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Abstract. We study a two player repeated zero-sum game with
asymmetric information introduced by Renault in which the un-
derlying state of the game undergoes Markov evolution (parame-
terized by a transition probability 1

2 ≤ p ≤ 1). Hörner, Rosenberg,
Solan and Vieille identified an optimal strategy, σ∗ for the informed
player for p in the range [12 ,

2
3 ]. We extend the range on which σ∗

is proved to be optimal to about [12 , 0.719] and prove that it fails to
be optimal at a value around 0.7328. Our techniques make use of
tools from dynamical systems, specifically the notion of pressure,
introduced by D. Ruelle.

We study a simple two player dynamic zero-sum game with asym-
metric information introduced by Renault in [7] and studied by Hörner,
Rosenberg, Solan and Vieille in [4]. The system is in a state unknown
to one of the players. Unlike the Aumann–Maschler model [1], the
state here undergoes Markov evolution independent of the actions of
the players.

At each stage, the system is in one of two states S0 and S1. The
two players, Ian and Una (for informed and uninformed respectively),
simultaneously make a choice of playing 0 or 1. If the symbols all
coincide (that is the system is in state S0 and both Ian and Una play
0; or the system is in state S1 and Ian and Una both play 1) then Una
gives Ian $1. Otherwise no money is transferred.

A crucial aspect of the game is that Ian is aware of the state before
choosing his move, whereas Una is never told of the state. Also, the
money that Una pays Ian is not paid immediately, but only after a
large number of rounds of the game have been played. Each player
sees the moves of the other, but is not informed of the payoff at the
time (although Ian can deduce this information from what is known to
him, whereas Una cannot).

The state of the system is assumed to undergo Markov evolution,
where the system stays in its current state between moves with fixed
probability p ≥ 1

2
, or switches with probability 1 − p. The transi-

tion probability governing the switching is known to both players. We
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assume that the system is initially in a random state with uniform
probability.

Ian thus faces a tradeoff between short term (he has sufficient in-
formation to optimize his expected payoff in the current turn) versus
long term (if he always plays so as to optimize his payoff in the current
turn, then he reveals the current state of the system to Una, who can
then use this information to minimize Ian’s payoff).

The existence of a uniform value, its characterization and the exis-
tence of optimal strategies for Una was obtained by Renault [7]. Ney-
man [6] extended these results to the case of partial monitoring of the
past moves, and established the existence of optimal strategies for both
players. That is, strategies σ for Ian and τ for Una, such that when-
ever Una uses strategy τ , Ian’s long-term average expected payoff is at
most v; whereas whenever Ian uses strategy σ, his long-term average
expected payoff is at least v. Thus any strategy for Ian gives a lower
bound for the value of the game (by taking the infimum of the expected
long-term gain over all possible counter-strategies by Una). Similarly
any strategy for Una gives an upper bound for the value of the game.

As usual in game theory, the best strategies are often mixed strate-
gies. That is, given all of the information available to a player, his
strategy returns a probability vector distributing mass to the available
moves. Since we use dynamical systems theory, it is convenient to have
a compact space describing past moves that is mapped into itself when
it is updated by recording a new move. We therefore use the following
spaces to describe the state prior to the current turn. Let MI = {0, 1},
MU = {0, 1} and S = {S0, S1} represent Ian’s possible moves, Una’s
possible moves and the system’s state... A strategy for Ian can then
be formally described as a map σ from

⋃
n≥0(MI ×MU ×S)n to [0, 1]2,

where the vector σ(x, y, z) = (p0, p1) describes Ian’s probabilities of
playing 1 if the current state is S0 or S1 respectively when Ian’s past
moves were x, Una’s past moves were y and the sequence of past states
is z. Similarly, a strategy for Una is a map τ from

⋃
n≥0(MI ×MU)n

to [0, 1], where τ(x, y) gives the probability of playing 1 if Ian’s past
moves were x and Una’s past moves were y.

Our goal, of course, is essentially to find v and the optimal strategies
σ and τ . These, as one expects, depend significantly on p. The answer
for p = 1

2
is straightforward: Ian always plays as if he were facing

a one-shot game and wins with probability 1
2
. The case p = 1 (so

that the system always remains in the same state, which we assume
to be randomized uniformly) was studied by Aumann and Maschler
[1], where it shown that he cannot use his information and has to
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play randomly as if he did not have any advantage (the non-revealing
strategy) and wins only with probability 1

4
. In [4], the authors exhibit

a strategy σ∗ for Ian (defined properly in Section 2) and prove that it
is optimal for all 1

2
≤ p ≤ 2

3
. In this setting, they give a simple closed

formula, vp = p
4p−1

, for the value vp of the game and also provide an

optimal strategy τ ∗ for Una (based on a two state automaton). They
express the long-term payoff of the strategy σ∗ as the sum of a series
for all values of the parameter, hence providing a lower bound for the
value of the game (an alternative lower bound that is better in some
regimes is given by the trivial strategy with a bound of 1

4
), while an

upper bound is given by the payoff of the strategy τ ∗. They compute
this lower bound explicitly for specific values of the parameter p larger
than 2

3
. In the very special case p = p∗ solving 9x3− 13x2 + 6x− 1 = 0

(p∗ ' 0.7589), they observe that σ∗ is still optimal. In this case they
also exhibit an optimal strategy for Una (more tricky but still based on
a finite automaton). Finally, they raise the question of the optimality
of σ∗ for instance at p = 3

4
. We provide a negative answer and prove:

Theorem 1. The strategy σ∗ is optimal for p < 0.719 and not optimal
for some p < 0.733.

Defining pc = sup{t : σ∗ is optimal for all p ∈ [1
2
, t]}, the theorem

states that 0.719 ≤ pc < 0.733. For both the upper and lower bounds,
the proofs are based on checking that a certain finite set of inequalities
is satisfied.

The fact that pc ≥ 2
3

was established in [4]. Experimentation strongly
suggests that pc > 0.732, but we have not been able to show this
rigorously. The methods in this article give, for each n, a family (Cn)
of finitely checkable inequalities, such that if p satisfies (Cn) for some
n, then σ∗ is optimal for p. The proof that σ∗ is optimal up to 0.719
proceeds by considering two intervals of parameters and showing that
on both intervals, (C9) is satisfied for all parameters in the interval.
Further, if one picks values of p randomly in the range [0.719, 0.732]
and then tests (Cn) for n = 50, n = 100, . . ., n = 500, an experiment
showed that for each of 10000 randomly selected p values, at least one of
the collections of sufficient conditions for optimality of σ∗ was satisfied.
It seems likely that for any p0 < pc, there is an n such that C(n) is
satisfied by all p ∈ [2

3
, p0]. Unsurprisingly the first value of n for which

the collection of inequalities is satisfied becomes larger as p approaches
the conjectured pc ∈ (0.732, 0.733) and at the same time, the number
of intervals of p into which the range must be sub-divided is expected
to grow exponentially with n. We are confident that one can go beyond
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Figure 1. Bounds on the value of the game as a func-
tion of the parameter p: The lower curve is the long-term
payoff of σ∗. [4] proved this was the value of the game in
the range [1

2
, 2

3
]. We prove this remains true up to 0.719

(grey), and give evidence that this hold up to 0.732 (light
grey). We show σ∗ is not optimal at p = 0.73275300915.
Beyond 0.732, the upper bound for the value (top line) of
the game was obtained in [4] based on a simple strategy
for Una. They also found a particular value p ≈ 0.7589
for which σ∗ is optimal.

p = 0.719, but continuation requires an increasing amount of effort for
a decreasing amount of improvement.

We conjecture that pc is sharp in the sense that for p > pc, σ
∗ would

in general not be optimal. “In general”, because as already pointed out,
[4] shows there are still special values beyond pc at which σ∗ is optimal.
Quite surprisingly, we had to introduce tools from dynamical systems
(thermodynamic formalism) to show the optimality of σ∗. The strategy
of Una to which σ∗ is the optimal response turns out to be a strategy
that takes into account the past moves of Ian since the last ‘reset’
(time at which Ian’s move made it possible to deduce the current state
with certainty). Since the time since the last reset may be unbounded,
we control the behaviour of the orbit of a certain dynamical system.
However, the result relies, above all, on standard tools of game theory.

