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Abstract

Semi-invertible multiplicative ergodic theorems establish the existence
of an Oseledets splitting for cocycles of non-invertible linear operators
(such as transfer operators) over an invertible base. Using a constructive
approach, we establish a semi-invertible multiplicative ergodic theorem
that for the first time can be applied to the study of transfer operators
associated to the composition of piecewise expanding interval maps ran-
domly chosen from a set of cardinality of the continuum. We also give an
application of the theorem to random compositions of perturbations of an
expanding map in higher dimensions.

1 Introduction

1.1 Motivation and History

Oseledets’ proof, in 1965, of the multiplicative ergodic theorem is a milestone in
the development of modern ergodic theory. It has been applied to differentiable
dynamical systems to establish the existence of Lyapunov exponents and plays
a crucial role in the construction of stable and unstable manifolds. It also has
substantial applications in the theory of random matrices, Markov chains, etc.

The proof has been generalized in many directions by a number of authors
(including Ruelle [40], Mané [37], Ledrappier [26], Raghunathan [39], Kaima-
novich [25] and many others). In the original version, one has an ergodic
measure-preserving system o: 2 — € and for each w € (), a corresponding
matrix A(w) € My(R). Under suitable integrability conditions on the norms
of the matrices it is shown that over almost every point, w, of 2, there is a
measurably-varying collection of subspaces (V;(w))1<i<k, with a decreasing se-
quence of characteristic exponents A; such that (i) the subspaces are equivariant
- that is, A(w)(Vi(w)) C V;(ow); and (ii) that vectors in V;(w) (typically) expand
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at rate \; under sequential applications of the matrices A(c?w) along the orbit.
That is,

lim log | A(c™ 'w) - - A(w)o]| = Ar.

n—,oo N,

More specifically and of crucial significance for this article, Oseledets’ multi-
plicative ergodic theorem was proved in two versions: an invertible version and
a non-invertible version.

In the invertible version the following is assumed: ¢ is an invertible trans-
formation of Q; the matrices A(w) are each invertible and [ log™ || A(w)| dP(w)
and [log" ||A(w)~!| dP(w) are both finite. The conclusion of the theorem is
then that there is for almost every w a measurable splitting of R%:

Rd:Yl(w)@YQ(w)@@Yz(w) (].)
such that for all v € Y;(w) \ {0}
(n)
- log [ A®) @)

AT T @)
(n)

. I 3

n——oo n

where A(™ denotes the matrix cocycle A(c™ 'w) - -- A(w) for n > 0 whereas for
n <0,itis A(lc™"w)" -  A(c7tw) "L

In the non-invertible version of the theorem, ¢ is no longer assumed to be
invertible and there is no assumption on the invertibility of the matrices A(w).
In this case there is a weaker conclusion: rather than a splitting of R% one
obtains a filtration: A decreasing sequence of subspaces of R¢

R? = Vi(w) D Va(w) D ... D Vi(w) (4)

such that for all v € V;(w) \ Vi41(w) (defining V;41(w) to be {0}), holds.

In [I8], Froyland, Lloyd and Quas refined the dichotomy between invertible
and non-invertible versions of the theorem, introducing a third class of versions
of the theorem: semi-invertible multiplicative ergodic theorems. For semi-in-
vertible ergodic theorems the underlying dynamical system is assumed to be
invertible, but no assumption is made on the invertibility of the matrices. The
conclusion of the theorem in this category is that there is again a splitting of
the vector space (instead of a filtration) and that for all v € Y;(w) \ {0},
holds (but not which does not make sense in this context).

Our motivation for considering semi-invertible multiplicative ergodic theo-
rems comes from application-oriented studies of rates of mixing due to Dellnitz,
Froyland and collaborators [12} [T, [I7]. Given a measure-preserving dynamical
system it is called (strong-) mixing if u(ANT"B) — u(A)u(B) for all mea-
surable sets A and B. This is an asymptotic independence property for any
measurable sets under evolution.

An equivalent formulation of mixing is that [ f-goT™ du should converge to
[ fdp [ gdu for all L? functions f and g. Clearly nothing is lost if one demands
that the functions should have zero integral.



Relaxing the assumption that p is an invariant measure, one may take pu
to be some ambient measure (e.g. Lebesgue measure in the case that T is a
smooth map of a manifold or subset of RY). A key tool in this study is the
Perron- Frobenius Operator or transfer operator, L, acting on L!(u). This is
the pre-dual of the operator of composition with 7" acting on L°°, the so-called
Koopman operator, so that [ f-goT'du = [ Lf-gduforall f € L' and g € L*).
In many cases one can give a straightforward expression for £f. It is not hard
to check from the definition that £f = f if and only if f is the density of an
absolutely continuous invariant measure for 7.

One might naively ask for the rate of convergence of f frgoT™du to 0 if
indeed the system is mixing, but simple examples show that there is no uniform
rate of convergence: one can construct in any non-trivial mixing system, func-
tions f and g such that the rate of convergence is arbitrarily slow. One does
however obtain rates of mixing if one places suitable restrictions on the class of
‘observables’ f and g for which one computes f f-goT™du. It turns out that
an important reason that the Perron-Frobenius operator is so useful is that if
one restricts the function f to a suitable smaller Banach space of observables
B C L', then in many cases £ maps B to B; and better still £ is a quasi-
compact operator on B, so that the spectrum of £ consists of a discrete set of
values outside the essential spectral radius each corresponding to eigenvalues
of £ with finite-dimensional eigenspaces. Given this one can relate the rate of
mixing of the dynamical system (restricted to a suitable class of observables) to
the spectral properties of the operator L restricted to the Banach space B. It
is a key fact for our purposes that the Perron-Frobenius operators £ that one
works with are almost invariably non-invertible.

Ulam’s method takes this one step further, replacing the operator £ by
a finite rank approximation. In works of Froyland [I5] [16] and Baladi, Isola
and Schmitt [3], the relationship between the finite rank approximations of £
and the original Perron-Frobenius operators is studied. This turns out to be
remarkably effective and this is a good technique for computing invariant mea-
sures numerically (see for example work of Dellnitz and Junge [12], Froyland[14],
Keane, Murray and Young [28]). Keller and Liverani [29] showed that excep-
tional eigenvalues of £ (those outside the essential spectral radius) persist under
approximation of L.

In a development of Ulam’s method, [12] and later [16] related the large sub-
unit eigenvalues and corresponding eigenvectors of the finite rank approximation
of L to properties of the underlying system. In particular they showed that
these exceptional eigenvectors give rise to global features inhibiting mixing of
the system (whereas the essential spectral radius is related to local features
inhibiting mixing of the system). For a cartoon example, one can consider a
map of the interval [—1,1] in which the left sub-interval [—1,0] and right sub-
interval [0, 1] are almost invariant (that is only a small amount of mass leaks
from one to the other under application of the map) but within each subinterval
there is rapid mixing- see work of Gonzdlez-Tokman, Hunt and Wright [23] and
Dellnitz, Froyland and Sertl [I1]. In this case one observes eigenvalues that are
close to 1, where the eigenfunction takes values close to 1 on one sub-interval



and close to —1 on the other sub-interval. In applied work Dellnitz, Froyland
and collaborators|2]], [T0] make use of these exceptional eigenvectors to analyse
the ocean and locate regions with poor mixing, called gyres.

The current work (and its predecessors [I8] and [I9]) is motivated by ex-
tending the program of Dellnitz and Froyland to the case of forced dynamical
systems (or equivalently random dynamical systems), that is systems of the
form T(w,z) = (0(w),Tw(z)). Again as a cartoon example, one can consider
the effect of the moon on the oceans: the moon evolves autonomously (and
invertibly), whereas the evolution of the ocean is affected by the position of the
moon. Relating this to the context of the multiplicative ergodic theorem, think
of the dynamical system o: 2 — Q as being the autonomous dynamics of the
moon and the w-dependent matrix to be a map on a Banach space of densities
in the ocean. The aim is, once again, to identify and study the second and
subsequent exceptional eigenspaces with a view to understanding obstructions
to mixing. The importance of the semi-invertible multiplicative ergodic theo-
rems here (the underlying base dynamics is invertible but the Perron-Frobenius
operators are non-invertible) are that the obstructions to mixing, the V2 (w), ap-
pear here as finite-dimensional subspaces rather than the finite-codimensional
subspaces that one would obtain from the standard multiplicative ergodic the-
orems. This program has been demonstrated to work in practice for driven
cylinder flows in an article of Froyland, Lloyd and Santitissadeekorn [20].

In all three works, this paper and its two predecessors, [18] and [19], the goal
is to prove a semi-invertible multiplicative ergodic theorem and apply it to as
general a class of random dynamical systems as possible. In all three papers,
the starting point was a pair of multiplicative ergodic theorems: an invertible
and a non-invertible; and then to derive, using the pair of ergodic theorems as
black boxes, a semi-invertible ergodic theorem.

[18] dealt with the original Oseledets context of d x d real matrices (and
used Oseledets’ original theorem [38] as the basis). [19] dealt with the case of
an operator-valued multiplicative ergodic theorem where the map £: w — L(w)
is (almost)-continuous with respect to the operator norm (using a theorem of
Thieullen [43] as a basis). The current paper deals with the case of an operator-
valued multiplicative ergodic theorem where the map w — L(w) is measurable
with respect to a o-algebra related to the strong operator topology (using a
Theorem of Lian and Lu [35] as a basis).

The applications to random dynamical systems have become progressively
more general through the sequence of works: [I§] applied to finite-dimensional
approximations of random dynamical systems (using the Ulam scheme) as well
as dealing exactly with some dynamical systems satisfying an extremely strong
jointly Markov condition. [I9] applied to one-dimensional expanding maps.
However, since the set of Perron-Frobenius operators of C? expanding maps
acting on the space of functions of bounded variation is uniformly discrete, the
conditions of the theorem restricted the authors to studying random dynamical
systems with at most countably many maps. In the current paper, Lian and Lu’s
result allows us to weaken the continuity assumption to strong measurability
(defined below). Essentially, this amounts to checking continuity of w — Lr, f



for a fixed f. The cost, however, is that the Banach space on which the transfer
operators act is now required to be separable (which the space of functions of
bounded variation, used in [I9], is not). In order to apply the semi-invertible er-
godic theorem to random one-dimensional expanding maps, we make substantial
use of recent work of Baladi and Gouézel [2] who used a family of local Sobolev
norms to study Perron-Frobenius operators of (higher-dimensional) piecewise
hyperbolic maps; see also Thomine [44] for a specialization in the context of
expanding maps. While Baladi and Gouézel were working with a single map,
we show that the Perron-Frobenius operators on the Banach spaces that they
construct depend in a suitable way for families of expanding one-dimensional
maps allowing us to apply our semi-invertible multiplicative ergodic theorem
(making essential use also of an idea of Buzzi [7]). We also point out that, to
our knowledge, it was not even known whether an Oseledets filtration existed
in this setting.

Another feature of the proofs is the way in which the semi-invertible the-
orem is proved from the invertible and non-invertible theorems. The essential
issue is that the non-invertible theorem provides equivariant families of finite
co-dimensional subspaces V;(w) (being the set of vectors that expand at rate
A; or less). One is then attempting to build an equivariant family of (finite-
dimensional) vector spaces Y;(w) so that V;41(w) @ Y;(w) = V;(w).

In [I8] this was done in a relatively natural way (by pushing forward the
orthogonal complement of V;(0~"w) © Vi;1(0~"w) under A(c~w)--- Ao~ "w)
and taking a limit as n tends to infinity).

In [19], the proof exploited the structure of the proof given by Thieullen.
Specifically Thieullen first proved the invertible multiplicative ergodic theorem
and then obtained the non-invertible theorem as a corollary by building an
inverse limit Banach space (reminiscent of the standard inverse limit construc-
tions in ergodic theory). The finite-co-dimensional family V;(w) was obtained by
projecting the corresponding subspaces from the invertible theorem onto their
zeroth coordinate. In [19] it was proved that applying the same projection to the
finite-dimensional complementary family yielded the Y;(w) spaces. This proof,
while relatively simple, is problematic for applications as there appears to be no
sensible way to computationally work with these inverse limit spaces. We see
this proof technique as non-constructive. This non-constructive proof technique
should probably apply with a high degree of generality.

In the current paper we come back much closer to the scheme applied in [18].
The same non-constructive techniques that were used by Thieullen to obtain
the non-invertible theorem from the invertible theorem were used by Son in his
thesis [I3] to obtain a non-invertible version of the result of Lian and Lu [35].
Starting from the non-constructive existence proof of the finite co-dimensional
subspaces we obtain a constructive proof of the finite-dimensional Y;(w) spaces.
We see this as being likely to lead to computational methods although we have
not implemented these at the current time.



1.2 Statement of Results and structure of paper

The context of Lian and Lu’s multiplicative ergodic theorem is that of strongly
measurable families of operators.

If X is a separable Banach space, then L(X) will denote the set of bounded
linear maps from X to X. The strong operator topology on L(X) is the topology
generated by the sub-base consisting of sets of the form {T": | T'(z) — y|| < €}.
The strong o-algebra S is defined to be the Borel o-algebra on L(X) generated
by the strong operator topology. Appendix A develops a number of basic results
about strong-measurability, including the following useful characterization: A
map L: Q@ — L(X) is strongly measurable if for each € X, the map Q — X,
w = L(w)(z) is measurable with respect to the o-algebra on Q and the Borel
o-algebra on X.

Of course the ‘strong operator topology’ is very much coarser than the norm
topology on L(X) - checking continuity in the strong operator topology can
be done one z at a time. This is the essential difference between the result of
Thieullen and that of Lian and Lu: for a given function f, L(w)f and L(w')f
are close if T;, and T,/ are close enough, but the operators Lr,, and L1, are, in
many interesting cases, uniformly far apart. (An exception to this is the setting
of smooth expanding analytic maps.)

For convenience we state our main results here, even though some of the
terms in the statement have yet to be defined. These correspond to Theorems
and in the body of the paper.

Our new semi-invertible multiplicative ergodic theorem is the following (for
simplicity we state the version in which there are finitely many exceptional
exponents; a corresponding version holds if there are countably many exponents
which then necessarily converge to £*).

Theorem A. Let o be an invertible ergodic measure-preserving transforma-
tion of the Lebesque space (0, F,P). Let X be a separable Banach space with
separable dual. Let £: Q) — L(X) be a strongly measurable family of map-
pings such that log™® ||L(w)|| € L*(P) and suppose that the random linear system
R=(Q,F,Po,X,L) is quasi-compact (i.e. the analogue of the spectral radius,
\*, is larger than the analogue of the essential spectral radius, K*).

Then there exists 1 <1 < oo and a sequence of exceptional Lyapunov expo-
nents A\* =Xy > Ao > ... > N > K* (orin the case A =00, \* =Xy > A2 > ..
lim,, oo Ay = K*).

