a ≤ x < 2a, θx − c < y ≤ θx}.
Then S contains at most ⌈4Area(S)⌉ primitive lattice points.

Proof. We consider the slopes of the lines joining the origin to the prim-
itive lattice points in S. These are all distinct and have denominators
bounded above by 2a. From the simple inequality |p/q−p′/q′| ≥ 1/(qq′)
when p/q and p′/q′ are distinct, we see that each pair of slopes differs
by at least 1/(4a2). Since the slopes all lie between θ − c/a and θ, the
number of distinct slopes (and hence the number of primitive lattice
points) is bounded above by ⌈(c/a)/(1/4a2)⌉ = ⌈4ac⌉. �

Proof of Lemma 12. We start the proof by making two simplifications.
Firstly given ǫ > 0 it is sufficient to show the existence of a single

r > 0 such that lim supQ→∞(1/Q)
∑

q≤Q(f
(r)
θ (q)− fθ(q)) < ǫ since the

functions f
(r)
θ decrease pointwise to fθ.

Secondly we observe that in order to prove the lemma it is sufficient
to ensure that for any ǫ, there is an r > 0 such that the following
condition holds for all sufficiently large t

(8)
1

2t

2t+1−1
∑

q=2t

(f
(r)
θ (q)− fθ(q)) < ǫ.

To see the sufficiency, suppose that for a fixed value of r, (8) is
satisfied for all t ≥ t0 with ǫ replaced by ǫ/4. Given Q, let s satisfy
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2s ≤ Q < 2s+1. We then have

∑

q≤Q

(f
(r)
θ (q)− fθ(q)) ≤

∑

t≤s

2t+1−1
∑

q=2t

(f
(r)
θ (q)− fθ(q))

≤ 2t0 +
∑

t≤s

(ǫ/4)2t

≤ 2t0 + ǫ2s−1.

Since Q ≥ 2s we see

1

Q

∑

q≤Q

(f
(r)
θ (q)− fθ(q)) ≤ 2t0/Q+ ǫ/2

So that the desired conclusion (5) follows.
Since

∑

p prime 1/p = ∞, we can pick an r such that
∏

p<2r(1−1/p) <

ǫ. By increasing r if necessary we may assume that 2−r < ǫ. Fix a t
such that 2t/2 >

∏

p<2r p.
We let Ar denote the set of integers greater than 1 that can be formed

as products of primes greater than 2r. Notice that for n > 1, n ∈ Ar

if and only if n mod p 6= 0 for each prime p < 2r. Using the Chinese
Remainder Theorem, we see that in each block of integers of length
P =

∏

p<2r p, A
r has exactly

∏

p<2r(p − 1) elements so that Ar has

density
∏

p<2r(1 − 1/p) in any such block. Now for s ≥ t/2, have 2s+1

exceeds P so that we have

(9) |Ar ∩ [0, 2s+1)| < 2s+2ǫ.

We note that f
(r)
θ (q) − fθ(q) takes the value 1 if and only if there

exists p > 2r such that p divides both q and ⌊qθ⌋ but no p < 2r with
this property. This is the case if and only if gcd(q, ⌊qθ⌋) ∈ Ar. In

other words we have f
(r)
θ (q) − fθ(q) takes the value 1 if and only if

(q, ⌊qθ⌋) ∈ B =
⋃

n∈Ar nV where V is the set of primitive lattice points
in Z2.
Let S denote the strip in R2 given by

S = {(x, y) : 2t ≤ x < 2t+1, θx− 1 < y ≤ θx}.

By the above, we have

(10)
1

2t

2t+1−1
∑

q=2t

(f
(r)
θ (q)− fθ(q)) = |B ∩ S|/2t.

In order to prove the lemma we need an upper bound on |B ∩ S|.
If n ∈ Ar, (u, v) ∈ V and n(u, v) ∈ S, then we see that 2t/n ≤

u < 2t+1/n and θu − 1/n < v ≤ θu. If 2t−k ≤ u < 2t−k+1 then
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S

Sk

Sk+1

Figure 4. The parallelograms Sj

2t/n ≤ u < 2t−k+1 so that 1/n < 2−k+1. The point (u, v) then satisfies
the inequalities

2t−k ≤ u < 2t−k+1

θu− 2−k+1 < v ≤ θu.

