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Abstract. We give a new proof of a multiplicative ergodic theo-
rem for quasi-compact operators on Banach spaces with a separable
dual. Our proof works by constructing the finite-codimensional
‘slow’ subspaces (the subspaces where the growth rate is domi-
nated by some λi), in contrast with earlier infinite-dimensional
multiplicative ergodic theorems which work by constructing the
finite-dimensional fast subspaces. As an important consequence
for applications, we are able to get rid of the injectivity require-
ments that appear in earlier works.

1. Introduction

The multiplicative ergodic theorem (MET) is a very powerful result
in ergodic theory establishing the existence of generalized eigenspaces
for stationary compositions of linear operators. It is of great interest
in many areas of mathematics, including analysis, geometry and appli-
cations. The MET was first established by Oseledets [8] in the context
of matrix cocycles. The decomposition into generalized eigenspaces is
called the Oseledets splitting.

After the original version, the MET was proved by a different method
by Raghunathan [10]. The result was subsequently generalized to com-
pact operators on Hilbert spaces by Ruelle [11]. Mañé [7] proved a
version for compact operators on Banach spaces under some continuity
assumptions on the base dynamics and the dependence of the operator
on the base point. Thieullen [12] extended this to quasi-compact op-
erators. Recently, Lian and Lu [6] proved a version in the context of
linear operators on separable Banach spaces, in which the continuity
assumption was relaxed to a measurability condition.

We prove a non-invertible Oseledets theorem (i.e. we obtain a fil-
tration) for a random dynamical system (the full definition is below)
acting on a Banach space with separable dual. We do not make any
assumption about injectivity of the operators, unlike most previous
Banach-space valued versions of the Multiplicative Ergodic Theorem.
We also prove a semi-invertible Oseledets theorem (i.e. we obtain a
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splitting) under the assumption that the underlying Banach space is
separable and reflexive.

An important feature of the present approach is its constructive na-
ture. Indeed, it provides a robust way of approximating the Oseledets
splitting, following what could be considered a power method type
strategy. This makes the work also relevant from an applications per-
spective.

The approach of this work is similar in spirit to that of Raghunathan,
in that we primarily work with the ‘slow Oseledets spaces’. Mañé’s
proof works hard to build the fast space, as do the subsequent works
based on Mañé’s template. These proofs rely on injectivity of the
operators; some of them make use of natural extensions to extend the
result to non-invertible operators – this was the strategy in [12], and it
was also used by Doan in [2] to extend [6] to the non-invertible context.
In contrast, we establish the non-invertible version first and recover
the (semi-)invertible one, including the ‘fast spaces’, straightforwardly
using duality. Another key simplifying feature of our method is that
we prove measurability at the end of the proof, rather than working to
ensure that all intermediate constructions are measurable.

While Raghunathan’s proof uses singular value decomposition and
hence relies on the notion of orthogonality, we study instead collections
of vectors with maximal volume growth. Another important difference
with Raghunathan’s approach is that instead of dealing with the exte-
rior algebra, we work with the Grassmannian. We claim this is more
natural since subspaces correspond to rank one elements of the exterior
algebra (those that can be expressed as v1∧ . . .∧ vk). In the Euclidean
setting, rank one elements naturally appear as eigenvectors of Λk(A∗A),
but this does not seem to generalize to the Banach space case.

Section 2 analyses notions of volume growth for bounded linear maps
T on a Banach space X. We establish an asymptotic equivalence be-
tween k-dimensional volume growth under T and T ∗, as well as other
measures of volume growth and Section 3 uses these results to obtain
the multiplicative ergodic theorems. The main results in this article
are Theorem 16 and Corollary 17. After submitting the current article,
we learned of an independent proof of essentially the same result via
closely related methods due to Blumenthal [1].

