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ABSTRACT. We establish stability of random absolutely continuous invariant measures
(acims) for cocycles of random Lasota-Yorke maps under a variety of perturbations.
Our family of random maps need not be close to a fixed map; thus, our results can
handle very general driving mechanisms. We consider (i) perturbations via convolutions,
(ii) perturbations arising from finite-rank transfer operator approximation schemes and
(iii) static perturbations, perturbing to a nearby cocycle of Lasota-Yorke maps. The
former two results provide a rigorous framework for the numerical approximation of
random acims using a Fourier-based approach and Ulam’s method, respectively; we also
demonstrate the efficacy of these schemes.

1. INTRODUCTION

Dynamical systems that are governed by laws that vary over time naturally arise in a
variety of situations, including models of physical processes where the time variation is
due to an external forcing. Random (or forced) dynamical systems are an extremely broad
class of systems that exhibit time dependence, requiring only a stationarity assumption on
the forcing process, and no assumptions on periodicity of forcing. The external forcing can
also arise via a noise process, possibly modelling uncertainties in the dynamical system.

Although the word random appears throughout this work, the forcing may be deter-
ministic. For example, in the context of multiscale systems of skew-product type (see
eg. [PS08]), where aperiodic fast dynamics is driving slow dynamics, the “random” in-
variant measures are a family of probability measures on the slow space, indexed by the
fast coordinates. This collection of probability measures on the slow space represent
time-asymptotic distributions of slow orbits that have been driven by particular sample
trajectories of the fast system. Such a situation occurs in many scenarios, including cou-
pled ocean-atmosphere models; there is a large body of work in this area and we mention
only Arnold et al., [Arn98] and the references therein. Random invariant measures have
also been studied in other geophysical contexts, including simplified El-Nino Southern Os-
cillation (ENSO) models [CSG11] and quasi-geostrophic models [DKS01] under random
forcing.

The results of this paper deal with very general driving systems: the conditions on
the base dynamics are that it should be stationary (i.e. have an invariant probability
measure), ergodic and invertible; in particular, no mixing properties are needed. Fur-
thermore, no uniform assumptions are made on the individual maps representing the
evolution rules; rather, certain conditions are required to hold on average with respect to
the stationary measure of the driving system.

Leaving technicalities for later, we denote our driving system by a measurable map
o : QO and for each w € 2, we have a dynamical law T}, : X © describing the evolution
on our state space X. Putting these together we have a skew-product map ® : 2 x X O,
O(w,x) = (ow,T,x). We assume that o preserves a probability measure P on €2 and
are concerned with measures p preserved by @®; that is, g o ® ! = u. By standard

disintegration we can write u = fQ ty, dP(w), where each p,, is a probability measure
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supported on on {w} x X, satisfying pise = piw 0 T, (thinking of i, fisw as probability
measures on X ). Under certain conditions detailed shortly, there is a unique {j, }oeq,
called a random absolutely continuous invariant measure (acim), such that each p, has
a density function with respect to Lebesgue, called f,,, that satisfies

o lim, ., L,-1,0 -0 Lsn,1x = f,; thus each f, can be thought of as the as-
ymptotic distribution arrived at by running the dynamics from the distant past,
and

o L, fo = fow, where L, is the Perron-Frobenius operator of T}, (equivariance of the

fo)-

Our main goal in this paper is to demonstrate stability of random absolutely continuous
invariant measures, f,,, under a variety of perturbations. The type of stability we obtain
is in a strong sense; the random acims converge fibrewise in L'. We study the simple
situation of piecewise smooth maps of the interval that expand on average; however, we
see our results as a proof of concept, and expect results of this type to hold much more
generally.