We define smaller parallelograms as follows:

Sk = {(x, y) : 2t−k ≤ x < 2t−k+1, θx− 1/2k−1 < y ≤ θx}.

If n · (u, v) ∈ B ∩ S for n ∈ Ar, then since n > 2r, we have 1 ≤ u <
2t+1−r. The above shows that (u, v) ∈

⋃t
k=r Sk ∩ V .

We have

B ∩ S ⊂

t
⋃

k=r

(Ar ∩ [2k−1, 2k+1)) · (Sk ∩ V ).

so that in particular

(11) |B ∩ S| ≤
t
∑

k=r

|Ar ∩ [2k−1, 2k+1)| · |Sk ∩ V |.

For k ≤ t/2 we use the trivial bound |Ar∩[2k−1, 2k+1)| ≤ 2k+1. Using
Lemma 13, we have |Sk ∩ V | ≤ 1 + 4(2t+1−2k) < 2t−2k+4 so that we see

(12)

⌊t/2⌋
∑

k=r

|Ar ∩ [2k−1, 2k+1)| · |Sk ∩ V | ≤

⌊t/2⌋
∑

k=r

2t−k+5 ≤ 2t−r+6.
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Notice that the rays joining the origin to the primitive lattice points
in
⋃

t/2<k≤t Sk have distinct slopes between θ − 2−(t−1) and θ and de-

nominators not exceeding 2t/2+1. As in the proof of Lemma 13, the
difference between the slopes of any two primitive points in the region
differs by at least 2−(t+2). It follows that there can be at most 9 points
in
⋃

k>t/2 Sk ∩ V . Given a point in Sk ∩ V , it gives rise to at most

|Ar ∩ [2k−1, 2k+1)| points of B ∩ S. Since k > t/2, this is at most 2k+2ǫ
by (9). Since there are at most 9 points it follows that

t
∑

k=⌊t/2⌋+1

|Ar ∩ [2k−1, 2k+1)| · |Sk ∩ V | ≤ 36ǫ2t.

Combining this with (12) we see that |B ∩ S| ≤ 100ǫ2t. Since ǫ was
arbitrary, this is sufficient to complete the proof by (10). �

The following is an extension of Theorem 10 that we shall need later
in the paper.

Theorem 14 (Estermann along an arithmetic progression). Let θ be
irrational and let 0 ≤ a < d be integers. Let g be a Riemann integrable
function on the unit circle. We then have

lim
N→∞

1

N

∑

q≤N
gcd(q,⌊qθ⌋)=1
q≡a mod d

g(qθ) =
1

d

∏

p|gcd(a,d)

(

1−
1

p

)

∏

p∤d

(

1−
1

p2

)
∫ 1

0

g.

In fact all we shall need from this extension is the following corollary.

Corollary 15 (Estermann along the even and odd subsequences). Let
θ be irrational and let g be a Riemann integrable function on the unit
circle. We have

lim
N→∞

1

N

∑

q≤N
gcd(q,⌊qθ⌋)=1

q odd

g(qθ) =
4

π2

∫ 1

0

g.

and

lim
N→∞

1

N

∑

q≤N
gcd(q,⌊qθ⌋)=1

q even

g(qθ) =
2

π2

∫ 1

0

g.

Remark 16. In other words the corollary states that the set of q’s such
that q is odd and gcd(q, ⌊qθ⌋) = 1 has density 4/π2 and the fractional
parts of the qθ along this sequence are uniformly distributed. Similarly
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the set of q’s such that q is even and gcd(q, ⌊qθ⌋) = 1 has density 2/π2

and the fractional parts of the qθ are uniformly distributed along this
sequence.

The proof of Theorem 14 is entirely analogous to the proof of The-
orem 10 except that Lemma 11 has to be replaced by the following
lemma.