For P-almost every w there exists a unique measurable equivariant splitting
of X into closed subspaces X =V (w) ® ®;=1 Y;(w) where the Y;(w) are finite-

dimensional. For each y € Yj(w) \ {0}, lim,_,o + log ||££,n)yH = \j. Fory e
V (W), limy, e £ log [[£57y]| < 5.

The application to random piecewise expanding systems is as follows:
Theorem B. Let o be an invertible ergodic measure-preserving transformation
of the Lebesgue space (0, F,P). For each w € Q, let T,, be a random expanding



dynamical system acting on Xo C R, Assume further that w +— T, is Borel-
measurable, the C1T norm of T,, is uniformly bounded above, the maps T,, have
a derivative that is uniformly bounded away from 1, and that some integrability
conditions are satisfied.

Suppose that either d = 1 (Lasota-Yorke case); or d > 1 and the maps
T,, are C?, have a common branch partition and belong to a sufficiently small
neighbourhood of a Cowieson map.

Then there exist a separable, reflexive Banach space X containing the C'*°
functions supported on Xq for which the map w — L, given by the transfer
operator associated to T, is strongly measurable, a quantity 1 < I < o0, a
sequence of exceptional exponents 0 = Ay > ... > A\ > k™, (or if | = oo, then
0=X > X >...> k" limy 00 Ay = K*), and a family of finite-dimensional
equivariant subspaces (Y;(x))1<i<i satisfying the conclusions of Theorem .

The main motivation behind our search for semi-invertible Oseledets theo-
rems has been to provide a general framework in which it is possible to identify
low-dimensional spaces that are responsible for impeding mixing in infinite-
dimensional dynamical systems. Following Dellnitz, Froyland and collaborators
we want to extract information not simply from the exceptional Lyapunov ex-
ponents, but rather from the corresponding Lyapunov subspaces.

It is important to note that exponential decay of correlations is not assumed.
Our work applies, for instance, to an example of Buzzi in [6] (Example 3).
Buzzi’s example (which works by essentially having two copies of the interval
and a pair of maps each of which acts as doubling on each interval and then
simply permutes the intervals) fails to have exponential decay of correlations,
but it is still quasi-compact. In our context this will be reflected in the fact
that the top exceptional Lyapunov subspace has multiplicity 2 rather than 1.
In fact, the structure of this top subspace exactly illustrates the goal of our work
because the Oseledets space will consist of a constant function and a function
which is 1 on one of the intervals and —1 on the other, thereby indicating the
source of non-mixing.

In addition, there are examples in the existing literature showing the possi-
bilities of having more than one Oseledets space; that is, [ > 2. In the random
setting, there is an example by Froyland, Lloyd and Quas, [I8, Theorem 5.1]; in
the deterministic case, there is one by Keller and Rugh [30, Theorem 1]. In fact,
it is a priori possible to have all sorts of combinations for number of exceptional
Lyapunov exponents (1 <1 < oo) and multiplicities (1 < mq,...,m; < 00), in
a similar way that square matrices may have different Jordan normal forms.

In section [2f we give the proof of the semi-invertible multiplicative theorem.
In section [3| we introduce the fractional Sobolev spaces (as used in Baladi and
Gouézel) and study the continuity properties of the map sending a Lasota-Yorke
map to its Perron-Frobenius operator. We then adapt the proof given by Baladi
and Gouézel of quasi-compactness for a single map to the situation of a random
composition of one-dimensional expanding maps (using results of Hennion and
Buzzi) to show that the theorem of section [2 applies in this context. We also
present an application of Theorem [A] to piecewise expanding maps in higher



dimensions, building on work of Cowieson [9]. Section [4| summarizes possible
directions for future work.

The paper has three appendices: Appendix A contains results about strong
measurability. Appendix B contains results about the Grassmannian of a sep-
arable Banach space. Appendix C collects some results from ergodic theory:
a useful characterization of tempered maps and a Hennion type theorem for
random linear systems.
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2 Oseledets splittings for random linear systems.

2.1 Preliminaries

Throughout this section, let X be a separable Banach space with separable dual
X*. We start by introducing some notation about random dynamical systems.

Definition 2.1. A strongly measurable random linear system is a tuple
R=(Q,F,P,o0,X,L) such that (0, F,P) is a Lebesgue space, o is a probability
preserving transformation of (Q,F,P), and the generator L : Q — L(X) is

a strongly measurable map (see Definition . We use the notation EEJ") =
Lo tw)o- 0o L(w).

Definition 2.2. The index of compactness (or Kuratowski measure of non-
compactness) of a bounded linear map A : X — X is

| Allic(x) = inf{r > 0: A(Bx) can be covered by finitely many balls of radius r},
where B denotes the unit ball in X.

Definition 2.3. Let R = (2, F,P,0,X,L) be a strongly measurable random
linear system. Assume that [log" ||L,|dP(w) < oo. For each w € €, the
maximal Lyapunov exponent for w is defined as

1
Aw) = lim —log 20V,
n—oo N

whenever the limit exists. For each w € (), the index of compactness for w
1s defined as

1 .
p(w) = lim —1og [ L0 lie(x)

whenever the limit exists. Whenever we want to emphasize the dependence on
R, we will write Ag(w) and kr(w).



Lemma 2.4. Let R be as in Definition . Aw) is well defined for P-almost
every w. The function w — A(w) is measurable and o-invariant.

Proof. The sequence of functions {log ||££Jn) |} nen is subadditive. That is,
log |£5™+|| < log | £33 | + log 1257

Since the composition of strongly measurable maps is strongly measurable by
Lemma and the sets L.(X) = {A € L(X) : |A|| < r} are S measurable by
Lemma , then the map w — HESL)H is measurable. Measurability of the
map w > lim,, s Sup % log HEEJ") || follows. By Kingman’s subadditive theorem

[33], the limit lim, o = log ||££,")|| exists for P-almost every w € €, and it is
o-invariant. O

Lemma 2.5. Let R be as in Definition[2.3. The index of compactness is finite,
submultiplicative and measurable, when L(X) is equipped with the strong o-
algebra S. Thus, k(w) is well defined for P-almost every w. The function w —
k(w) is measurable and o-invariant.

Proof. The index of compactness is bounded by the norm. Submultiplicativity is
straightforward to check. To show S-measurability of the index of compactness,
we present the argument given in Lian and Lu [35]. Let {z;};eny be a dense
subset of X and {y;},;en be a dense subset of B(X). Let U be the (countable)
set of finite subsets of {z;};en. Let U = [J;c Us. Then, one can check that

[o.olNe olNe o]

{Ae LX) : Al <y = J U N U {41 1AW) 2l < (1 = 1/n)r},

n=2i=t j=1z€U;

(see [35, Lemma 6.5] for a proof.) Hence, A ||Al|;c(x) is S-measurable. Thus,
P-almost everywhere existence, measurability and o-invariance of  follow just
like in the proof of Lemma [2.4] U

Remark 2.6. If R has an ergodic base, then A and k are P-almost everywhere
constant. We call these constants \*(R) and &*(R), or simply \* and k* if
R is clear from the context. It follows from the definitions that k* < A\*. The
assumption [log* || L, ||dP(w) < oo implies that \* < occ.

Definition 2.7. A strongly measurable random linear system with ergodic base
is called quasi-compact if K* < \*.
2.2 Construction of Oseledets splitting

The following theorem was obtained by Doan Thai Son [I3] as a corollary of the
two-sided Oseledets theorem proved by Lian and Lu [35].

Theorem 2.8 (Son [13]). Let R = (Q,F,0,P, X, L) be a strongly measurable
random linear system with ergodic base. Assume thatlog™ ||L(w)| € LY (Q, F,P)



and that R is quasi-compact. Then, there exists 1 <1 < oo, numbers \* = A1 >
<> A > K* (orin the casel = 00, A1 > Ao > ... > K5 limy, o0 Ay = K*), the
exceptional Lyapunov exponents of R, multiplicities m1, ..., my, and a filtration
X =Vi(w) D ... D Vi(w) D Viy1(w) of finite-codimensional subspaces (in the
case | = oo we have Vi(w) D Va(w) D ...) defined on a full P-measure, o-
mwvariant subset of Q0 satisfying:

1. For every 1 < j <1, L,V;(w) C Vj(ow), and the codimension of Vji1(w)
in V;(w) is m;. Furthermore, L,Vi41(w) C Vig1(ow).

2. For every 1 < j <l andv € Vj(w)\ Vj1(w),
im 2 (n)
lim —log|| L V0] = Aj.
n—o00 N
For every v € Vi41(w),

1
lim sup — log || £Mv]| < k*.
n—oo N

Remark 2.9. Combining the result of Lian and Lu [35] with Lemma and
the proof of [13], we obtain that the spaces V;(w) forming the filtration given by
Theorem [2-§ depend measurably on w.

The main result of this section is the following.

Theorem 2.10 (Semi-invertible operator Oseledets theorem).
Let R = (Q,F,P,0,X, L) be a strongly measurable random linear system with
ergodic invertible base. Assume that log™ ||L(w)|| € LY(, F,P) and that R is

quasi-compact. Let \* = Ay > --- > N\ > K* be the exceptional Lyapunov
exponents of R, and mq,...,m; € N the corresponding multiplicities (or in the
case l = 00, A\1 > Aa > ... with my, mo, ... the multiplicities).

Then, up to P-null sets, there exists a unique, measurable, equivariant split-
ting of X into closed subspaces, X =V (w) @ @;:1 Y;(w), where possibly V (w)
is infinite dimensional and dimY;(w) = m;. Furthermore, for everyy € Y;(w)\
{0}, lim,, s 1 log Hﬁgl)yH =\, for everyv € V(w), limsup,,_, ., + log ||££,")v|| <

n
k* and the norms of the projections associated to the splitting are tempered with
respect to o (where a function f: Q — R is called tempered if for P-almost every

w, hmn—)j:oo %1Og |f(a"w)| = 0)

The proof of occupies the rest of the section. First, we present Lemma
that allows us to choose complementary spaces in the filtration of Theorem
2.8l Then, Lemma [2.12| provides an inductive step that establishes the proof of
Theorem 2100

Lemma 2.11 (Existence of a good complement). Let the filtration Vi(w) D
... D Viyi(w) be as in Theorem|2.8 Then, for every 1 < j <1, there exist m;
dimensional spaces U;(w) such that the following conditions hold.

10



1. For P-almost every w € Q, Vi1 (w) @ Uj(w) = Vj(w).
2. The map w +— Uj(w) is (F,Bg(X)) measurable.

Forj=1, let Ucj(w) = {0}, and for1 < j <1, let Ucj(w) = P
Then,

S |y vy eve, 0l v, jusevs, ol € L°(Q, F,P).

Proof of Lemma[2.11, We present the proof where X is a uniformly convex
Banach space, as the construction of the complements U(w) is somewhat more
explicit, which could be useful for numerical simulations. The general proof
could proceed by using separability of G¥(X), established in Lemma to
select U(w) in a similar way to that used in the proof below.

We proceed by induction on j. Fix some 1 < j < [. If j > 1, assume
the statement has been obtained for 1 < j' < j. Let V(w) = Vj(w), Vi (w) =
Vit1(w) and k = m;. Also, let U_(w) = {0} if j =1 and U_(w) = P, ; Uy (w)
if j > 1. Let {z;};en be a countable dense subset of the unit sphere in X.

Let us recall that if X is a uniformly convex Banach space and W C X is
a closed subspace, then for each x € X, there is a unique nearest point of W
to x. We call this point pw (z). As proved in Lemma this map depends
continuously on z. Also, recall that if W, W’ are closed subspaces of X such
that W’ G W, there exists w € W such that [|w|| = 1 and d(w, W') = 1.

Let € > 0 be small. Conditions on the smallness of € will be found along the
proof. For 1 <1 <k, we define in a recursive manner 4;(w) = x, by

I Ui(w).

(2

r =min{i € N: d(z;, V} (w)Pspan(uy (w), ..., u_1(w)) > 1—e,d(z;, V(w)) < €},

where in the case [ = 1 the span is simply {0}. Let u;(w) = py () (@ (w)). Then,
1-—e<||lw(w)] <1l+e.
Let U(w) = span(us (w), ..., ug(w)). Then, U(w) C V(w).

Proof of .
By definition, for each 1 <1 < k, d(uj4+1(w),span(u(w),...,u(w)) > 1 — 2e.
Hence, if e < 1, dimU(w) = k.

We can show that U(w) N Vi (w) = {0} as follows. Let z € U(w) N Vi (w).
Write = Y% a;u;(w), let M = max; 3|a;| and let j be such that M = 37|a;].
Then,

0=d(z,Va(w)) >d (Zi: aius (W), V+(w)> - H zk: aiui(w)H

i=j+1
> d(aji;(w), Vi(w) @ span(ui (W), ..., uj-1(w)))

— lasl (@) — (@) - 5 aius )|
i=j+1
> Jas](1 — 2¢) = (1+ )M ( Zk: 371) = M3 (1 - 5¢)/2.
i=j+1

11



Hence, if € < 1, we get that M = 0 so that all of the a; are 0 and U(w) N
Vi (w) = {0}. Therefore, V, (w) ® U(w) = V(w).

Proof of .
It follows from the choice of @; (w) that the set {w : @;(w) = x, } is measurable for
each . Therefore the maps w + @;(w) are (F, B(X)) measurable. Lemma [B.22]
shows that the function p : X x G¥(X) — X given by p(x,V) = py(z) is con-
tinuous. Hence, the map w — w;(w) = p(u;(w), V(w)) is (F, B(X)) measurable,
in view of Remark

It follows from the choice of u;(w) that the sets {u; (w), ..., ur(w)} are 2e-nice

bases for U(w) (see Definition on page . Using Corollarywe conclude
that if € is sufficiently small, the map w — U(w) is (F, Bg(X)) measurable.

Proof of (3).
The maps HU]-HV-+1®U<J-(');HVj+1HU-$U<j(~) : (Q,f) — (L(X),S) are measur-

able by Remark and Lemma
Observe that

Hujviev_(w) + vy juev_(w) = viju_w) = v, jue;w) 0 o My, juesw),

which is bounded by the inductive hypothesis. Hence, in order to show , it
suffices to show that ||IIyv, gu_(w)|l is bounded. Moreover,

Hyviev_(w) = Hujjvy ) o v, jus;w) © - o Mg oy w),

where Iy v, () : V(w) = U(w). Hence, in order to show that ||y v, u_ ()|l
is bounded, it suffices to show that ||IIy |y, ()| is bounded, by the inductive
hypothesis.

Let z € V(w) = U(w) ® Vi (w) and write x = u+v with u = Zle a;u;(w) €
U(w) and v € Vi (w). Recall that 1 — e < |luy(w)|| < 1+ € for every 1 <[ < k.
Then,

Moy, @l =l < (1+ Ok max Jail.