Numerical methods for approximating invariant densities rely on stability of the density
under particular perturbations; those induced by the numerical method. A very common
perturbation is Ulam’s method, a relatively crude, but in practice extremely effective,
approach. Positive stability results in a variety of settings include [BIS95, Fro95, DZ96,
BK97, Mur97, KMY98, Fro99, Murl0]. A mechanism causing instability is described
in [Kel82]. Ulam’s method can also be used to estimate other non-essential spectral
values [Fro97, BK98, BH99, Fro07|. Stability under convolution-type perturbations is
treated in [BY93, AV13], and [BKL02, DLO08] consider static perturbations, as well as of
convolution-type. A seminal paper in this area is [KL99], which provides a rather general
template for stability results for single maps.

Despite the considerable volume of results concerning stability of acims for single maps
T, only a few results are known about stability of acims in the random or non-autonomous
situation [BKS96, Bal97, Bog00]. Each of these results concerns stability of acims for
small random perturbations of a fized expanding map; thus these results concern stability
of non-random objects associated with a fixed unperturbed transfer operator.

In contrast, we begin with a random Lasota-Yorke map that possesses a (random)
invariant density, and demonstrate stability of this random invariant density under per-
turbations. In particular, our results answer a question raised by Buzzi in [Buz00, Buz99].

Our techniques can handle convolution-type perturbations (the random map experi-
ences integrated noise), static perturbations (the random map is perturbed to another
random map), and finite-rank perturbations (stability under numerical schemes, such as
Ulam and Fourier-based schemes).

We remark that one may view random acims as the top element of an Oseledets split-
ting of the underlying Banach space, as considered in [FLQ10, FLQ13, GTQ13]. This
viewpoint provides a broad framework for the study of random absolutely continuous
invariant measures, exponential decay of correlations and coherent structures in random
dynamical systems, by splitting Banach spaces into dynamically meaningful subspaces
with specific growth rates. The references above provide explicit applications in the
setting of random compositions of piecewise smooth expanding maps.

The approach we take here is motivated by the work of Keller and Liverani [KL99]. We
point out that although the results of [KL99] may be applied directly to some random
perturbations of a single system, they yield information about expectation of the random

process only. In contrast, ours yields information about almost all possible realizations.
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1.1. Statement of the main results. A random dynamical system consists of a base
dynamics (an invertible measure-preserving map o of a probability space 2) and a family
of linear maps £, from a Banach space to itself (in our applications these are the Perron-
Frobenius operators of piecewise smooth maps, T,,, of the circle or the interval). The
results address stability of the random acim when the linear maps are perturbed (leaving
the base dynamics unchanged). We consider three classes of perturbations:

(A) Ulam-type perturbation. For a fixed k, we define perturbed operators Ly, to be
E,oL,, where E,, is the conditional expectation operator with respect to the partition
into intervals of length 1/k.

(B) Convolution-type perturbation. Given a family of densities (Qx) on the circle, we
define perturbed operators Ly, by Liwof = Qi * L, f. If one applies T, and then
adds a noise term with distribution given by @), then L, is the random Perron-
Frobenius operator. That is, the expectation of the Perron-Frobenius operators of
1, © T, where y has density @), and 7, is translation by y. Notable examples of
perturbations of this type are the cases where () is uniformly distributed on an
interval [—eg, €x] or where @y is the kth Fejér kernel.

(C) Static perturbation. Here one replaces the entire family of transformations T}, by
nearby transformations 7} . These are much more delicate than the other two types
of perturbation (composing with convolutions and conditional expectations generally
make operators more benign, for example they reduce variation).

Notice that by enlarging the probability space, perturbations of this type can
include transformations with (for example) independent identically distributed ad-
ditive noise. To see this, let = denote the space of sequences taking values in [—1, 1],
equipped with the product of uniform measures and let Q = ©Q x = and & be the
product of ¢ on the 2 coordinate and the shift on the = coordinate. Then defining
Thywe) (@) = Too(x) + € gives a family of perturbed maps (with the common base
dynamics being Q). The unperturbed dynamics (7,,) can, of course, also be seen
as being driven by Q. Notice that this is not the same thing as the perturbation
obtained by convolving with a uniform @ as in (B). In the static case, the results
obtained would give a result that holds for compositions of £, ¢ for almost every w
and almost every sequence of perturbations &, whereas a result for the convolution
perturbation would give a result that holds for the expectation of these operators
obtained by integrating over the & variables. The convolution type perturbations are
also known in the physics literature as annealed systems, while the static perturba-
tions are quenched systems.