Lemma 17. Let θ be irrational and let k ∈ Z. Let d > 0 be given and
let 0 ≤ a < d. Further let r be such that all prime factors of d are less
than 2r. Then we have the following:

lim
Q→∞

1

Q

Q
∑

q=1
q≡a mod d

f
(r)
θ (q) =

1

d

∏

p<2r

p∤d

(

1−
1

p2

)

∏

p|gcd(a,d)

(

1−
1

p

)

.

For k 6= 0 we have

lim
Q→∞

1

Q

Q
∑

q=1
q≡a mod d

f
(r)
θ (q)e(kqθ) = 0.

The proof of this lemma is essentially the same as the proof of Lemma
11. The point is to show that the quantity being summed is again equal
to a dynamical sequence given by evaluating a Riemann integrable
function along the orbit of a dense rotation. Defining R = d ·

∏

p∤d;p<2r p

and P =
∏

p<2r p, the dynamics are defined on the group
(

{0, 1, . . . , R−

1} mod R
)

×
(

[0, P ) mod P
)

.
We remark that the right hand side is very intuitive: we include

only every dth term, accounting for the factor of 1/d. Given that
q ≡ a mod d, if p divides a and d then there is a 1 − 1/p probability
that q and ⌊qθ⌋ do not have p as a common factor whereas if p divides d
but not a then the probability that q and ⌊qθ⌋ always have no common
factor of p. If p does not divide d then there is a 1 − 1/p2 probability
that q and ⌊qθ⌋ have a common factor of p.

5. Application to Piecewise Isometries

For θ > 0 fixed we shall study p/q-coded orbits with p/q < θ <
(p+ 1)/q.
According to the following conjecture we believe that this exhausts

the full set of rotationally-coded orbits but we have not yet been able
to give a complete proof of this.
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Conjecture 18 (Exact Ranges of Parameters for existence of each ro-
tationally-coded periodic point). Let θ be irrational and let gcd(p, q) =
1.
If q is odd then Tθ has a pair of p/q-coded orbits if and only if p/q <

θ < (p+ 1
2
)/q.

If q is even then Tθ has a p/q-coded orbit if and only if p/q < θ <
(p+ 1)/q.
In the case where these orbits exist, they are well-behaved.

Theorem 19 (Main Theorem: Explicit density of nice rotationally
coded points). Let θ be irrational and let R be the set of points in
C with rotationally-coded orbits with rotation numbers p/q satisfying
p/q < θ < (p+ 1)/q. Then ρ(R) = 3 log 2− π2/8.

Remark. Notice that if Conjecture 18 holds then the conclusion of
Theorem 19 applies to all rotationally-coded orbits; not just those sat-
isfying the condition p/q < θ < (p+ 1)/q.

Recall from before that for a periodic sequence ǫ ∈ {±1}Z, F (ǫ, θ)
is the location of a potential periodic orbit with itinerary ǫ. Now let
θ be a fixed irrational. The following lemma will be used to estimate
F (θ, ǫ) for various rotationally-coded itineraries ǫ.

We define the periodic itinerary ǫ
(a)
p/q by

(

ǫ
(a)
p/q

)

j
= s(e((a + jp)/q))

(where the variable a will run over the set Zq = {1/4, . . . , q − 1/4}
if q is odd or Zq = {1/2, . . . , q − 1/2} if q is even). We then define

z
(a)
p/q(θ) = F (θ, ǫ

(a)
p/q) so that

z
(a)
p/q(θ) =

1

e(−qθ)− 1

q−1
∑

j=0

(

ǫ
(a)
p/q

)

j
e(−jθ).

Lemma 20 (Control of location of periodic points away from the dis-
continuity (q odd)). Let θ be a fixed irrational. Then for q satisfying
{qθ} < 1/2, let p = ⌊qθ⌋. Provided that gcd(p, q) = 1 we have

z
(a)
p/q =

qe(a/q)

π2{qθ}
(1 + o(1)),

as q → ∞ where the convergence to 0 is uniform in a running over Zq.