As before, let M = max; 3'|a;| and let j be such that M = 3%|a;|. Then, by
the argument used in the proof of , we have

ol > d(u, Vi (@) 2 d(iaiui<w>,v+(w>) | S wn)
i=1 i

i=j+1
< A3-i(] > 137k —
M377(1 —5¢)/2 nax la;|37%(1 — 5¢)/2,

Hence ||y v, @)l < %, which gives a bound, provided € < 1.

O

As before, fix some 1 < j < [ and let V(w) = Vj(w), Vi(w) = Vjt1(w),
k=mj; =codim(V;,V), A= A; and p = Ajyq1.
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Lemma 2.12. Let R = (Q, F,P,0,X, L) be a strongly measurable random lin-
ear system with ergodic invertible base. Let logt ||L(w)| € LY(Q, F,P) and R be
quasi-compact. Let U(w) be a good complement of Vi (w) in V(w), as provided
by Lemma @ Forn >0, let Y™ (w) = ,CE‘TL_)%U(U*"LU). Then, for P-almost
every w the following holds.

1. (Convergence) As n — oo, Y™ (w) converges to a k-dimensional space
Y (w), which depends measurably on w.

2. (Equivariant complement) Vi (w) @ Y(w) = V(w). Hence, for all y €
Y (w) \ {0}, lim,, o * log ||£8L)y\| = \. Furthermore, L,Y (w) =Y (ow).

3. (Uniqueness) Y (w) is independent of the choice of U(w).
Let Y(w) = D, Yi(w). Then,

4. (Temperedness) The norms of projections I1y (w) :=Ily, |y, and z(w) :=
HY/H\@(w) are tempered with respect to o.

Before proceeding to the proof of Lemma let us collect some facts that
will be used in it. For j =1, let U_(w) = {0}, and for 1 < j <, let U_(w) =
@z;ll Ul(w) Then, we have that HVHU,(w) = HVJrHU@U,(w) + HUHVJrGBU,(w)'
Also, by invariance of V(w) under £, we have that

Loy v_w) = My, jvev_ (v T Huviev_ (ow) Loy, jvev_ @) Hluv, ev_ (w))-

Let
Loo(w) = Uy, jvev_ (ow) Lully, juar_(w)
Lo1(w) =y v, eu_ (ow) Loy, juavr_ (@)
Lyo(w) =y, jvev_ (cw) Lulluviev_ (@)
L11(w) = Uy v, eU_ (ow) Lolluv,ov_ (w)-

Note that by invariance of Vi, Lo1(w) = 0, P-almost surely. Therefore, £, o
HVHU_ (W) = Loo(w) + L1o(w) + L11(w).
Let /J(()’S) (w) =Ty, jvev_ (Unw)ﬁb(u”)ﬂw |UaU_ (w), and define operators £§{1’) (w)

and Eﬁl) (w) analogously. It is straightforward to verify the following identities.
L5 (@) = Loo(6™ W) ... Loo(w), (Loo)
ACYIL)(W) = £11(0'n_10.))...£11(w). (Lll)

By induction, we also have that

n—1
L w) =3 £ (0" w) Lio(o" )L (). (L1o)
1=0

Sublemma 2.13. Under the assumptions of Lemma[2.13, the following state-
ments hold.
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1. For P-almost every w € €2,
lim llog HE(”)(w)II S p
n—oo N 00 ’

Furthermore, for every ¢ > 0 and P-almost every w € €0, there exists
D4 (w) < 0o such that for every i > 0,

1£50 (07wl < Dy (w)ete+.
Applying this with w replaced by oc™w we obtain

|£50 (") < Da(0"w)e ¢+,

2. For every € > 0 and P-almost every w € Q, there exists Da(w) < o0 such
that for every n € Z,

1£10(c"w)[| < Da(w)el™.
3. For P-almost every w € Q, and every u € U(w) \ {0},
lim - log [ £ (@)ul = A

In particular, L11(w)|v(w) : U(w) = U(ow) is invertible for P-almost every
w. Furthermore, for every ¢ > 0 and P-almost every w € €, there exists
C(w) < 0o such that for every n > 0, and every u € U(oc™"w) satisfying
Jul =1

1257 (0™ "w)ul| = C(w)e" =),

Proof.
Proof of .

From the definition, [|£53) ()] < [Ty, jrav_ @mw I1£8” v, @ Ty, jrau_ @)l

By Theorem we have that lim, . 1 log \|££,")|V+(w)|| = p. Using that
Iy, juev_(w) i tempered with respect to o, which follows from Lemma ,
we get that for P-almost every w,

. (n)
Jim —log [ Lo (w)ll < p
The second claim follows exactly like Claim C in the predecessor paper, [18].
Proof of .
[£10(c"@)[| < My, jvev_ (onriw I £omwllIMujv,ev_(omwll. Since log™ || L]

is integrable with respect to P, using the Birkhoff ergodic theorem, one sees
that lim, 4o |}l—‘log||£(,nw| = 0 for P-almost every w. Using again that
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Uy viev_ () and Iy, jueyu_(v) are tempered with respect to o, we get that
for P-almost every w,

1
—log || £10(0™w)]| = 0.

lim
n—=+oo |’n,‘

Thus, the claim follows.

Proof of .

We use the bases {ug(w),...,ur(w)} and {u;(ow),...,ur(ow)} constructed
in the proof of Lemmato express £11|y(w) : U(w) = U(ow) in matrix form.
Recall that the norms of {u;(w),...,ur(w)} are bounded functions of w. Also
from the proof of Lemma , we have that

k
37k (1 — 5e¢)
|2 a2 =5 max fod.

Condition of Lemma implies that the multiplicative ergodic theorem

of Oseledets [38] applies to £11. Hence, convergence of 1 log Hﬁgqb)(w)uﬂ follows
from Equation (L11)). Call this limit A. Thus, for every ¢ > 0 there exists a

constant D(w, u) < oo such that ||£§?) (wW)u|| < D(w,u)er™+e),
On the one hand, by definition and invariance of V(w), we have that

L (w) = Uy v, ov (ome) L0 v, 00 (w)
= oy, ev_(omw) L5 v ujv,eu- w)-

Therefore,

T R !
A= lim —log 1£17 (w)ull

1 .
< lim —(log" |y v, ev_(onw || +10g™ L8y @) || +log™ IMuyv, ov_(w)l) = A

n—o00 N

The last equality follows from Theorem and temperedness of Iy v, av_ (w)
with respect to o.
On the other hand, for any u € U(w) \ {0},

£ = (128 (w)u + L8 W)ull < 1255 (@)l + 1£57 (w)ul

n—1
= |3 £em ) Laolom )£ )| + 168 @)ul
1=0

n—1
<M £§0 @ )| | Lrole T )| |25 (@)u]| + £ @)l
1=0
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Let us estimate the first sum. In view of parts and 7 we have that

n—1
>0 @ w)[[[£ao(e" ) £V @)l
i=0

1
<D (o_nw)‘D2 (w)D(w, u) ei(que)e(nfifl)ee(A+e)(n7i71)

S
|

i
- O

<Dy (O'nw)Dg (OJ)D(OJ, u) e(n—l)(max(A,u)+2e)-
0

3

i

Let M > 0 be such that P(D;(w) < M) > 0. Then, by ergodicity of o, for
P-almost every w, there are infinitely many n such that D;(c"w) < M. For
every such n we have that

150 ()] < M Dy(w)D(w, u)nen =D max(hum+2),

Hence,

| (n)
— < .
liminf —log [L1g (w)ull < max(A, p)

By definition of A, we also know that
im ~log £ (w)ul = A.

Therefore,

1
A= lim —log||£{u|| < max(A, p).
n—oo N

Recalling that u < A, we get that A < A. Combining with the argument above,
we conclude that A = A as claimed.
The almost-everywhere invertibility of £11(w)|y (. follows immediately.
The last statement follows as in the case of matrices in the predecessor paper
[18, Lemma 8.3]. O

The following lemma will be useful in the proof of Lemma [2.12|(3).

Lemma 2.14. Assume Y'(w) is a measurable equivariant complement of Vi (w)
inV(w). From Theorem for everyy’ € Y/ (w)\{0}, lim,,_,0 < log ||££J”)y’|| =
A.  Furthermore, for every e > 0 and P-almost every w € ), there exists
C'(w) > 0 such that for every n >0, and every y' € Y'(w) satisfying ||y'|| = 1,

1£5VY || > € (w)e ™).

Proof. The proof follows from the corresponding statement for matrices due to
Barreira and Silva [5], as in [I9, Lemma 19], with the only difference being
the choice of suitable bases for Y’/ (w), which in our setting may be done in a
measurable way similar to that used for the proof of Lemma [2.11 O
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Proof of Lemma |2.12,

Proof of .

The proof follows closely that presented in [I8, Theorem 4.1], for the case of
matrices. First, we define

() = |£50 (0~ w)ul
wet @) lul=1 || £§} (o~ mw)ul

Then, using the characterizations from (L11)) and (L1o|) together with invertibil-
ity of £11(w), we have that

—1 i . i
= MAXy ey (o—i—1w), fuf=1 |[Lho(0 W) Lig(o ™ w)ul|

min,ep (o-i-10),juf=1 L1 (07 w)ul

(W) <

Let ¢ < 2=£. Using Sublemma we have that for P-almost every w, there
is a constant (' (w) < oo such that

1
—

gul0) < C'() 3 A9,

%

I
o

Hence, M (w) := sup,,cy gn(w) < oo for P-almost every w.

Next, we show that the sequence of subspaces Y (™ (w) = L("_WU(J_”w)
forms a Cauchy sequence in Gy (X).

Let m > n. By homogeneity of the norm, the expression

max{ sup  d(z,Y™(w)N B), sup d(z, Y™ (w) N B)}
z€Y (™) (w)NB z€Y (M) (w)NB

coincides with

max{ sup d(z, Y™ (w) N B), sup d(z,Y ™ (w) N B)},
z€Y (M (w)NS(X) z€Y (M) (w)NS(X)
where S(X) is the unit sphere in X.
First, let 2 € Y™ (w) N S(X). Then z = E((fn)

ZnyW, With u € U(o™"w). Since
£(m7n)( ~™Mw) is invertible for P-almost every w, there exists u’' € U(oc™™w)
such that E " ,") ! = uw, for some v € V, (0~ "w). Sincev = L™ (6= mw)u/
and u = E(fln n) (c~™w)u/, we have that [jv]| < M (o7 "w)]||ul.

Let y = Cg@nwu’ € Y™ (w). Then, y = = + Egn,)nw(v). Also7 ||£§n)nw( | <
Dy (w)e™ B+ M (o"w)||ul|, with Di(w) as in Sublemma . Using Sub-
lemma, , we also have that

1= ||z = |2, ull > Cw)e" =9 |u.

o "w

Letting K (w) = %(( ) and a = A\— p—2¢, we get that d(z, Y™ () < |ly—z| =
||£(") L < K(w)M (o "w)e™*". By the triangle inequality, d(z, Y™ (w) N
B) < 2d(x,Y(m)( )). Therefore,

d(z, Y™ (w) N B) < 2K (w)M (0 "w)e ™. (5)
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Second, let y € Y™ (w) N S(X). Then, y = Eg@nwu' for some u' €
U(c™™w). Let Egrffz)u’ =u+v, with v € U(o™"w) and v € V; (c7"w).

Using once again the definition of M(w) at the beginning of the proof, we
have that ||v]| < M(o~"w)]|lu||, combined with Sublemma we obtain that

15, ol < K(@)M (o~ w)e= 1L, ull.

o~ "w o "w

On the other hand, since ﬁg"_)%(u +v) =y, we have

15, ull <yl + 125, ol < 14 K (w)M (o "w)e= ™|, ull.

o~ "w o "w o "w

Therefore, whenever K(w)M (0 "w)e™*" < 1, we have

1
£, ) < :
Moo=l < T ROy a (o rm)ean

Since E((Tn,)nwu € Y (w), we have

K(w)M (o~ "w)e o™
1— K(w)M(oc—"w)e—on’

d(y, Y (w)) < |ly — £, ull = £, ] <

o~ "W oW

As before, we use the triangle inequality to conclude that

2K (w)M (o~ "w)e™ ™
1— K(w)M(oc—"w)e—on’ ©)

d(y, Y™ (w)NB) <

Combining and @, we get that

2K (w)M (o~ "w)e™ "

AV YW < T Ao

Therefore,

4K (w)M (o™ "w)e™ "
1 - K(w)M(oc—"w)e—an

AY™) (W), Y™ (w)) < for every m,m’ > n,
provided K(w)M (o™ "w)e " < 1.

Since M (w) < oo for P-almost every w, there exists an A > 0 such that
P(M(w) < A) > 0. By ergodicity of o, for P-almost every w, there exist
arbitrarily large values of n for which M(c"w) < A, proving that Y (™) (w) is a
Cauchy sequence. Therefore, it is convergent. Let us call its limit Y (w).

Measurability of Y™ (w) comes from Corollary [B.14, Hence, measurabil-
ity of Y (w) follows from the fact that the pointwise limit of Borel-measurable
functions from a measurable space to a metric space is Borel-measurable.
Proof of .

By closedness of G(X), we know that Y (w) € Gi(X). Since Y (w) is the limit
of subspaces of V(w) and V(w) is closed, it follows that Y (w) C V(w). We
also have that Vi (w) is a k-codimensional subspace of V(w). Hence, to show
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that Y(w) ® V4 (w) = V(w), we must show that Y(w) N Vi (w) = {0}. Let
x € Y (w), with ||z|| = 1. Then, z = L'((Tn,)n v’ for some v’ € U(o~"w). Writing
x =u+v, with u € U(w), v € Vi (w), we have that ||v]| < M(w)|lu|. Thus,
1= |z|| < ||ul]|(1+M (w)), which yields [ju] > 1+]\1I(w) Since this holds for every
n, every x € Y (w) with ||z|| = 1 when decomposed as = v+ v with v € U(w),
v € Vi (w), also satisfies ||ul| > m Therefore Y (w) NV, (w) = {0}.

The second statement follows directly from Theorem

To show invariance, we observe that £,,Y (") (w) = Y("Jrl (ow). Also, by the
previous argument combined with Sublemmal[2.13], we have that for every n > 0,
(L, Y™ (w)) € G(N,k,0) for some N > 0 (see notation of Lemma , and
(L,,Y(w)) € G(N,E,0) as well. Hence, by Lemma limy, 00 £,V (w) =
L,Y (w). Thus, £L,(Y(w)) =Y (ow).

Proof of .