Below we outline the main application results of this paper. We refer the reader to §3
for definitions, and to Theorems 3.7, 3.9 and 3.11 for the precise statements.

Theorem A: (Stability under Ulam discretization). Let £ be the Perron-Frobenius
operator of a covering, good random Lasota-Yorke map acting on BV, the space of func-
tions of bounded variation. Let {Ly}ren be the sequence of Ulam discretizations of L,
corresponding to uniform partitions of the domain into £ bins. Then, for each sufficiently
large k, L; has a unique random acim. Let {F}}ren be the sequence of random acims for
L. Then, limy,_,o, F}, = F fibrewise in L.

Theorem B: (Stability under convolutions). Let L be the Perron-Frobenius oper-
ator of a covering, good random Lasota-Yorke map acting on BV. Let {Lx}ren be a

family of perturbations, arising from convolution with positive kernels @Q;, such that
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limy oo [ Qr(2)|z|do = 0'. Then, for sufficiently large k, £; has a unique random acim.
Let us call it Fj,. Then, limy,_,o Fj; = F fibrewise in L!.

Theorem C: (Stability under static perturbations). Let L be the Perron-Frobenius
operator of a covering, good random Lasota-Yorke map acting on BV. Let {Ly}ren be
the Perron-Frobenius operators of a family of good random Lasota-Yorke maps over the
same base as L, satisfying the conditions of Definition 3.1, with the same bounds as L.
Assume that dpy (7)., T,,) converges to 0 in P-measure, where dyy is a metric on the
space of Lasota-Yorke maps. Then, for every sufficiently large k, £, has a unique random
acim. Let {Fj}ren be the sequence of random acims for L. Then, limy o Fy = F
fibrewise in L.

1.2. Structure of the paper. The paper is organized as follows. An abstract stability
result, Theorem 2.4, is presented in §2, after introducing the underlying setup. Examples
are provided in §3. They include perturbations arising from Ulam’s discretization scheme
in §3.2, perturbations by convolution in §3.3 and static perturbations of random Lasota-
Yorke maps in §3.4. The theoretical results are illustrated with a numerical example in

§3.5.

2. A STABILITY RESULT

We start by fixing some terminology. Let m denote Lebesgue measure on the interval
I :=[0,1] (or on the circle). Let (BV, ||-||gv) be the Banach space of functions of bounded
variation on I. That is, f € BV if

var(f) :=  inf sup Z lg(zx) — g(ak—1)| < 00,

g=f (mod m) 0=g¢<z1<--<zn=1,nEN g
and for every f € BV, || f|lsv := var(f) + | f]i.

Definition 2.1. A random linear system with ergodic and invertible base, or
for short a random dynamical system, is a tuple R = (Q, F,P,0,X,L) such that
(Q, F,P) is a probability space, o : (2, F) O is an invertible and ergodic P-preserving
transformation, X is a Banach space, L(X) denotes the set of bounded linear maps of
X, and L :Q — L(X).

Remark 2.2. Some measurability conditions on L will be required in the sequel. We use
the notation LY = L(c" w)o -0 L(w).

2.1. Setting. Let us consider random dynamical systems of functions of bounded varia-
tion
R=(Q,F,Po, BV, L)and Ry = (0, F,P,0,BV, L), k> 1,

with a common ergodic invertible base o : ©  and such that the maps (w,z)
Ly .G (w, ) is P x m measurable for every P x m measurable function G. Furthermore,
suppose the following conditions hold:
(HO) [log™ ||Lulpv dP(w) < oo and for every k € N, [log" ||Liwlpy dP(w) < oc.
Furthermore, for every £ € N, f € X and P-a.e. w € 0, L, and L, preserve the
cone of non-negative functions, and satisfy [ Ly, fdm = [ fdm = [ L,fdm.