The paper is laid out as follows: in Section 1, we introduce classical
tools from game theory. In Section 2, we define the strategy σ∗, prove
its basic properties and compute its payoff for all p. In Section 3, we
search for an optimal strategy for Una. We give a system of equations



DYNAMICAL ANALYSIS OF A REPEATED GAME 5

whose solutions yield potential strategies for Una in the range p ≤
0.78. Such a solution yields a desired strategy only if it satisfies a set
of inequalities. In Section 4, we find a sufficient condition for these
inequalities to hold in terms of the pressure of a potential. We show,
in Section 5, that the pressure condition is satisfied for all p less than
0.719023. This ends the proof of the first part of Theorem 1. In Section
6 we exhibit a strategy for Ian with a larger long-term expected payoff
than σ∗ for certain values of p; the smallest such value of p that we
found is smaller than 0.733. This will finish the proof of Theorem 1. A
final section addresses the question of which features of the game make
it amenable to an analysis of this type.

1. Tools from game theory

The technical framework that we use to prove these statements is
the study of Markov Decision Processes (MDP). A Markov decision
process is one in which the system moves around a compact state space
Ω, influenced by an agent who can, at each step, choose from one of a
compact (in our case, finite) set of transition probabilities on the state
space, each one with a given one-step payoff. The value of the process
is the maximal long-term expected value of the gain.

More formally, given a repeated game, we let γN(σ, τ) be the ex-
pected payoff per round to Player 1 if Player 1 plays the strategy σ
and Player 2 plays the strategy τ for N rounds. Suppose there exists
a v ∈ R such that for each ε > 0, there exists N0 ∈ N and a pair of
strategies σ∗ and τ ∗ for Players 1 and 2 respectively such that for all
N ≥ N0,

γN(σ∗, τ) > v − ε for each strategy τ for Player 2;

γN(σ, τ ∗) < v + ε for each strategy σ for Player 1.

Then v is the value of the game.
If a game has value v and there exists a strategy σ∗ such that

lim infN→∞ γN(σ∗, τ) ≥ v for each strategy τ for Player 2, then σ∗

is said to be an optimal strategy for Player 1. Similarly if τ ∗ is such
that lim supN→∞ γN(σ, τ ∗) ≤ v for each strategy σ for Player 1, then
τ ∗ is optimal for Player 2.

We use the following theorem to characterize the value of a game
and optimal strategies

Theorem 2 (Average Cost Optimality Equality [3]). Suppose a Markov
decision process has compact state space Ω, a compact action set A, a
continuous payoff function r : Ω×A → R and a continuous transition
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rule q : Ω×A → P(Ω) such that qω,a is a finitely supported probability
measure on Ω for each ω ∈ Ω and a ∈ A.

Suppose there exist v ∈ R and a bounded function V : Ω → R such
that the following equation is satisfied:

(1) V (ω) + v = max
a∈A

(
r(ω, a) +

∫
V (ω′) dqω,a(ω

′)

)
.

Then v is the value of the Markov decision process for each initial
state ω. Further, a stationary strategy α : Ω 7→ A is optimal if α(ω)
attains the maximum in the right side of (1) for each ω ∈ Ω.

We interpret V (ω) as the relative score of the position ω. This is
there in order to take long-term effects into account. This can be
thought of as answering the question What is the long-term total dif-
ference between starting at some fixed ω0 and starting at ω? This will
be finite under suitable continuity and contractivity assumptions. The
equation (1) informally says that if one chooses the action a achieving
the maximum, then the expected gain plus difference in V values is v.

The way we use Theorem 2 is as follows. Suppose (for example) Una
is looking for a best response to a strategy σ for Ian that is based upon
the current state of the system as well as Una’s current belief that the
system is in state 1 (that is the conditional probability that the system
is in state 1 given the information available to her). We let the state
space be Ω = [0, 1], the space of beliefs. Una’s belief is initially 1

2
and

is updated after each move.
Let us suppose that v ∈ R and V : Ω → R satisfy (1). Una is then

trying to decide between playing 0 and 1. Since she knows ω, she has
computed the probability that the system is in state S0 or S1, and can
also compute the probability that Ian will play 0 or 1. Hence she can
compute the expected one-round payoff to Ian if she plays either 0 or
1. An best response (there may be many) to σ is any strategy that
always picks an option attaining the minimum expectation of (payoff
+ V ).

We now turn to another frequently used idea in zero-sum games:

Principle 3. Suppose that

(1) τ is a best response to σ; and
(2) σ is a best response to τ

Then σ is an optimal strategy for Ian. Similarly τ is an optimal strategy
for Una.

See for example [4]. We exploit this principle repeatedly in the re-
mainder of this article.
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A symmetry argument explained in [4] shows that for 0 ≤ p ≤ 1
2
,

vp = v1−p. Hence, in what follows we consider the case 1
2
≤ p ≤ 1. We

will be looking mainly at the strategy σ∗ introduced in [4].
In what follows, if Ian is assumed to be playing using the strategy

σ∗ (to be defined below), we frequently refer to Una’s belief that the
system is in state S1. Formally, this is just the conditional probability
that the system is in the state S1 given all the information available to
Una (that is the sequence of past moves made by both players), given
that Ian is using σ∗. Of course, Ian can calculate Una’s belief that the
system is in state S1.

2. The strategy σ∗

We now describe a strategy, σ∗, that we show to be optimal for Ian
for a range of the parameter. This strategy was initially introduced
in [4]. As pointed out below, it is characterized by being a greedy
U-indifferent strategy.

We define two maps as follows:

f0(θ) =

{
p2θ−1

θ
+ (1− p)1−θ

θ
if θ ≥ 1

2
;

1− p if θ ≤ 1
2
.

f1(θ) =

{
p if θ ≥ 1

2
;

p θ
1−θ + (1− p)1−2θ

1−θ if θ ≤ 1
2
.

Notice that f0(θ) = 1 − f1(1 − θ). We define a function Φ by setting
Φ(x) to be f0(x) if x ≥ 1

2
and f1(x) otherwise. We set pn = Φn(p) for

all n ≥ 0.
The strategy σ∗ is then defined as follows. Ian computes Una’s belief,

θ, that the system is in state 1. He then plays 1 with the following
probabilities:

P(playing 1) =


1 if the system is in state S1 and θ ≤ 1

2
;

1−2θ
1−θ if the system is in state S0 and θ ≤ 1

2
;

1−θ
θ

if the system is in state S1 and θ ≥ 1
2
;

0 if the system is in state S0 and θ ≥ 1
2
.

He plays 0 with the complementary probability.
As shown in [4], the maps f0 and f1 keep track of Una’s belief that

the system is in state S1 if Una knows that Ian is playing σ∗ by Bayesian
updating. For example if Una’s belief that the system is in state S1

is θ > 1
2

then Una attaches probabilities θ · 1−θ
θ

= 1 − θ to (S1, 1),

θ · 2θ−1
θ

= 2θ − 1 to (S1, 0) and 1 − θ to (S0, 0), where (Si, j) means
the event that the system is in state Si and Ian plays j. If Ian plays 0,
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Figure 2. The graphs of θ 7→ Φ(θ) and first points of
the orbit of 1 − p, for values of p ranging from p = 0.66
to p = 0.72 in steps of 0.02.

Una computes the probabilities of the system having been in S1 to be
(2θ − 1)/((2θ − 1) + (1− θ)) = (2θ − 1)/θ, so that her updated belief
that the system is in state S1 is 2θ−1

θ
p+ 1−θ

θ
(1− p) = f0(θ).

The critical feature of σ∗ that we make use of is the fact that the
expected long-term average gain for Ian if he plays σ∗ is the same no
matter which strategy is used by Una. We prove this in the lemma
below. In view of this lemma and Principle 3, if one can find a strategy
τ for Una, to which σ∗ is a best response, then σ∗ and τ are optimal
strategies for Ian and Una respectively.

Lemma 4. The expected long-term average gain for Ian when playing
strategy σ∗ is independent of the strategy played by Una. Hence any
strategy τ for Una is a best response to σ∗.

Proof. We consider the Markov decision process for Una. The state of
the process will be just her belief, θ, that the system is in the state S1.
Her action has no effect on the evolution of the state, and so her chosen
move will just be the one with the lower expected one-stage payoff.

Suppose without loss of generality that θ ≥ 1
2
. Then if Una plays 0,

then Ian gains if the system was in state S0 (if θ ≥ 1
2

then Ian always
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plays 0 if the system is in state S0). The expected one-step gain for
Ian from this strategy is therefore 1− θ. Similarly, if Una plays 1, then
Ian gains if the system was in state S1 and Ian chose to play 1. This
happens with probability θ × (1− θ)/θ = 1− θ.

