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Abstract. When a contractive map is forced by a chaotic discontinuous sys-

tem, the asymptotic response function that defines the attracting invariant set
can be highly irregular. In this context, it is natural to ask whether the invari-

ant distributions of the base and factor systems share the same characteristics

and in particular, whether the factor distribution of an absolutely continu-
ous measure in the base can be absolutely continuous. Here, we address this

question in a basic example of linear real contractions forced by (generalized)

baker’s maps and we prove absolute continuity for almost every value of the
factor contraction rate.

1. Introduction

Generalized synchronization is an essential feature of forced dissipative systems
[10]. This term refers to the fact that the asymptotic dynamics of (discrete time)
skew-product systems in Banach spaces with dissipative factor, i.e.

(wn+1, zn+1) = (F (wn), G(wn, zn)) where ‖G(w, z)−G(w, z′)‖ ≤ λ‖z − z′‖

for some λ < 1 independent of w, is globally attracted by an invariant graph in phase
space composed of points (w, h(w)). In other words, for arbitrary z0, the iterated
variable zn approaches h(wn) uniformly in w0 as n → ∞. The corresponding
synchronization function h, which conjugates the skew-product on the invariant
graph to its base system F , naturally depends both on this forcing and on the
factor G.

A standard problem in this context is to analyze the properties of the synchro-
nization function. One aims to identify whose features of the forcing dynamics
that carry over to the response system; see e.g. the introduction in [15] for a fairly
complete overview. In the slightly different framework of the theory of inertial
manifolds in dynamical systems, Hirsch, Pugh and Shub [6, 7] proved in early work
that in the case where F is an homeomorphism, h turns out to be continuous
and can be Hölder or Lipschitz continuous depending upon additional assumptions
on the Lyapunov exponents. Proofs of these properties and improvements in the
present context were given later on, see [1, 4, 15, 17]. In addition, Stark proved
that h is smooth when F is a diffeomorphism [14, 15] and extended these results
to non-uniform contractive responses (see also [8, 16] for recent developments).

Date: May 26, 2011.
BF is supported by the EU Marie Curie fellowship PIOF-GA-2009-235741.

AQ is supported by NSERC..

The authors thank Boris Solomyak for helpful conversations. This work grew out from discus-
sions during the conference ”Nonlinear Dynamics: New directions” in Guanajuato (MX) in May

2010. We are grateful to the organizers for inviting us there.

1
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On the other hand, Afraimovich, Cordonnet and Chazottes [1] noticed that when
the forcing is not continuous and the response is sensitive to discontinuities, h may
fail to be continuous. Beside being of theoretical interest on their own, discontinu-
ous forcing terms emerge in a variety of applications, especially in the modeling of
low-pass filters in signal analysis [2, 3, 9]. In this case, the synchronization function
could become singular in a measure-theoretic sense.
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Figure 1. Sketch of the (generalized) baker’s map Fa from the
unit square into itself.

To the best of our knowledge, no study has been reported in the literature where
properties of response statistical distributions have been described in the case of
discontinuous synchronization functions. This paper investigates this issue in a
basic example of discontinuous system. Assuming that the forcing is given by the
iterations (xn+1, yn+1) = Fa(xn, yn) (n ∈ Z and (xn, yn) plays the role of wn here)
of the generalized baker’s transformation on the unit square [0, 1]2 (see Figure 1):

Fa(x, y) =

{
(ax, y/a) if 0 ≤ y < a

(a+ (1− a)x, (y − a)/(1− a)) if a ≤ y < 1

where 0 < a < 1, we study the invariant distribution of the response variable in the
case where

G(x, y, z) = x+ λz

depends on the forcing variable only via the first coordinate x.
Since Fa is invertible and the anterior value of x of the preimage of (x, y) is

determined by x alone, the synchronization function h only depends on x and its
explicit expression is given by [1]

(1) h(x) =

∞∑
t=0

λtT t+1
a (x), x ∈ [0, 1]

where

Ta(x) =

{
x
a if 0 ≤ x < a

x−a
1−a if a ≤ x ≤ 1

This function h appears to be extremely choppy (see examples in Figure 2). Indeed,
there is no interval where it is monotonic and the function is discontinuous with
negative jumps h(x) < h(x−0) for every x in the (dense) set of pre-images of a under
iterations of Ta. Yet, the image h([0, 1]) coincides with the interval [h(0), h(1)].