Remark 2.3. In all the examples of this paper, condition (HO) is clearly satisfied. Thus,
we will henceforth assume it holds and use it wherever needed.

IThis condition is equivalent to weak convergence of Qy, to do.
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(H1) There exist a constant B > 0 and a measurable a : Q@ — R, with x =
[ log a(w) dP(w) < 0, such that for every f € X, k € N and P-a.e. w € Q,

1) max (”ﬁwf”BV’iEE ||£k,wfqu) < a(@)[flav + BIfI.

A version of the following statement was used by Buzzi [Buz00]: Condition (H1) is
implied by the following more practical condition.

(HY’) log max(|| Ly ||V, Subgen || LkwllBv) is P-integrable, and there exist measurable func-

tions &, B :  — R with [log &(w) dP(w) < 0, such that for every f € X, k€ N
and P-a.e. w € (,

@) mo (1€ v 519 [ fllv ) < )1y + B

Furthermore,  in (1) may be chosen arbitrarily close to [ log&(w) dP(w).

Using the relative compactness of the unit ball of BV in L', one can verify that
®p(w) = SupP|gpy=1 |Lrw(9) — Lu(g)]1 is a measurable function of w. The following
condition regarding smallness of the perturbations is required:

(H2) @) (w) converges in measure to 0. That is, for every ¢ > 0,

k=00 lgllpv=1

lim P ({w cosup (Lo — Lrw)gl > 5}) = 0.

The previous condition allows us to pursue a probabilistic version of the triple norm
approach used by Keller and Liverani in the autonomous context [Kel82, K1.99], where
the triple norm of an operator £ is defined by || L] := supy g, =1 |Lgl1-

A further assumption is made on R, related to uniqueness of the random acim. We
remark that this condition concerns the unperturbed system only, and not the perturba-
tions.

(U1) For every €,0 > 0, there exists n.s € N such that

(3) P ({w : sup |£g",)nwf|1 > 5}) < e for all n > n.g,

FeVo,llfllev<1

where Vy := {f € BV : [ fdm = 0}.

2.2. Stability of random acims. For each n € N and G : Q2 x I — R, with g, :=
G(w, ) € X, we let L"G : Q x I — R be the function defined fibrewise by L"G(w,-) :=

E[@nwgof%. Let £}G be defined analogously.

Condition (HO) shows that if £ (or £;) has a non-negative fixed point, then one can
in fact choose it to be fibrewise normalized in L'(Leb). We call any such fixed point F' a
random acim for L (or Ly).

The main result of this section is the following.

Theorem 2.4. Let R and Ry, k > 1 be random dynamical systems of functions of
bounded variation (BV). Suppose R and Ry, k > 1 share a common ergodic invertible
base and satisfy conditions (H0)—(H2). Assume R satisfies (U1).

Then, R has a unique random acim, F', and for sufficiently large k, there is a unique
random acim for Ry, which is denoted by F),. Furthermore, limy_,o, F), = F' fibrewise in
L. That is, for P-a.e. w € Q, limg_00 | fo — frwl = 0.
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Proof of Theorem 2.4. The existence of random acims for R and Ry for each k follows
from [Buz00, Proposition 2.1].

Let 0 <e< % We now assemble the ingredients that we use in the proof.

By [Buz00, Proposition 3.2], there exists an A > 0 and a set ; with P(€2;) > 1 — ¢
such that for every w € €, for every k € NU{0} and every random acim, F}, for Ry, one
has

(4) HFIQ,WHBV <A

By (U1), there exists n (depending on €, but now fixed for the remainder of the proof)
and a set 2y with P(Q23) > 1 — € such that for w € ), one has

(5) 1£87,  fll < € for any f € Vy with || fl|my < 24.
By (H1), there exists B > 0 and a set Q3 with P(Q3) > 1 — € such that

(6) Z 1£9, sy < B for all w € Q.