Similarly, if θ < 1
2
, the expected one-step gain for Ian is θ, indepen-

dently of any move played by Una.
Hence the expected one-step gain from any position does not de-

pend on Una’s move. The next position attained by the system is also
independent of Una’s move. So the long-term average gain is also in-
dependent of Una’s choice of moves and Ian’s long-term average gain
is independent of Una’s strategy. �

We call a strategy for Ian with the property in the lemma above U-
indifferent. A strategy is U-indifferent if the probabilities (given Una’s
information) that the system is in state S1 and Ian plays 1 and that
the system is in state S0 and Ian plays 0 are equal. This probability
is then the expected one-step gain for Ian. In fact, σ∗ is the greedy
U-indifferent strategy: the expected one-step gain is min(θ, 1 − θ) as
shown above. On the other hand, if Ian is playing any strategy and
Una’s belief that the system is in state S1 is θ, then the minimum of
the probabilities that the system is in state S1 and Ian plays 1 and
that the system is in state S0 and Ian plays 0 is at most min(θ, 1− θ).
Hence Una can ensure that Ian’s expected one-step gain is at most
min(θ, 1− θ). This quantity is maximized by σ∗.

Consider the evolution of Una’s beliefs. In all stages after the first,
these belong to the set

⋃
n≥0 Φn{p, 1−p}. Notice that the values of f0(x)

and f1(x) depend on p, but we suppress the dependence on p from the
notation since p is fixed. Since for x ≥ 1

2
, we have f0(1−x) = 1−f1(x),

we have Φn(1− p) = 1− Φn(p) for all n.
When θ ≥ 1

2
, the belief returns to p when the system is in state S1

and Ian plays 1. If θ > 1
2

and the system is in state S0 (i.e. there is a
mismatch between Una’s belief and the state of the system), Ian never
selects 1. When θ ≤ 1

2
, the belief returns to 1 − p when the system is

in state S0 and Ian selects 0.
We view this as a ladder (see Figure 3) with base {p, 1−p} and rungs
{pn, 1 − pn}, for n ≥ 1, on which the belief follows a Markov chain:
at each step, one either ascends one level, or falls down to the base.
Falling off corresponds to making the choice that returns the state to
p or 1− p.
Lemma 5. If Ian plays strategy σ∗, then his long-term expected gain
is equal to the proportion of time spent at the base of the ladder, irre-
spective of the strategy played by Una.
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Figure 3. Una’s belief that the system is in state S1

can be modeled by a ladder: if Ian plays 0 while θ < 1
2
;

or 1 while θ > 1
2
, then the belief becomes 1 − p or p

respectively, corresponding to the bottom rung of the
ladder. Note that the nth rung of the ladder corresponds
both to Φn(p) and Φn(1− p)

We can therefore deduce an explicit lower bound (in the form of an
infinite sum) for the value of the game as a function of the parameter
p.

Proof. Consider the evolution of Una’s beliefs. These always belong to
the set

⋃
n≥0 Φn{p, 1− p}.

Recall from Lemma 4 that if Una’s belief is θ, the one-step expected
payoff for Ian is given by min(θ, 1 − θ) independently of the strategy
played by Una.

On the other hand, the probability of returning to p or 1 − p from
θ or 1− θ is also min(θ, 1− θ). We verify this in the case θ ≥ 1

2
. The

belief returns to p only if the system is in state S1 and Ian selects 1.
The probability of this is 1− θ = min(θ, 1− θ) as required.

Hence from the nth rung of the ladder, the probability of falling off
is min(Φn(p), 1−Φn(p)). This is the same as the expected payoff from
that state. That is, in any position, the expected payoff from the next
turn is equal to the probability of falling off the ladder at the next turn.
We let un = max(Φn(p), 1−Φn(p)) be the complementary probability:
the probability of continuing up the ladder from the nth stage.
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One can check that for this Markov chain, the stationary distribution
gives level n probability

πn =
u0 . . . un−1

1 + u0 + u0u1 + u0u1u2 + . . .
.

We do not specify any initial measure, but the renewal structure of the
chain shows that on the long term the gain is described by the invariant
measure, independently of the initial conditions: after a random but
finite amount of time, Ian will play so that θ becomes p (or 1− p).

Since in any state, the expected gain is the same as the probability
of ‘falling off the ladder’, we see that the expected gain per round for
Ian if he plays σ∗ is given by

Y =
1

1 + u0 + u0u1 + u0u1u2 + . . .
,

irrespective of Una’s strategy, where we recall that the quantities (ui)i≥0

are functions of p. We observe that this expression was already derived
in [4]. �

This Y is a lower bound for the value of the game. We give an
alternative expression for Y in terms of a sum of matrix products. This
is not strictly necessary for what follows, but it is here as we think it will
help the reader gain a better understanding. This expression should
be compared with the expression that arises later for 1/v (v being the
value of the game in some ranges of p).

We will write pn = Φn(p) as a quotient of two polynomials in p:
pn = an/bn, so that p0 = p/1. Also write εn = 1 if pn ≥ 1

2
and 0

otherwise.
If εn = 1, we have pn+1 = f0(pn), while if εn = 0, we have pn+1 =

f1(pn).
If εn = 1, we have un = pn = an/bn and

an+1

bn+1

= f0(an/bn) =
p(2an − bn)/bn + (1− p)(bn − an)/bn

an/bn

=
an(3p− 1)− bn(2p− 1)

1an + 0bn
.

Similarly if εn = 0, we have un = 1− pn = (bn − an)/bn and

an+1

bn+1

= f1(an/bn) =
pan/bn + (1− p)(bn − 2an)/bn

(bn − an)/bn

=
(3p− 2)an + (1− p)bn

−an + bn
.
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In both cases, we see that un = bn+1/bn. Introducing matrices U1 =(
3p− 1 −(2p− 1)

1 0

)
and U0 =

(
3p− 2 1− p
−1 1

)
, we have(

an+1

bn+1

)
= Uεn

(
an
bn

)
.

Now, taking the product of the un’s, we obtain par téléscopage u0 · · ·un =
bn+1/b0 = bn+1. Hence we get the expression

u0u1 · · ·un = bn+1 =
(
0 1

)
Uεn . . . Uε0

(
p
1

)
.

Summing over n, we obtain another expression for the average long-
term gain that will accrue to Ian if he plays σ∗.

(2)
1

Y
=
(
0 1

)
(I + Uε0 + Uε1Uε0 + Uε2Uε1Uε0 + . . .)

(
p
1

)
3. Strategies for Una

In [4], the authors showed that σ∗ is optimal for p ∈ [1
2
, 2

3
] and for

a specific p∗ ≈ 0.7589 that is the unique value of p for which p1 >
1
2

and p1 = 1− p2. In both cases, they exhibit a strategy for Una based
on a finite state automaton where transitions in the automaton are
governed by actions of Ian and then show that σ∗ is a best response
to this strategy. For p > 2

3
, we are going to proceed along the same

lines, except that strategies for Una will be based on a countable state
automaton rather than a finite one. The states of the automaton are
labeled by Una’s belief that the system is in state 1 under the assump-
tion that Ian is playing σ∗. In this section, we identify strategies for
Una that are candidates for this purpose. The proof that they have the
correct property (that σ∗ is a best response to the strategies τp that we
construct) is in the next two sections.

As follows from Lemma 4, any strategy of Una is a best response to
σ∗.

In the case 1
2
≤ p ≤ 2

3
, one can check that the range of f0 is in

[1 − p, 1
2
], while the range of f1 is in [1

2
, p]. Thus if Ian is playing

σ∗, his last move is sufficient to determine whether Una believes that
it is more likely that the system is in state S1 or S0. The strategy
τ ∗ proposed for Una is a mixed strategy, playing 1 with probability
(2p− 1)/(4p− 1) and 0 with probability 2p/(4p− 1) if θ > 1

2
and with

the reverse probabilities otherwise (see Figure 4). In [4], it is proved
that σ∗ is a best response to τ ∗ hence (σ∗, τ ∗) is a Nash equilibrium.
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Figure 4. For p < 2
3
, Una’s automaton has two states,

capturing whether she believes it’s more likely the system
is in S1 or S0. Whether θ > 1

2
or θ < 1

2
(but not the actual

value of the belief) depends solely on Ian’s last move.

Figure 5. For p = p∗, there are exactly 4 values of the
Una’s belief that may be attained starting from θ = 1

2
.

Una’s automaton has 4 states, one for each value of the
Una’s belief. Transitions between states are completely
determined by Ian’s moves.