In [5], the first author analyzes properties of the function h. In particular, it is
shown that the total variation is finite iff λ < 1/2. Moreover, when h is of bounded
variation, a decomposition into the difference hc−hd of increasing functions, where
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Figure 2. Examples of graph of h for a = 0.25 (top pictures) and
a = 0.5 (bottom pictures). In the left pictures (λ = 0.3 < 1/2), h
is of bounded variation; in the right ones (λ = 0.7 > 1/2), it has
infinite variation. Notice the symmetry h(x) = 1−h(1−x− 0) for
a = 0.5.

in addition hc is continuous and hd is a step function, is provided. (This is the only
result of [5] that is being used here, see Lemma 3 below.)

To complete these results, we would like to know here whether the distribution of
the (zn) inherits the absolute continuity of the system to which it is synchronized. It
is well known that two-dimensional Lebesgue measure is an (absolutely continuous)
invariant measure for Ta. Accordingly we ask whether the measure Leb ◦ h−1 is
absolutely continuous where Leb denotes the Lebesgue measure on [0, 1].

Notice that while h can be regarded as the uniform limit of non-singular functions
- take the approximation hn obtained by truncating the series in (1) to the first
n+ 1 terms - this property does not suffice to guarantee that h is non singular. For
instance a sequence of linear functions on a bounded interval with slopes tending
to zero provides a counter-example.

To address absolute continuity of Leb◦h−1, we need to separate the cases λ < 1/2
and λ ≥ 1/2. In the first case, we use that h is of bounded variation to show that it
has finitely many pre-images almost everywhere and to obtain lower bounds on the
measure of specific neighborhoods. In that way we obtain the following statement.
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Theorem 1. For every a ∈ (0, 1) and every λ < 1/2, the push-forward distribution
Leb ◦ h−1 is absolutely continuous with density given a.e. by x 7→

∑
y∈h−1(x)

1
h′(y) .

In the case λ ≥ 1/2, we rely on the symbolic dynamics of the map Ta to rewrite
h as a random series and to regard the distribution Leb ◦ h−1 as a Bernoulli con-
volution. Then we adapt the proof in [11] to show absolute continuity for a.e. λ.
Despite that Leb ◦ h−1 can be expressed as an infinite convolution for arbitrary
value of a, we were only able to obtain the required estimates in the case where
a = 1/2. As a result, the conclusion in this case writes as follows.

Theorem 2. Assume that a = 1/2. Then Leb ◦ h is absolutely continuous for a.e.
λ ∈ (1/2, 1).

2. The Case λ < 1/2

In this section, we deal with functions of bounded variation and take advantage
of their multiple properties. Recall in particular that any discontinuity is necessarily
of jump type, i.e. the left and right limits exist at every point.

In addition, we only consider functions that are right continuous, so that they
are càdlàg. The jump of a càdlàg function f that occurs at x is denoted by Jf (x) =
f(x)−f(x−0). A càdlàg function f on an interval [a, b] is said to be a step function
if

f(x) = f(a) +
∑
a<t≤x

Jf (t), ∀x ∈ [a, b]

viz. if all changes in the value of f as the argument changes may be accounted for
by the jumps.

Any càdlàg function f of bounded variation has a unique decomposition into
three parts: f = fd + fc + fs, a step function fd, an absolutely continuous part fc
and a singular continuous part fs. In our case, when λ < 1/2 the synchronization
function h defined by (1) is of bounded variation and has no singular continuous
part in its decomposition:

Lemma 3. When λ < 1/2, we have h(x) = hc(x)−hd(x) for all x ∈ [0, 1] where hc
is strictly increasing and absolutely continuous and hd is a strictly increasing step
function with a dense set of discontinuities.