Let Y_(w) = ,; Yi(w). Assume Y'(w) is a measurable equivariant comple-
ment of Vi (w) in V(w). We will show that V' (w) = Y (w) for P-almost every
we Q. Let R(w) =TIy, jyay_ (w)- Remark and Lemmaimply that R
is (F,S) measurable. Let h(w) = [[R(w)]y+(w[|. Then, h is non-negative and,
in view of Lemma [B.16] A is (S, B(R)) measurable.

We claim that for P-almost every w, lim, o h(c"w) = 0. We will show
this in the next paragraph. Given this, we can finish the proof as follows. Let
E; = {w: h(w) < 1}. The claim implies that P-almost every w, o"w € E; for
sufficiently large n. Hence, by the Poincaré recurrence theorem, P(Q2\ E;) =0
for all i € N, and therefore, since h is non-negative, h(w) = 0 for P-almost every
w. This implies that Y/ (w) C Y (w) ®Y_(w). On the other hand, Y (w),Y'(w) C
V(w), and by part (2), V(w)NY_(w) = {0}. So Y’(w) C Y (w). Since Y (w) and
Y’(w) have the same dimension, Y’ (w) = Y (w) as claimed.

The proof of lim,_, h(c™w) = 0 proceeds as in [19, §3.2]. Let ¢y € Y’ (w) \
{0}. Since R(w)y € Vi(w), Sublemma [2.13|[l) implies that for every e > 0,
there exists some D’(w) < oo such that H,CS,”)R( W < D' (w)e™®#+9)|y/||. By
Remark for every € > 0, there exists some C(w) > 0 such that ||£{"y/|| >

C'(w)e™ =1yl Let e < )‘%4“. Then, ”L“(l“z(:j)(:,)uyl” < g,gs; —n(A-p=2€) for

every n > 0. Consider the closed sets
Dy ={y €Y' (w): |ILMR(w)y'|| < Ne "A=1=29|| £ y/|| for all n € N}.

Since Uy ey PN = Y'(w), the Baire category principle implies that there exists
N e N, y’ € Y'(w) and § > 0 such that Bs(y’) NY'(w) C Dy. By linearity of
L., Bi(%¥)NY'(w) C Dy.

Let « € Y"(w) with ||| = 1. Then, ||c<">R( W) (% +2)|| < NemnO—u=20) || {0 (8 4
2)]| and [|£87 R(@)()l| < Ne=nO=r=29 287 ()]
By invariance of V. (w), Y (w) and Y_ (w), we see that R(a”w)&(un) = E&H)R(w).
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Hence,
1R(o") 207 (@) < N~ 0= (e (L) 4 126 (Y + )

<2N€—n(>\ n— 26)0//( ) A—&-e)(H ||+1>

where the existence of such C”(w) < oo is guaranteed by Theorem Further-
more, using invariance of Y’ (w), we get that ﬁl(un)(Y’( )) = Y'(0™w). Thus,

SUP ey (wingt (x) 1R(07w) £57 (@) |

h(o"w) < "
infyey s (x V1287 ()|
2NC" @51+ e
= C'(w) ’

where the last inequality follows from the existence of constants C’(w) and
C"(w) as before. By the choice of €, we get that lim,,_,c h(c"w) = 0 as claimed.

Proof of .
We want to show that for i = 1,2 and P-almost every w € €, the following holds

. 1 " _
i~ log |T;(0"w) | = 0.

Since the maps II;(w) are projections to non-trivial subspaces, it follows that
all the norms involved are at least 1. We will show upper bounds. In view of
Lemma it suffices to show

1
lim —log ||II;(¢™"w)|| = 0.

n—o00 N
It suffices to show that for each j, lim, o = log Iy} 1v; 11 (o0—mw)ll = 0, where
the map is defined on V;(c~"w).
Fix j, and suppose 1/nlog|[Ily, v, ,(c-nw)ll 7 0 as n — co. Then there
exists a sequence ny < ng < ... such that log||Ily v, (o—niwll > €ni.
Pick § < min(e/2,(\; — Aj11)/2). Then, for P-almost every w, there exist
C(w), D(w) and F(w) such that
£ ("W). |l < C(w)ePi+179m for all n;
125 (7w (y)|| > D(w)eP®i =™ for all n and y € BN Yj(0 "w);
1L (67"w)v, || < E(w)eP )™ for all n.

Now by hypothesis there exists a sequence y,,+vy,, € Y;(c ™" w)®Vj41(0™ ™ w)
with ||y, || = 1, |lvn, || = 1, but ||y,, + vp,|| < e” . Then, we have

127 (07 w) (yn,)
||/J(""’)(o W) (vn,)|| < Clw)e Ajtrtoni,
||£(ni)(o-—mw)(yni + vm) (w)e \j+0)n;
E(w)e!

(w)e()\szS)nL .

yni + ’U’ni

(Nj+d—€e)n;

w)e
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The triangle inequality gives
D(w)e()‘fﬂ;)”i < E(w)e()‘j+676)"i + C’(w)e()‘”ﬁ‘s)”i.

Since A\; —d > max(\; + 0 — €, \j11 + 0) this gives a contradiction for suffi-

ciently large n;. Hence, lim, o = log||IIz(c~"w)|| = 0 for P-almost every w, as
claimed.

Using that II; + Iy = Id, the corresponding statement for II; follows imme-
diately. O

3 Oseledets splittings for random Piecewise Ex-
panding maps

In this section, we present an application of the semi-invertible operator Os-
eledets theorem, Theorem to the setting of random piecewise expanding
maps. It is worked out in considerable generality in the one-dimensional setting
and in a special case in higher-dimensions, based on results of Cowieson. The
main result of this section is Theorem [3.19

We first discuss the class of piecewise expanding maps and random piecewise
expanding dynamical systems in §3.1] Then, fractional Sobolev spaces and
some of their relevant properties are briefly reviewed in §3.2} In §3.3] we recall
the definition of the transfer operator of a piecewise expanding map acting
on a fractional Sobolev space. Strong measurability is established in the one-
dimensional case. Quasi-compactness is proved in

Convention

Throughout this section, Cx will denote various constants that are allowed
to depend only on parameters d,p,t and «, as well as on a C'°° compactly
supported function 5 : R? — [0, 1], that is chosen and fixed depending only on
the dimension d, as appears in Thomine [44] and Baladi and Gouézel [2].

3.1 Random Piecewise Expanding Dynamical Systems

Definition 3.1. A map T is called a piecewise expanding C'T® map of a
compact region Xo C R? if:

e There is a finite (ordered) collection of disjoint subsets of Xg, O',... O,
each connected and open in R%, whose boundaries are unions of finitely
many compact C' hypersurfaces with boundary, and whose union agrees
with Xo up to a set of Lebesgue measure 0;

o Foreach 1 <i<1I, T|o, agrees with a C'*t map T; defined on a neigh-
bourhood of O; such that T; is a diffeomorphism onto its image.

e There exists 1 > 1 such that for all x € O;, |DT;(x)(v)|| > pllv|| for all
veRY
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We define b7 := I to be the number of branches of T. The collection
{O',...,0"} is called the branch partition of T. The collection of C'*+* expand-
ing maps of Xy will be denoted PE'T*(X;). The collection of C'** expanding
maps with a particular branch partition P will be denoted by PE'™%(Xy; P).
In the special case where d = 1 and Xy = [0,1], we denote the collection of
maps satisfying the above conditions LY'T®. In this case, the elements of P are
intervals.

Finally, we define a metric dpg on PE'™¥(X,) as follows. Let S,T €
PE'(Xy). Let the branches for S be (Ois)?il and for T be (OiT)ﬁ?il (recall
that a piecewise expanding map is assumed to consist of an ordered collection
of domains and maps). If b7 # b5, or O N OF = ) for some i, we define
dpg(S,T) = 1. Otherwise we define

dpi(S,T) = max (S T)losnor lerea+ma |8 orin | Tilloreo | +max du (OF, OF),

where dyg denotes Hausdorfl distance. In the one-dimensional case we call the
metric dry. We endow PE**(X() with the Borel o-algebra.

Remark 3.2. There is a definition of distance for Lasota- Yorke maps, related
to the Skorohod metric, that has been previously used in the literature; see for
instance Keller and Liverani. [29]. That notion of distance is not adequate for
our purposes, because it allows maps to behave badly in sets of small Lebesgue
measure.

Definition 3.3. A random C'*° piecewise expanding dynamical system
on a domain Xy is given by a tuple (Q, F,P,0,T) where (Q, F,P,0) is a prob-
ability measure-preserving transformation and T : Q@ — PE'T*(X,) satisfying

R1. (Measurability) T : Q — PE"t*(Xy) given by w +— T, is a measurable
function.

R2. (Number of branches) The function w — bT> is P-log-integrable, b™> being
the number of branches of T,,.

R3. (Distortion) There exists a constant D such that |DT,|la < D for P-
almost every w € Q.

R/. (Minimum expansion) There exists a < 1 such that for P-almost every
w e Q, ||u}w1Hoo < a, where pr, (v) := inf|,=1 || DT, (z)v||.

R5. (Branch geometry) There exists a constant L such that for P-almost every
w € Q, each branch domain O; is bounded by at most L C' hypersurfaces.

A random piecewise expanding dynamical system will denote a random C*+
piecewise expanding dynamical system for some 0 < a < 1. In the case where
d =1 and Xy = [0,1], we refer to these systems as random Lasota-Yorke
type dynamical systems. We will also refer to random C? piecewise expand-
ing dynamical systems (with the obvious definition).
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3.2 Fractional Sobolev spaces

Here we introduce spaces of functions suitable for our purposes. Their choice is
motivated by recent work of Baladi and Gouézel [2]. Much of the development
in this subsection parallels that done in [2] (see also Thomine’s work [44], the
specialization of [2] to the expanding case).

While the other works consider the case of a single map, we work with ran-
dom dynamical systems. One new feature is that we need to ensure the strong
measurability of the family of Perron-Frobenius operators. In the context of a
single map, it is often sufficient to prove inequalities with constants depending
on the map, showing only that the constants are finite. A second new feature
in the random context is that one needs to maintain control of the quantities
describing compositions of maps as the inequalities are iterated.

For this reason we give references to the earlier works where possible and
emphasize those points where differences arise.

Let t > 0and 1 < p < co. Let H;(Rd), or simply H;, be the image of
L,(R%) under the injective linear map J; : L,(R?) — L,(R?) given by

Ti(g) = F M a—+F(g)),

where F denotes the Fourier transform, and a;(¢) := (1 + [¢|?)
with the norm

Wl

. H} endowed

ey = IF @ (F)ll L, may

is a Banach space known as (local) fractional Sobolev space. Thus, J; is a
surjective isometry from L,(R%) to H!. Since L,(R?) is separable, reflexive and
uniformly convex (see Definition , its isometric image H ]’; is also separable,
reflexive and uniformly convex. Also, the space of differentiable functions with
compact support, C§°(R?), is dense in H]. See for example Strichartz [42] and
references therein for these and other properties of H;. We also recall a result
from Baladi [T, Lemma 2.2] that the inclusion H} — L,(R?) is compact.

This subsection closely follows Baladi and Gouézel. In what follows, we
assume that p > 1 and 0 < ¢t < min{a, %} The following properties will be
used in the sequel. The first one is taken from Triebel [45, Corollary 4.2.2], and
concerns multiplication by Holder functions. The second one is a refinement
of a result of Strichartz [42, Corollary I13.7], and deals with multiplication by
characteristic functions of intervals. The third one deals with multiplication by
characteristic functions of higher dimensional sets. The last one is related to
a result of Baladi and Gouézel [2, Lemma 25], about composition with smooth
functions.

Lemma 3.4 (Multiplication by C* functions). (Triebel [, Corollary 4.2.2])
There exists a constant Cy, depending only on t and «, such that for any g €
C*(R%,R), and for any f € HY, we have that fg € H}, with

lgflley < Cyllgllcall fllag-

Lemma 3.5 (Multiplication by characteristic functions in one dimension).
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(a) (Strichartz [{2, Corollary I113.7]) There exists some constant Cx depend-
ing only on t and p such that for every f € H;, and interval I' C R,

111 fllms < Cyell fllme -

(b) Let f € H;. Then, for every € > 0 there exists & > 0 such that whenever
I' C R is an interval of length at most 6, then ||1 f|m: < e.

Proof of (b). Since C§°(R) is dense in Hj, there exists (using part (a)) g €
C*(R) N H} such that [[17(f — 9llm; < €/2 for all intervals I'. By Lemma
we have ||1I’9HH;, < C#HQHC"‘HlI’”H;- If I’ is of length at most 5, then
11rllay < Cy0'/P~t. Hence if § > 0 is chosen sufficiently small we obtain that
for all intervals I’ of length at most d, ||1pg||H; < €/2 completing the proof. [

Lemma 3.6 (Multiplication by characteristic functions of nice sets).

(a) (Strichartz [£2, Corollaries 113.7 and II4.2]) There exists some constant
Cy depending only on t and p such that for every set O C R® intersecting
almost every line parallel to some coordinate axis in at most L connected
components, and for every f € H}, we have that 1o fllmy < CuLllfmy-

(b) (Sickel [{1, Proposition 4.8]) Let P be a branch partition as in Defini-
tion [31l Then, there exists a constant C' depending on P such that for
every O € P and every f in H}, 1of € H}, with 1o fllmy < Cllfllag-

Lemma 3.7 (Composition with C! diffeomorphisms).
(a) (Thomine [}, Lemma 4.3]) Let A : R O be a linear map. Then, there
exists Cy such that for any f € H},

1f o Allmy < C| det A7 2 A" fllry + Coe| det A2 | f]],.-

(b) Let F : R* O be a C' diffeomorphism with |DF| s, ||DF ™ < oo.
Then, there exists Cy such that for any f € H;,

1
If o Fllmy < Cyll det(DF~1)||% max{L, | DF |} f .-

(c) Let f € Hf). Then, for every e > 0 there exists § > 0 such that for every
diffeomorphism F : RY — R with |F—Id||c1 < §, we have [ foF—flluy <
€.

Proof. Part (b) follows via interpolation; this result is related to Lemma 4.3 of
Thomine [44].

Now we prove (c). Let f € H}. Inview of part (b) and the density of C§° (R9)
in Hj,, we can find a g € C§° such that || f — gl|ms +[|(f —g) o Fllu; < /2. This

gives [[f o F — fllmy < €/2+lgo F = glluy.
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We recall that for ¢ < s, H; C HI‘; and the inclusion is continuous (see for
example Strichartz [42] Corollary 11.3]). In particular, for each ¢ < 1, there
exists a constant Cy such that for every g € Hj, lglle: < Cyllglla-

Since g € C§°(RY), g, goF—g € H}. Let K = (1+]| det(DF1)||s ) Leb(supp(g)) < oo.
Then

lgo F' —gllm:
<Cyllg—goFllar < Cy(lgo F —gllz, +D(go F) - Dgllr,)

SC#‘Kl/p(HDg”oo”I - FHoo + ”DQQHOOHI - FHoo + HDgHoo”l - DF||00>7

since Leb(supph) < K for all h € {goF — g, Dgo F'—Dg, Dgo F'- DF — Dgo F'}.
Choosing ¢ sufficiently small makes the last expression smaller than § and hence,
[foF — fllu: <e O

3.3 Transfer operators

Given a map T € PEH“(XO) with branches T;: O; — X, we let Q; = T;(0;)
and &; be the inverse branch Ti_lz Q; = O;. Assume p > land 0 < t <
min(c, %)

We let Hf, = H;(Xo) C Hf, be the subspace of functions supported on the
domain Xo, with the induced norm || f|: := | flla:. In view of Lemma
7—[;’, is complete, and thus a Banach space. It is straightforward to see that H
is uniformly convex as well. As may be seen directly from Lemma 7—[; is
also separable.