In the case p = p∗, if Ian is playing σ∗, it turns out there are only
4 possible values attained by Una’s belief that the system is in state
S1. Namely, we have 1 − p < f1(1 − p) < f0(p) < p and f1 maps
1 − p, f1(1 − p), f0(p) and p to f1(1 − p), f0(p), p and p respectively.
Similarly f0 maps 1− p, f1(1− p), f0(p) and p to 1− p, 1− p, f1(1−
p) and f0(p) respectively. [4] shows that σ∗ is a best response to a
strategy τ ∗∗ (and hence an equilibrium strategy), given by a four state
automaton corresponding to these four values of θ together with rules
corresponding to the above: if Ian plays 1, then the automaton moves
one step to the right; if Ian plays 0, then the automaton moves one
step to the left (see Figure 5). In each state of the automaton, there is
an associated probability distribution on Una’s choice of 0 or 1, which
they exhibit explicitly.

Our results are based on exhibiting strategies for Una for which she
plays 0 and 1 with non-zero probabilities that depend solely on her
belief that the system is in state S1 (assuming that Ian is playing
σ∗). Since Una’s beliefs evolve in a manner that only depends on Ian’s
actions, we may once again describe her strategy by an automaton. The
principal differences are: (1) the automaton generally has a countable
number of states; and (2) the entire structure of the automaton depends
on p. An example of such an automaton is shown in Figure 6.

The pattern of arrows is completely determined by p. The descrip-
tion of the strategy will be complete once we specify for each state, the
probability of playing 1. Recall that the states are labelled by (pn)n≥0

and (1− pn)n≥0. If the automaton is in state θ, we will define x(θ) to
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Figure 6. Una’s automaton for p = 0.72. The states
on the left of the diagram are those where the belief of
Una is p or 1 − p. Each state corresponds to a value
of θ. Those in the upper half of the diagram are those
where Una believes it is more likely the system is in state
S1. If a state θ is in the upper half, its mirror image in
the lower half is 1 − θ. For states in the upper half of
the diagram, if Ian plays 1, the state returns to p0 = p,
while if Ian plays 0, the state advances to the right. In
the lower half of the diagram, if Ian plays 0, the state
returns to 1 − p, while it advances if Ian plays 1. The
pattern of which arrows switch sides and which continue
depends on p.

be the probability that Una chooses 1. In this case, we will say that
(x(θ))θ∈[1−p,p] is the strategy that Una is playing.

As mentioned above, to show that σ∗ is optimal, it suffices to find a
strategy x(θ), to which σ∗ is the best response. We therefore suppose
that a particular strategy x(θ) has been selected by Una, and we ask
whether σ∗ is a best response for Ian. We will show that for certain p,
we can exhibit an x(θ), solving the equations (1) for Ian.

The state space that we use for Ian will consist of a pair (θ, s), where
θ is Una’s belief that the system is in state S1 and s ∈ {S0, S1} is
the state of the system. We define (x(θ))θ∈[0,1] recursively and give
sufficient conditions for it to define a strategy for Una to which σ∗ is
a best response. For the time being, we restrict attention to the case
Φn(p) 6= 1

2
for all n. This excludes countably many values of p. We set

γ = 2p− 1 since this is a quantity that occurs frequently.

Let A0 =

(
γ −γ

1− p p

)
, A1 =

(
p 1− p
−γ γ

)
, b0 =

(
1
0

)
and b1 =(

0
1

)
. Let ε(θ) = 1 if θ > 1

2
and 0 if θ < 1

2
. For θ ∈ [0, 1], let

ηn(θ) = ε(Φn(θ)).
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Let ιn = ηn(p). Define ~w by

~w = (I + Aι0 + Aι0Aι1 + . . .)

(
1
1

)
.

Define quantities v and Z (both depending on p) by

v = 1/(pw1 + (1− p)w2)

Z = (w1 − w2)v/2.
(3)

Proposition 6. Let 1
2
< p < 1

2
+
√

3
6
≈ 0.789. Suppose that Φn(p) 6= 1

2
for each n and let v and Z be as above. There is a unique solution to
the equations(

V1(θ)
V0(θ)

)
= Aε(θ)

(
V1(Φ(θ))
V0(Φ(θ))

)
− v

(
1
1

)
+ (1− γZ)bε(θ) for θ 6= 1

2
;

V1(1
2
) = V0(1

2
) = 1

2
− v − γZ.

(4)

Define x(θ) by

(5) x(θ) =


V1(θ) + v + γZ if θ > 1

2
;

1− (V0(θ) + v + γZ) if θ < 1
2
;

1
2

if θ = 1
2
,

Suppose that the following inequalities are satisfied.

V1(θ) ≥ γZ − v for θ < 1
2

4γZ ≤ 1,

−γZ − v ≤ V1(θ) ≤ 1− γZ − v for θ > 1
2
.

(6)

Then 0 ≤ x(θ) ≤ 1 for all θ. If τ is the strategy where Una plays 1 with
probability x(θ) if her belief that the system is in state S1 is θ, then σ∗

is a best response to τ and the value of the game is v.

Proof. One can check that for p < 1
2

+
√

3
6

that the matrices A0 and A1

are strict contractions (with respect to the Euclidean norm). Define
the Banach space, B = B([0, 1],R2), of bounded R2-valued functions
on [0, 1] with norm given by ‖X‖ = supθ∈[0,1] |X(θ)|.

We then define an operator, L, on B by

(7) LX(θ) =


Aε(θ)X(Φ(θ))− v

(
1

1

)
+ (1− γZ)bε(θ) if θ 6= 1

2
;(

1
2
− v − γZ

1
2
− v − γZ

)
if θ = 1

2
.
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One sees that L is a contraction of B, and therefore has a unique fixed

point, X∗(θ) =
(
V1(θ)
V0(θ)

)
. This establishes the first claim.

We now show that V1(p) = V0(1− p) = −Z and V0(p) = V1(1− p) =

Z. Since one has Φ(1 − x) = 1 − Φ(x) one sees that if
(
V1(θ)
V0(θ)

)
is a

solution to (4), then so is
(
V0(1−θ)
V1(1−θ)

)
. Hence, by uniqueness, V1(θ) =

V0(1− θ). It follows that x(1− θ) = 1− x(θ).
By iterating (4) and using the fact that the Aε are contracting, one

obtains (
V1(p)
V0(p)

)
= −v(I + Aι0 + Aι0Aι1 + . . .)

(
1
1

)
+ (1− γZ) (bι0 + Aι0bι1 + Aι0Aι1bι2 + . . .)

If one defines ψi(x) = bi + Aix, then the term in the last parentheses
is limn→∞ ψι0ψι1 . . . ψιn( 0

0 ). Since the ψi are contracting and have a
common fixed point of ( 1

1 ), we deduce this term is exactly this fixed
point. Hence we have(

V1(p)
V0(p)

)
= −v ~w + (1− γZ)

(
1
1

)
,

so that V1(p) = −vw1 +(1−γZ) = −Z and V0(p) = −vw2 +(1−γZ) =
Z and then V0(1− p) and V1(1− p) are −Z and Z respectively by the
symmetry.

Now define x(θ) using (5) and assume the inequalities (6) are satis-
fied. The final pair of inequalities of (6) ensures that 0 ≤ x(θ) ≤ 1 for
each θ > 1

2
. By the symmetry, one obtains 0 ≤ x(θ) ≤ 1 for each θ as

required.
Let τ be the strategy for Una where if her belief is θ, she plays 1

with probability x(θ). Then define V (s, θ) to be V1(θ) if s = S1 and
V0(θ) if s = S0. We show that σ∗ is a best response to τ with average
long-term gain v.

For (1) to be satisfied, if θ > 1
2

and the system is in state S1, Ian
should receive equal long-term gain from playing either move (as he
makes both with positive probability) whereas in state S0, he should
make a larger gain by playing 0. In other words, to satisfy (1) if θ > 1

2
,

we require:

V1(θ) + v = x(θ) + pV1(p) + (1− p)V0(p)

= pV1(f0(θ)) + (1− p)V0(f0(θ))

V0(θ) + v = 1− x(θ) + (1− p)V1(f0(θ)) + pV0(f0(θ))

≥ (1− p)V1(p) + pV0(p),
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with similar requirements when θ < 1
2
.

Substituting the values for V1 and V0 at p and 1 − p, these require-
ments are for θ > 1

2
:

V1(θ) + v = x(θ)− γZ
= pV1(f0(θ)) + (1− p)V0(f0(θ))

V0(θ) + v = 1− x(θ) + (1− p)V1(f0(θ)) + pV0(f0(θ))

≥ γZ,

(8)

again with similar requirements when θ < 1
2
.