Proof. We already know from [5] that hd is a strictly increasing step function with
a dense set of discontinuities and hc is strictly increasing and continuous. There
remains only to prove that hc is absolutely continuous.

Consider the approximation hn obtained by truncating the series in (1) to the
first n+1 terms. The function hn has a similar decomposition hn,c−hn,d where the
continuous part hn,c consists of finitely many affine pieces; hence it is absolutely
continuous. By the fundamental theorem of calculus, we have

(2) hn,c(x)− hn,c(0) =

∫ x

0

h′n,c(y)dy, ∀x ∈ [0, 1]

where the derivative is given by

h′n,c(x) =

n∑
t=0

λt(T t+1
a (x))′, for a.e. x.
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By monotony, each sequence {h′n,c(x)} converges as n→∞ to

h′c(x) =

∞∑
t=0

λt(T t+1
a (x))′.

Moreover, each hn,c(x) converges to hc(x) (and hn,c(0) = hc(0) = 0). Thus relation
(2) implies that each sequence {

∫ x
0
h′n,c(y)dy} is bounded. By Lebesgue’s monotone

convergence theorem, we conclude that h′c is integrable over [0, 1] and we have

hc(x) =

∫ x

0

h′c(y)dy, ∀x ∈ [0, 1]

which implies that hc is absolutely continuous. �

2.1. Proof of Theorem 1. The crucial point is to obtain a lower bound for the
Lebesgue measure of the pre-image h−1U of small neighborhoods U of points in an
appropriate subset of h([0, 1]) with full measure. In order to select this subset, we
need a series of preliminary results.

1st step: Selecting a suitable subset in h([0, 1]).
Image measure of sets with zero measure. Since h is of bounded variation, it
has a finite derivative a.e. Since hd is a step function, its derivative vanishes almost
everywhere and thus h′ = h′c a.e. Let E be the exceptional set of points where
either the derivative of h fails to exist or we have h′ 6= h′c. The following statement
guarantees that h(E) has zero Lebesgue measure.

Lemma 4. Let f and g be real functions defined on [0, 1] where f is absolutely
continuous and increasing and g is an increasing step function. Then defining
i(x) = f(x)− g(x), we have Leb(i(A)) = 0 whenever Leb(A) = 0.

Proof. Let ε > 0. By definition of absolute continuity, there exists δ > 0 such that
if (a1, b1), (a2, b2), . . . are disjoint intervals whose lengths sum to at most δ, then∑
i |f(bi)− f(ai)| < ε/2.
On the other hand, since g is increasing and bounded, it has at most count-

ably many jump discontinuities. Let {x : g(x) − g(x − 0) > 0} be enumerated as
{x1, x2, . . .}. Let n be chosen such that

∑
i>n g(xi)− g(xi − 0) < ε/2.

Since Leb(A) = 0, the set A is contained in a countable union of open intervals
whose lengths sum to at most δ. Removing {x1, . . . , xn}, A is contained in the
union of a finite set and a countable collection of open intervals whose lengths sum
to at most δ.

For any x < y we have |i(y) − i(x)| ≤ f(y) − f(x) +
∑
x<z≤y(g(z) − g(z − 0)).

Applying this inequality to the intervals covering A we obtain that i(A) is contained
in the union of a collection of intervals whose lengths sum to at most ε with a finite
set of points. It follows that i(A) has outer measure 0. �

Determining pre-images. It is convenient to use notions from the symbolic
dynamics associated with Ta. Given a finite word θ0,N := θ0θ1 · · · θN ∈ {0, 1}N+1,
let Iθ0,N be the corresponding cylinder, that is

Iθ0,N =

N⋂
k=0

T−ka (Iθk)
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where I0 = [0, a) and I1 = [a, 1). Let also I0,N := [x−θ0,N , x
+
θ0,N

) implicitly introduce

notations for the cylinder boundaries. Consider the quantity

h−1
θ0,N

(y) = inf{t ∈ Iθ0,N : h(t) ≥ y}.