2. Volume calculations in Banach spaces

LetX be a Banach space with norm ‖·‖. As usual, given a non-empty
subset A of X and a point x ∈ X, we define d(x,A) = infy∈A d(x, y).
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We denote by BX and SX the unit ball and unit sphere in X, respec-
tively. The linear span of a finite collection C of vectors in X will be
denoted by lin(C) with the convention that lin(∅) = {0}. The dual
of X will be denoted by X∗. In this section, we study the relation-
ships between various notions of volume and singular value for maps of
Banach spaces. Other closely related notions are due to Gelfand and
Kolmogorov and are described in Pisier’s book [9]. For the purposes
of later sections, it will suffice to show that two quantities agree up to
a bounded multiplicative factor. We make no attempt to optimize the
bounds. We use the notation Q � Q′ if the ratio of the quantities Q
and Q′ is bounded above and below by constants independent of the
Banach space(s).

We define the k-dimensional volume of a collection, (v1, . . . , vk), of
vectors in a Banach space by

volk(v1, . . . , vk) =
k∏
i=1

d(vi, lin({vj : j < i})).

It is easy to see that volk(α1v1, . . . αkvk) = |α1| . . . |αk| volk(v1, . . . , vk).
In the case where the normed space is Euclidean this notion corre-
sponds with the standard notion of k-dimensional volume. Notice that
volk(v1, . . . , vk) is not generally invariant under permutation of the vec-
tors.

Given a bounded linear map T fromX to Y , we define dkT (v1, . . . , vk)
to be volk(Tv1, . . . , T vk) and DkT = sup‖v1‖=1,...,‖vk‖=1 dkT (v1, . . . vk).

Lemma 1 (Submultiplicativity). Let T : X → Y and S : Y → Z be
linear maps. Then Dk(S ◦ T ) ≤ Dk(S)Dk(T ).

Proof. Let T (v1), . . . , T (vk) ∈ X be linearly independent. Then one
checks from the definition that for any collection of coefficients (αij)j<i,
the following holds

(1) volk(v1, . . . , vk) = volk(v1, v2 − α21v1, . . . , vk −
∑
j<k

αkjvj).

Since the linear spans in the definition of volume are finite-dimensional
spaces, the minima are attained so that dkT (v1, . . . , vk) = ‖T (v1)‖‖T (v2)−
α21T (v1)‖ . . . ‖T (vk)− αk1T (v1)− . . .− αk,k−1T (vk−1)‖ for appropriate
choices of (αij)j<i.
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Let wj = vj−
∑

i<j αjivi so that dkT (v1, . . . , vk) = ‖T (w1)‖ . . . ‖T (wk)‖
and set uj = T (wj)/‖T (wj)‖. Using (1), we have

dk(S ◦ T )(v1, . . . , vk) = volk(ST (v1), . . . , ST (vk))

= volk(ST (w1), . . . , ST (wk))

= ‖T (w1)‖ . . . ‖T (wk)‖ volk(S(u1), . . . , S(uk))

≤ dkT (v1, . . . , vk)DkS.

Taking a supremum over v1, . . . , vk in the unit ball of X, one obtains
the bound Dk(S ◦ T ) ≤ Dk(S)Dk(T ) as required. �

Lemma 2. Let T : X → Y be linear. Suppose that V is a k-dimensional
subspace and ‖Tx‖ ≥M‖x‖ for all x ∈ V . Then DkT ≥Mk.

Proof. Let v1, . . . , vk belong to V ∩ SX and satisfy d(vj, lin({vi : i <
j})) = 1. Then dkT (v1, . . . , vk) ≥Mk. �

We now proceed to compare volume estimates for a linear operator
T : X → Y and its dual T ∗ : Y ∗ → X∗. We introduce a third quantity
to which we compare both Dk(T ) and Dk(T

∗). Given linear functionals
θ1, . . . , θk ∈ Y ∗ and points x1, . . . , xk ∈ X, we let U((θi), (xj)) be the
matrix with entries Uij = θi(T (xj)) and define

Ek(T ) = sup
{

detU
(
(θi), (xj)

)
: ‖θi‖ = 1 and ‖xj‖ = 1 for all i, j

}
.

