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Abstract. Let S be an ergodic measure-preserving automorph-
ism on a non-atomic probability space, and let T be the time-one
map of a topologically weak mixing suspension flow over an irre-
ducible subshift of finite type under a Hölder ceiling function. We
show that if the measure-theoretic entropy of the S is strictly less
than the topological entropy of T , then there exists an embedding
from the measure-preserving automorphism into the suspension
flow. As a corollary of this result and the symbolic dynamics for
geodesic flows on compact surfaces of negative curvature developed
by Bowen [4] and Ratner [20], we also obtain an embedding from
the measure-preserving automorphism into a geodesic flow, when-
ever the measure-theoretic entropy of S is strictly less than the
topological entropy of the time-one map of the geodesic flow.

1. Introduction

Theorem 1. Let (Ω,D, ν) be a non-atomic probability space endowed
with an ergodic measure-preserving automorphism S. Let (Gt)t∈R be a
geodesic flow on a compact surface of variable negative curvature M,
with unit tangent bundle UT(M). If the measure-theoretic entropy of
S is strictly less than the topological entropy of G1, then there exists a
measurable mapping Ψ : Ω → UT(M) such that the restriction of Ψ to
a set of full measure Ω′ is an injection, and Ψ(S(ω)) = G1(Ψ(ω)) for
all ω ∈ Ω′.

In Theorem 1, we say that the measurable mapping Ψ is an embed-
ding since on a set of full measure Ψ is an injection and Ψ◦S = G1◦Ψ.
Thus Theorem 1 says that geodesic flows on compact surfaces of neg-
ative curvature are universal. We will prove Theorem 1 by exploiting
the symbolic representation of geodesic flows developed by Bowen [4]
and Ratner [20], and proving our main result, that topologically weak
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mixing suspension flows over irreducible subshifts of finite type under
Hölder continuous ceiling functions are also universal. In what follows,
we review all the necessary terminology required for stating our main
result.
Let V be a finite set of symbols of cardinality #V ; we will always

assume that #V ≥ 2. Let θ : V Z → V Z be the shift defined by
θ(y)i = yi+1 for all y ∈ V Z and all i ∈ Z. We endow V Z with the
standard product metric and Borel σ-algebra. Sometimes V Z is called
a full-shift. Let A be a square matrix zero-one matrix of order #V .
Also assume that A is irreducible; that is, for all 1 ≤ i, j ≤ #V , there
exists n ∈ Z

+ such that An(i, j) > 0. Define

Y :=
{
y ∈ V Z : A(yiyi+1) = 1 for all i ∈ Z

}
.

Thus Y is a set of all bi-infinite paths of the directed graph on V with
adjacency matrix A; since A is assumed to be irreducible, the graph
is strongly connected. We say that Y is an irreducible subshift of
finite type; see [17, Chapter 2] for background. More generally, we say
that X is a subshift, if X is a closed shift-invariant subset of V Z (of
course X is endowed with the Borel σ-algebra). We will call a subshift
non-trivial if it does not consist of a finite set of points. (When talking
about subshifts, the map will always be the shift map, θ, and it will be
left implicit).
Let Y be an irreducible subshift of finite type and let f : Y → (0,∞)

be Hölder continuous. Set

susp(Y, f) := {(y, s) ∈ Y × [0,∞) : y ∈ Y, 0 ≤ s < f(y)} .

We define the flow (T t)t∈R on susp(Y, f) by setting T t(y, s) = (y, s+ t)
and identifying the points (θy, 0) = (y, f(y)). More precisely, for all
y ∈ Y , set f (0)(y) := 0 and f (n+1)(y) := f (n)(y) + f(θny) for all n ∈ Z.
For all (y, s) ∈ susp(Y, f), and t ∈ R, there is a unique n ∈ Z such that
f (n)(y) ≤ s+ t < f (n+1)(y); we set

T t(y, s) =
(
θny, s+ t− f (n)(y)

)
.

Sometimes (susp(Y, f), (T t)t∈R) is called the suspension flow over Y
under the ceiling function f . The Bowen-Walters distance [7] makes
susp(Y, f) a compact metric space, where a neighbourhood about a
point (y, s) ∈ susp(Y, f) contains all the points T t(w, s) ∈ susp(Y, f),
where |t| is small and w is close to y. With respect to the topology
generated, T t is a homeomorphism on susp(Y, f) for all t ∈ R.



WEAK MIXING SUSPENSIONS ARE UNIVERSAL 3

Theorem 2. Let (Ω,D, ν) be a non-atomic probability space en-
dowed with an ergodic measure-preserving automorphism S. Let
(susp(Y, f), (T t)t∈R) be the suspension flow over an irreducible subshift
of finite type Y under a Hölder continuous function f : Y → (0,∞). If
the measure-theoretic entropy of S is strictly less than the topological
entropy of T 1, and if (T t)t∈R is topologically weak mixing, then there
exists an embedding Ψ : Ω → susp(Y, f), so that Ψ ◦ S = T 1 ◦Ψ.

Recall that (susp(Y, f), (T t)t∈R) is defined to be topologically weak
mixing if there does not exist a non-constant continuous eigenfunction
function F from the suspension space to the complex unit circle, so
that for all t ∈ R, we have F ◦T t = e2πiβtF , for some eigenvalue β > 0.
A simple, yet representative, example in which (susp(Y, f), (T t)t∈R) is

topologically weak mixing is the case Y = {a, b}Z, and f(y) = y0 for
all y ∈ Y , where a, b are positive real numbers whose ratio is irrational.
We will prove Theorem 2 by first proving it for the special case of a

uniquely ergodic subshift; Theorem 3 below, in combination with the
Jewett-Krieger theorem will imply Theorem 2. See [2, 14, 15, 11] for
more on the Jewett-Krieger theorem.

Theorem 3. Suppose that X is a non-trivial uniquely ergodic subshift
with invariant measure µ. Let (susp(Y, f), (T t)t∈R) be the suspension
flow over an irreducible subshift of finite type Y under a Hölder contin-
uous function f : Y → (0,∞). If the topological entropy of θ is strictly
less than the topological entropy of T 1, and if (T t)t∈R is topologically
weak mixing, then there exists a set X ′ ⊂ X of full measure and an
embedding Ψ : X ′ → susp(Y, f), so that Ψ ◦ θ(x) = T 1 ◦ Ψ(x) for all
x ∈ X ′.

Proof of Theorem 2. By the Jewett-Krieger theorem [15], a non-atomic
probability space endowed with an ergodic measure-preserving auto-
morphism with finite measure-theoretic entropy is isomorphic to a
uniquely ergodic subshift equipped with its invariant measure. Notice
that by the variational principle [10], the topological entropy of the
uniquely ergodic subshift is equal to the measure-theoretic entropy of
the initial automorphism. Hence, composing this isomorphism with the
embedding given by Theorem 3 produces the required embedding. �

Let us remark that the embedding that we define to prove Theorem
3 is not continuous.