Right continuity of h implies h◦h−1
θ0,N

(y) ≥ y. Let {θi0,N}
k(N)
i=1 be an enumeration of

words for which we indeed have equality, i.e. h ◦ h−1
θ0,N

(y) = y. The next statement

claims that this collection remains bounded as N →∞.

Lemma 5. There are finitely many pre-images h−1(y) for a.e. y ∈ h([0, 1]).

Proof. Using symbol concatenation we have

Iθ0,N = Iθ0,N0 ∪ Iθ0,N1 and x+
θ0,N0 = x−θ0,N1.

It easily follows from the definition (1) of h that the discontinuities are negative
jumps that lie at the x+

θ0,N
. Write Dθ0,N = [h(x+

θ0,N
), h(x+

θ0,N
− 0)) for the corre-

sponding gaps.

Lemma 6. There can be pre-images h−1(y) on both sides of x+
θ0,N0 in Iθ0,N only if

y ∈ Dθ0,N0.

Proof. Let x ∈ Iθ0,N1 be such that x−θ0,N1 < x. Both points belong to the same

cylinder Iθ0,N1. Hence we have

T ka (x−θ0,N1) < T ka (x), for k = 0, · · · , N + 1.

Moreover, the point x−θ0,N1 is a pre-image of 0 by definition, i.e.

0 = T ka (x−θ0,N1) ≤ T ka (x), ∀k ≥ N + 2

hence h(x−θ0,N1) < h(x) for all x ∈ Iθ0,N1. Therefore, if y < h(x−θ0,N1) there cannot

be any pre-image h−1(y) in [x−θ0,N1, x
+
θ0,N

).

Similarly, one proves that h(x) < h(x+
θ0,N0 − 0) for all x ∈ Iθ0,N0 and then there

cannot be any pre-image h−1(y) in [x−θ0,N , x
+
θ0,N0) if y ≥ h(x+

θ0,N0 − 0). The lemma

easily follows. �

Since
∑
N

∑
θ0,N

Leb(Dθ0,N ) < ∞ the first Borel-Cantelli lemma implies that

Lebesgue a.e. y belongs to finitely many gaps Dθ0,N , i.e. for almost every y, there
exists Ny ∈ Z+ such that no gap Dθ0,N with N ≥ Ny contains y.

It follows from Lemma 6 that any pre-image h−1(y) ∈ Iθ0,N with N ≥ Ny, must
belong to either Iθ0,N0 or to Iθ0,N1. By induction, for each word θ0,Ny there exists a
unique sequence {Iθ0,Nk

}k≥Ny
of nested cylinders whose diameters asymptotically

vanish such that any pre-image in Iθ0,Ny
belongs to every Iθ0,Nk

. By the Nested

Balls theorem, it follows that there is at most one pre-image h−1(y) in each interval
clos(Iθ0,Ny

) and thus there are finitely many pre-images for a.e. y ∈ h([0, 1]). �

We will make use of the following approximate version of h in which small-scale
discontinuities are removed. Given x ∈ [0, 1) and N ∈ Z+, let hN (x) be the function
defined by

hN (x) = sup{h(t) : t ≤ x, t ∈ Iθ0,N (x)},
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where Iθ0,N (x) denotes the cylinder of length N + 1 containing x. This function is
increasing on each Iθ0,N . It follows that there can be at most countably many y

such that h−1
N (y) contains an interval for some N . Let

F1 = {y ∈ h([0, 1]) : for each N,h−1
N (y) contains no interval}

and let F0 be the subset of h([0, 1]) composed of points with finitely many pre-
images under h. Each y ∈ F0 ∩ F1 has only finitely many pre-images under h and
each hN .

Let G = (h([0, 1]) \ h(E)) ∩ F0 ∩ F1. Since we have

h′c(x) ≥
∞∑
t=0

λt(a ∧ (1− a))t+1 ≥ a ∧ (1− a)

for all x 6∈ E, the derivative h′ exists and is bounded below at each pre-image of
every y ∈ G under h and hN . Accordingly the following functions are well-defined
in this set

ψN (y) =
∑

{x : hN (x)=y}

1

h′(x)
and ψ(y) =

∑
{x : h(x)=y}

1

h′(x)
.