Proof. Let θ be as in the statement of the lemma. Now given a q such
that gcd(⌊qθ⌋, q) = 1, let p = ⌊qθ⌋ and let h = qθ − p. Assume as in
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the statement of the lemma that h < 1/2. Let a ∈ Zq. We then have

z
(a)
p/q = F (θ, ǫ

(a)
p/q)

=
1

e(−qθ)− 1

q−1
∑

j=0

(

ǫ
(a)
p/q

)

j
e(−jθ)

=
1

e(−h)− 1

q−1
∑

j=0

s(e((a + jp)/q))e(−jθ)

=
1

e(−h)− 1

q−1
∑

j=0

s(e(a
q
+ jθ − j h

q
))e(−jθ).

Now we have from Lemma 8 and writing g(t) for s(e(t)):

q−1
∑

j=0

s(e(a
q
+ jθ − j h

q
))e(−jθ)

=

q−1
∑

j=0

g(a
q
+ jθ − j h

q
)e(−jθ)

=

q−1
∑

j=0

∫ 1

0

g(a
q
+ t− j h

q
)e(−t) dt+ o(q)

=

q−1
∑

j=0

∫ 1

0

g(t)e(−t+ a
q
− j h

q
) dt+ o(q)

= e(a
q
)

(

q−1
∑

j=0

e(−j h
q
)

)

∫ 1

0

g(t)e(−t) dt+ o(q)

= e(a
q
)
e(−h)− 1

e(−h
q
)− 1

·
−2i

π
+ o(q).

Hence using the fact that h ≤ 1/2 we obtain

z
(a)
p/q =

−2ie(a
q
)

π(e(−h
q
)− 1)

+ o(
q

h
)

=
qe(a

q
)

π2h
+ o( q

h
) =

qe(a
q
)

π2h
(1 + o(1)).

�
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The next lemma has a similar proof. It gives information on the
location of p/q-coded periodic orbits when q is even and (p+(1−δ))/q <
θ < (p+1)/q, this being the remaining case not covered by Lemma 20.

Lemma 21 (Control of location of periodic points far from the discon-
tinuity (q even)). Let θ be a fixed irrational. Then for even q satisfying
0 < {qθ} < 1, let p = ⌊qθ⌋. Provided that gcd(p, q) = 1 we have

z
(a)
p/q =

qe(a/q)

π2{qθ}
(1 + o(1)),

where the convergence to 0 is uniform in a running over Zq.

The difference between the proof of this lemma and the previous one
is that it is necessary to regroup the summation prior to applying the
uniform distribution results as there can be substantial cancellation in
the summation which could otherwise result in a situation where the
errors dominate the quantity being bounded.

Proof. The case 0 < {qθ} ≤ 1/2 is covered by the previous lemma
so we assume that 1/2 < {qθ} < 1. Since the proof is very similar
to the proof of the previous lemma, we abbreviate, emphasizing the
few significant differences. Let θ, p and q be as in the statement of
the lemma. As before, let g(t) = s(e(t)). Let h = qθ − p so that
1/2 < h < 1.
We have

F (θ, ǫ
(a)
p/q) =

1

e(−qθ)− 1

q−1
∑

j=0

g((a+ jp)/q)e(−jθ)

=
1

e(−qθ)− 1
(1− e(− q

2
θ))

q

2
−1
∑

j=0

g(a
q
+ j p

q
)e(−jθ)

=
−1

1 + e(− q
2
θ)

q

2
−1
∑

j=0

g(a+ j p
q
)e(−jθ),
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where for the second equality we used the fact that g(a+ (j + q
2
)p
q
) =

−g(a+ j p
q
). As before we have

q

2
−1
∑

j=0

g(a
q
+ j p

q
)e(−jθ) =

q

2
−1
∑

j=0

g(a
q
+ jθ − j h

q
)e(−jθ) + o(q)

= e(a
q
)(−2i/π)

q

2
−1
∑

j=0

e(−j h
q
) + o(q)

= e(a
q
)(−2i/π)

1 + e(− q
2
θ)

1− e(−h
q
)
+ o(q).