Question 1. Let X be a subshift equipped with an invariant measure
µ. Let (susp(Y, f), (T t)t∈R) be a topologically weak mixing suspension
over an irreducible subshift of finite type Y under a Hölder continuous
function f : Y → (0,∞).
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If the measure-theoretic entropy of θ : X → X is (strictly) less than
the topological entropy of T 1, under which conditions must there exist
a mapping Ψ : X → susp(Y, f) where the continuity points have full
measure?

Mappings satisfying the property in the question are said to be fini-
tary (see [21] and [13] for more information).
It remains to prove Theorems 1 and 3, but next we discuss an ap-

plication of Theorem 1 that was the original motivation of Theorem
2. We thank Jean-Paul Thouvenot [22] who suggested that Theorem
2 could be used to prove Theorem 1, from which one can obtain a
negative answer to the following problem posed by Ledrappier [16]:

Let (Gt)t∈R be geodesic flow on a compact surface of
variable negative curvature. If a measure λ is invari-
ant and ergodic under the group (Gn)n∈Z, must it be
invariant under (Gt)t∈R?

Corollary 4. Let (Gt)t∈R be geodesic flow on a compact surface of
variable negative curvature. There is a measure λ that is invariant and
ergodic under the group (Gn)n∈Z, but not invariant under (Gt)t∈R.

Corollary 4 is immediate from Theorem 1, and the simple fact that
there exists an ergodic measure-preserving automorphism that has ar-
bitrarily small entropy and does not admit a square root. Let us remark
that by appealing to a result of Ornstein [18], which says that there
exists a K-automorphism that does not admit a square root, one can
also require that (UT (M), λ, T 1) is a K-automorphism.
In fact, the question above was posed as an approach to the following

question due to Ledrappier and Federico and Jana Rodriguez-Hertz.

Let (Gt)t∈R be geodesic flow on a compact surface of
variable negative curvature. If a set is minimal under the
action of (Gt)t∈R, must it be minimal under (Gn)n∈Z?

In the appendix, we give a negative answer to this question (we note
that this implies a negative answer to the earlier question).
We prove Theorem 1 and Corollary 4 in Section 5. In the next

section, we give an outline of the proof of Theorem 3 that will also give
criteria for topological weak mixing for suspensions flows of subshifts
of finite type under Hölder continuous ceiling functions. In Section 3,
we will assemble some lemmas that will help us define the embedding
of Theorem 3 in Section 4.
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2. Background and proof sketch

In this section, we first introduce some basic terminology. Second, we
will discuss topological weak mixing for suspension flows and thirdly,
we will discuss the basic approach and highlight the main ideas of the
proof.

2.1. Basic terminology. Let X be a non-trivial subshift. Let x ∈ X
and n ∈ Z

+. We say that the finite string x0 · · ·xn−1 = xn−1
0 is an block

of size n. Let Bn(X) :=
{
xn−1
0 : x ∈ X

}
denote the set of all blocks of

size n in X . We refer to all members of B(X) =
⋃

n∈Z+ Bn(X), as X-

blocks. Given two X-blocks xn−1
0 and zm−1

0 we let their concatenation
be given by

x0 . . . xn−1z0 . . . zm−1 = xn−1
0 zm−1

0 = xn−1
0 zm−1

0 , (1)

whenever the concatenation is also a X-block. Sometimes, as in (1)
we will enclose blocks to make their concatenations easier to parse.
We say that a block xn−1

0 appears in zm−1
0 or z ∈ X if there exists

k ∈ Z such that zk+n−1
k = xn−1

0 . In order to distinguish between
x ∈ X and θx ∈ X , sometimes we will use the symbol “.” to indicate
the position of the origin, so that if x = · · ·x−2x−1.x0x1x2 · · · then
θx = · · ·x−2x−1x0.x1x2 · · · .
Let Y be an irreducible subshift of finite type, and let f : Y →

(0,∞). Given (y, s) ∈ susp(Y, f) for each m ∈ Z, there exists a t ∈ R

such that T t(y, s) = (θmy, 0); for any n ≥ m, we say that the Y -block
yn−1
m begins at t (in (y, s)). For y ∈ Y , we define the length in the
suspension of the Y -block yn−1

m in y by

Len(y, f ;m,n− 1) = f (n−m)(θmy) =

n−1∑

i=m

f(θiy) (2)

Note the difference between the size of a block (number of symbols)
and length of a block in the suspension. In general, the length in
the suspension of a Y -block ynm may depend on the whole bi-infinite
sequence y. We define the maximum length in the suspension of
a block ym−1

0 by

MLen(ym−1
0 , f) := max

{
f (m)(z) : z ∈ Y, zm−1

0 = ym−1
0

}
.

Let t > 0, for Y ′ ⊆ Y define

Bt(Y
′, f) := {B ∈ B(Y ′) : MLen(B, f) ≤ t} . (3)

We say that (susp(Y, f), (T t)t∈R) satisfies specification if for all ε >
0, there exists Lε such that given any two blocks A0, A1 ∈ B(Y ), and a
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real number L > Lε+MLen(A0, f), there exists (y, 0) ∈ susp(Y, f) such
that A0 begins at 0 and A1 begins within ε of L. Note that specification
is a much stronger condition than requiring that the subshift of finite
type Y has a irreducible adjacency matrix. Consider again the special
case where Y = {a, b}Z, and f(y) = y0 for all y ∈ Y , where a, b are
positive real numbers. It is easy to verify that (susp(Y, f), (T t)t∈R)
satisfies specification if and only if a/b is irrational.

2.2. Topological weak mixing. We discuss in this sub-section some
criteria equivalent to topological weak mixing of suspension flows.
Let Y be a subshift of finite type, and let f : Y → (0,∞). If

z ∈ Y is periodic, we let per(z) be the least positive integer such that
θper(z)z = z. The period in the suspension is

ALen(z, f) := Len(z, f ; 1, per(z)).

For any non-empty A ⊂ R \ {0}, let span(A) denote the closure of
the finite integer combinations of elements of A. Since this is a closed
subgroup of R, it is either R or a subgroup of the form cZ for some
c > 0. In the latter case, we define gcd(A) = c and if span(A) = R, we
define gcd(A) = 0.
We say that f : Y → (0,∞) is filling if it satisfies the following

properties.

(i) The function f is Hölder continuous.
(ii) The set of all periods in the suspension has greatest common

divisor equal to zero.

We say that two functions f and g are Hölder cohomologous if
there exists a Hölder continuous function h such that f = g+h−h◦ θ.

Proposition 5 (Equivalent notions of topological weak mixing). Let
(susp(Y, f), (T t)t∈R) be the suspension flow over an irreducible subshift
of finite type Y under a Hölder continuous ceiling function f : Y →
(0,∞). The following conditions are equivalent.

(a) The suspension flow is topologically weak mixing.
(b) The ceiling function is filling.
(c) The suspension flow satisfies specification.
(d) The ceiling function f is not Hölder cohomologous to a function h

taking values in βZ for some β > 0.