The first equality of (8) is satisfied by definition of x(θ) and the
second is the first component of (4). For the third equality, notice that
by using the first two equalities one has 1−x(θ) = 1−pV1(Φ(θ))− (1−
p)V0(Φ(θ))− γZ. Now, the second component of (4) gives V0(θ) + v =
(1−2p)V1(Φ(θ))+(2p−1)V0(Φ(θ))+1−γZ. Combining these, we obtain
the third equality of (8). Finally the hypothesis that V1(θ) ≥ −γZ − v
together with the symmetry yields V0(θ)+v ≥ −γZ giving the required
inequality in (8). �

Notice that by (3) and Proposition 6, we now have a second, appar-
ently independent equation for the long-term average gain, v, (when-
ever the conditions of the proposition are satisfied). We verify that the
expressions are equal as this reveals useful identities.

Starting from this second expression, we have

1/v =
(
p 1− p

)
(I + Aε0 + Aε0Aε1 + Aε0Aε1Aε2 + . . .)

(
1
1

)
=
(
1 1

)
(I + ATε0 + ATε1A

T
ε0

+ ATε2A
T
ε1
ATε0 + . . .)

(
p

1− p

)
Notice that (

1 0
1 1

)
ATε

(
1 0
−1 1

)
= Uε,

for ε ∈ {0, 1}.
Accordingly, we can rewrite the expression for 1/v as(
1 1

)( 1 0
−1 1

)
(I + Uε0 + Uε1Uε0 + Uε2Uε1Uε0 + . . .)

(
1 0
1 1

)(
p

1− p

)
=
(
0 1

)
(I + Uε0 + Uε1Uε0 + Uε2Uε1Uε0 + . . .)

(
p
1

)
.

This expression matches the one that we found in (2).
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Figure 7. The graphs of θ 7→ x(θ) for values of p rang-
ing from p = 0.6625 to p = 0.7325 in steps of 0.01.
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4. Conditions for monotonicity

To prove that the inequalities (6) are satisfied (in a range of values of
p) we are going to show that V1 (and V0) are monotonic, and we control
the boundary values. For convenience, we work in this section with a
dynamical system α derived from Φ, namely α(t) = max(Φ(t), 1−Φ(t)).
This exploits the symmetry of Φ (that Φ(1− t) = 1−Φ(t)) and chooses
the representative of each t in the interval [1

2
, 1]. In this section, we

show that the monotonicity conditions follow from a pressure condition
for a given potential for the dynamical system α. We write αn(t) for
the n-fold iterate of the map α. It is easy to verify that αn(t) =
max(Φn(t), 1−Φn(t)), where Φn similarly denotes the n-fold iterate of
Φ.

Given a parameter p and a function g on [1
2
, 1], we define the α-

pressure of g to be

Pαp(g) := lim sup
n→∞

1

n
log

∑
x∈α−n( 1

2
)

exp

(
n−1∑
i=0

g(αix)

)
.

Pressure, introduced by Ruelle in [8], is a dynamical analogue of the
partition function in statistical mechanics. Its value is a combination
of the long-term average value along orbits of g with the complexity
of αp. The definition here is not equivalent to Ruelle’s. Notice that
Pαp(0) simply counts the growth rate of the number of pre-images of
1
2
. Since αn is a piecewise monotonic function where the direction of

monotonicity changes at x exactly when αj(x) = 1
2

for some j ≤ n,
Pαp(0) is precisely the logarithmic growth rate of the number of inter-
vals of monotonicity of αn. This quantity was shown by Misiurewicz
and Szlenk [5] and by Young [9] to be equal to the topological entropy of
αp (which is also equal to Ruelle’s pressure evaluated at g ≡ 0). Topo-
logical entropy is a standard measure of complexity for a continuous
dynamical system.

We will need the following simple result independent of our specific
context:

Lemma 7. Let (ak) be a sequence in [0, 1] with ak 6= ak′ for all k 6= k′

and let (bk) be a summable sequence of non-negative numbers. Suppose
that (fn) is a sequence of real-valued functions defined on [0, 1], each
of pure jump type. Suppose further that the only discontinuities of (fn)
occur at the ak’s and that |∆fn(ak)| ≤ bk for each k and n, where
∆f(x) = limt↓x f(t)− limt↑x f(t). If ‖fn − f‖∞ → 0, then f is of pure
jump type with discontinuities only at the ak’s. The magnitude of the
discontinuity of f at ak is bounded above by bk.
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Proof. Denote V f the total variation of f :

V f = sup
m

sup
0=x0≤x1≤...≤xm=1

m∑
i=1

|f(xi)− f(xi−1)|.

Let VIf be the variation of f on the interval I.
For any 0 = x0 ≤ . . . ≤ xm = 1, notice that

∑m
i=1 |fn(xi) −

fn(xi−1)| →
∑m

i=1 |f(xi) − f(xi−1)|. Hence since the left side is uni-
formly bounded by

∑
k bk for all n and for all 0 = x0 ≤ . . . ≤ xm = 1,

we deduce that f has bounded variation.
Hence it has a unique (up to additive constants) Lebesgue decompo-

sition as a sum fc+fd where fc is continuous and fd has only jump-type
discontinuities. It is known that V f = V fc+V fd. For any ε > 0, there
exists a K such that

∑
k≥K bk < ε. Letting I1, . . . , IM be any dis-

joint collection of intervals avoiding the ak’s with k < K, we see that∑M
i=1 VIif < ε. In particular, we deduce V fc < ε for arbitrary ε so that

f has pure jump type. We also deduce that fd cannot have any jump
discontinuities other than at the ak’s and the result is proven. �

Proposition 8. Let 1
2
< p < 1

2
+
√

3
6

be such that Pαp(log h) < 0 (where
h(t) = γ/t and γ, as before, is defined to be 2p−1). Then the conditions
(6) of Proposition 6 are satisfied. Hence σ∗ is an optimal strategy for
Ian for the game with this value of p.

Proof. First, assume that p is such that Φn(p) 6= 1
2

for all n as this is

a hypothesis for Proposition 6. Let X0(θ) =

(
−γZ
−γZ

)
and set Xn =

Ln(X0). Since L is a contraction mapping, we have ‖Xn −X∗‖ → 0,

where X∗(θ) =

(
V1(θ)
V0(θ)

)
is the fixed point of L from Proposition 6. No-

tice that L preserves the set of functions

{(
f1(θ)
f2(θ)

)
: f2(θ) = f1(1− θ)

}
.

From the contraction mapping theorem, there exists M > 0 such
that |∆Xn(1

2
)| ≤M for all n. From (7), we observe that for θ 6= 1

2
,

(9) ∆Xn(θ) = Aε(θ)∆X
n−1(Φ(θ)).

Notice that Xn only has discontinuities at pre-images of 1
2

of order at
most n and is piecewise constant between discontinuities. We now show
that if Pαp(log h) < 0, then the conditions of Lemma 7 are satisfied by
the components of Xn(θ) and that V1(θ) and V0(θ) are monotonically
decreasing and increasing respectively.
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Suppose that θ > 1
2
. Then we have Φ(θ) = f0(θ) = (3p − 1) − γ/θ

and we calculate

A1

(
Φ(θ)− 1

Φ(θ)

)
=
γ

θ

(
θ − 1
θ

)
.

Similarly, if θ < 1
2
, we have

A0

(
Φ(θ)− 1

Φ(θ)

)
=

γ

1− θ

(
θ − 1
θ

)
.

If t ∈ Φ−n(1
2
), let θi = Φn−i(t) (so that θ0 = 1

2
and θn = t) and let

εi = ε(θi) and u = max(t, 1− t). The above shows

Aεi

(
θi−1 − 1
θi−1

)
=

γ

max(θi, 1− θi)

(
θi − 1
θi

)
.

Combining these equalities gives

(10) Aεn · · ·Aε1
(
−1

2
1
2

)
=

n∏
i=1

γ

max(θi, 1− θi)

(
θn − 1
θn

)
.

Using (9), we see that for m > n, one has

∆Xm(t) = Aεn . . . Aε1∆Xmn(1
2
)

By symmetry, we see that ∆Xk(1
2
) is a multiple of ( −1

1 ) for all k.
Since 1− p ≤ t ≤ p, one obtains∣∣∆Xm(t)

∣∣ ≤ C
n∏
i=1

γ

max(θi, 1− θi)
,

where C does not depend on t, m or n. This can be re-expressed
in terms of α by |∆Xm(t)| ≤ C

∏n
i=1(γ/αi(u)) for all m, where u =

max(t, 1−t) satisfies αn(u) = 1
2
. Hence we see the hypothesis, Pαp(log h) <

0, ensures that the conditions for Lemma 7 are satisfied. Hence V1 and
V0 of pure jump type.