Combining the two and using the fact that 1 + e(− q
2
θ) = Ω(1) we

have

F (θ, ǫ
(a)
p/q) =

e(a
q
)q

π2{qθ}
(1 + o(1))

as required.
�

The following lemma states that provided {qθ} is bounded away from
the endpoints of the range in which there are ⌊qθ⌋/q-coded orbits then

the periodic orbit is ‘locally well-behaved’ in the sense that the z
(a)
p/q lie

above z
(1/4)
p/q or z

(1/2)
p/q for small values of a with similar results near the

other periodic points just above and below the discontinuity.

Lemma 22 (Control of locations of periodic points near the disconti-
nuity). Let ǫ > 0 and let θ be irrational. Let p = ⌊qθ⌋, let h = qθ − p

and suppose that gcd(p, q) = 1. If q is odd let b = Im z
(1/4)
p/q otherwise

let b = Im z
(1/2)
p/q .

If q is odd and h < 1
2
−ǫ or if q is even and h < 1−ǫ then Im (z

(a)
p/q) ≥

b for a ∈ Zq ∩ ((0, ǫq/2) ∪ (q/2 − ǫq/2, q/2). Similarly Im (z
(a)
p/q) ≤ −b

for a ∈ Zq ∩ ((q/2, q/2 + ǫq/2) ∪ (q − ǫq/2, q)).

Proof. We give the proof only for the odd case in the first quadrant, the
even case and the other quadrants being precisely analogous. If q is odd

then we have by Lemma 3, arg(z
(a+1/4)
p/q −z

(a−1/4)
p/q ) = 2π(a/q+1/4+rh/q)

with |r| ≤ q/2. It follows that | arg(z
(a+1/4)
p/q −z

(a−1/4)
p/q )−π/2| ≤ π/2(1−

2ǫ + 4a/q). Provided a < ǫq/2 the difference is less than π/2 which

ensures that z
(a+1/4)
p/q − z

(a−1/4)
p/q has positive imaginary part. The result

follows. �
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For θ irrational, let Podd(θ) denote the set of z such that z is rota-
tionally coded with rotation number some p/q (in lowest terms) with q
odd and p/q < θ < (p+ 1)/q. In fact by the remark following Lemma
2 this can only happen if p/q < θ < (p+ 1

2
)/q. Also let Peven(θ) denote

the set of z such that z has rotation number some p/q with q even and
p/q < θ < (p+ 1)/q.
Define

Godd(θ, R) =
1

2R2

∑

q

π2R
<{qθ}< 1

2

gcd(q,⌊qθ⌋)=1
q odd

q cot2(πqθ); and

Geven(θ, R) =
1

4R2

∑

{qθ}> q

π2R

gcd(q,⌊qθ⌋)=1
q even

q tan2

(

πqθ

2

)

Similarly let Hodd(θ, R) = |DR ∩ Podd(θ)|/|DR| and Heven(θ, R) =
|DR ∩ Peven(θ)|/|DR|.

Lemma 23 (Comparison of density with averages). Let θ be irrational.
Then Godd(θ, R) and Hodd(θ, R) have identical limits superior and in-
ferior as R → ∞. Similarly for the even versions.

Proof. We deal with the odd case first. Let an irrational θ be fixed and
suppose ǫ > 0 is given. We may suppose that ǫ is small enough so that
tan(πǫ) < 4ǫ. By Lemma 20 let q0 satisfy the following conditions:

• 1/q0 < ǫ/(2π);
• If q ≥ q0, let p = ⌊qθ⌋. If {qθ} < 1/2 and gcd(p, q) = 1 one has

|z
(a)
p/q − qe(a/q)/(π2{qθ})| < ǫq/(4π2{qθ}).