Finally, by (H2), there exists ky € N such that for each k > ko, there exists a set Gy of
measure at least 1 — < such that

(7) 1Lof — Liwflli < ¢/(AB)| fllsy if k > ko and w € Gy.

We now combine the ingredients. Let Q4 = (/_; 07 (Gy), so that P(Qqz) > 1 —e. Let
Q= 0" N QN Q3N Q. Then P(Q) > 1 —4de. Let H = {h € BV: [h(z)dr =
1 and ||h||BV S A}

Let k > ko, w € Q) and h, h' € H. We then have

HE h — EU nwh’Hl

(8) ko~ "w ,
<l b= L8 bl + 1Ll £ W

k,o~"w cf”w a”w

We apply (5) to deduce that ||£Un,nwh - Lon,)nwh’Hl < €.
For the first term of (8), we write

12 =2, hlh

ko~ ”w o "w

(9) n 1
< Z ey 200 (Lt = Lomemina) L8, 01

The L' norms of the Perron-Frobenius operators are 1. Furthermore, we have o~ w €
Gy, for each 0 < j < n, so that by (7), we obtain

Hﬁk U_nwh ’C _”whHl — AB Z HE _nwhHBV

Using (4) and (6), we see [|£\")
From (8), we now obtain

(10) ey

We now demonstrate that R, has a unique acim for each k£ > ky. Indeed if R, had
two random acims, ¢ and ¢’, then the normalized positive and negative parts of g — ¢/,

hy and hsy, would also be random acims and would satisfy |hy, — hay|l1 = 2 for each
6
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w. This contradicts (10) (taking A’ = 1 and h to be h; and hs in turn) and establishes
uniqueness.

Let fr denote the (unique) random acim for Ry (where k > ky) and f the random
acim for R. Then (10) shows that || fr., — ful1 < 2¢ for w € Q for all k > ko. Since

P(Q) > 1 — 4e and € is arbitrary, we see that the conclusion holds.
O

3. EXAMPLES

We present three applications of the stability theorem in the context of random Lasota-
Yorke maps in sections §3.2-§3.4. These correspond to Ulam approximations, perturba-
tions with additional randomness that arise by taking convolutions with non-negative
kernels, and static perturbations, respectively. In §3.5, we illustrate the results with a
numerical example.

3.1. Setting: Random (non-autonomous) Lasota-Yorke maps. Our setup of un-
perturbed random Lasota-Yorke maps can handle maps as in [Buz99]. In particular,
neither uniform expansion nor uniform bounds on number of branches are imposed on
the individual maps, but rather some conditions are required to hold on average with
respect to the ergodic invariant measure of the driving system.

Let LY be the space of non-singular, finite-branched piecewise monotonic, piecewise
C? maps of the interval. For each T' € LY, let u(T) := ess inf,c; |T"(z)| and N(T') the
number of branches of T', and let {0 = ao(T"),a1(T), ..., an)(T) = 1} be the endpoints
of the branches.

Definition 3.1. Let (2, F) be a measurable space and let o : Q0 O be an ergodic, invertible
transformation preserving a probability measure P. A good random Lasota-Yorke
map T is a function T : Q — LY given by w — T, such that

o (w,x)— T,(x) is measurable.

o limy o [, logmin(u(7,), K)dP > 0.

o log" (N(T.,)/iM(T.)) € L'(P).

o log™*(var(1/|T"|)) € L'(P).
A random Lasota-Yorke map is called covering if for every non-trivial interval J C [
and P-a.e. w € (), there exists some n € N such that Tugn)(J) = [ (mod 0).

Remark 3.2. A good random Lasota-Yorke map can be made into a random dynam-
ical system R = (Q,F,P,0,BV,L), where L, is the transfer operator associated to
T(w) =: T, acting on BV. For each n € N, R" denotes the random dynamical sys-
tem (0, F,P, 0" BV, L™). When the underlying T is clear from the context, we also refer
to R and L as good random Lasota-Yorke maps, in a slight abuse of notation.