The jumps satisfy ∆X∗(θ) = Aε(θ)∆X
∗(Φ(θ)). By (10), they are

all of the same sign. Now provided the pressure is negative and p
is not a pre-image of 1

2
, we check using (4) that V1(1

2

+
) = γZ − v,

V1(1
2

−
) = 1− 3γZ − v so that ∆V1(1

2
) = 4γZ − 1. On the other hand,

the total of all discontinuities (all of the same sign) is −2Z. In order
for these to have the same sign, one sees that Z > 0 and 4γZ < 1. The
function V1(θ) is therefore a decreasing function.

Now to check (6), it suffices to show that V1(1
2

−
) ≥ γZ−v, V1(1

2

+
) ≤

1 − γZ − v and V1(p) ≥ −γZ − v. The first two of these follow from
the fact that Z > 0 and 4γZ < 1. To verify the last inequality, we note
that the above contraction argument works outside the range [1−p, p],
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so that V1 is monotonic on all of [0, 1]. Since Φ(1) = p, we apply (4) to
see that V1(1) = −γZ − v, so that the third inequality is satisfied by
monotonicity.

In the case where p is a preimage of 1
2
, the above expressions for

V1(1
2

+
) and V1(1

2

−
) are no longer valid as V1 and V0 are discontinuous

at 1 − p and p. The essential modification is to show that V1(1
2

+
) −

V1(1
2
) = V1(1

2
)− V1(1

2

−
). The matrix equalities (4) then ensure that at

each x ∈
⋃
n Φ−n(1

2
), one has that V1(x) is the average of V1(x−) and

V1(x+) (and similarly for V0). For a fixed p, this allows us to deduce
monotonicity and verify inequalities on entire intervals of θ values by
checking the inequalities at a finite collection of points as before.

�

5. Pressure bounds

In this section, we find ranges of p where Pαp(log h) < 0 is satisfied
(so that σ∗ is an optimal strategy for Ian). Indeed if p ∈ [1

2
, 2

3
], then

α−n(1
2
) is empty, so that trivially Pαp(log h) < 0.

Henceforth, we assume p > 2
3
. Notice that Φ(t) < 1

2
if and only if

t < 2
3
. The map α can therefore be expressed as:

α(t) =

{
2− 3p+ γ/t if t < 2

3
;

3p− 1− γ/t if t ≥ 2
3
.

This map is unimodal: monotone decreasing on the left branch and
increasing on the right branch with α([1

2
, 2

3
]) = α([2

3
, 1]) = [1

2
, p]. We

write h(n)(t) = h(t) · h(α(t)) · · ·h(αn−1(t)).
We partition [1

2
, p] into sub-intervals, counting possible transitions

between pairs of intervals, and over-estimating ψ on the intervals to
give a rigorous, finitely-calculable estimate for the pressure in various
ranges of p.

It turns out that for p in the range [2
3
, p∗] (where p∗ ≈ 0.7589 is the

special p-value identified by Hörner, Rosenberg, Solan and Vieille in
[4]), the map α is renormalizable. That is, there are disjoint intervals
I1 and I2 with I1 containing the critical point such that α(I1) ⊂ I2

and α(I2) ⊂ I1. Since α|I2 is monotonic, we see that the renormalized
map, α2 : I1 → I1, is a unimodal map. If α is renormalizable, then
I1∪ I2 is an absorbing set. Points outside I1∪ I2 either eventually land
in I1 ∪ I2 under iteration or converge to fixed points so that all of the
‘interesting dynamics’ lies in I1 ∪ I2. When a map is renormalizable,
it decreases the growth rate of the number of iterated preimages lying
in I1 ∪ I2: an element of I1 has at most one preimage in I2 and an
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Figure 8. The graph of α(x) (in black) for p = 0.73.
The graphs of α2(x) (dashed) and x are superimposed to
illustrate the renormalization. The squares illustrate the
fact that α2 maps I1 and I2 to themselves.

element of I2 has at most two preimages in I1, so that for x ∈ I1 ∪ I2,
|α−n(x) ∩ (I1 ∪ I2)| ≤ 2dn/2e. The renormalization is illustrated for
p = 0.73 in Figure 8.

To see that αp is renormalizable for p ∈ [2
3
, p∗], let pi = αi(p) (so

that p0 = p). One can check that for p ∈ [2
3
, p∗],

1
2
< p3 < p1 < p2 <

2
3
< p;

α([1
2
, p1]) = [p2, p] and α([p2, p]) = [1

2
, p1],

(11)

establishing the (one-time) renormalizability. At the endpoint p∗ of the
range of p-values that we are considering, one has p2 = p1 and hence
pn = p1 for all n ≥ 1.

It may happen that the renormalized map is itself renormalizable.
This is the case for p < 0.709637 and is illustrated in Figure 12. See
Devaney’s book [2] for more information about renormalization of uni-
modal maps and the relationship between interval maps and symbolic
dynamics.

Proposition 9. Let α be a continuous piecewise monotonic map of
I = [1

2
, 1] and let g be a continuous on I. Suppose that I is partitioned

into intervals J0, . . . , Jk−1. Let βi = maxx∈Ji h(x). Let the multiplicity
mij = maxy∈Jj #{x ∈ Ji : α(x) = y}. Let A be the k × k matrix with
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entries aij = βimij. Then

Pα(log h) ≤ log ρ(A),

where ρ(A) denotes the spectral radius (i.e. maximal eigenvalue) of A.

Proof. Notice that there are at most mi0i1mi1i2 . . .min−1in nth order
preimages x of a point y in Jin with the property that αt(x) ∈ Jit
for each 0 ≤ t < n. For each such preimage, the largest possible
contribution to the sum is βi0 . . . βin−1 , so that we see∑

t∈α−n
p ( 1

2
)

h(n)(t) ≤
∑
i

(An)ij,

where j is the index of the interval containing 1
2
. Taking logarithms

and dividing by n, the result follows. �

For a fixed p and any partition of [1
2
, 1] into intervals, one can cal-

culate the matrix A so that this proposition gives an upper bound for
Pαp(log h). Hence in order to establish that Pαp(log h) < 0, it suffices
to exhibit some finite partition such that the corresponding matrix A
has spectral radius less than 1.

In fact, when dealing with αp, the interval [p, 1] plays no role in the
pressure computation as points in this interval have no preimages. It
therefore suffices to partition the interval [1

2
, p]. A natural choice of

intervals J0, . . . , Jk−1 is obtained by taking the points 1
2

and (αi(p))k−1
i=0

in increasing order as the endpoints of intervals. The reason this choice
is a good one is that the endpoints of each of these intervals (except
αk−1(p)) are mapped exactly into each other, so that for most pairs i
and j, each point in Jj has exactly mij preimages in Ji, making the
estimates reasonably tight. If p is fixed, one obtains in this way for
each k a k×k matrix, Ak(p), such that if its spectral radius is less than
1, then Pαp(log h) < 0 and hence σ∗ is an optimal strategy for Ian.
This gives a family (Ck) of sufficient conditions for σ∗ to be optimal,
namely:

(Ck) If ρ(Ak(p)) < 1, then σ∗ is an optimal strategy for Ian.

Proposition 9 and (Ck) give a way to check that P (log h) < 0 for
a single p-value. We now obtain estimates on P (log h) in a range of
p-values simultaneously.

5.1. The range (2/3, 0.709636). Here, and in the next range, we
divide [1

2
, p] into 9 sub-intervals. In this range, we check that the fol-

lowing inequalities are satisfied:
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Figure 9. The graphs of θ 7→ α(θ) and first points of
the orbit of p, for p = 0.685, p = 0.7023 . . . , p = 0.709 . . .
and p = 0.719 . . . . The renormalizablity of θ 7→ α(θ)
may be seen from the fact that in each of the graphs
points to the right of the fixed point are mapped to the
left of the fixed point and vice versa.

1
2
< p7 < p3 < p5 < p9 < p1 < p2 <

2
3
< p6 < p4 < p8 < p.

We divide the interval [1
2
, p] into subintervals J0, . . . , J8 as follows:

J0 = [1
2
, p7]; J1 = [p7, p3]; J2 = [p3, p5]; J3 = [p5, p1]; J4 = [p1, p2];

J5 = [p2, p6]; J6 = [p6, p4]; J7 = [p4, p8]; and J8 = [p8, p].
The transitions between the intervals are shown in Figure 10.
There are three connected components, one (the interval J4 by itself)

with radius γ/p1, one (the intervals J2 and J6) with radius γ/
√
p3p6.