This proposition is essentially standard. We remark that our proofs
of Theorems 3 and Theorem 1 only require Proposition 5 ((a) ⇒ (b));
we give brief details of this implication. A slightly generalized version
of (b)⇒ (c) appears in our proof of Lemma 7(F).
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To see (a) implies (b), we argue by the contrapositive. If f fails to
be filling, the periods in the suspension must all lie in a subgroup βZ
of the reals. In this case a version of the Livschitz theorem appearing
in the book of Parry and Pollicott [19, Proposition 5.2] implies that f
is cohomologous to a function taking values in βZ (so that (d) fails).
This can then be used to construct a continuous eigenfunction

F (y, s) = e2πi(s−h(y))/β

which satisfies F (Tt(y, s)) = e2πit/βF (y, s), contradicting (a).
Proposition 5 explains the role of the assumption that the suspension

flow is topologically weak mixing in Theorem 3. If the suspension
flow is not assumed to be topologically weak-mixing, the conclusion
of Theorem 3 may fail – in particular if the r is not of the form 1/n,
then any measure-preserving transformation that can be embedded into
susp(Y, f) must have a (measurable) eigenfunction and hence cannot
be weak-mixing (in the ergodic sense). On the other hand if r is of the
form 1/n, then more straightforward methods establish the existence
of an embedding.

2.3. The basic approach. Suppose that X is a non-trivial uniquely
ergodic subshift with invariant measure µ. Let (susp(Y, f), (T t)t∈R) be
a topologically weak mixing suspension over an irreducible subshift of
finite type Y under a Hölder continuous function f : Y → (0,∞).
Assume that the topological entropy of θ : X → X is strictly less than
topological entropy of T 1.
Our approach is to partition an element x ∈ X into X-blocks

(
x
ni+1−1
ni

)

i∈Z
, and then encode each of these blocks into correspond-

ing Y -blocks
(
φ
(
x
ni+1−1
ni

))

i∈Z
, which we will piece together to produce

Ψ(x) = (y(x), s(x)) ∈ susp(Y, f) in such a way as to guarantee that
Ψ(θ(x)) = T 1(Ψ(x)). Clearly, some care is needed to ensure that we
can recover x from Ψ(x).
Alpern’s multiple Rokhlin tower theorem [1, 8] implies that as a

function on X , we can choose an equivariant subset of Z; that is, for
x ∈ X , ifM(x) is the subset of Z assigned to x, thenM(θx) is obtained
by subtracting 1 from each elements of M(x). Furthermore, for any
n ∈ Z

+ we may specify that the distance between two successive points
ofM(x) is either n or n+1. Let (ni)i∈Z = (ni(x))i∈Z be an enumeration
of M(x) such that . . . < n−2(x) < n−1(x) < n0(x) ≤ 0 < n1(x) <
n2(x) < . . .. The point x can then be partitioned into X-blocks as

x = · · · xn0−1
n−1

xn1−1
n0

xn2−1
n1

· · · .
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As a consequence of the fact that the topological entropy of θ is
strictly less than that topological entropy of T 1, there will exist α ∈
(0, 1) such that for all n sufficiently large, we have

#(Bn(X) ∪Bn+1(X)) < #B(1−α)n(Y, f).

Thus there exists an injection from φ1 : Bn(X) ∪ Bn+1(X) →
B(1−α)n(Y, f), which encodes n-blocks and (n + 1)-blocks of X into
(shorter) Y -blocks of length in the suspension at most (1− α)n.

For each i ∈ Z, we will set Ai = x
ni+1−1
ni and ψ1(x) = · · · .φ1(A0) · · · ,

where φ1(A0) is suitably extended to become an element of Y . Let
Ψ1(x) = T−n0(x)(ψ1(x), 0). At this stage Ψ1 encodes only the block A0,
but we will define subsequent Ψj that will encode successively more
of the blocks Ai that appear in x. Observe that since the ni(x) were
chosen in an equivariant way, we have that Ψ1(θ

kx) = T kΨ1(x) for all
k ∈ [n0, n1). In this way, Ψ1 maps x in such a way that the block A0

is encoded and starts exactly at time n0(x) in the image. The above
will ensure that the encoded block has length in the suspension of
approximately (1−α)n, so that in the suspension, the encoded version
of the block is approximately αn shorter than the original block.
By an additional application of Alpern’s multiple Rokhlin tower the-

orem, we may choose a much sparser (two-sided) subsequence (n′
i)i∈Z

of (ni) in an equivariant way, where again . . . n′
−1 < n′

0 ≤ 0 < n′
1
. . ..

Define level two blocks by A′
i = x

n′

i+1
−1

n′

i
, so that A′

0 consists of the

concatenation of Aa, Aa+1, . . . , Ab−1 for some a ≤ 0 < b. As long as
the n above is taken sufficiently large (depending on α and how long
it takes for specification to ‘kick in’), it is possible to place filler blocks
in the gaps of length in the suspension approximately nα between the
encodings of the (Ai)a≤i<b to make a second order block in which each
encoded block starts within a fixed precision, 2−1 say, of the desired
starting location ni(x). Again this finite block is extended to a point
ψ2(x) in Y . The second approximation to the embedding is then given
by Ψ2(x) = T−n′

0
(x)(ψ2(x), 0). Now the encoded A′

0 block starts exactly
at n′

0(x), while the (Ai)a≤i<b start approximately at ni(x).
In order to iterate this construction, one minor issue is that to achieve

the packing at the next stage, it is necessary to ensure again that the
encoded level two blocks are shorter (by an amount that depends on
the placement accuracy that we want to obtain in the third level) than
the level two blocks in the source. We achieve this by using shorter filler
between some of the last level one blocks (the crumple zone) forming
the level two block.
The inductive step is illustrated in figure 1.
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Level k filler

Figure 1. Inductive step building the (k + 1)st level
map from the kth level map. Notice the crumple zone
on the right is compressed to ensure the image block is
shorter than the source, allowing subsequent levels to
accurately position blocks

The Borel-Cantelli lemma will be used to ensure that almost every
point only is in finitely many crumple zones. For a point that it is in
finitely many crumple zones, we will check that Ψn(x) forms a Cauchy
sequence, and therefore converges to a limit. This will allow us to
define the embedding.
More formally, we will obtain a sequence of mappings from X to

susp(Y, f) with the following properties.

Proposition 6. Suppose that X is a non-trivial uniquely ergodic sub-
shift with invariant measure µ. Let (susp(Y, f), (T t)t∈R) be the suspen-
sion flow over an irreducible subshift of finite type Y under a Hölder
continuous function f : Y → (0,∞). Let W be an arbitrary Y -block. If
the topological entropy of θ is strictly less than the topological entropy
of T 1, and if (T t)t∈R is topologically weak mixing, then there exists a
sequence of measurable maps Ψi : X → susp(Y, f) and a subset X ′ ⊂ X
of full measure with the following properties.

(a) For all x ∈ X ′ and for all sufficiently large i ∈ Z
+ we have

Ψi(θx) = T 1Ψi(x).

(b) For all x ∈ X ′, we have limi→∞Ψi(x) := Ψ(x) = (y(x), s(x)) ∈
susp(Y, f) exists.

(c) For all x ∈ X ′, we have that y(x) is aperiodic; that is, there does
not exist m ∈ Z \ {0} such that θmy(x) = y(x).