Notice that if hN (x) = h(x) then hN+1(x) = h(x) also so that for y ∈ G,
{x : hN (x) = y} is a subset of {x : hN+1(x) = y}. It follows that the ψN are
pointwise increasing. Further since the preimages of y all lie in distinct cylinders
for N ≥ Ny it follows that for N ≥ Ny, ψN (y) = ψ(y).

2nd step: Lower bound on the measure of neighborhood pre-images and
absolute continuity.

Let x ∈ h−1(y) for y ∈ G and ε > 0. Since by assumption h is differentiable at
x there exists µ > 0 such that

|h(x+ η)− y − h′(x)η| < εh′(x)|η| for all 0 < |η| < µ.

Since y has finitely many pre-images, there exists a µ̄ for which the above equation
holds simultaneously for all x ∈ h−1(y). As a consequence, for every 0 < δ <
µ̄(1 + ε) minx 6∈E h

′(x) and each pre-image x ∈ h−1(y), the inequality |t − x| <
δ/(h′(x)(1 + ε)) implies |h(t)− y| < δ. It follows that

Leb(h−1(y − δ, y + δ)) ≥ 2δψ(y)/(1 + ε) for all δ < µ̄(1 + ε) min
x 6∈E

h′(x).

We will use the following weaker version valid for all N ≥ 0:

Leb(h−1(y − δ, y + δ)) ≥ 2δψN (y)/(1 + ε) for all δ < µ̄(1 + ε) min
x 6∈E

h′(x).

Being finite sums of uniformly bounded functions, the ψN are integrable over
h([0, 1]). Then the Lebesgue differentiation theorem implies that for a.e. y ∈
h([0, 1]), we have

2δψN (y) ≥
∫ y+δ

y−δ
(ψN (t)− ε) dt for sufficiently small δ.

By Lemma 5, the set G has full Lebesgue measure. Let the subset of H ⊂ G
with full measure for which the previous inequality holds. Combining the previous
two inequalities we conclude that for y ∈ H, there exists a δ̄ > 0 such that

(3) Leb(h−1(y − δ, y + δ)) ≥ 1

1 + ε

∫ y+δ

y−δ
(ψN (t)− ε) dt when 0 < δ < δ̄.
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For any subinterval J of h([0, 1]), the collection of intervals Uδ,y ⊂ J with y ∈
J ∩ H and δ < ∆ is a Vitali cover. By the Vitali Covering theorem, there exists
a countable collection of such intervals that disjointly cover all of J up to a set of
measure 0. By countable additivity of the two sides of (3) we deduce that

|h−1J | ≥ 1

1 + ε

∫
J

(ψN (t)− ε) dt.

Since this inequality holds for every ε > 0 we get

(4) |h−1J | ≥
∫
J

ψN (t) dt for each subinterval J of h([0, 1]).

Since this holds for all N , we deduce that ψ (the increasing pointwise limit) is
integrable and

(5) |h−1J | ≥
∫
J

ψ(t) dt for each subinterval J of h([0, 1]).

To continue the proof, we now make the following claim

(6)

∫
h([0,1])

ψ(t) dt = 1

and we proceed as follows. For any interval J = [a, b] ⊂ h([0, 1]), let J− = [0, a)
and J+ = (b, h(1)]. Then by (4) and (6), we have

1 = |h−1(h([0, 1]))| = |h−1J−|+ |h−1J |+ |h−1J+|

≥
∫
J−

ψ(t) dt+

∫
J

ψ(t) dt+

∫
J+

ψ(t) dt

=

∫
h([0,1])

ψ(t) dt = 1.