Both of these are less than 1 since γ < 1
2
. The third component is

illustrated in Figure 11 and consists of two loops of period 4 sharing
a common edge. The spectral radius of this component is the fourth
root of the sum of the product of the multipliers around the two loops.
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Figure 10. Full 9 interval transition diagram for 2
3
<

p < 0.709637. The double arrow signifies that m50 = 2.

15
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Figure 11. Principal component for 2
3
< p < 0.709637

That is, the spectral radius of this component is given by

γ

(
1

p5p2

(
2

1
2
p8

+
1

p7p4

))1/4

.

This quantity is less than 1 in the given range.
Notice that the principal component has period 4 because the origi-

nal map is twice renormalizable.

5.2. The range [0.709637,0.719023]. In this parameter range, the
map is only once renormalizable. At 0.709636979, there is a coincidence
p3 = p5 (so that all odd iterates beyond the third coincide; all even
iterates beyond the fourth coincide).

The right end point of the interval, 0.7190233023, occurs when p9

hits 1
2
. On the parameter interval [0.709636979, 0.7190233023], the

functions p 7→ pi are monotone for each 1 ≤ i ≤ 9. The graphs of
the functions do not cross.

In this range, we have 1
2
< p9 < p5 < p3 < p7 < p1 < p2 <

2
3
< p8 <

p4 < p6 < p.
Again, we use these points (excluding p9 and 2

3
) to define a collection

of intervals: J0 = [1
2
, p5], J1 = [p5, p3], J2 = [p3, p7], J3 = [p7, p1],
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Figure 12. Graphs of α (top left to bottom right) and
α4 (dashed) for p = 0.7. The map is twice renormal-
izable, so that there are intervals I1, I2, I3 and I4 each
mapped by α to the next with I1 containing the critical
point. In particular, α4 maps each interval to itself. This
is illustrated by the boxes.
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Figure 13. The transitions in the range 0.709637 < p < 0.719023.

J4 = [p1, p2], J5 = [p2, p8], J6 = [p8, p4], J7 = [p4, p6] and J8 = [p6, p].
The transitions are 0→ 8; 1→ 7; 2→ 6; 3→ 5; 4→ 2, 3, 4; 5→ 0, 0, 1;
6→ 0; 7→ 1, 2; and 8→ 3 (where repeated transitions correspond to
values of m that exceed 1).

This is illustrated in Figure 13.
The single component consisting of J4 always has multiplier less than

1. The transition matrix of the principal component is given by
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γ



0 0 0 0 0 0 0 2
0 0 0 0 0 0 q5 0
0 0 0 0 0 q3 0 0
0 0 0 0 q7 0 0 0

2q2 q2 0 0 0 0 0 0
q8 0 0 0 0 0 0 0
0 q4 q4 0 0 0 0 0
0 0 0 q6 0 0 0 0


where qi = 1/pi.

We check that q4, q5 and q8 are increasing in the parameter range,
while q3, q7 and q6 are decreasing. Substituting the maximum values of
each of these quantities in the range and also using the maximal value
of γ, we obtain a matrix whose spectral radius is 0.9773, giving the
required bound on the pressure in this range.

In principle it should be possible to extend by smaller and smaller
intervals as long as the pressure remains negative. For example, the
test (C230) described above shows that the pressure is negative for p =
0.7321. Indeed applying a similar procedure to 10000 randomly chosen
p-values in the range [0.719, 0.732] using (Ck) with k = 50, 100, 150, . . . , 500
shows that Pαp(log h) < 0 for each of them.

At this stage, we have proved that the strategy σ∗ for Ian and the
strategy τ for Una constructed in Proposition 6 are optimal if 2

3
≤ p ≤

0.719023
We define pc to be the supremum of the set of t such that for each

p satisfying 1
2
≤ p ≤ t, σ∗ is an optimal strategy for Ian. Combining

our results with those of [4], we have shown pc ≥ 0.719023. Computer
evidence suggests 0.7321 ≤ pc ≤ 0.7322. We provide an upper bound
showing pc ≤ 0.73275300915 in the next section. We conjecture, based
on limited computer experimentation, that for almost all p ≥ pc, σ

∗ is
not optimal for Ian.

6. Beating σ∗ after the critical point

For p beyond 0.7322, we suspect that the strategy σ∗ is often not
optimal, especially when the orbit of 1 − p comes close to 1

2
. Indeed,

we propose strategies — far from optimal — which do better than σ∗

for specific values of p ; we prove this claim completely for 3
4

(which
was an explicit open question); we also show the computation for the
value p = 0.73275300915.
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Let p be large enough so that we can expect σ∗ not to be optimal.
We choose k0 so that θ̃ = αk0(p) is close to 1

2
. We also let ε > 0 be a

small real number.
We modify slightly σ∗ to a strategy σk0,ε in the following way: if

θ 6= θ̃, 1−θ̃, then Ian plays following σ∗. But if θ = θ̃ (recall that θ̃ > 1
2
),

then Ian “perturbs” his reaction by ε: he plays 1 with probability:

• (1− ε)1−θ̃
θ̃

if s = S1,
• ε if s = S0;

Meanwhile if θ = 1− θ̃, Ian plays 1 with probability

• 1− ε if s = S1,

• 1− (1− ε) θ̃
1−θ̃ = 1−(2−ε)θ̃

1−θ̃ if s = S0,

In the case θ = θ̃, the belief is updated as:

• if Ian plays 1, it becomes : a0 := p− εγ;
• if Ian plays 0, it becomes 1 − b0, where b0 is defined to be

2− 3p+ γ

θ̃
− εγ 1−θ̃

θ̃
.

If θ = 1− θ̃, the updates are

• if Ian plays 1, it becomes b0

• if Ian plays 0, it becomes : 1− a0.

Notice that a0 is a perturbation of p and b0 is a perturbation of Φ(θ̃).
The critical aspect in this choice of perturbation of the strategy is that
it remains U-indifferent: If Una’s belief that the system is in state S1

is θ̃, then given the information available to Una, the probability that
the state is S0 and Ian plays 0; and the probability that the state is
S1 and Ian plays 1 are both (1− ε)(1− θ̃). Similarly if Una’s belief is

1− θ̃, the probabilities are both (1− ε)θ̃.
It is also greedy except when the belief is θ̃ or 1− θ̃, in which case the

one-step expected gain is (1− ε) min(θ̃, 1− θ̃). As for σ∗, Una’s belief
that the system is in state S1 evolves as a Markov chain. Since Ian’s
actions do not depend on Una’s, one may write down the transition
probabilities from one state to the next and compute the expected
one-step gain from each state (irrespective of Una’s choice of move due
to the U-irrelevance of the strategy). Hence is is not hard to obtain an
expression for the expected gain of the perturbed strategy.

We shall compare the value of this strategy σk0,ε with the value of
σ∗. We are going to prove

Lemma 10. vp(σk0,ε) > vp(σ
∗) if and only if

(12) θ̃
(
W (α(θ̃))−W (b0)

)
> (1− θ̃)

(
W (a0)− (1− ε)W (p)

)
,
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p

Figure 14. Schematic depiction of the (symmetrized)

Markov chain. At each state other than θ̃, one choice
leads back to the base, and the other goes to the right.

where θ̃ = αk0(p) and W (θ) :=
∑∞

n=0

∏n−1
k=0 α

k(θ).

In Section 6.3, we shall apply this lemma to the case p = 3
4

suggested
as a test case in [4].

Observe that with the strategy σk0,ε, when θ = θ̃, the one-step ex-
pected payoff is a bit smaller than with the strategy σ∗. However, the
update of the belief is slightly different and one may hope that this
new belief puts Ian in a better position for the future: in a sufficiently
improved position to compensate for the loss in the one-step expected
payoff. The objective is to show that this is possible for some values
of p. Note that we make no assertion about optimality of the per-
turbed strategy, but rather show that irrespective of Una’s strategy,
the expected gain is larger than that obtained by playing σ∗.

For this purpose, we have to find an expression for the long-term
expected payoff. Whatever Una plays, the evolution is a Markov chain
on the beliefs (governed by the random changes of the state and the
values of his choices). The belief may take the values p and 1− p and
values in the k0 first terms of the orbits of p and 1− p; when it reaches
θ̃, it may jump to the values of the belief after θ̃; namely a0 or 1 − b0

and then continue on their orbits for some random time and then go
back to 1−p or p. It is convenient to further assume that neither θ̃ nor
1− θ̃ belong to the orbits of a0 and b0 (this is true for all but countably
many values of ε). We observe that the symmetry θ 7→ 1 − θ does
not affect either the transitions or the payoff so it suffices to follow the
orbits modulo the symmetry about 1

2
.