(d) For all x ∈ X ′, we have that y−1(y(x)) ⊆ {θnx : n ∈ Z}.
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(e) For all x ∈ X ′, the block W appears in y(x) infinitely often in the
positive coordinates and in the negative coordinates.

The proof of Theorem 3 follows easily from Proposition 6. Condition
(e) is not required for the proof of Theorem 3, but is necessary for our
proof of Theorem 1.

Proof of Theorem 3. We apply Proposition 6 with an arbitrary Y -block
W . That Ψ(θ(x)) = T 1(Ψ(x)) follows from (a) and (b). To see that Ψ
is an injection, let x 6= x′ ∈ X ′ and assume Ψ(x) = Ψ(x′). By Property
(d), x′ = θnx for some n ∈ Z. This implies Ψ(x) = Ψ(x′) = T n(Ψ(x))
which gives a contradiction using (c).

�

3. Key Ingredients

In this section, we will define, using Alpern’s multiple Rokhlin tower
theorem [1, 8], equivariant subsets of Z, as a function on a non-trivial
uniquely ergodic subshift; following Keane and Smorodinsky [12, 13],
we think of elements of these subsets as markers. These two ingredients
will allow us to define the embedding of Theorem 3 in Section 4.
Before we state Lemma 7, we need some additional notation. Let

Y be an irreducible subshift of finite type. Given any A,B ∈ B(Y )
there is a C ∈ B(Y ) such that ACB ∈ B(Y ). In the case, where
AB 6∈ B(Y ), we define the connecting block of A and B to be the
block C such that ACB is legal with the least maximum length in
the suspension, where we break ties by assigning a lexicographic order

on B(Y ); in the case where AB ∈ B(Y ), we let A C(A,B) B = AB,

and say that C(A,B) is an empty connecting block, and assign it zero
maximum length in the suspension. Clearly, the maximum lengths in
the suspension of all connecting blocks are bounded above.
Given a block A ∈ B(Y ), we let

Y \A := {y ∈ Y : A does not appear in y} .

Note that Y \ A is a subshift of finite type.

For any B ∈ B(Y ) such that BB ∈ B(Y ), let Bk :=

k times
︷ ︸︸ ︷

B · · ·B for any
integer k ≥ 1, and let B ∈ Y be the periodic point with

B = · · ·BB.BB · · · .

Lemma 7. Let (susp(Y, f), (T t)t∈R) be a topologically weak mixing sus-
pension flow over an irreducible subshift of finite type Y under a Hölder
continuous ceiling function f . Let X be a non-trivial uniquely ergodic
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subshift. Suppose that the topological entropy of θ is strictly less than
the topological entropy of T 1

Given any W ∈ B(Y ), there exist Y -blocks 〈, 〉,L,R1,R2 . . ., non-
decreasing integers (Kn, kn, Ln)n∈Z+ with the following properties.

(A) The concatenations LL and RiRi for all i ∈ Z
+, are also Y -

blocks.
(B) We have gcd

(
ALen(L, f),ALen(Ri, f)

)
≤ 2−i for every i ≥ 1.

(C) The block W appears in the blocks 〈 and 〉.
(D) The concatenations 〈 〈, 〉 〉 are also Y -blocks. The block 〈 does not

appear in the periodic point 〉, and the block 〉 does not appear in

the periodic point 〈.
(E) For all nonnegative integers ℓ and r, the Y -block

C(〈,L) Lℓ C(L,Ri) Rr
i C(Ri, 〉)

does not contain 〈ki or 〉ki.
(F) For any two blocks A0, A1 ∈ B(Y ) and for all L > Li+MLen(A0, f),

there exists (z, 0) ∈ susp(Y, f) with the following properties.
(i)

z = · · · 〉 〉 C(〉, A0) .A0D0A1 C(A1, 〈) 〈 〈 · · · ,

where D0 is given by

C(A0, 〈) 〈Ki C(〈,L) Lℓ C(L,Ri) Rr
i C(Ri, 〉) 〉Ki C(〉, A1) , (4)

for some positive integers ℓ and r.
(ii) The block A1 begins within 2 · 2−i of L.
(iii) For all w ∈ Y , and all positive integers ℓ′ and r′, we have

that the block A1 begins within 3 · 2−i of L in (w′, 0), where

w′ = · · · · · · 〉 〉C(〉, A0). A0D0 A1D w0w1 · · · ,

and D is the block

C(A1, 〈) 〈Ki C(〈,L) Lℓ′ C(L,Ri) Rr′

i C(Ri, 〉) 〉Ki C(〉, w0)

(G) The sequence (Kn) satisfies

Kn > 2Kn−1 + 2kn−1 + n. (5)

(H) There exists α ∈ (0, 1) such that for all i sufficiently large, there ex-
ists F ∈ B(Y ) and an injection φ : Bi(X)∪Bi+1(X) → B(1−α)i(Y \
F, f) such that the following hold.
(i) The block F appears in both 〈 and 〉.

(ii) For all B ∈ Bi(X) ∪ Bi+1(X), we have 〉 φ(B) 〈 ∈ B(Y ).
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(iii) For all B ∈ Bi(X) ∪ Bi+1(X), the only appearance of 〉 in
〉φ(B) 〈 is in the leftmost position; and the only appearance
of 〈 is in the rightmost position.

The map from Lemma 7 (H) allows us to code X-blocks into Y -
blocks, which we think of as blocks of information. The resulting blocks
of information are extended to become elements of Y using the blocks
〈 and 〉, and then joined together using Lemma 7 (F), which allows us
to prescribe where they begin within a certain accuracy, at the cost of
placing a filler block in between two blocks of information. Thus we
obtain an alternating sequence of information and filler blocks.
We need to be able to distinguish the information from the filler, and

this is done by bracketing the filler with concatenations of the blocks
〈 and 〉. One technicality is that although we can demand that the
blocks 〈 and 〉 do not appear in the information, it turns out that it is
too much to ask that they do not appear in the filler; see Example 1 in
Section 6. However, we can demand that the number of 〈 and 〉 that
appear in the filler is smaller than the number of 〈 and 〉 blocks used
to bracket the filler. Although, the blocks 〈 and 〉 do not appear in the
information, we need condition (Hiii) of Lemma 7, to assure us that we
are able to distinguish the beginning or end of a block of information
with the end of beginning of a 〉 or 〈, respectively.