Remark 3.8. We note that the space of functions of bounded variation, which
has been the most widely used Banach space to study Lasota-Yorke type maps, is
not separable. This is the reason to look for alternatives. In Baladi and Gouézel
[2], the authors show, in particular, that the fractional Sobolev spaces ’H;,, are
suitable to study transfer operators associated to piecewise expanding maps.

Definition 3.9. The transfer operator, L : ’H; O, associated to a map T €
PE"(X,) is defined for every f € H, by

bT

bT
Lof =3 (tor - f) o€l - IDEF| =3 1gr - f o€l - |DET),
=1 i=1

where |A| denotes the absolute value of the determinant of the linear map A.

Remark 3.10. The results of imply that the linear operators correspond-
ing to composition with smooth functions, multiplication by characteristic func-
tions of elements of the branch partition and multiplication by C* functions

are bounded in H;. Clearly, H; is tnvariant under L, and thus the transfer

operator acts continuously on ’H;. Furthermore, if T € PE*® is onto, then
LAyt t o . t . _ |DT|-foT
Ly : H, — H,, is onto. For example, gwen f € H, and letting g = ST IpoT

giwes L7g = f. Again by the results above, g € 7—[;;.
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The following lemma provides a weak continuity property of the transfer
operator acting on a fractional Sobolev space for Lasota-Yorke maps.

Lemma 3.11. Let L(’H;) be endowed with the strong operator topology and
LYt be endowed with the metric d;yi+o. Then, the map L sending a Lasota-
Yorke map to its transfer operator £ : LY'T% — L(H;) gwen by T — L is
continuous.

Proof. Let [ € ’H; and T € LY'T®. We will prove that limg_7 ||Lsf —
Lrflu, = 0. Let b = bT. Assume dpy1+a(S,T) < 1. Then, by definition of

dpyiia, bS =b . Foreach 1 <i < b, let QTN = QT NQS and Q7 = QT \ Q5.
Then,

My

|ers - o1, < 5 |trns (o€l - IDET| - £ o€F - DgF)|
P i=1

b b
+ 3 |[rgms -fogiT-|D§iT|“Ht + " |[rgsvr - Fof - IDEF
=1 P =1

We finish the proof by bounding the terms separately in the following lemma.
Sublemma 3.12.

(I) Bound on common branches. For every 1 <i <b,

. T DET| — fogS . |DES =
g%HlQTﬁS(fOEl ‘Dgz | fogl |D£l |)HHtp 0

(II) Bound on remaining terms. For every 1 <i <,

: T T
Jim [1gms - foel - 1DET|

_ ~ oS |DES
‘H;fo and §%"1Q5\T foes.|Des

O

Proof of Sublemma (I). We start by noting that we can fix a way of choos-
ing extensions of each T; to a diffeomophism 7; of R, in such a way that

|1S; = Til|crva < 2||(Ss — T;)|gsnqrllci+e. In what follows, we drop the tildes
for convenience. Using Lemmas [3:5 and [3.7] repeatedly, we have

|tarns(foel - IDETI~ ro&f D)), < Cu|7oel - DN~ sogf - IDES)

< Cy|\Der| - 1pe?|

roel

DS
HY +C#H &

[Foel —fogf

.| o

o171,

Ht

P

< (| 1per | - 1D o+ (|oer

LA roe —focf

C
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where T; := (¢1)71, and in the last inequality we use the fact that ||D€§9Hca
HDfTHCQ +1 whenever dpy1+a (S, T) < 1. The first term goes to 0 as S — T be-

cause dLyl+a(S T = 2|||D§S|_|D§T
&l = fog?

that limg_, 7 H F—fo€s

llga

It remains to show that limg_,p H fo
L= 0. By Lemma b), showing the above is equivalent to proving
HP

il = 0. This is a direct consequence of Lemmac)
P

and the observation that limg_,7 || o T; — IdHcl =0. O
Proof of Sublemma[3.19 (1I). Fix1 < i < b. First, we observe that Leb(Qf\T) <
2d(QF,QF) < 2(| Tl + 1)dry1+a(S,T). Since &7 and &7 are contracting,
then

lim Leb(¢7(Q7*) =0 and  lim Leb(¢7(Q"")) = 0. (7)

‘We now show that

lim H1 ns-fol - || =0,

Being the set difference of two intervals, the set QT\S is either empty, or an
interval, or the union of two intervals. Thus, we let QT\S = U%EF i\s be

the decomposition of QiT\S into intervals, where #I'; € {0,1,2}.
Let v; € I';. Using Lemmas and b), respectively, we obtain

|tgrs - £oel - IDET

Hl T\s ‘fofiT
Co i H

Since QT\S C QT\S 7) implies that limg_, Leb(¢F ( T\S)) =0. Lemmab)
yields limg_,p ngT(QT\s)fHH; = 0. Therefore,

My

< C#HD&T

(QT\S)fHH;,'

Jim Hl rs - foel D

:0,

as claimed. Although the statements of Lemma [3.12(II) are not symmetric in
T and S, interchanging the roles of T" and S in the proof just presented, and

recalling from (7)) that limg_,7 Leb (&7 ( S\Y) =0, we get that

Jim [1gevr- fogf-IDef|| =o.

"
O

Let T = (Q,F,P,0,T) be a random piecewise expanding C''*® dynamical
system. Suppose that the following conditions are satisfied.
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S1. (Parameters) H}, is the fractional Sobolev space defined in withp > 1
and 0 < ¢ < min{«, %}

S2. (Strong measurability) The map £ sending w to the transfer operator of
T,, Lr,, acting on 7-[;, is strongly measurable.

Then we call the tuple (Q, F,P, o, ’H;,,C) the strongly measurable random
linear system associated to 7. For brevity, we will use write £, instead of L.
Also, the notation from will be abbreviated. For example, instead of b7%,
we will write b*, and so on.

We note that Lemma guarantees that for any random C'** Lasota-
Yorke dynamical system, condition [S2] is automatically satisfied. A second
situation that we consider is that of a random piecewise expanding dynamical
system in higher dimensions with a fixed, suitably regular branch partition. In
this situation one sees directly that [S2] holds also.

3.4 Random Lasota-Yorke Inequalities

Given a collection C of subsets of a set, we recall that its intersection multi-
plicity is given by max,c\jc #{C € C: x € C}. Given T € PEHO‘(XO), the
complezity of T at the end, denoted by C.(T), is the intersection multiplicity of
{T(O)}1<i<pr. The complezity of T at the beginning, Cy(T), is the intersection
multiplicity of {O;—T}lging. We note that in the one-dimensional Lasota-Yorke
case, Cy(T) is always equal to 2 (even when compositions of maps are taken),
whereas in higher dimensions the complexity at the beginning can grow without
bound as maps are composed. Examples of Tsujii [46] and Buzzi [§] show that
this can lead to singular ergodic properties of the map including non-existence
of absolutely continuous invariant measures.

As is well-known, quasi-compactness can be derived from Lasota-Yorke type
inequalities of the form ||Lf| < Al f|| + Bl f|l, where || - || is a stronger norm
than || - || and the inclusion (Y, || - ||) < (Y,]| - ||) is compact. Hennion’s theorem
shows that the essential spectral radius is governed by B.

The following Lasota-Yorke type inequality is based on results of Thomine
[44, Theorem 2.3]. In that work, rather than a random dynamical system, a
single dynamical system is considered. Thomine (and the previous work of
Baladi and Gouézel) took a great deal of care to bound the ‘B’ term, but did
not need to control the ‘A’ term other than to say that it is finite. In our
context, we need the additional fact that A depends in a measurable way on
our dynamical system. That this holds can be seen by a careful examination of
the proofs of Thomine; and Baladi and Gouézel. One feature of the proof that
needs attention is that these papers replace the norm || - [l by an equivalent
norm depending on properties of the map T™. In our context, we would obtain

results in different norms for different compositions TU(J”). ‘We avoid this at the
expense of increasing the A term. More specifically we make use of a bound of
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the form
S Il < o (Ll + ey )

meZ

where (1. )mezd is a partition of unity of R? obtained by scaling a fixed parti-
tion of unity by a factor r in the variable, and satisfies 7, () = no - (z +m/r).

Lemma 3.13 (Strong L, — 7—[;, Lasota-Yorke inequality).

Suppose R = (2, F,P, o, ’H;,C) s a strongly measurable random linear system
associated to a random C't* piecewise expanding dynamical system T. Then
there exists a constant Cr, depending only on p, t, ., and L (from Definition
, and a measurable function Ar ,(w) such that for every w € Q, we have

1£57 Fllage < A (@) fllp + Bron (@)1 fl3¢2 (S-LY)
where

AR n(w) is a measurable function of w;and
1 1—1
Broa(w) = Crn (Co(TE)) 7 (Co@™)) " IIDTL 3~ 5 oo,

where fig, () 1= inf), = HDTO(Jn)(x)UH.

This inequality will prove sufficient to control the index of compactness, but
does not give enough information to control the maximal Lyapunov exponent
since we have no control of the Ag ,,(w) term. The following inequality reme-
dies the situation by providing an inequality with no A term, at the expense
of having a larger (but still log-integrable) B term. The availability of both
inequalities will allow us to apply Lemma The proof of the weak Lasota-
Yorke inequality is straightforward using some of the ingredients of the stronger
version.

Lemma 3.14 (Weak L, — H!, Lasota-Yorke inequality).
Let R = (Q, F,P, o, ’H;,E) be a random Lasota-Yorke type dynamical system.

Then, for each n € N there exists a P-log-integrable function flR,n 1 — R such
that for every w € (Q,

1257 fllaes, < A (@) fllaee (W-LY)

3.5 Quasi-compactness

In this subsection we prove quasi-compactness by bootstrapping a strategy
of Buzzi [7] based on multiple Lasota-Yorke inequalities as elaborated in Ap-

pendix [C.2]

Lemma 3.15. Let R = (Q, F,P,0,T) be a random piecewise expanding dynam-
ical system with ergodic base. Then the following hold:
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1. There exist C} < oo and Cy < oo such that for P-almost every w € Q,

lim (Co(T(M)% =C*  and  lim (Co(TM)" = C;;
n—oo n—oo

1
2. There exists x < 1 such that for P-almost every w € Q, limp, o0 [|pg 5 |30 =

1
X. Furthermore, lim,, |||DTUS")\*1||& < x%

Proof. The sequences (Ce (T™))nen, (Co(Ts™)nens, (1153 oo Jnen and (DT |7 |0 e,
are submultiplicative. Log-integrability of C, and Cj, is assured by Definition [3.3
since we have Cy(T,,), C.(T,,) < logb“. Hence the existence of the limits follows
from the Kingman subadditive ergodic theorem [33]. That x < 1 follows from

condition R4. The last statement follows from [DTS™ ()|~ < gy p(2)~%. O

Lemma 3.16 (Quasi-compactness: Lasota-Yorke case). Let 0 < o < 1 and let
T be a C'** random Lasota-Yorke dynamical system satisfying the additional
condition that the function w — log™ var(|DT,|~') is P-integrable. Then there
exist parameters p > 1,0 < t < min(c, %) such that the associated random linear

system, R, is quasi-compact with
* 1 * *
K< (1 — f)(logC’e +logx) +tlogxy < A*=0.
p

Proof of Lemma[3.16, Since we are in the Lasota-Yorke case, strong measur-
ability of w — L, follows from Lemma We also have C; = 1. By
Lemma C* < oo. By hypothesis, x < 1. Fix 0 < ¢ < a. Now
if p is sufficiently close to 1, t satisfies t < min(a,1/p) and the inequality

(1 — l)(log C?* +log x) + tlog x < 0 holds. By Lemma we see k* < 0. On

P
the other hand we have |01 e > Cu||£8V1], > Cul|L5V 1]y = Cu so that
A* > 0. Accordingly Theorem applies. Suppose for a contradiction that
A" > 0.

Now the following are full measure sets: the set where the results of Theorem
hold; the set where the top Lyapunov exponent is A*; the set where the
results of Lemma hold using || - || = || - |1 and || - || = || - [[sv (by Buzzi’s
argument [7]); and the set where the results of Lemma hold using ||-|| = || ||
and || - || = || - || g¢, because of Lemmas |3.13| and |3.14] Let the full measure set
obtai”neﬂl by”in|t|er§ecting these be denoty Ql.

Suppose w € 2 and let f be a non-zero element of Y;(w). By standard
properties of Hzt,, f may be approximated arbitrary closely in || - || my be a
C* function g. Applying Lemma with || - |3 and || - |lBv, (note that

||£5Jn)g||1 < |lg|lx for all n), we get limsup,,_,.. = log ||££,")g||BV < 0 and hence

n

limsup,,_, ., = log H,C&n)gﬂp < 0. Applying Lemma a second time using the
conclusion of the first application as hypothesis, we get lim sup,,_, o % log ||/J£,n) gl m <
0. Letting 7 be the projection onto the top Lyapunov subspace, we have that

limsup,, ., £log||£8” (9—m1(9)) |y < A*. Thus limsup,, ., £ log | L5771 (9) |y <

n
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A*. By Theorem this implies 1 (g) is 0. Since g can be chosen arbitrarily
close to f and m; is bounded, this is a contradiction. O

We now show that results of Cowieson [9] may be exploited to give families
of random dynamical systems in higher dimensions for which one can establish
an Oseledets splitting for the Perron-Frobenius cocycle. The framework of [9]
has a key simplifying feature, namely that there is a fized partition P of the
domain X into disjoint open pieces on each of which the map is continuous
and expanding. For this reason, the analogue of Lemma [3.12]is straightforward:
there is no issue with accounting for differences between partitions. On the
other hand a new difficulty appears in higher dimensions, namely that it is no
longer true a priori that the complexity at the beginning, Cb(TU(J")), is bounded
in n. The necessity of controlling C} is demonstrated by results of Tsujii [46]
and Buzzi [§] and indeed Cj appears in Baladi and Gouézel [2].