6.1. Invariant measure for the Markov Chain.

Proof of Lemma 10. Recall α(θ) := max(Φ(θ), 1− Φ(θ)). For 0 ≤ k ≤
k0, let Θk = αk(p), so that Θk0 = θ̃. Set ak = αk(a0) and bk = αk(b0)

We see that Una’s belief evolves as a Markov chain on the countable
state space {Θk, 0 ≤ k ≤ k0; ak, bk, k ≥ 0} with transition probabilities:
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• If k < k0, Θk → Θk+1 with probability Θk and Θk → Θ0 with
probability 1−Θk.
• If k = k0, Θk0 → a0 with probability 1 − θ̃ and Θk0 → b0 with

probability θ̃.
• For all k ≥ 0, ak → ak+1 with probability ak and ak → Θ0 with

probability 1− ak; similarly bk → bk+1 with probability bk and
bk to Θ0 with probability 1− bk.

It is straightforward to compute the invariant measure for this chain.
We denote by Πε

s the probability of being in s in the perturbed chain
and by Π0

s the probability in the unperturbed chain.
For 1 ≤ n ≤ k0

Πε
Θn

= Πε
Θ0

n−1∏
k=0

Θk.

For all n ≥ 0

Πε
an = Πε

Θk0
(1− θ̃)

n−1∏
k=0

ak and Πε
bn = ΠΘk0

θ̃
n−1∏
k=0

bk.

The Chapman-Kolmogorov equations for Πε
Θ0 give

(13) Πε
Θ0

=

k0−1∑
n=0

(1−Θn)Πε
Θn

+
∞∑
n=0

(1− an)Πε
an +

∞∑
n=0

(1− bn)Πε
bn .

Since it is a probability measure, it also must satisfy :

(14)

k0∑
n=0

Πε
Θn

+
∞∑
n=0

Πε
an +

∞∑
n=0

Πε
bn = 1.

We introduce notationQ =
∏k0−1

k=0 Θk = Πε
Θk0

/Πε
Θ0

, A =
∑k0

n=0

∏n−1
j=0 Θj

and W (θ) =
∑∞

n=0

∏n−1
k=0 α

k(θ). This latter quantity gives the ratio of
the sum of the weights in the sub-tree rooted at θ to the weight of θ.
Using this notation, we can write equality (14) as

Πε
Θ0

(
A+Q(1− θ̃)W (a0) +Qθ̃W (b0)

)
= 1.

Hence

Πε
Θ0

=
[
A+Q

(
(1− θ̃)W (a0) + θ̃W (b0)

)]−1

.

Similarly, Π0
Θ0

=
[
A+QW (α(θ̃))

]−1

.
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6.2. Expected payoff. The expected payoff can be written as the sum
of the expected payoff (given the state) weighted by the probability of
the state; namely,

vp(σk0,ε) =

k0−1∑
n=0

(1−Θn)Πε
Θn

+(1−ε)(1−θ̃)Πε
Θk0

+
∞∑
n=0

(1−an)Πε
an+

∞∑
n=0

(1−bn)Πε
bn .

Using (13), we obtain

vp(σk0,ε) = Πε
0 + (1− ε)(1− θ̃)Πε

k0
= Πε

0

(
1 + (1− ε)(1− θ̃)Q

)
.

We want to show that for well chosen p, k0 and ε, vp(σk0,ε) > vp(σ
∗).

We recall that vp(σ
∗) = Π0

Θ0
= 1/W (p).

We now have

vp(σk0,ε)− vp(σ∗) = Πε
Θ0

(1 + (1− ε)(1− θ̃)Q)− Π0
Θ0

= Π0
Θ0

Πε
θ0

(
W (p)(1 + (1− ε)(1− θ̃)Q)− (A+Q((1− θ̃)W (a0) + θ̃W (b0)))

)
Since W (p) = A+Qθ̃W (α(θ̃)), we obtain

vp(σk0,ε)− vp(σ∗)

= QΠ0
Θ0

Πε
Θ0

(
θ̃(W (α(θ̃))−W (b0))− (1− θ̃)(W (a0)− (1− ε)W (p))

)
,

completing the proof of Lemma 10. �

6.3. The case p=3/4. When p takes the value 3
4
, the symbolic dy-

namics of p starts with 11010101 and α7(p) = 1137/2244 ≈ 0.5165....

We shall set k0 = 7 and θ̃ = 1137/2244.
Next we estimate W (θ) for the relevant values of θ. First we do it

for p and for α(θ̃). Recall that W (θ) =
∑∞

n=0

∏n−1
k=0 α

k(θ). The general
term is positive. As soon as k ≥ 1, 1

2
≤ Θk ≤ p. Hence, the remainder

of the sequence is bounded by∑
n≥N

n−1∏
k=0

αk(θ) ≤

(
N−1∏
k=0

αk(θ)

)∑
n≥0

pn

≤

(∏N−1
k=0 α

k(θ)
)

1− p
≤ pN

1− p
≤ 4

(
3
4

)N
.

We do the computation with N = 50, so the bound on the error is
smaller than 10−10 (and the obvious bound p−N is itself of order 10−7).

We obtain with this approximation W (p) ≈ 2.8354 and W (α(θ̃)) ≈
2.7432.

Then numerical experimentation (see Figure 15) suggests taking ε =
0.01. For this value of ε, we also compute W (b0) ≈ 2.7305 and W (a0) ≈
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Figure 15. Numerical approximation of the graph of
the left side of (15) (vertical axis) in the case p = 3

4
as a

function of ε (horizontal axis).

2.8203. This is sharp enough to see the difference between

(1− θ̃)
(
W (a0)− (1− ε)W (p)

)
≈ 0.0064

and
θ̃
(
W (α(θ̃)−W (b0))

)
≈ 0.0065.

We conclude that

(15) θ̃
(
W (α(θ̃))−W (b0)

)
− (1− θ̃)

(
W (a0)− (1− ε)W (p))

)
> 10−4,

so that, by Lemma 10, we have shown that σ∗ is not optimal for p = 3
4
.

The expected payoff of the alternative strategy can be computed: we
obtain v 3

4
(σ∗) = 0.35267910... and v 3

4
(σ7,0.01) = 0.35267964..., showing

a difference between the values of

v 3
4
(σ7,0.01)− v 3

4
(σ∗) ≈ 5× 10−7.

6.4. The case p=0.73275300915. By trial and error, we located a
value of p slightly above the conjectured critical point pc ≈ 0.7321
for which σ∗ is not optimal. Computations (using the Mathemat-
ica package with 200 digit accuracy) with p = 0.73275300915, k0 =

57 and ε = 0.0002 show that θ̃ ≈ 0.50000194899, vp(σ57,0.0002) ≈
0.36146954045450398743665121 and vp(σ

∗) ≈ 0.36146954045450398743610381,
so that the gain of the perturbed strategy is larger by approximately
5.47× 10−22. This concludes the proof of Theorem 1.
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7. Overview

We hope that ideas from this paper may find wider application in
the theory of repeated games. We identify a couple of factors that play
important roles in our analysis:

Renewal: The directed graph describing the evolution of Una’s
beliefs has a very simple structure (see Figure 6). Any time
that Ian’s move is aligned with Una’s belief, her belief returns
to the base of the tower. This renewal structure vastly simplifies
computations.

Complexity and Contraction: Our construction of Una’s best
response to σ∗ was based on solving a system of linear equations
(4) relating the values of V before and after Ian’s move. The
contraction properties of the matrices guaranteed the existence
of a fixed point of L. Our method depended also on getting
detailed information about the fixed point. The discontinuity
of Φ at 1

2
led to discontinuities of V at 1

2
. These are propagated

by (4) to preimages of 1
2

under Φ. A key role was played in the
argument by the fact that the jumps at the discontinuity points
were all of the same sign and summable (the summability en-
sured that the fixed point was of pure jump type and the sign
condition ensured that the fixed point was monotonic). That
the sign was constant appears to be a fortunate accident. The
summability can be traced to the complexity of Φ. When p < 2

3
,

there are no preimages of 1
2
. As p increases, the complexity of

the system (the topological entropy) increases. This quantity
measures the exponential growth rate of the number of preim-
ages. The pressure measures a combination of the number of
preimages with the size of the discontinuity at each.

We thank the two referees for an extremely careful and construc-
tive reading of the paper, as well as for the numerous suggestions for
improvements.
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