Proof of Lemma 7 (A) and (B). We first select the blocks L and (Ri).
We consider two cases. If there exist L and R for which LL and RR
are both legal and such that gcd(ALen(L, f),ALen(R, f)) = 0, then
let Ri = R for each i.
Otherwise, let z1 ∈ Y be a periodic point. Let L be the periodic

block forming z1. Fix an integer i ≥ 1. There exists a positive integer
n so that ALen(z1, f)/n < 2−i. By Proposition 5 (a) → (b), we have
that f is filling; thus there exists a periodic point z2 ∈ Y such that
ALen(z2, f) 6∈ (ALen(z1, f)/n!)Z. LetRi be the periodic block forming
z2. Let gcd

(
ALen(z1, f),ALen(z2, f)

)
= r. Since r > 0, but is not a

multiple of ALen(z1, f)/n!, we must have ALen(z1, f) = rm for some
integer m > n, from which we conclude that r < 2−i.
Notice that the periods in the suspension of the Ri must approach

infinity as i → ∞ as otherwise infinitely many Ri would be identical
by the pigeonhole principle and could be expressed as R. This would
fall into the case considered above. �

Proof of Lemma 7 (C) and (D). Let V = W C(W,W ) be the shortest

word containing W that can be periodically concatenated. Fix a p ≥ 2
such that htop(X, θ) < htop(susp(Y \ V p, f), T 1) (such a p exists as the
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right side converges to htop(susp(Y, f), T
1) as p→ ∞). Set F = V p. We

may additionally assume that p was chosen so that the ALen(F, f) >
ALen(L, f) and also ALen(F, f) > ALen(R, f) in the case that there
was a single right block.
Let 〈 and 〉 be two blocks of the form F10UF10, where the U ’s are

chosen to ensure that 〈 does not appear in 〉, 〉 does not appear in 〈
and neither of 〈 or 〉 can be written as a power of a shorter block. �

Proof of Lemma 7 (E). Observe that (E) is satisfied for some (ki) if

and only if L and Ri are not in the orbit of 〈 or 〉 for all i ∈ Z
+. For

this it suffices to check that the periods in the suspension of L and Ri

differ from those of 〈 and 〉.

Since 〈 and 〉 have longer period in the suspension than L by con-
struction, the conclusion is straightforward for L. Similarly for the Ri

if all of the Ri are equal to R.
Otherwise, by the remark made in the proof of parts (A) and (B), for

sufficiently large i, the period in the suspension of Ri would exceed the
periods in the suspension of 〈 and 〉. Discarding those Ri for which this
fails and re-numbering (this can be done without affecting any previous
stage of the construction), we obtain the desired conclusion. �

Proof of Lemma 7 (F) and (G). It will become obvious that it does
not matter how we define Ki for the purposes of conditions (Fi) and
(Fii); thus satisfying (5) is trivial. We will need to make Ki large for
condition (Fiii).
A straightforward calculation shows that for all v, v′ ∈ Y , and

−ι(v, v′) ≤ i ≤ j ≤ ι(v, v′), we have that

|Len(v, f ; i, j)− Len(v′, f ; i, j)| ≤M2c
(
−ι(v,v′)+min(|i|,|j|)

)

, (6)

where ι(v, v′) = min
{
|j| ∈ Z : vj 6= v′j

}
, M ≥ ‖f‖ is some constant

independent of v, v′ and c ∈ (0, 1) is the Hölder exponent of f .
Let G(m,n) be the Y -block given by the concatenation

C(A0, 〈) 〈Ki C(〈,L) L2N+m C(L,Ri) R2N+n
i C(Ri, 〉) 〉Ki C(〉, A1) ,

where N,m, n are nonnegative integers. We first choose a suitable value
for N . Consider

z(m,n) = · · · 〉 〉C(〉, A0). A0 G(m,n) A1 C(A1, 〈) 〈 · · ·

We think of the blocks L2N+m as concatenations LN Lm LN and sim-
ilarly with the Ri blocks. Writing it this way makes it clear, using
(6), that the length in the suspension of the first LN block is expo-
nentially close (in N) to the corresponding block in z(0, 0) uniformly
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in m (and n). Similarly with the second LN block. Additionally, the
length in the suspension of the Lm block is exponentially close in N to
m · ALen(L, f), again uniformly in m and n. Similar statements hold
for the Ri blocks.
Similarly, the differences of the lengths in the suspension of the other

corresponding sections appearing in the concatenations forming z(m,n)
and z(0, 0) approach 0 exponentially in N , uniformly in m and n.

Hence if the length in the suspension of the block A0 G(0, 0) in

(z(0, 0), 0) is b(N) (the N dependence appears in G(0, 0)), the argu-
ments above show that N can be chosen so that the length in the

suspension of the block A0 G(m,n) in z(m,n) is within 2−i of b(N) +

mALen(L, f) + nALen(Ri, f) uniformly in m and n. Let

b′ = MLen(A0, f) + MLen
(
C(A0, 〈) 〈Ki C(〈,L) LN , f

)
+

MLen
(
C(L,Ri) RN

i , f
)
+MLen

(
C(Ri, 〉) 〉Ki C(〉, A1) , f

)
.

Note that b ≤ b′. By part (B) gcd
(
ALen(L, f),ALen(Ri, f)

)
≤ 2−i,

thus conditions (Fi) and (Fii) follow by choosing Li ≥ b′ + Mi −
MLen(A0, f), where Mi is such that for all M > Mi, there is a non-
negative integer combination of ALen(L, f) and ALen(Ri, f) that ap-
proximates M to within an error of 2 · 2−i.
To see that condition (Fiii) holds compare z with w′. Observe that

by (6) and the definition of D, the difference between the length in the
suspension of A0D0 in z and w′ is bounded by a function of i that goes
to 0 as Ki → ∞. Thus we may choose Ki sufficiently large so that A1

begins within 3 · 2−i of L in (w′, 0) for all w ∈ Y . �

Proof of Lemma 7 (H). Let P be the set of all periodic points of Y \F.
By [3, Theorem 4.1], we have that

κ1
eh

′u

u
≤ # {y ∈ P : ALen(y, f) ≤ u} ≤ κ2

eh
′u

u
, (7)

for some constants κ1, κ2 > 0.
Note that by (6), for some constant κ > 0, the difference between

the length in the suspension of a block and its maximum length in the
suspension is at most κ. By (7), by taking p large, we have that there
exists α ∈ (0, 1), such that for all i sufficiently large

#
(
Bi(X) ∪Bi+1(X)

)
≤ #B(1−α)i(Y \ F, f).

Condition (Hii) is easily satisfied by taking i sufficiently large, since
the maximum lengths in the suspension of all connecting blocks are
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bounded above. Conditions (Hi) and (Hiii) are easily verified with the
definitions of F, 〈, and 〉. �

For a set A, let pow(A) denote its power set.

Lemma 8 (Markers upstairs). Let X be a non-trivial subshift with an
invariant measure µ. Let (ℓi)

∞
i=1 be a sequence of positive integers such

that ℓi+1/ℓi ≥ 4. There exists a measurable function M : Z+ × X →
pow(Z) and a set X ′ ⊂ X of full measure with the following properties.

(a) For all i ∈ Z
+ and for all x ∈ X ′, we haveM(i, θ(x)) =M(i, x)−1.

(b) For all 0 < i < j and all x ∈ X ′, we have M(j, x) ⊂M(i, x).
(c) For all x ∈ X ′, the distance between two successive elements of

M(1, x) is ℓ1 or ℓ1 + 1.
(d) For all i ≥ 2 and x ∈ X ′, if u < v are two consecutive elements

of M(i, x) then ℓi ≤ v − u ≤ 2ℓi. The number of elements of
M(i− 1, x) in [u, v] is between ℓi+1/(2ℓi) and 2ℓi+1/ℓi.