Theorem 3.17 (Cowieson[9]). Let P be a fized branch partition of a compact
region Xo C Re. There is a quantity M and a dense G subset, Cow(Xq;P), of
PE*(Xo; P) with the following property: For any n > 0 and T € Cow(Xy;P),
there is a neighbourhood U of T such that for any T1,Ts, ..., T,, € U, Cp(T}, 0
ceoTy) < M.

Lemma 3.18 (Quasi-compactness: Cowieson case). Let d > 1, let Xo be a
compact region of R? and let P be a branch partition of Xo. Let T € Cow(Xq; P).
Then there exist parameters p > 1, 0 < t < 1/p, a constant 7 < 0 and a
neighbourhood N of T with the following property:

Let T be a random C? piecewise expanding dynamical system with ergodic
base. Suppose that for P-almost every w, T, has branch partition P and that
T, € N. Then if L, is the corresponding family of transfer operators acting on
H;(Xo), then R, the random linear system associated to T, is quasi-compact
with

<1< A =0.

Proof. Let t = %, let T € Cow(Xo;P), and let k be the number of elements of
2

P. Let a < 1 be such that py' < a, where up = essinf,cx, v)=1 DT (2)v]],
and let M be as in guaranteed by Theorem Let p > 1 be such that
k=701 "3)* < 1. We may further assume that p < d/(d — 1). This fixes all
the data necessary to determine Cg.

Let ng be such that 8 := CrngMY/Pkm01=5)qno(d1=5)40) 1 and let 7 =
log B/np so that 7 < 0. We now apply Theorem to deduce that there is a
neighbourhood N of T such that for all any ng-fold composition of elements of
N, each respecting the branch partition P, the complexity at the beginning is
bounded above by M. We further reduce N (to a smaller open neighbourhood
of T') by requiring that ug' < a for all S € N.

Now if 7 is a random C? piecewise expanding dynamical system where the
maps all belong to N then we have ensured that the quantity Bg ,, appearing
in Lemma[3.13]is at most €™°7. As in the proof of Lemma[3.16] we obtain £* < 7.
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To see that A* = 0, we argue as in Lemma We initially apply Lemma
with || - || = || - [zr and || - || = || - [[Bv to deduce for f € C* (using

results from Cowieson’s paper [9]) that lim sup,,_, ., + log ||L£}n)f||Bv < 0. Then,

n

since there are constants Cy, Cyx(Xo) such that for any function g supported
on Xo, |lgllpasca-n < Cxllgllsy (see Giusti [22) Theorem 1.28]) and ||g||zr <

C4(Xo)llgll pasa—1), we obtain sufficient conditions for the second application of

Lemma taking this time || - | = || - [[z» and || - || = [| - [[3¢. The remainder
of the proof is exactly as in Lemma O

In view of the quasi-compactness just obtained, we can apply Theorem [2.10]
to get our main application theorem, ensuring the existence of an Oseledets
splitting for random Lasota-Yorke dynamical systems or Cowieson-type random
piecewise expanding dynamical systems.

Theorem 3.19. Let R = (Q, F,P,0,T) be a random C*** piecewise expand-
ing dynamical system satisfying the hypotheses of Lemma|3.16] or Lemma
with parameters p and t. Then, there exist 1 < | < oo, and exceptional Lya-
punov exponents 0 = Ay > Ay > -+ > N > k* (in the case | = oo, we
have im \,, = k* ), measurable families of finite-dimensional equivariant spaces
Yi(w),...,Y(w) C X and a measurable equivariant family of closed subspaces
V(w) € X defined on a full P measure, o-invariant subset of Q0 so that X =

V(w)® @3:1 Yj(w), for every f € V(w)\ {0}, lim,, 00 %log HEEJn)fHH; < K*,

and for every f € Yj(w)\ {0}, lim, o L log ||££,")f||q{; = \;. Furthermore, the
norms of the associated projections are tempered with respect to o.

Remark 3.20. We remark that in both the scenarios that we consider, the
existing proofs of Buzzi [7] and Cowieson [9] establish the existence of random
absolutely continuous invariant measures. One can check, using techniques such
as those in [7, Proposition 3.2] that their densities lie in the leading Oseledets
subspace, Y1(w).

4 Future work

Several interesting questions remain open for future research. In relation to
previous works concerned with exponential decay of correlations, it is natural
to look for conditions that provide further information about the structure of the
Oseledets splitting, either in a general framework, or in the specific situation of
random composition of piecewise expanding maps. Of particular interest would
be to ensure simplicity of the leading Lyapunov exponent, and to obtain bounds
on the number of exceptional Lyapunov exponents, including finiteness. Some
progress has already been achieved in this direction in the settings of smooth
expanding maps (see work of Baladi, Kondah and Schmitt [4]) subshifts of finite
type (see work of Kifer [31] [32]) and piecewise smooth expanding maps of the
interval (see work of Buzzi [0]).

In a different direction, it would be interesting to investigate applications
of the abstract semi-invertible Oseledets theorem (Theorem [2.10) to a more
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general class of expanding maps, allowing for non-constant branch partitions
and, more ambitiously, to piecewise hyperbolic maps.

Finally, we hope that the constructive approach to the identification of Os-
eledets spaces turns out to be useful for numerical studies of non-autonomous
dynamical systems. A possible alternative would be to first attempt to identify
the Oseledets filtration, perhaps using some existing numerical method. Then,
one could inductively approximate Oseledets spaces by (1) fixing a sufficiently
dense subset of a basis of a suitable Banach space, (2) pushing forward these
elements under a numerical approximation of the transfer operator and (3) sub-
tracting the projection along the corresponding level in the filtration to lower
Oseledets spaces, previously obtained by this procedure.

A Strong measurability in separable Banach spaces

Let X be a separable Banach space and let Bx be the standard Borel o-algebra
generated by the open subsets of X. Fix a countable dense sequence z1, xo, ...
in X for the remainder of this appendix. It is well known that any open subset of
X is a countable union of sets of the form U; ;, where U; j :== {z € X: |z —z;]| <
1/7}. Hence, Bx is countably generated.

We denote by L(X) the set of bounded linear operators from X to X. The
strong operator topology, SOT(X), on L(X) is the topology generated by the
sub-base {Vy 4 ={T: ||T(z) —y|| < e} }.

Definition A.1. The strong o-algebra on L(X) is the o-algebra S generated
by sets of the form Wy ={T: T(z) € U}, withz € X and U C X open.

For r € R, let L,(X) denote the linear maps from X to itself with norm at
most 7. That is, L, = {T € L(X): ||T|| <r}.

Lemma A.2.
1. For everyr € R, L, € S.
S is countably generated.

An open set in the strong operator topology lies in S.

e e

The strong o-algebra is the Borel o-algebra of the strong operator topology
SOT(X).

5. An open set in L,(X) (in the relative topology) is the union of countably
many sets of the form B; jm.n (with terminology introduced in the proof).

Proof. We first show that L, € S. Let

L, = O{T: 1T ()|l < iy}
= ((UT: T ()] < (r+1/k) a1}
ik
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Then, L, is a countable intersection of sets in the sub-base and therefore L, € S.
We claim that L, = L,. Notice that if |T|| < r, then T € L,. Conversely let
TeL,and z € X, let ; — x. Since T is bounded we have T(x;) — T(z).
Since ||T'(x;)|| < rllz;|| and ||z;|| — ||z| we see that ||T'(z)| < r||z||. Since this
holds for all z, we see that ||T|| < r. Thus, L, = L,, as claimed.

Set V; jm =A{T: ||T(x;) — ;|| < 1/m}. This clearly belongs to S. We claim
that an open set U C L(X) in the strong operator topology is the union of sets of
the form B; jm.n = Vi jm N Ly. Let U be open and let T" € U. Then U contains
a basic open neighbourhood of T', that is, a set of the form {S: ||S(y;) =T (v:)]| <
€ fori=1,...,s} (where y1,...,ys are elements of X). Let n > ||T|| and let
m > max(3/¢;). Choose xy, such that ||zg, — y;|| < min(1/(2mn),€;/(3n)) and
z¢, such that |lzg, — T(y;)|| < min(e;/3,1/(2m)). Let C = (., Bk, t;,mn- By
an application of the triangle inequality if S € C, then we have

15(ya) = T(ya)ll < 15(wi) = Sl + 15 (@r:) — well + e, = T(ya)l

<nllyi — g || +1/m+e/3 < e,

so that we see C' C U. We also have

”T(xkl) — Ty,

<NT (k) — T (o)l + 1T (i) — e,
<z, — il +1/(2m) < 1/m,

so that T' € C. It follows that any open set U may be expressed as a countable
union of finite intersections of S-measurable sets of the form B; j m n, so that
open sets belong to S, proving . is proved similarly.

Since S is generated by sets that are open in the strong operator topology,
it follows that S is also generated by the (B; j.m,n), proving .

We have shown that S contains all open sets in the strong operator topology.
By definition it is generated by a collection of sets that are open in the strong
operator topology. It follows that S is the Borel o-algebra of SOT(X).

O

Definition A.3. A map T : Q — L(X) is called strongly measurable if for
every x € X, the map T(-)(z) : @ — X given by w — T(w)(x) is (F,Bx)
measurable.

Lemma A.4. T : Q — L(X) is strongly measurable if and only if it is (F,S)-
measurable.

Proof. Recall that since X is separable, both Bx and S are countably generated
Borel o-algebras. Bx is generated by U; ; := {x € X : ||z — ;|| < 1/j} (where
{zi}ien is a dense set in X) and in view of Lemma[A.2] S is generated by the sets
Bi jmmn = VijmNLy (where V; j n, = {T: || T(z;) — z;|| < 1/m}). Furthermore,
it is straightforward to check that

T7 (Vo) = {w: [T(w)(@) =yl < e} = T(-)(2) " (Be(y)), (8)

where Vo = {T: ||T(z) — y|| <€}
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Assume that T : @ — L(X) is strongly measurable. To show it is (F,S)
measurable, it suffices to show that 77 (B; j ;m.,,) € F. This follows from (8)) and
the fact that L,, = (; (", {T: [|T(z;)[| < (n+ 1/k)|[x;]|}, which was established
in the proof of Lemma .

For the converse, suppose that T': Q — L(X) is (F,S) measurable. To show
it is strongly measurable, we have to show that for every x € X and i,j € N,
T(-)(z)~*(U;,) € F. Equation @i gives that T'(-)(2) " (Ui;) = T (Vo zi1/4)-
Since V, 4,1/; € S by Lemma [A.2((3)), the result follows. O

Lemma A.5. The composition of strongly measurable maps is strongly mea-
surable.

Proof. In view of Lemma [A-4] it suffices to show that the composition map
U L(X) x L(X) = L(X) given by ¥(T,5) =T o S is (§®S,S) measurable.
We claim that for every n € N, the restriction of ¥ to L, (X) x L(X) is con-
tinuous with respect to (7,,(X), SOT(X)), where 7,(X) is the product topology
on L, (X) x L(X), and where L, (X) is endowed with the subspace topology of
SOT(X). Since L(X) is U, cn Ln(X), the result then follows from Lemma

By Lemma , the claim will follow from showing that for every x, y, €,
the set U1 (V, )N (L (X) x L(X)) lies in 7,,(X). Let (T, S0) € U1 (Vi y )N
(Ln(X) x L(X)). Then, ||To o So(x) —y|| < €. Let § < e — || Ty o So(z) — yl|.
Then, for (T,5) € (Vso(x),TooSO(m),g N Lp(X)) x Vi So(x), £ » We have

170 S(x) —yll < T oS(@) =T o So(x)|| + [T 0 So(x) —To o So(2) + [[To 0 So(z) — y|

1 1
24t - .
<n2n—|—2+||0050(x) yll <e

Thus, ¥(T,S) € Vyye and ¥V, , () is open in 7,(X), as claimed. O
Let ®: L(X) x X — X be given by (T,z) — T(x).
Lemma A.6.

1. The restriction of ® to L, (X) x X is continuous, where L, (X) is endowed
with the subspace topology of SOT(X).

2. ® is S x Bx-measurable.

3. Ifm: Q — L(X), given by w — T,,, is strongly measurable and f : Q — X,
given by w — x,, is measurable, then w w— T, (x,) is measurable.

Proof. Let U be an open subset of X and let A = ®~1U N (L,(X) x X). Let
(T,z) € A, so that T(x) € U and T € L,(X). Since U is open there exists an
€ > 0 such that B.(T'(z)) C U.

Now let N = {S € L,(X): [|S(z) —=T(z)|| < €/2}. If (S,y) € N X Bej2n)(x)
then we see

12(S;y) = &(T,2)[| = 15(y) = T(2)|| < [IS5(y) = S(@)[| + 15(x) = T(2)]|
<nly -zl +€/2 <e.
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It follows that N x B2, (x) is a subset of A so that A is open in the relative
topology on L, (X) x X, hence proving ().

If U is open, then ®~1(U) =J,, @ 1(U) N (L,(X) x X). By the above, the
set ®~H(U)N(L,(X) x X) is open in the relative topology on L, (X) x X. Since
L,(X) x X has a countable neighbourhood basis with respect to the relative
topology (see Corollary 7 ®~1(U) may be expressed as the countable union of
products of S-measurable sets with Bx measurable sets. Therefore it is S X Bx-
measurable, proving .

Let 7: Q — L(X) be strongly measurable and f: w — x, be measurable.
Let O(w) = (T, x,). Then the map w — T, (z,,) may be factorized as ® o 0. It
is therefore sufficient to show that §~'®~'U is measurable for any open set U in
X. We showed above that ®~1U is S x Bx-measurable so it suffices to show that
0 is measurable. By definition, S x By is generated by sets of the form A x B
with A € § and B € Bx. The preimage of A x B under 0 is 7=1(A) N f~'B
which is, by assumption, the intersection of two measurable sets. Hence & x Bx
is generated by a collection of sets whose preimages under 6 are measurable and
hence 6 is measurable.

O

B The Grassmannian of a Banach space

This appendix collects some results about Grassmannians that we need in Sec-
tion

Let X be a Banach space. A closed subspace Y of X is called complemented
if there exists a closed subspace Z such that X is the topological direct sum of
Y and Z, written X =Y @ Z. That is, for every x € X, there exist y € Y and
z € Z such that © = y+ 2z, and this decomposition is unique. The Grassmannian
G(X) is the set of closed complemented subspaces of X. We denote by G¥(X)
the collection of closed k-codimensional subspaces of X (these are automatically
complemented). We denote by G (X) the collection of k-dimensional subspaces
of X (these are automatically closed and complemented). We equip G(X) with
the metric d(Y,Y”) = dg (YNB,Y'NB) where dy denotes the Hausdorff distance
and B denotes the closed unit ball in X. We let B* denote the closed unit ball
in X*. We denote by Bg the Borel g-algebra coming from d.