Since the left and right sides are equal, all of the inequalities in the middle are
equalities; so we see that

|h−1J | =
∫
J

ψ(t) dt

for any interval J . Since the left and right sides define two measures that agree on
all intervals, they must be the same measure and hence we see that

|h−1B| =
∫
B

ψ(t) dt

for any measurable set B, as desired.
It remains to prove (6). Since the functions ψN pointwise increase to ψ it is

enough to show that limN→∞
∫
ψN = 1. Let SN = {x ∈ [0, 1) : hN (x) > h(x)}. We

show that
∫
ψN = 1−Leb(SN ) and that Leb(SN )→ 0. Firstly, since h′(x) = h′N (x)

for every x 6∈ E, the push-forward under hN of the Lebesgue measure restricted
to [0, 1] \ SN is absolutely continuous with density exactly ψN . It follows that∫
ψN = 1 − Leb(SN ) as claimed. Secondly, notice that SN consists of a union of

countably many intervals. Indeed if hN (x) > h(x), then by right continuity there
exists δ > 0 such that

hN (t) = hN (x) > h(t) ∀t ∈ [x, x+ δ).
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Let J be a maximal interval in SN and let J̄ = [a, b]. Since we must have h(b−0) =
h(a) it follows that hc(b) − hc(a) = hd(b − 0) − hd(a). Since the left side exceeds
m(b− a) where m = ess inf h′ > 0, we deduce that

b− a ≤ 1

m

∑
x∈J

h(x− 0)− h(x).

Moreover, the function h is discontinuous at x ∈ Iθ0,N iff Tna (x) = a for some n > N

and we have h(x − 0) − h(x) = λn

1−λ [5]. Summing the previous inequality over all

intervals included in the cylinders of length N + 1, we deduce that Leb(SN ) ≤
1

m(1−λ)

∑∞
n=N+1 2nλn. Since this converges to 0 as N →∞ the proof is complete.

3. The Case λ ≥ 1/2

When λ ≥ 1/2, the variation of h becomes infinite [5] and a decomposition into
the difference of bounded functions h = hc−hd as in Lemma 3 no longer exists. In
order to circumvent this difficulty, we use the symbolic dynamics associated with
the map Ta to regard h as a random series.

The map Ta is semi-conjugate to the left shift σ on {0, 1}Z+

, i.e. we have Ta◦π =

π ◦ σ where π : {0, 1}Z+ → [0, 1] is given explicitly by

π(θ) = a

∞∑
k=0

θk

k−1∏
j=0

α(θj), ∀θ = {θk}∞k=0 ∈ {0, 1}Z
+

where α(0) = a and α(1) = 1− a (and by convention
∏−1
j=0 α(θj) = 1).

The coding map π−1(x) is unique for a.e. x and the push forward of Leb (which
is Ta-invariant) under π−1 is the (σ-invariant) Bernoulli measure µa where the
symbol 0 appears with probability a and 1 appears with probability 1 − a, viz.
µa = Leb ◦ π. Therefore, the measure Leb ◦ h can be regarded as µa ◦ g−1 where
the symbolic function g = h ◦π is obtained explicitly by inserting the expression of
π into (1)

g(θ) = a

∞∑
n=1

θnλ
n

n∑
k=1

λ−k
n−1∏

j=n−k+1

α(θj), ∀θ ∈ {0, 1}Z
+

.

Using instead of θ, the sequence ω ∈ {−1,+1}Z+

of independent identically dis-
tributed random variables taking the values +1 and −1 with probability 1− a and
a respectively, the question of absolute continuity of the measure µa ◦ g−1 reduces
to the following: what can be said about the set of λ for which the random variable

Z =

∞∑
n=1

ωnλ
n

n∑
k=1

λ−k
n−1∏

j=n−k+1

α((ωj + 1)/2)

has an absolutely continuous distribution?
In [13] Solomyak showed that for a = 1/2 and Lebesgue a.e. λ ∈ [1/2, 1), the

random variable
∑∞
n=1 ωnλ

n has an absolutely continuous distribution. His proof
made use of Fourier transform arguments and a transversality condition. Shortly af-
terwards Peres and Solomyak [11] gave a new proof based on correlation dimension.
This approach allowed them to extend later their results to arbitrary a ∈ [1/3, 2/3]
[12].
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Here we are able to establish the transversality condition of the function g in
the case where a = 1/2. By adapting the argument of [11], we obtain the following
result.
Theorem 2. Assume that a = 1/2. Then Leb ◦ h is absolutely continuous for a.e.
λ ∈ (1/2, 1).