Proof. From Alpern’s multi-tower theorem, [1], it follows that there ex-

ist two measurable setsQ1, Q2 ∈ F , such that {θj(Q1)}
ℓ1−1
j=0 ∪{θ

j(Q2)}
ℓ1
j=0

give a partition of X (modulo a null set). For each x ∈ X , we let

M(1, x) = {u ∈ Z : θu(x) ∈ Q1 ∪Q2} .

Clearly, conditions (a) and (c) are satisfied.
Assume that M(i, x) has been defined so that conditions (a), (b),

and (d) hold for all j ≤ i. It remains to define M(i + 1, x). Again,
by Alpern’s theorem, there exist two sets P1, P2 ∈ F , such that

{θj(P1)}
ℓi+1+2ℓi−1
j=0 ∪ {θj(P2)}

ℓi+1+2ℓi
j=0 give a partition of X . Consider

the set

M(i+ 1, x)′ = {u ∈ Z : θu(x) ∈ P1 ∪ P2} .

For each u′ ∈ M(i + 1, x)′, let κ(u′) = inf {u ∈M(i, x) : u′ < u}. Set
M(i+ 1, x) = {κ(u′) : u′ ∈M(i + 1, x)′}. �

The following definitions will be important in the defining the se-
quence of maps in Proposition 6. Let M be the function from Lemma
8. For each i ∈ Z

+ and each x ∈ X , let

N−
i (x) := sup {z ∈ M(i, x) : z ≤ 0} (8)

and N+
i (x) := inf {z ∈M(i, x) : z > 0} . (9)

Corollary 9. Let (ai)
∞
i=1 be a sequence of positive integers. If

ℓi+1 ≥ 2i+2aiℓi, (10)
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then the function M from Lemma 8 has the additional property that

µ({x ∈ X : N+
i+1(x)−N+

i (x) ≤ 2aiℓi}) ≤ 2−i; and

µ({x ∈ X : N−
i (x)−N−

i+1(x) ≤ 2aiℓi}) ≤ 2−i.

Hence for µ-almost every x ∈ X ′, N+
i (x) → ∞ and N−

i (x) → −∞ as
i→ ∞.

Proof. We estimate µ({x ∈ X : N+
i+1(x) − N+

i (x) ≤ 2aiℓi}), the other
estimate being identical. From Lemma 8, N+

i (x) is less than 2ℓi for all
x. Hence N+

i+1(x)−N
+
i (x) ≤ 2aiℓi implies N+

i+1(x) < 2(ai+1)ℓi ≤ 4aiℓi.
Next, notice since consecutive (i + 1)-markers are separated by at

least ℓi+1, one has for each 0 ≤ k < ℓi+1, N
+
i+1(x) = ℓi+1 if and only if

N+
i+1(θ

k(x)) = ℓi+1−k. Hence the sets (N
+
i+1)

−1(k) have equal measure
for k in the range 1 ≤ k ≤ ℓi+1 so that µ({x : N

+
i+1(x) = j}) ≤ 1/ℓi+1 for

all j ≤ ℓi+1. We then see that µ({x : N+
i+1(x) ≤ 4aiℓi}) ≤ 4aiℓi/ℓi+1 <

2−i as required. �

4. Definition of Injection

Proof of Proposition 6. Suppose that X is a uniquely ergodic subshift
and susp(Y, f) is a topologically mixing suspension flow whose topolog-
ical entropy exceeds the entropy of X as in the statement of the propo-
sition. Let W be a Y -block. Let 〈, 〉,L,R1,R2 . . ., (Kn, kn, Ln)n∈Z+ ,
and α ∈ (0, 1) be given by Lemma 7 (Kn being the number of 〈 and
〉 used to delimit the filler blocks between level n blocks, Ln being a
length in the suspension such that any gap of size exceeding Ln can be
filled up to within 2−n accuracy by level n filler blocks, and α being the
compression that can be achieved in encoding the first level information
blocks). The block W appears in 〈 and 〉.
Note that by (6), for some constant κ > 0, the difference between

the length in the suspension of a block and its maximum length in the
suspensions is at most κ. Let (ai)i∈Z+ be a sequence of positive integers
such that

ai(Li − κ) > 2Li+1. (11)

The ai represent the number of level i blocks forming the crumple zone
when building the level i+1 blocks. Choose ℓ1 > 0 large enough so that
by Lemma 7 (H), there exists an injection φ : Bℓ1+1(X) ∪ Bℓ1(X) →
B(1−α)ℓ1(Y \ F, f) such that 〉φ(B) 〈 ∈ B(Y ) for all B ∈ Bℓ1+1(X) ∪
Bℓ1(X). We can additionally require that ℓ1 is large enough that

αℓ1 > 2L1. (12)
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We define the subsequent ℓi by setting

ℓi+1 = 2i+2aiℓi. (13)

LetM and X ′ ⊂ X be given be Lemma 8, and N+
i and N−

i be given by
(8) and (9), respectively. By Corollary 9, N+

i (x) → ∞ and N−
i (x) →

−∞ for µ-almost all x ∈ X ′.
We will recursively define sequences of maps φi : X → B(Y ). Each

φi will be extended to a map ψi : X → Y by the relation

ψi(x) = · · · 〉 〉.φi(x) 〈 〈 · · · . (14)

We set

Ψi(x) := T−N−

i (x)(ψi(x), 0) (15)

for all x ∈ X ′. Given (y, s) ∈ susp(Y, f), let π1(y, s) = y and π2(y, s) =
s. We shall inductively construct maps φi, ψi,Ψi satisfying the follow-
ing properties (previously illustrated in Figure 1).

(I) For all x ∈ X ′; and for all i ≥ 1, we have 〉 φi(x) 〈 ∈ B(Y ).

(II) For all x ∈ X ′ and for all i ≥ 1, we have

N+
i (x)−N−

i (x) > 2Li +MLen(φi(x), f).

(III) For all x ∈ X ′, i ≥ 1, and all k ∈ [N−
i (x), N

+
i (x)), we have

Ψi(θ
kx) = T kΨi(x).

(IV) For all x ∈ X ′ and for all i ≥ 2, if |N+
i (x) − N+

i−1(x)| > 2aiℓi,
then there exists |ε| ≤ 3 · 2−i such that

π1
(
TN−

i−1
(x)+εΨi(x)

)n−1

0
= φi−1(x) = π1

(
TN−

i−1
(x)Ψi−1(x)

)n−1

0
; and

π2
(
TN−

i−1
(x)+εΨi(x)

)
= 0 = π2

(
TN−

i−1
(x)Ψi−1(x)

)
,

where n is the size of φi−1(x).

Let x ∈ X ′. Set φ = φ1. By Lemma 7 (H) (Hii), we may set

ψ1(x) := · · · 〉 〉 .φ1(xN−

1
(x) · · ·xN+

1
(x)−1) 〈 〈 · · · .