Let R be so large that DR contains all periodic islands surrounding
periodic points with rotation number whose denominator is less than
q0.
We first give an upper bound for |DR∩Podd(θ)|. Suppose the intersec-

tion meets a periodic island of a periodic point z
(a)
p/q with q odd. If q ≥ q0

then the periodic point is at a distance at least (1−ǫ/4)q/(π2{qθ}) from
the origin. The periodic island has size cot(πqθ)/2 < 1/(2π{qθ}) <
(ǫ/2)q/(π2{qθ}). In particular the entire periodic island is at a dis-
tance at least (1− ǫ)q/(π2{qθ}) from the origin. If the island intersects
DR we must have (1−ǫ)q/(π2{qθ}) < R so that (1−ǫ)q/(π2R) < {qθ}.
In order to exist we must have {qθ} < 1/2.
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This establishes the inequality

|DR ∩ Podd(θ)| ≤
∑

(1−ǫ)q/(π2R)<{qθ}< 1

2

q odd
gcd(q,⌊qθ⌋)=1

(2q)π cot2(πqθ)/4.

We then see that

(13) Hodd(θ, R) ≤ (1− ǫ)2Godd(θ, R/(1− ǫ)).

For a comparison in the opposite direction we will make a comparison
between terms appearing in Godd(θ, R) and areas of periodic islands in
D(1+ǫ)R. Suppose q ≥ q0 is odd and let p = ⌊qθ⌋. Suppose further
that gcd(p, q) = 1 and that q/(π2R) < {qθ} < 1

2
for some R. We will

separate the cases where 1
2
− ǫ ≤ {qθ} < 1

2
and those where q/(π2R) <

{qθ} < 1
2
− ǫ. In the latter case we will show that there is a p/q-coded

pair of orbits; that they are well-behaved and that they lie completely
inside D(1+ǫ)R so that the p/q-coded periodic islands in D(1+ǫ)R have a
combined area of 2q(π cot2(πqθ)/4). For the former case we shall show
that the terms do not make a substantial contribution to Godd.
We deal first with the case where q/(π2R) < {qθ} < 1

2
− ǫ. If q < q0

then the disc was chosen to contain the periodic islands so we only
need to cover the case q ≥ q0. Using Lemma 20 as before the potential

periodic points with codes ǫ
(a)
p/q lie inside DR(1+ǫ/4) and the potential

islands surrounding these points are completely contained in DR(1+ǫ).
We next show that the periodic orbit is well-behaved. To see this

we will verify that Im z
(a)
p/q ≥ Im z

(1/4)
p/q for a ∈ Zq ∩ (0, q/4), the

other quadrants being similar. Lemma 22 establishes this for 1/4 <
a < ǫq/8. If ǫq/8 < a < q/4 then we use Lemma 20 to say that

|z
(a)
p/q − qe(a

q
)/(π2{qθ})| < (ǫ/(4π2))q/{qθ}. We then have Im z

(a)
p/q >

q/(π2{qθ})(sin(2πǫ/8) − ǫ/4) > ǫq/(4π2{qθ}). Since ǫq > 2π we see

Im z
(a)
p/q > 1/(2π{qθ}) > cot(πqθ)/2 = Im z

(1/4)
p/q as required.

The p/q-coded periodic islands therefore lie completely insideDR(1+ǫ)

and have combined area 2qπ cot2(πqθ)/4. Since the periodic islands are
disjoint we see that

∑

q

π2R
<{qθ}< 1

2

gcd(q,⌊qθ⌋)=1
q odd, q≥q0

qπ
cot2(πqθ)

2
≤ |D(1+ǫ)R ∩ Podd(θ)|.
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This gives us the inequality

(14)
1

2R2

∑

q

π2R
<{qθ}< 1

2
−ǫ

gcd(q,⌊qθ⌋)=1
q odd, q≥q0

q cot2(πqθ) <
(1 + ǫ)2|D(1+ǫ)R ∩ Podd(θ)|

D(1+ǫ)R

.

We now consider the terms in Godd(θ, R) where 1
2
− ǫ < {qθ} < 1

2
.

For these terms cot(πqθ) < tan(πǫ) < 4ǫ. In order for the inequality
q/(π2R) < {qθ} < 1

2
to be satisfied we must have q < π2R/2 < 5R.