There is a natural map | from G(X) to G(X*), namely Y+ = {0 € X*: 0(y) =
0 for all y € Y}. We use the same notation for the map from G(X*) to G(X)
given by Wt = {y € Y: (y) = 0 for all § € W}. Notice that if X is a reflexive
Banach space, then the two notions of 1 on X* agree. It is well known that for a
closed subspace Y of X, Y+ =Y (that Y C Y+ follows from the definitions;
that Y-+ C Y follows from the Hahn-Banach theorem).

The following result may be found in Kato [27, IV §2].

Lemma B.1. The maps L from G(X) to G(X™*) and from G(X) to G(X™*) are
homeomorphisms.
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Definition B.2. IfY € G, (X), we will say a basis {y1,...,yx} for Y is a nice
basis if ||y;|| = 1 and d(y;, span(y1, . ..,yi—1) = 1 for each i. A subset of size k
will be called e-nice if 1 —e < ||y;|| < 1+ € and d((ys, span(y1,...,yi—1)) > 1—¢€
for each i > 1. Clearly if ¢ <1 an e-nice set is linearly independent. If a set is
e-nice and a basis, we call it an e-nice basis.

Lemma B.3. Each element of Gi.(X) has a nice basis.

Proof. Let Y € Gi(X). We make the inductive claim that for each m < k
we can find a sequence of elements yi,..., ¥y, of norm 1 satisfying the claim
for 1 < i < m. The base case is easy: let y; be any vector in Y of length 1.
Suppose we have vectors y1, ...,y satisfying the claim where m < k. Let W
be the subspace of Y spanned by y1,...,ym. Let £ € Y\ W (such an x exists
because W is an m-dimensional subspace of Y and hence a proper subspace of
Y). By compactness there is a w € W minimizing ||« —w||. Then let y,,11 be a
normalized version of x — w. This completes the inductive step and hence the
proof. O

Lemma B.4. Let {y1,...,ys} be e-nice (with e < 27%72) If | Y aysl < 1
then |a;| < 28T1=% for each i.

Proof. Suppose for a contradiction that y = > a;y; satisfies ||y| = 1 and |a;| >
2MH177 for some i. Let i be the largest such index. Set z = 37, ajy;. Then
Iz = yll <3255 la;1(1+€) < (28717 = 2)(1 4 €). On the other hand by the
defining property of y; we have ||z|| > |ai|(1 — €)? > 2191 — 2¢). The
triangle inequality then shows that ||y|| > 2 — 2¥%3~%¢ > 1, which contradicts
the assumption. O

Lemma B.5. Let yq1,...,yx be an e-nice basis for a k-dimensional space Y
(with € < 27%72) then if W is a space such that d(y;, W) < §/2F*2, then
supeynp d(y, W N B) < 4.

Proof. Let d(y;,w;) < §/2F+2. Given y € Y N B, y may be expressed as >_ a;y;
with |a;] < 2F+17% by Lemma Let w = Y a;w;. Then |y — w| <
S 2kHL-ig2k+2 < §/2. Tt follows that ||w| < 1+ 6/2 so letting w’ = w if
|lw]| <1 and w/||w|| otherwise, we have ||w’ — w|| < §/2. Since w’ € W N B we
deduce d(y, W N B) < § so that sup,cynp d(y, W N B) < § as required. O

For ¢ < 2752 let NB{(X) C X* be the set of k—dimensional e—nice
subsets of X.

Corollary B.6. If e < 27572 then the function from NBg(X) to Gx(X) given
by (Y1, ---,yk) = span(y1, ..., Yx) is continuous.

Proof. By Lemma if (y1,..,9k), (W1,...,y,) € NBi(X) are such that
ly: —vil| < 2% 42§ then d(Y,Y’) < §, where Y = span(yi,...,yx) and Y/ =
span(yy, ..., ) O
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Lemma B.7. (Symmetry of closeness in Gp(X) and G¥(X)). Let Y and W be
elements of Gr(X). Suppose that maxyeynpd(y, W N B) =r < 37%/4. Then
one obtains max,cwnp d(w,Y N B) < 4-3%r and hence d(W,Y) < 4 - 3Fr.

LetY and W be elements of GF(X). Suppose that maxyeynp d(y, WNB) =
r < 37k/8. Then, d(W,Y) < 8- 3Fr.

Proof. Using Lemma let y1,...,yr be a nice basis for Y. By assumption
there exist elements wy, ..., w, of W N B such that ||w; — y;|| < r.

We first give a lower bound for || 25:1 a;w;]|. Let M = max; 3|a;| and
assume that M = 37|a;|. Then we have

k j k
Zaiwi > Zaiwi Z a;W;
i=1 i=1 i=j+1
i i B
> aiyi| = Y aiwi—y)||— > 37'M
i=1 i=1

i=j+1

> lag| =) la;| =379 M2
=1
>M(377/2-r/2) > (37 /4)M,

where for the first term of the third inequality we used the definition of nice
basis. In particular if Y a;w; € B, we have |M| < 4 - 3% so that |a;] < 4-3F~%
Now given w € W N B, write w = > a;w; and let y = > a;y;. Then |jw —y|| <
S lail[lw; —yi|| < 2-3Fr. Rescaling y to move it inside B if necessary we obtain a
point y' € YNB with ||lw—y/|| < 4-3Fr. Tt follows that max,ewnp d(w, YNB) <
4 - 3k as required.

A similar argument using the proof of Lemma gives the result in G*. [

Lemma B.8. Ife <2752  the set NBS(X) C X* is open.

Proof. Let (y1,...,yx) € NB5(X). Let € < € be such that for every 1 < j <k,
1—¢€ <|lyjl| <1+ ¢ and d(y;j,span(y1,...,yj—1) > 1—¢€.

Let 7 > 0 and (wy,...,wy) € II*_ B.(y;). Then, for every 1 < j < k we
have 1 —¢' —7 < |lw;|| < 14€ +r and, if r > 0 is sufficiently small, Lemmas[B.5|
and imply that d(span(yi,...,y;),span(wi,...,w;)) < 277437y,

It follows from the triangle inequality that

d(wj,span(wy, . .., wj—1)) 2d(y;,span(yy, ..., y;-1)) — lly; — wyll
- 2||wJ||d(Spa‘n(y17 cee 7yj)aspan(w1a s aw]))
Hence, d(wj,span(wi,...,wj—1)) > 1 —¢€ —r — (1 +¢€ +r)277°3/r. Thus,

choosing r sufficiently small, the above yields that (wq,...,wy) satisfies all the
conditions of an e-nice basis. O

Lemma B.9. (Disconnectedness of G(X)). If Y € G;(X) and dim(Y") > j then
dY,Y')>277/8. If Y € GI(X) and codim(Y") > j then d(Y,Y') > 277/16.
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Proof. We have

n o / /
dy,Y') = maX(ernYagB d(y,Y'n B%y,glya,gB d(y',Y N B)).

Suppose that the first term is less than 277/8. Let yq, ... ,¥; be a nice basis
for Y (as provided by Lemma [B.3). Let ||w; — y;|| < 277/8 and let W be the
space spanned by the w;. Lemma guarantees that sup, cynp d(y, WNB) <
1/2. Since W is at most j-dimensional whereas dim(Y') > j, let z € Y' N B
satisfy d(z,W) = 1. Now for y € Y N B, d(z,W) < d(z,y) + d(y, W), so
using d(y, W) < 1/2 we see that d(z,y) > 1/2. We have therefore shown that
max, cy'ng d(y’,Y) > 1/2 under the assumption that the first term of d(Y,Y”)
is small. In either case we see that d(Y,Y”) is bounded below by 277/8. The
second statement follows from Lemma [B.1] 0

Corollary B.10. Suppose thatY € Gx(X), Y’ € G (X) andsupyeynp d(y, Y'N
B) < €. Then, if € is sufficiently small, we have that k' > k. Similarly, suppose
that Y € GH(X), Y' € GF'(X) and sup,cynpd(y,Y' N B) < e. Then, if ¢ is
sufficiently small, we have that k' < k.

Proof. We present the proof of the second statement, which is the one used.
The proof of the first one is entirely analogous.

Let ¢ < 37%/8, and assume the hypotheses hold. We want to show that
k' < k. Assume on the contrary that &’ > k, and pick Y C Y such that Y €
G¥ (X). Then, Sup, cynp Ay, Y' N B) <supyeynpd(y,Y' N B) <e Inview of
Lemmal(B.7, d(Y,Y") < 3% 8¢, s0 sup,cy 5 d(y', Y NB) < supy ey inp d(y’, Y N
B) < 38 So d(Y,Y’) < 3%8e. If € is sufficiently small, this contradicts
Lemma [B.9] Thus, k' < k. O

Lemma B.11. If X is separable, then Gy (X) is separable.

Proof. Let x1,x9,... be a dense sequence in B. Then the collection of linearly
independent k-element subsets of {x1,xa, ...} is also countable. Let Y € G (X).
Let y1,...,yr be a nice basis for Y (as in Lemma . Then given € > 0, let
(2i,)5_, € B be chosen so that [|z;, —y;|| < /22, Let W = span(x;, ..., z;,).
Lemma implies that max,eynp d(y, W) < e. Then Lemma implies that
d(Y,W) < 4-3F¢, so the separability is established. O

Lemma B.12. If X* is separable, then G*(X) is separable.

Proof. Lemma implies that G¥(X) is homeomorphic to G, (X*). The result
follows from Lemma [B.11] O

Lemma B.13. Let & : L(X) x G(X) — G(X) be given by ®(T,W) = T(W).
For0<I <k, let

G(n,k, 1) ={(T,W) € L(X) x Gp(X) : dim(KerTNW) > [}.
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This is a closed subset of L,(X) x Gp(X), where L,(X) is endowed with the
restriction of the strong operator topology on L(X). Also, let

G(n, k,1) = G(n, k, 1)\ G(n, k,1 +1)
(T, W) € Lp(X) X Gp(X) : dim(Ker TNW) =1}.

Then, ®|cm,k,) : G(n,k, 1) = Gp_1(X) is continuous.

Proof. To see that G(n,k,l) is a closed set, suppose that T € L, (X), W €
Gr(X) and dim(KerT NW) = s <. Let {Tws,...,Twi_s} be a nice basis for
T(W). Let M = max ||w;||. Let Us = {S € Ln(X): ||S(w;) — T(w;)|| < 6} (a
relatively open subset of L, (X)), and let V' € Gi(X) be such that d(W, V) < 6.
Then in particular V' contains elements vy, ..., vg_s such that ||v; —w;|| < M.
Now we have [[S(v;) — T(w)[| < I1Sllle: — wil| + |1S(wi) — Tws)|| < (M +1)6.
By Lemma if e > 0 and 4 is small enough, then {Svy,...,Svi_s} is an
e-nice basis of span(Svy, ..., Svp_s) C S(V). In particular, S(V') has dimension
at least k—s. It follows that dim(KerSNV) < s, so G(n, k,1)¢ C L, (X) x Gr(X)
is open.

Let (T, W) € G(n,k,l), and let r > 0. Let {Tws,...,Twk_;} be a nice
basis for T(W), and let M and Us as in the previous paragraph. We claim
that if § > 0 is sufficiently small and (S,V) € <U5 x Bg(W, 5)) NG(n, k1),
then d(T'(W),S(V)) < r. Indeed, let ¢ > 0. The previous argument shows
that if ¢ is sufficiently small and [jv; — w;| < MJ for each 1 < i < k — [, then
{Sv1,...,Svk_;} is an e-nice basis for S(V') such that ||S(v;) —T'(w;)|| < (nM +
1)6. Hence, by the proof of Corollary [B.6] d(T(W),S(V)) < 2k+2(nM + 1)4.
Taking 6 < m yields the claim. O
Corollary B.14. The map @y : L(X) xGp(X) = G<i(X) given by (T, W) =
T(W) is (S ® Bg, Bg)-measurable.

Proof. Let us note that L(X)xGr(X) = U,.en U;C:o G(n,k,1). Also, G(n, k,1) is
S ® Bg measurable, as L, (X) is S measurable, and G(n, k, ) is the difference of
two closed sets in L, (X)xGr(X), by Lemma Since @G, k1) is continuous
again by Lemma [B.13] then @ is (S ® Bg, Bg)-measurable. O

Lemma B.15. Let X be separable, 11 : X — Y a surjective bounded linear
map, and k > 0. Then, the restriction of the induced map IIj, : G*(X) — G(Y)
to II71(G7(Y)) is continuous for every j > 0. Furthermore, 11y, is measurable.

Proof. First, we note that since II is surjective, Y is separable and for every
W e GF(X), I (W) € G=F(Y).

For every 0 < 7, the set G*(X) NTI, 1(G=7(Y)) is relatively open in G¥(X).
To see this, let W € GF(X)NII; ' (G (Y)). By the above, j < k. Let W’ € G*(X)
be such that d(W, W’) < 4. By the open mapping theorem, there exists r > 0
such that rBy, (w) C IIx(W N Bx). Let z € II,(W) N By. Then, there exist

40



we WNLBx and w' € WN1Bx such that IIw = z and ||w—w'[| < 2. Hence,
[Tw — || < 122 Ty,

2||II||8
swp A=W N By) <2 sup  d( (W) < 2,
z€ll(W)NBy z€Il, (W)NBy r

If § is sufficiently small, Corollary implies that W' € I, 1 (=7 (X)).

It follows from the proof in the previous paragraph and Lemma [B.7] that the
restriction of ITj, to IT, '(G7(Y)) is continuous.

The fact that IT;, : G¥(X) — G(Y) is measurable follows from the previous
two paragraphs. O

Lemma B.16. The function v : L(X) X Gx(X) — R given by v(R,Y) = |R|yv||
is measurable when L(X) is endowed with the strong o-algebra S.

Proof. By Lemma it suffices to show continuity of v as restricted to L,,(X) x
Gr(X), where L,(X) is endowed with the restriction of the strong operator
topology. Let Y € Gr(X) and let R € L,,(X). Let € > 0 and let 6 < ¢/(n+k2F).
Let {y1,...,yr} be anice basis for Y. Let N = {S € L,(X): ||S(y;) — R(y:)]| <
0} and let W € Gy (X) satisfy d(W,Y) < 0. Now given w € BN W, there exists
ay € BNY such that ||w—y|| < J (or conversely given y € BNY, there exists
aw € BNW such that ||w —y|| < ). We then have

[S) < IR + [15(y) = By)[| + [[S(w) = S(y)|| and
[S)| = IR = [15(y) = B)[| = [[S(w) = Sl

It follows that [[|S(w)|| —[|R(y)lll < IS(y) = R(y)l| + [15(w) = S(y)]|.

The second term of the right side is bounded above by nd. For the first term,
notice that by Lemma [B:4] y may be expressed as a linear combination of y;’s
with coefficients bounded above by 2*. Hence the first term is bounded above
by k2%6. Tt follows that |||S(w)|| — [|[R(y)||| < (n + k2%)6.