Remark 3.3. The measurability condition of Definition 3.1 is implicit in [Buz99|, and it
implies measurability of w — (u(1,,),var(1/|T}|), N(T.), ao(1,), - .., anw,)(1,),0,0,...),
which is explicitly required in [Buz99].

The following theorem of Buzzi will allow us to show the conditions of Theorem 2.4
are satisfied for the unperturbed map R.

Theorem 3.4. [Buz99| Let R be a covering good random Lasota-Yorke map. Then,

(0) There exists N € N such that RN satisfies (HO) and (H1).

(1) There exists a unique random acim F for R.
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(2) There exist p > 0 and a function ng(w, M) such that if h > 0, ||hlly = 1 and ||h]| sy <
M, then

1257 b= fullss < p" for all n > no(w, M).

o "w

Remark 3.5. The choice of N in Theorem 3.4(0) is given by the requirement that the
average expansion of the of the N-fold composition has to be sufficiently large. More

precisely, it is necessary to have [ log ,u(TUSN))dIP’(w) > log 3.

Proposition 3.6. Let R be a covering good random Lasota-Yorke map. Then, R satisfies
condition (U1).

Proof. Let €,0 > 0. We have to show that there exist Q.5 C 2 with P(2.5) > 1 — € and
nes € N such that

sup ]E(@nwfh < 9 for every w € Qs and for all n > ns.
FeWlifli<1

Let n; be such that p"t < 9, where p comes from Theorem 3.4. Let n.s > ny be chosen
so that ng(w,2) < nes for every w in a set 2. 5 with P(2.5) > 1 —e.

Now let w € .5, and let f € Vj satisty || fllsy < 1. Write f = f, — f- where f;
and f_ are non-negative. Since f € V, we have ||fi|pv < 1 and ||f_|lpv < 1 and
[felh =N/l =c<1.

Let hy = fy + (1 —¢); and ho = f_ + (1 — ¢) so that ||hy|sy < 2, ||h-|Bv < 2,
|he|i =1 and ||h_||; = 1. Note that hy —h_ = f.

Now we apply Theorem 3.4 to hy and h_. We have ||£g",)nwhi — fulloo < ptes for

i€ {+ —}and n > n. It follows that [|£7, fll.e < p"¢ < &, which yields the

—ngy,

claim. O

3.2. The Ulam scheme. For each k € N, let P, = {By,..., By} be the partition of I
into k subintervals of uniform length, called bins. Let E; be given by the formula

E.(f) :iﬁw(/@jmm)bﬂ

where m denotes normalized Lebesgue measure on I.

Let Ly, be defined as follows. For each w € Q, Ly, := EiL,. This is the well-known
Ulam discretization [Ula60], in the context of non-autonomous systems. It provides a
way of approximating the transfer operator £ with a sequence of (fibrewise) finite-rank
operators Ly, whose range consists of functions that are constant on each bin.

Theorem 3.7. Let L be a covering good random Lasota-Yorke map®. For each k €
N, let L be the sequence of Ulam discretizations, corresponding to the partition Py =
{By, ..., By} introduced above.

Then, for each sufficiently large k, Ly has a unique random acim. Let {F}ren be the
sequence of random acims for Ly. Then, limy_, Fy, = F fibrewise in | - |;.

Proof. We will verify the assumptions of Theorem 2.4. (HO0) is immediate. The assump-
tions combined with the fact that E; reduces variation ensure that (H1’) holds as well.
The last condition to check in order for Theorem 2.4 to apply is (H2), which follows from
e.g. [Kel82, §16-§18]. O

2We assume N = 1 in Theorem 3.4(0). If N > 1, the conclusions remain valid provided the projection
Ej is taken after N compositions.
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3.3. Convolution-type perturbations. In this section we consider perturbations of
non-autonomous maps that arise from convolution with non-negative kernels Q € L*(m),
with [ Qrdm = 1. They give rise to transfer operators as follows.

(11) Couf(z) = / £ (1) Qul — y)dy.