The sum over those terms in Godd(θ, R) for which 1
2
−ǫ < {qθ} < 1

2
may

therefore be trivially bounded above by (1/(2R2))
∑

q<5R 16ǫ2q < 100ǫ2

giving

(15)
1

2R2

∑

q

π2R
<{qθ}< 1

2

gcd(q,⌊qθ⌋)=1

q odd, {qθ}≥ 1

2
−ǫ

q cot2(πqθ) < 100ǫ2.

Letting A be the sum of the terms of the sum for which q < q0 and
combining (14) and (15) we obtain

(16) Godd(θ, R) ≤ (1 + ǫ)2Hodd(θ, R) +
A

2R2
+ 100ǫ2.

From (16) (and using the fact that ǫ can be chosen arbitrarily) we
obtain that the limits superior and inferior of Godd as R → ∞ are
less than those of Hodd. Using (13) we obtain the converse inequalities
completing the proof of the theorem in the odd case. The even case is
essentially identical except that Lemma 21 is used in place of Lemma
20 �

To complete the proof of Theorem 19 we now see that it is sufficient
to calculate the limits limR→∞ Godd(θ, R) and limR→∞Geven(θ, R).

Proof of Theorem 19. The results of Section 3 do not immediately ap-
ply since the cotangent function has a singularity at 0 (and the tangent
function has a singularity at π/2). The functions therefore fail to be
Riemann integrable. We split the function into two parts: a bounded
part and the singularity. Lemma 7 will apply to the bounded part.
We argue that the part near the singularity makes an arbitrarily small
contribution.
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We deal first with limR→∞Godd(θ, R). Let r > 0 and write f(x) =
cot2(πx)1[2−r ,1/2)(x) and g(x) = cot2(πx)1[0,2−r](x). We then have
(17)

Godd(θ, R) =
1

2R2

∑

q

π2R
<{qθ}

gcd(q,⌊qθ⌋)=1
q odd

q · f({qθ}) +
1

2R2

∑

q

π2R
<{qθ}

gcd(q,⌊qθ⌋)=1
q odd

q · g({qθ})

Clearly f is Riemann integrable. We apply Remark 16. We are
studying the first term of (17):

1

2R2

∑

q

π2R
<{qθ}

gcd(q,⌊qθ⌋)=1
q odd

q · f({qθ}).

Notice that in order to get a contribution, q must be smaller than π2R
(otherwise the condition q

π2R
< {qθ} cannot be satisfied). This first

term can then be rewritten:

π4

2(π2R)2

∑

q<π2R
gcd(q,⌊qθ⌋)=1

q odd

q · f({qθ})1(q/(π2R),1)({qθ}).

We now apply Lemma 7 (with π2R replacing R) to show that the
first term in (17) converges as R → ∞ to

π4

2
·
4

π2
·
1

2

∫ 1/2

2−r

x2 cot2(πx) dx

As r approaches ∞, this tends to

(18) π2

∫ 1/2

0

x2 cot2 x dx = log 2−
π2

24
.

We then need to control the second term of (17). We will use the
estimate g(x) ≤ 22ℓ on the interval [2−(ℓ+1), 2−ℓ] for ℓ ≥ r. It suffices to
control the second term for R’s of the form 2t/π2 for large t. Let Ns,ℓ

be the number of q’s in the range (2s−1, 2s] such that gcd(q, ⌊qθ⌋) = 1
and {qθ} ∈ [2−(ℓ+1), 2−ℓ).
The quantity that we need to control is then overestimated by

(19)
1

22t

t
∑

s=1

t−s
∑

ℓ=r

Ns,ℓ2
s+2ℓ =

1

22t

t−r
∑

s=1

t−s
∑

ℓ=r

Ns,ℓ2
s+2ℓ.