Note that by Lemma 8 (c), we have that N+
1 (x)−N−

1 (x) ∈ {ℓ, ℓ+ 1}.
Clearly, by (12) and the definition of φ conditions (I), (II) and (III) are
satisfied.
Suppose φi and ψi have been defined and satisfy conditions (I), (II),

(III), and (IV). Consider the set
{
v ∈M(i, x) : v ∈ [N−

i+1(x), N
+
i+1(x))

}
.

Let N−
i+1(x) = n1 < n2 < · · · < nj−1 < nj < N+

i+1(x) be an enumer-
ation of the set. Let j′ = j − ai (this is positive because the number
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of level i blocks in a level i + 1 block is at least ℓi+1/(2ℓi) > 2i+1ai by
Lemma 8 (d) and by (13). The point ψi+1(x) will be of the form

· · · 〉 〉 .B1F1B2F2 · · ·Fj−1Bj 〈 〈

where Bk = φi(θ
nk

x) for each 1 ≤ k ≤ j and the Fk are given by
F (ℓk, rk), where

F (ℓ, r) := 〈Ki C(〈,L) Lℓ C(L,Ri) Rr
i C(Ri, 〉) 〉Ki . (16)

We call such an F a level i filler block.
By repeated applications of Lemma 7 we can choose the ℓk and rk

such that for 1 ≤ k ≤ j′, Bk begins within 3 · 2−i of nk in Ψi+1(x) =
T−n1

ψi+1(x). For k ∈ [j′, j) we simply set Fk = F (1, 1) to create the
crumple zone mentioned earlier.
We set φi+1(x) = B1F1B2 · · ·Fj−1Bj , and note that property (I) is

trivially satisfied. We call the φi+1(x) level i+ 1 blocks.
Notice that the crumple zone consists of ai level i blocks. Each of

these consists of at most 2ℓi symbols by Lemma 8 (d), so that |N+
i (x)−

N+
i−1(x)| > 2aiℓi guarantees that x lies in a level i block outside the

crumple zone. The construction above then ensures that (IV) holds for
i+ 1.
By construction, we have that MLen(Fk, f) ≤ Li + κ for k ∈ [j′, j),

so using (II) at level i for these k’s we have

nk+1 − nk −MLen(Fk, f) ≥ Li − κ.

Since there are ai such k’s, we obtain

N+
i+1(x)−N−

i+1(x)−MLen(φi+1(x), f) ≥ ai(Li − κ)

Hence by (11), condition (II) is satisfied at level i + 1. Note that
property (III) follows immediately from the definition of Ψi+1. Hence
the inductive step is complete.
Conclusion (a) (of Proposition 6) follows immediately from prop-

erty (III) and Corollary 9. Conclusion (b) follows from property (IV),
Corollary 9, and the Borel-Cantelli Lemma.
It remains to show that properties (c), (d), and (e) (of Proposition

6) hold. Suppose that

lim
i→∞

Ψi(x) := Ψ(x) = (y(x), s(x)) ∈ susp(Y, f),

for all x ∈ X ′′ ⊂ X ′, where X ′′ is also a set of full measure. Let x ∈ X ′′.
Let (ni)i∈Z be an enumeration of the set M(1, x), where n0 = N−

1 (x).
For each i ∈ Z, let

Bi := ϕ(xni
· · ·xni+1−1).
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Recall that in the construction, level 1 blocks (images of φ) are com-
bined into longer level 2 blocks by placing level 1 filler between the
pairs of blocks while the leftmost level 1 block in a level 2 block does
not (yet) have filler next to it and similarly for the rightmost level 1
block in a level 2 block. At the next stage level 2 blocks are interspersed
with level 2 filler, again leaving the end blocks bare. Hence, as long
as N+

i (x) → ∞ and N−
i (x) → ∞, then the level of the filler on the

left of φ(x) is min{k : N−
k+1(x) 6= N−

1 (x)} with a similar expression for
the level of filler on the right. Hence for each x ∈ X ′′, y(x), the first
coordinate of Ψ(x), is of the form

· · ·B−1F−1B0F0B1F1 · · · , (17)

where the Bi are of the form φ(C) for C ∈ Bℓi(X)∪Bℓi+1(X) and the

Fi are Y -blocks of the form 〈Kn C 〉Kn for some n and some Y -block C;
furthermore, by Lemma 7 (D) and (G), we have that the block C does

not contain a 〈Kj or 〉Kj , with j ≥ n.
Note that the blocks 〉n and 〈n appear in y(x) for all n ∈ Z

+. Hence
by Lemma 7 (D), property (c) holds. Since W appears in 〈, property
(e) holds.
Let y ∈ Y be of the form (17). If y0 belongs to one of the F blocks,

then one of the following happens:

(1) there exist m ≤ 0 < n such that yn−1
m is 〈 or 〉; Or

(2) there exists an i ≥ 1 and an n > 0 such that 〉Ki occurs in yn−1
0

but 〈Ki does not.

On the other hand, if y0 belongs to one of the B blocks, then (2) is
ruled out by the properties of the filler blocks. (1) is ruled out by
properties of the level one blocks in Lemma 7 (Hi) and (Hiii).
For each symbol in y, one can therefore decide whether it belongs

to one of the B blocks or one of the F blocks. Hence given the first
coordinate of Ψ(x), (the element of Y ) one can recover the sequence of
Bi blocks and hence applying φ−1

1 to each of them, one can recover x
up to translation, completing the proof of property (d).

�

5. Proof of Theorem 1

Bowen and Ratner constructed symbolic dynamics for geodesic flows,
proving the following theorem.

Theorem 10 (Bowen, R. [4] and Ratner, M. [20]). Let (W t)t∈R be ge-
odesic flow on a compact surface of variable negative curvature M,
with unit tangent bundle UT(M). There exists a suspension flow
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(susp(Y, f), (T t)t∈R) over a subshift of finite type Y under a Hölder
continuous function f : Y → (0,∞), and a finite-to-one continuous
surjection from π : susp(Y, f) → UT(M) such that π ◦W t = T t ◦π for
all t ∈ R.

Furthermore, the subshift of finite type Y can be chosen to be irre-
ducible [6, Lemma 2.1], [5, Section 3], and π is one-to-one on a set of
full measure for any measure that is ergodic and fully supported [19,
Theorem III.8].
Note that if map π in Theorem 10 were one-to-one for all ergodic

measures, then Theorem 1 would follow immediately from Theorem
2. We will not be able to use Theorem 10 directly because the map
we define for Theorem 3 has an image which is in general not fully
supported. We will use the following corollary, which is a consequence
of the Proof of Theorem 10 given by Bowen [4].

Corollary 11 (Corollary of Bowen’s proof of Theorem 10). There ex-
ists W ∈ Bm(Y ) for some m such that π is one-to-one on the set of
all (y, s) ∈ susp(Y, f) such that for infinitely many positive n ≥ 0 and
infinitely many n < 0, we have (θny)m−1

0 =W .