By taking y € Y N B for which ||R(y)| = ||R|y|| it follows that || S|w| >
IRy || — e. Similarly taking w € W N B for which ||S(w)|| = ||S|w|| we obtain
|Rly || > ||Slw|l — € so that ||R]y]| — ||S|w]|| < € as required. O

A pair of closed complemented subspaces Y, Z of X is called complementary
ifYNZ ={0} and Y ®Z = X. By the closed graph theorem, any pair of
complementary spaces (Y, Z) specifies a bounded linear map Ilyz, which is
the projection onto Y along Z, having kernel Z and image Y. By symmetry,
the map Iy is also a linear and bounded projection.

For k > 0, let

Comp,,(X) = {(Y,Z) € Gu(X) x GF¥(X): Y NZ ={0},Y & Z = X},

and let Comp(X) = [J,>oComp,(X) be the set of complementary subspace
pairs of X of finite dimension/codimension.
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Lemma B.17. Let (Y,Z) € Comp(X) and Y’ € G(X). Then,
ITzyy [y | < 2) gy 1d(Y, Y7).

Proof. Let y € Y and € > 0. Let y € Y be such that ||y —y| < d(y',Y) +e.
Then,

ITzyy WO = 1Tzpy (6" = )]l < [Tz [(d@y, Y) + €) < [Tzy ([ 21y 1d(Y", Y) + e).
Letting € — 0, the result follows. O

Lemma B.18. The map ¥ : Comp(X) — L(X) given by V(Y,Z) = Iy is
continuous, where Comp(X) carries the product topology induced by the metric
on G(X) and L(X) is endowed with the norm topology.

Remark B.19. Since the norm topology is finer than the strong operator topol-
ogy on L(X), Lemma[B.1§ yields that ¥ is also continuous when L(X) is en-
dowed with the strong operator topology.

Proof of Lemma[B-18 Let € > 0. Let (Y,Z) € Comp(X) and z € X. Since
dimY < oo, then Y N 9B is compact. Hence, ¢ := infycynap d(y, Z) > 0.

Let § < min{3, Sf—%} and (Y’, Z") € Comp(Z) such that d(Y,Y"),d(Z,Z') <
0. Then, inf,cyinapd(y’, Z') > % Indeed, let 4/ € Y NOB, and let y € YN B
be such that ||y’ —y|| < 6. Then, 1 —0 < ||y]| < 1+ 4. Let z € Z be such that
ly — 2| < d(y,Z) + 6. Then, ||z|| < 2||y|| + 6 < 3 and

Ay, 2') z d(y, 2) = lly = y'll = d(z, 2') = ((1 = 0) =6 =36 =

DO [y

We claim that ||TTy/z/ || < % and [Tz )y || < %—i—l. Indeed, let z € XNOB, and
write t =y’ + 2/, with ¢’ € Y’ and 2’ € Z'. Then, 1 = ||y + 2| > d(y',Z’) >
%HIU/H, so that ||y/| < % and the first claim follows. The second claim follows
from the triangle inequality.

Let M = max{|[Iy) |, |[dzy|}. Assume also that § < 75 (2 +1) .

Then, if (Y’,Z') € Comp(Z) is such that d(Y,Y”),d(Z, Z") < ¢, we have that

Tzpy | = [Tz |l < 1T zypy — Tgrpy ||
<N (Mzpy = gy )z Mz |+ [1(Tzyy = zey) v Ty 2|
< |y zlz Nz gy Al + Tzypy [y [Ty 2 |l

<2M(d(Z,Z") +d(Y, Y’))(% +1) <e,

where the third inequality follows from the fact that Iy z + Ilzy = Id, and
the fourth one follows from Lemma [B.17 and the claim above.
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Lemma B.20. Let

NI(X)= |J {(+.2) € (Ge(X) x G¥ (X))
k,k'>0
U (Qk(X) X gk/(X)>
U (Ge(X) x Gw (X)) : Y N Z = {0}}

be the set of pairs of subspaces of X of finite dimension/codimension with trivial
intersection.

Then, the map V' : NI(X) — G(X) be given by V' (Y,Z) =Y @ Z is
continuous.

Proof. Let (Y,Z) € NI(X). Let W € G(X) be such that (Y & Z,W) €
Comp(X), so that Y@ Z&W = X. Also, let M = max(||Ilyzewl, [Hzjyewl|)-

Let 6 > 0 and Y',Z" € G(X) be such that d(Y,Y"),d(Z,Z’) < . Let
y €Y,z € Z be such that ||y + z|| < 1. Then ||y|,||z|| < M. Therefore, there
exist y’' € Y and 2’ € Z' such that ||[y—y'||, ||z—2’|| < M. Hence, ||(y+2)—(y'+
) < Nly=9y[[+llz—=2"|| < 2M4. Therefore, sup,¢(ygz)np d(,Y'®2") < 2M0,
and by the triangle inequality, sup,¢ygz)npd(z, (Y © Z') N B) < 4Mo. If
0 is sufficiently small, Lemma implies that (co)dimY = (co)dimY”’ and
(co)dimZ = (co)dimZ’. Hence, using Lemma we get that d(Y ¢ Z,Y' &
7' < M, where M depends on M, k and k. Hence, ¥’ is continuous. O

Definition B.21. A Banach space X is called uniformly convex if there is an
increasing function e(r) > 0 with im,_,oe(r) = 0 such that for every x,y € B,
1552 < 1= e(fle = yl)).

Given a uniformly convex Banach space X, a closed subspace V' C X, and a
point € X, there is a unique nearest point of V to z (see e.g. Lax [34] p.45]).
We call this point py ().

Lemma B.22. Let X be a uniformly convex Banach space. Then, the function
p: X xGF(X) — X given by p(x,V) = py(x) is continuous.

Proof. If x € V, then the conclusion is straightforward. Consider the case
x € V. Observe that for every A € R we have p(Az,V) = |Alp(z,V). Let
{(zn, V) }nen € X x G¥(X) be such that lim,, o0 (zn, Vi) = (2, V).

Let yn = pv, (zn), 2n = pv(yn) and y = py(x). As previously, by the trian-
gle inequality, we have that ||y, || < 2||z,]|. Also, |yn — zn|l < 2||ynlld(Vy, V) <
4|z ||d(Va, V). Hence,

lz = znll < |z = 2nll + (20 — Ynll + lyn — 2all
<z = znll + d(zp, Vi) + 4||lz0||d(Vi, V).

Since the distance function d : X xG*(X) — R given by d(z, V) = inf,cy ||[v—
z|| = minyey ||v — z|| is continuous, lim, 0 || — 2, || = d(z, V). We claim that
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{2zn}tnen must be a Cauchy sequence. Indeed, let z/, = ==

| . o and dmn =
(ZHznfacH + 2\|szz\|)~ Then,

1 1

/ /
z, +2
n m
—_— Zn +

2

Zm — mH > am,nd(xa V)

‘ = Qm,n

2||Zn_$|‘am,n 2||lzm — z/lamn

Since am pd(z,V) — 1 as m,n — oo and X is uniformly convex, this implies
that ||z, — z.|| — 0. Therefore ||z, — zn|| — 0, and {z,}nen is a Cauchy
sequence.

Let z = limy_y00 2. Then, ||z —z|| = d(z, V'), and by uniqueness, z = py (z).

Furthermore,

lov(x) = pv, (zn)ll = Iz = ynll < [lz = znll + 120 — |

S0 p is continuous. O

C Some facts from ergodic theory

C.1 A characterization of tempered maps

This appendix provides a characterization of tempered maps, based on the fol-
lowing theorem.

Theorem C.1 (Tanny). Let T' be an ergodic measure-preserving transforma-
tion of a probability space (X, B, u). Let f: X — R be a non-negative measurable
function. Then either f(T"™z)/n — 0 for u-almost every x; orlimsup f(T™z)/n =
oo for p-almost every x.

The proof of the following lemma is based on a very concise proof of Tanny’s
theorem, attributed to Feldman, that appears in a Lyons, Pemantle and Peres

Lemma C.2. Let T be an invertible ergodic measure-preserving transformation
of a probability space (X,B,u). Let f: X — R be a non-negative measurable
function. Then f(T~"z)/n — 0 for u-almost every x as n — oo if and only if
f(T"x)/n — 0 for p-almost every x as n — oo.

Proof. Suppose that f(T~"x)/n — 0. Let € > 0. There exists for u-almost every
x an L such that n > L implies f(T~"z)/n < e. Fixing a sufficiently large L, the
set A= {x: f(T "z)/n < e for all n > L} has measure at least 1/2. Now we
apply the Birkhoff ergodic theorem to 1 4. For almost every x, there exists an ng
such that for n > ng one has (1/n)(1a(x) +...+14(T" 12)) € [2/5,3/5]. Fix
such an z and let ng be the corresponding quantity. Then let N > max(ng,5L).
We then have
#{0<i< N:T'(z) € A} <3N/5.
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On the other hand we have
#{0<i<2N:T'(zx) € A} > 4N/5.

It follows that there exists i € [N+L,2N) with T?(z) € A. The fact that T%(z) €

A tells us that f(TNx) < e(i — N) < eN. It follows that f(TNx)/N < e. Since

this holds for all large N and e was arbitrary we deduce that f(T"z)/n — 0.
The converse statement follows immediately. O

Combining the proof of Lemma with Tanny’s theorem, we get the fol-
lowing.

Theorem C.3. Let T be an invertible ergodic measure-preserving transforma-
tion of a probability space (X, B, ). Let f: X — R be a non-negative measurable
function. Then one of the following holds:

o f(T"x)/n — 0 for p-almost every x as n — +oo; or

e limsup,,_,., f(T"z)/n = oo and limsup,_,. f(T "x)/n = oo for u-
almost every x.

Proof. In view of Tanny’s theorem, it is sufficient to show that if f(7T~"z)/n — 0
a.e. then f(T"z)/n — 0 a.e. This follows from Lemma [C.2] O

C.2 Random version of Hennion’s theorem

In this appendix, we present a result that allows us to bound the index of com-
pactness and maximal Lyapunov exponent of some random dynamical systems
satisfying certain Lasota-Yorke type inequalities. We remark that many parts
of this lemma essentially appear in Buzzi [7]. We have modified the conclusion
and weakened the hypotheses in one place. This result is based on the following
theorem of Hennion [24].

Theorem C.4 (Hennion). Let (X,|| - ||) be a Banach space and suppose that
Y is a closed subspace of X. LetY be equipped with a finer norm ||.|| (such
that ||yl < |yl for all y € Y) such that the inclusion of (Y| - ) = (Y, - 1)
is compact. Suppose that L is a linear operator such that L(X) C X and
L(Y) CY. Suppose further that for ally € Y, one has the inequality

£l < Allyll + Bliyll-

Then the index of compactness of L is bounded above by 2B.

Lemma C.5. Let (X, ]| -||) be a Banach space and let Y be a closed subspace.
Let || - || be a finer norm on'Y such that the inclusion of (Y, || -|) <= (Y, - 1)
is compact. Let o: (Q,u) — (Q, ) be an invertible ergodic measure preserving
dynamical system and let (Ly,)weq be a family of linear maps, each mapping X
to X andY toY continuously. As usual, let E((U") =Lon-1,0...0L,.
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Suppose we have the following inequalities:

(Strong L-Y) — [[LufIl < AW + B)IFI for all f €Y;
(Weak L- Y) |||‘Cw ||| < C(w>7

where A(w), B(w) and C(w) are measurable functions, C(w) is log-integrable
and [log B(w) du(w) < 0.
Then there exists a full measure subset 1 C Q with the following properties:

1. limp o0 (1/n) log | L8 [1ie < [ log B(w) du(w) for all w € Q;
2. For w € Qq, suppose that f € Y satisfies
lim sup(1/n) log || £V || < 0. (9)

n—oo

Then limsup,,_, .. (1/n)log |||£5Jn)f|\| < 0.

Proof. For the first statement, notice that applying the strong Lasota-Yorke
inequality we obtain inductively |||£L(,Jn)f|\| < B(e" Y ... BW)|fll + D|f]|l for
a constant D depending on w and n. From Hennion’s theorem, we deduce
1287 le < 2B(0™'w) ... B(w). Taking logarithms, the conclusion then follows
from the ergodic theorem.

We now show the second statement. There exists a § > 0 such that for any
set S of measure at most §, one has fs(logC —log B)dp < — [log Bdp. Now
since A is measurable, there exists a K > 0 such that u({w: A(w) > K}) < 4.

Set B(w) = B(w) if A(w) < K and C(w) otherwise. Set A(w) = min(A(w), K).
We see that we have a hybrid Lasota-Yorke inequality obtained by applying the
strong Lasota-Yorke inequality for cases in which A(w) < K and the weak in-
equality otherwise:

ILo £l < A@)Ifll+ B (10)

The advantage of this is that we still have [ logBd,u < 0 and A is now
uniformly bounded by K.

Applying the ergodic theorem (with the transformation being ¢ ~1) we obtain
a measurable function F(w) such that for P-almost every w, we have

B(o~'w)...B(oc7*w) < F(w) for all k> 0. (11)

Let 8 > [logC. Applying the ergodic theorem once more, we obtain, for
P-almost every w, the bound

C(e™ 1w .. Clo"w) < H(o"w)e ™ for all n,k > 0. (12)

There exists a B > 0 such that H(w)F(w) < B on a set of positive measure.
By the ergodic theorem, for all § > 0, for almost every w, there exists an ng
such that

VN > ng, In € [N(1 —0),N) withH (0"w)F(c"w) < B. (13)
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Now let €; be the set of full measure on which the conditions above hold.
Fix an w € ©; and let f € Y satisfy @ Let € > 0 be arbitrary. Then by the
hypotheses, there exists a constant L such that

12 F|| < Le™? for all n > 0. (14)
Now by iterating (10]), we obtain the bound (valid for all f € Y)

I£5FI < B(o™ 'w) ... A fll + B(e"'w) ... Blow) A(w) || ]|+
o BT W) A" )| L5 |+ Al T )15V F
Using the inequalities B(o"'w)... B(c" *w) < F(o™w) (from (11)), the
fact that A(w) < K, and (14), we obtain an upper bound of the form
ILLFI < MF(o"w)e™?, (15)

for a suitable constant M.
Combining this with we obtain

IL5T*FI < MF(0"w) H (0" w)e™ e (16)

We can therefore obtain a bound for |£7 f|| by minimizing the above over
possible decompositions m = n + k. Let ng be as in where ¢ is taken to
be €/(25) and suppose m > ng is given. Then there exists a k < €/(28)m such
that F(o™ *w)H (0™ *w) < B so that

£ fIl < MBe™?eP* < M Be ™,

It follows that lim supNﬁoo(l/N)|||££JN)f|H < e. Since € is arbitrary, the proof
is complete. O
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