We separate this sum into three ranges: s ≤ ℓ ≤ t− r, ℓ > t− r and
ℓ < s. These ranges are illustrated in Figure 5.
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Figure 5. Regions of Summation

We start by controlling the range ℓ < s. By Lemma 13 provided that
ℓ < s, we have Ns,ℓ ≤ 2s−ℓ+1. This part of the sum is then estimated
by

1

22t

t−r
∑

s=r

min(s,t−s)
∑

ℓ=r

2s−ℓ+1 · 2s+2ℓ =
2

22t

t−r
∑

s=r

min(s,t−s)
∑

ℓ=r

22s+ℓ

≤
2

22t

t−r
∑

s=r

t−s
∑

ℓ=r

22s+ℓ

≤
4

22t

t−r
∑

s=r

2t+s

≤
8

22t
22t−r = 8 · 2−r.

Outside this range we have ℓ ≥ s so that Lemma 13 ensures that
Ns,ℓ ≤ 1. The part of (19) corresponding to the range s ≤ ℓ ≤ t− r is
bounded above by

1

22t

⌊t/2⌋
∑

s=1

min(t−s,t−r)
∑

ℓ=max(r,s)

2s+2ℓ ≤
2

22t





r
∑

s=1

2s+2t−2r +

t/2
∑

s=r+1

22t−s





≤
4

22t
22t−r = 4 · 2−r.
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The final part of (19) remaining to be bounded is the range ℓ > t−r.
We assume that t > 2r. The contribution is then given by

1

22t

r
∑

s=1

t−s
∑

ℓ=t−r

Ns,ℓ2
2ℓ.

Let δ = minq≤2r{qθ}. If 2−(t−r+1) < δ then all of the Ns,ℓ appearing
in this sum are 0, so that for sufficiently large t, this range makes no
contribution.
We have therefore shown that as t → ∞, the contribution to (17)

coming from the second term is bounded above by 12 · 2−r. By taking
r large, this term can be made arbitrarily small.
It follows that limR→∞Godd(θ, R) = log 2− π2/24.
A similar argument works to compute limR→∞Geven(θ, R). We recall

the definition:

Geven(θ, R) =
1

4R2

∑

{qθ}>q/(π2R)
gcd(q,⌊qθ⌋)=1

q even

q tan2

(

πqθ

2

)

.

Notice that the summand has period 2 in the variable qθ rather than
1 so that a priori the earlier results do not apply. The ambiguity is
resolved by observing that in order for gcd(q, ⌊qθ⌋) to be 1 when q is
even, one must have that ⌊qθ⌋ is odd so that {qθ/2} must lie in [1

2
, 1).

Notice that in this case tan(πqθ/2) = − cot(π{qθ}/2). We therefore
re-express the sum as

Geven(θ, R) =
1

4R2

∑

{qθ}>q/(π2R)
gcd(q,⌊qθ⌋)=1

q even

q cot2
(

π{qθ}

2

)

,

thereby restoring the periodicity of the summand.
From this point the calculations are exactly similar to the odd case

(using Remark 16, Lemma 7 and the splitting into singular and non-
singular parts) yielding:

lim
R→∞

Geven(θ, R) =
π4

4
·
2

π2
·
1

2

∫ 1

0

x2 cot2
(πx

2

)

dx

= 2 log 2−
π2

12
= 2 lim

R→∞
Godd(θ, R).

The combined asymptotic density is therefore given by 3 log 2−π2/8.
�
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6. Open Questions

Question 1. Does the set of aperiodically-coded points have positive
(upper) density?

Question 2. It is known that there periodic points whose codings do not
come from any rational rotation. Is there a general description of these
periodic irrotational codings? What is the density of the corresponding
islands?

Note that an answer to Question 2 together with establishing Con-
jecture 18 would answer Question 1.

Question 3. For a fixed θ, let Lθ denote the itinerary language: the set
of all finite words that can appear in the itinerary of a point. What can
be said about the growth rate of the number of words of length n? Buzzi
[5] proves that piecewise isometries have sub-exponential numbers of
‘names’ but his proof relies on compactness of the ambient space. For
now it is not clear whether his proof extends to the general non-compact
case.

Question 4. Prove or disprove Conjecture 18.
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