They model at least two interesting types of perturbations:

(1) Small iid noise. In this case, Qy, supported on [—%, %], represents the distribution
of the noise, which is added after applying the corresponding map T,,. See e.g.
[Bal00, §3.3] for details.

(2) Cesaro averages of Fourier series. In this case, @ is the Fejér kernel Qr(x) =
pos and Qp x f = 1 2520 S;(f), where Si(f)(x) = Y5, f(4)e*™ is the

truncated Fourier series of f.

Remark 3.8. We point out that the Galerkin projection on Fourier modes, corresponding
to truncation of Fourier series, is obtained from convolution with Dirichlet kernels, which
are not positive. Although a convergence result in this case remains open, the numerical
behaviour appears to be good as well. This is illustrated in §3.5.

Theorem 3.9. Let L be a covering good Lasota-Yorke map®. Let {Ly.}ren be a family of
random perturbations, as in (11), such that limy_,« [ Qx(x)|z|dx = 0.

Then, for sufficiently large k, Ly has a unique random acim. Let us call it Fy. Then,
limy oo Fy = F fibrewise in | - |;.

Proof. We will show that conditions (HO)-(H2) of Theorem 2.4 are satisfied. (HO) is
clear. (H1’) holds because of the assumption on £ and the straightforward fact that
taking convolution reduces variation. (H2) follows from [Kel82, §16-§18]. O

3.4. Static perturbations. We consider the notion of distance in the space of Lasota-
Yorke maps introduced by Keller in [Kel82, §3].

Definition 3.10. The distance dpy is defined as follows. Let S, T € LY . Then,
dpy(S,T):=inf{d >0:3JCI, Ip: T O s.t. m(J)>1—20,¢ is a diffeomorphism,
Sly=To¢|l; andVx € J,|p(x) — x| <6, |1/¢'(x) — 1] < d}.

Theorem 3.11. Let L be a covering good Lasota-Yorke map, as defined in §3.1. For each
k €N, let {Ly}ren be a family of good random Lasota-Yorke maps with the same base as
L, satisfying the conditions of Definition 3.1, with the same bounds as L'. Assume that
dry (Tkw, T.,) converges to 0 in measure (P).

Then, for every sufficiently large k, Ly has a unique random acim. Let {F}}ren be the
sequence of random acims for Ly. Then, limy_ o, Fy, = F fibrewise in | - |;.

3We assume N = 1 in Theorem 3.4(0). If N > 1, the conclusions remain valid provided the convolu-
tions are taken after N compositions.
4More precisely, we assume there exist:
(1) a > 0 such that liminfy_,o limg o0 [, log min(u(frw), K)dP > a;
(ii) a P-integrable function A such that for every sufficiently large k € N, log™ (N (fr.w)/i(frw)) and
log ™ (N(f.)/u(f.)) are dominated by A; and
(iii) a P-integrable function B such that for every sufficiently large k& € N, log™ (var(1/| frwl) and
log™t (var(1/|f"|)) are dominated by B.



Proof. We will show that there exists n € N such that 7™ and 7;(") satisfy the hypotheses
of Theorem 2.4.

(HO) is straightforward to verify for 7™ and ﬁ(n). Condition (H1’) holds for some
n € N, because of the assumptions on 7 and T and [Buz99, §1.2]; we remark that the
covering condition is not necessary for this part (see also [Buz00]). Condition (H2) follows
from the next proposition.

Proposition 3.12. Assume that dpy (T, T.,) converges to 0 in measure.

Then, for every n € N, supyg,,—1 \(EEJ") — 5&)})9]1 also converges to 0 in measure.

Proof of Proposition 3.12. For n = 1, the claim follows from [Kel82, §3], which shows
that

sup |(Lo — Liw)gh < 12dpy (T, Thw).

llgllBv=1

The general case of fixed n > 1 then follows immediately from the identity
n—1
£](:u)1 - E(S)”) = Z 'Cl(il'”*jw(ﬁkvanijilw — £o_n7j71w>££)n—j—1),
=0

with a similar argument to the one following (9). O

g

3.5. Numerical examples. In this section we provide a brief demonstration that the
stability results of §3.2 and §3.3 can be used to rigorously approximate random invariant
densities.