Proof of Theorem 1. As in the proof of Theorem 2, by the Jewett-
Krieger theorem [15], we may make the simplifying assumption that
the measure-preserving system that is to be embedded is a uniquely
ergodic subshift. Let (susp(Y, f), (T t)t∈R), π, and W be given by The-
orem 10 and Corollary 11. Now repeating verbatim the proof of The-
orem 3, but using the specific word W gives and embedding of X into
Y , where W appears in the image points infinitely many times in the
future and the past. Corollary 11 then implies that π is one-to-one on
the image of Ψ. The composition yields the result. �

Proof of Corollary 4. Let (Ω′,D′, ν ′) be a non-atomic probability space
endowed with an ergodic measure-preserving automorphism S ′. Con-
sider the automorphism S defined on Ω := Ω′×{0, 1} given by S(x, 0) :=
(x, 1) and S(x, 1) := (S ′(x), 0) for all x ∈ Ω′, and the measure p on
{0, 1} such that p(0) = p(1) = 1/2. It is easy to verify that S is ergodic
and preserves the measure ν := ν ′ × p. Furthermore, by [9, Lemma
8.7], S does not have a square-root; that is, there does not exist a sub-
set of Ω× {0, 1} of full measure for which there is measure-preserving
automorphism U such that U ◦ U = S on the subset. Hence the result
follows immediately from Theorem 1 and choosing S ′ and thus S with
measure-theoretic entropy sufficiently small. �

Proof of Corollary 11. Let P be the Markov partition of UT (M). It
is known that the elements of P are the closure of their interiors, and
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that their interiors are disjoint. Let B ∈ P. By expansiveness of
geodesic flow, there exists a cylinder set W in Y and an interval J such
that π(W × J) ⊂ int B. The map π is one-to-one on the preimage
of the set of points whose orbits never intersect the stable or unstable
boundaries of the Markov partition. Further, the union of the stable
boundaries of the elements of the partition is forwards-invariant, while
the union of the unstable boundaries of the elements of the partition
is backwards-invariant.
If W appears infinitely often in the future of y, then π(y, s) cannot

belong to the stable boundary. IfW appears infinitely often in the past
of y, then π(y, s) cannot belong to the unstable boundary. By the above
observations about invariance, the orbit of π(y, s) never hits the stable
or unstable boundaries of the partition and so π−1(π(y, s)) = {(y, s)}
as required. �

6. Appendix

The arguments given above also allow us to resolve a second ques-
tion about geodesic flow due to Ledrappier and Federico and Jana
Rodriguez-Hertz, who asked if a minimal subset for the R-action of ge-
odesic flow is necessarily minimal for the Z-action of the time one map
of the geodesic flow. We give a counterexample to this using Corollary
11 above.

Proposition 12. Let (Gt)t∈R be the geodesic flow on a compact surface
of variable negative curvature M, with unit tangent bundle UT(M).
Then there exists a minimal subset C for the R-action on UT(M) that
is not minimal for the Z-action.

Proof. As before, let susp(Y, f) be a suspension over an irreducible shift
of finite type and π be a continuous factor map from the suspension
flow to the geodesic flow. By Corollary 11, let W be a Y -block such
that on the set of points for which W appears infinitely often in the
past and the future, π is one-to-one.
If Y contains a periodic point A with rational period in the suspen-

sion, then let x = π(A, 0). Clearly the R-orbit of x is closed and the
Z-orbit is a discrete subset.
Suppose then that susp(Y, f) has no periodic points with rational

period in the suspension. Let B0 and B1 be two Y -blocks in which W
appears, such that BiBj is a Y -block for all pairs i, j ∈ {0, 1}. Let
them agree on sufficiently many symbols at each end that switching
any number of B0’s for B1’s or vice versa in a point y ∈ Y does not
change the length in the suspension of any contiguous block (disjoint
from the blocks being switched) by more than 1

10
(see (6)). We may
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also assume that B0 does not contain any B1’s and B1 does not contain
any B0’s. Finally we will assume that the Bi are not powers of smaller
words. See Lemma 7 (D) for a similar construction.
We build a point y in Y in the following way: Let

y(n) = · · ·B0B0. Bi1 · · ·Bin B0B0 · · ·

where the (in) are defined recursively by

in =

{

1 if the block Bin−1
ends within 1

10
of Z in y(n−1);

0 otherwise.

The limit point is then y = · · ·B0B0.Bi1 Bi2 · · · . Notice that in y
the B0 and B1 both appear with bounded gaps (because in any suffi-
ciently long block of B0’s, say, their lengths in the suspension become
arbitrarily close to ALen(B0, f), the fractional parts of whose multiples
are dense in [0, 1)). Also all B1’s start at points of Z + [−1

5
, 1
5
] (when

subsequent blocks are altered the starting points may move by up to
1
10
). Let Ω denote the ω-limit set of y under the R-action. By the

above observation, all points of Ω have B0’s and B1’s appearing with
bounded gaps. Further, for each (z, s) ∈ Ω, there is a β ∈ [0, 1) such
that all B1’s begin at points of Z + β + [−1

5
, 1
5
]. Let C be a minimal

subset of Ω (under the R-action) and let (z, s) ∈ C. Suppose that B1’s
start at points of Z+ β + [−1

5
, 1
5
]. Then the same is true of the Z-orbit

closure of (z, s), Ω′ ⊆ C). So Ω′ is a closed Z-invariant subset of C.

Since T
1

2 (z, s) 6∈ Ω′, we see that Ω′ is a proper closed Z-invariant subset
of C, so that C is not minimal for the Z-action.
By Corollary 11, since C consists of points with infinitely many W ’s

in the past and the future, the restriction of π to C is one-to-one. Since
C is compact, π is a conjugacy between the real action on C and the
real action on π(C). Hence (lack of) minimality is preserved and π(C)
is minimal for the R-action on UT(M) but not for the Z action. �

In the following example, we construct a filling function over the full
shift taking only rational values, but for which the greatest common
divisor of any finite number of orbits is positive. Further it has the
property that susp(X \ F, f) fails to be topologically weak mixing for
any word F .

Example 1. Let X be the full two shift on {0, 1}. Let Nk = 3k, Ek =

{x : xNk−1
0 contains all k-blocks} and ak = 1 + 2−Nk+1. Let K(x) =

min{k : x 6∈ Ek} and define f(x) = aK(x).
This is a Lipschitz function taking only rational values. Now fix any

word w, of size k, say. All points of X \ w take f values that are a
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multiple of 2−Nk+1 so that the sums of f over periodic points that don’t
contain any w’s are multiples of 2−Nk+1.
However the greatest common divisor of the full set of periods is 0.

To see this, let w1 and w2 be two distinct words of size k. Assume
further that 0kw1 does not contain a w2 and w20

k does not contain a
w1. Take a block of size Nk containing w1 as its first k symbols and w2

as its last k symbols with no w1’s or w2’s between. Further ensure that
the block contains all k words. Extend this to a block of size 2Nk by
adding Nk 0’s and let x be the periodic orbit obtained by concatenating
this word. Summing f over the period, one obtains exactly one value
of 1 + 2−Nk+2 while all the other values are multiples of 2−Nk+1 so that
the period in the suspension is an odd multiple of 2−Nk+2. Since the
point 0 has a period in the suspension of 1+2−9, the greatest common
divisor of these two periods is a factor of 513/2Nk+2. Since this holds
for all k, the example is complete.
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