Proof. When a = 1/2, the random variable Z takes the following simpler form

2

λ− 2−1

∞∑
n=1

ωn(λn − 2−n).

The first thing to note is that it is sufficient to demonstrate the absolute continuity
of a random variable of the form

Z̃λ =

∞∑
n=M

ωn(λn − 2−n)

– that is we can omit any subset of terms – as the convolution of an absolutely
continuous random variable with another random variable is always absolutely con-
tinuous.

For ω, τ in {±1}Z+

following Peres and Solomyak we define

φ̃ω,τ (λ) =

∞∑
n=M

(τn − ωn)(λn − 2−n).

For comparison with [11] we also define

φω,τ (λ) =

∞∑
n=M

(τn − ωn)λn.

Notice that φ̃ω,τ (λ) = φω,τ (λ)− Cω,τ where Cω,τ =
∑∞
n=M (τn − ωn)2−n.

The absolute continuity of the random series
∑∞
n=1 ωnλ

n was shown in [11] to
follow from an estimate of the form

S := lim inf
r→0

∫
Ω

∫
Ω

Leb {λ : φω,τ (λ) ≤ r} dµ(τ) dµ(ω) <∞.

We want to show a similar estimate for the quantity S̃ obtained in a similar way
by using φ̃ω,τ instead of φω,τ .

For now fix ω and τ and let k(ω, τ) = min{n ≥ M : ωn 6= τn} (which we will
denote by k when ω and τ are fixed). We assume without loss of generality that
τk = 1 and ωk = −1 and we define

g̃(λ) := φ̃ω,τ (λ)/(2λk).

In particular, we have g̃(λ) = g(λ)− Cτ,ω/(2λk) where the function g is as in [11]

g(λ) = 1 +

∞∑
n=1

bnλ
n with bn ∈ {−1, 0, 1}.

Notice that 0 ≤ Cω,τ/(2λk) ≤ 2(2λ)−M since 0 ≤ Cω,τ ≤ 22−k.
Peres and Solomyak then showed for an explicit δ > 0 that

Leb{λ ∈ [2−1, 2−2/3] : |g(λ)| ≤ ρ} ≤ 2δ−1ρ ∀ρ > 0.

The proof works by showing |g′(λ)| exceeds δ when g(λ) is δ-close to 0.
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Fix λ0 ∈ (1/2, 2−2/3) and choose an M such that 2(2λ0)−M < δ/2. For λ ∈
[λ0, 2

−2/3], g̃ differs from g by a constant that is at most 2(2λ)−M < δ/2 so that
|g̃′(λ)| exceeds δ when |g̃(λ)| < δ/2. This is sufficient to allow us to conclude in

the same way as [11] that S <∞ and hence Z̃λ is absolutely continuous for almost
every λ in [λ0, 2

−2/3]. Since this holds for any λ0 > 1/2 this establishes absolute

continuity of Z̃λ for almost every λ in [2−1, 2−2/3].
For the range [2−2/3, 2−1/2] the same modifications as in [11] give the result on

[2−1, 2−1/2].

For λ in the range Jk = [2−1/2k

, 2−1/2k+1

] we need to make a small modification
to the Peres-Solomyak argument (in their case it was argued that this case followed
immediately from the previously understood cases). For us if λ ∈ Jk we take
only the terms of the sequence whose indices are multiples of k. Showing absolute
continuity of the partial series arising in this way is sufficient to prove absolute
continuity of the entire series Z̃λ. Setting ρ = λk, the partial series that we are
now summing is

∞∑
n=M

ωkn(ρn − 2−kn).

The previous proof works verbatim to show that this series is absolutely continuous.
In fact, as pointed out in [11], applying this technique to each of the k parts
separately shows that the original random variable is the sum of k parts that are
each absolutely continuous. This implies that the resulting random variable is
absolutely continuous with a continuous density function. �
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