Let €2 be a circle of unit circumference let the driving system o : {2 O be a rigid rotation
by angle a = 1/v/2. For z € Q considered to be a point in [0, 1), we define a random
map as:

(12)

3(r—w)—29(r —w)(r —w—1/3), w<r<w+1/3;
T,(x)=< —3rz—-—w)+1-29r—-w—-1/3)(r—w—-2/3), w+1/3<x<w+2/3;
7/3(x —w—2/3) + 2w/9, w+2/3<r<w+l.

Graphs of T}, for three different w are shown in Figure 1.

0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
X X X

F1GURE 1. Graphs of the maps T,20,,, T,21,,, T,22,,, w = 0.
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The graphs T, rotate with w and one of three branches is also translated up/down with
w. The minimum slope of {7, },cq is bounded below by 2.

We employ the Ulam scheme with k£ = 1000 (1000 equal subintervals) and a Fejér kernel
with & = 100 (100 Fourier modes). In the Ulam case, we use the well-known formula
for the Ulam matrix [Ula60] to construct a matrix representation of Ly.: [Lrwlij =
m(B; N T 'B;)/m(By), i,j = 1,...,k, which is the result of Galerkin projection using
the basis {1g,,...,1p,}. Lebesgue measure in the formula for [y ];; is approximated
by a uniform grid of 1000 test points per subinterval, and the estimate of [Ly ] takes less
than a second to compute in MATLAB.

In the Fourier case, we first use Galerkin projection onto the basis {1, sin(27x), cos(27x),
..., sin(2kmz), cos(2kmx)}. The relevant integrals are calculated using adaptive Gauss-
Kronrod quadrature and we have limited the number of modes to £ = 100 to place an
upper limit of 10 minutes of CPU time (on a standard dual-core processor) to calculate
the Galerkin projection matrix [£] |, representing the projected action of £, on the first

k Fourier modes. We then take a Cesaro average to construct [Ly,] = %Z?;S 1£),]-
Estimates of f 5io,,w = 0,7 = 21,21, 22 are shown in Figure 2.

15 1.5 1.5
3 = =
~— [aY) [s2]
g A 2 1 g 1
- @ 0
S S S
o o o
3 3 8
0.5 0.5 0.5
0 0.5 1 0 0.5 1 0 0.5 1
X X X
15 15 15
= = =
— N )
g 1 g 1 g 1
- @© 0
S S S
8 ] ]
S = =
0.5 0.5 0.5

o
o
[6)]
-
o
o
[6)]
-
o
o
[6)]
-

FIGURE 2. Estimates fy i, w = 0,7 = 20,21,22 using Ulam’s method
(upper row) and Fejér kernels (lower row, thick [blue, online]). The pure
Galerkin estimates using the Galerkin Fourier matrices [£}, ] are shown as
thinner [red, online| curves in the lower row.

The invariant density estimates f ,20,, were created by pushing forward Lebesgue mea-
sure (at “time” w = 0) by [Lg19,] © -+ 0 [Lk], and then pushing two more steps for
the estimates fj 521, and fg ,22,. By inspecting Figures 1 and 2, one can see how L,
transforms the estimate of f,i, to fyi+1,, (j = 20,21), coarse features such as a change
in the number of inverse branches are particularly evident. Although the pure Galerkin
estimates are more oscillatory, they appear to pick up more of the finer features than the

smoother Fejér kernel estimates. The Ulam estimates are likely the most accurate, given
11



the greater dimensionality of their approximation space. While the Fourier-based esti-
mates converge slowly in this example (relative to computing time), numerical tests on
C* random maps demonstrated rapid convergence, with the Fourier approach taking full
advantage of the system’s smoothness, to the extent that the influence of modes higher

than k = 20 on the matrix [£} ]| was of the order of machine accuracy.
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