Lemma 3 (Relationship between volumes for T and T ∗). For all k > 0,
there exist positive constants ck and Ck with the following property: For
every bounded linear map T from a Banach space X to itself,

ckDk(T ) ≤ Dk(T
∗) ≤ CkDk(T ).

Proof. The statement will follow from the following inequalities:

Dk(T ) ≤ Ek(T ) ≤ k!Dk(T )(2)

Dk(T
∗) ≤ Ek(T ) ≤ k!Dk(T

∗).(3)

The second inequality of (2) is proved as follows: Let x1, . . . , xk
and θ1, . . . , θk all be of norm 1 in X and Y ∗ respectively. Let αj =

d(Txj, lin(Tx1, . . . , Txj−1)). Let cj1, . . . , c
j
j−1 be chosen so that ‖Tzj‖ =

αj, where zj is defined by zj = xj − (cj1x1 + . . .+ cjj−1xj−1). Note that
U ′ = U((θi), (zj)) may be obtained from U = U((θi), (xj)) by column
operations that leave the determinant unchanged. Notice also that
|U ′ij| = |θi(Tzj)| ≤ αj. From the definition of a determinant, we see
that detU = detU ′ ≤ k!α1 . . . αk. This inequality holds for all choices
of θi in the unit sphere of Y ∗. Now, maximizing over choices of xj in
the unit sphere of X, we obtain the desired result.
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The second inequality of (3) may be obtained analogously. We let
βi = d(T ∗θi, lin(T ∗θ1, . . . , T

∗θi−1)) and choose linear combinations φi
of the θi for which the minimum is obtained. The matrix U ′′ =
U((φi), (xj)) is obtained by row operations from U and the |U ′′i,j| =
|φi(Txj)| = |(T ∗φi)(xj)| ≤ βi.

To show the first inequality of (2), fix x1, . . . , xk of norm 1. As before,
let αj = d(Txj, lin(Tx1, . . . , Txj−1)). By the Hahn-Banach theorem,
there exist linear functionals (θi)

k
i=1 in SY ∗ such that θi(Txi) = αi and

θi(xk) = 0 for all k < i. Now

detU((θi), (xj)) =
∏

αi.

Maximizing over the choice of (xj), we obtain Ek(T ) ≥ Dk(T ) as re-
quired.

Finally, for the first inequality of (3), we argue as follows. Let ε > 0
be arbitrary and let θ1, . . . , θk belong to the unit sphere of Y ∗. We may
assume that T ∗θ1, . . . , T

∗θk are linearly independent – otherwise the
inequality is trivial. Let φi = T ∗θi−

∑
k<i aikT

∗θk be such that ‖φi‖ =
d(T ∗θi, lin({T ∗θk : k < i})). We shall pick x1, . . . , xk inductively in such

a way that | det((φi(xj))i,j≤l)| is at least
∏l

i=1(‖φi‖−ε) for each 1 ≤ l ≤
k. Suppose x1, . . . , xl−1 have been chosen. Then since det((φi(xj))i,j<l)
is non-zero, the rows span Rl−1. Hence there exist (bi)i<l such that
ψl := φl +

∑
i<l biφi satisfies ψl(xj) = 0 for all j < l. By assumption,

‖ψl‖ ≥ ‖φl‖. Pick xl ∈ SX such that ψl(xl) > ‖ψl‖ − ε. Then the
matrix with a row for ψl and a column for xl adjoined has determinant
of absolute value at least

∏l
i=1(‖φi‖− ε). The matrix with φl replacing

ψl has the same determinant, completing the induction. Maximizing
over the choice of (θj)j≤k, letting ε shrink to 0, and observing that
det((φi(xj))i,j≤k) = det((T ∗θi(xj))i,j≤k) completes the proof.

�

A fourth quantity that will play a crucial role in what follows is
Fk(T ), defined as

Fk(T ) = sup
dim(V )=k

inf
v∈V ∩SX

‖Tv‖.

We make use of the following lemma due to Gohberg and Krein
whose proof may be found in Kato’s book [5] (Chapter 4, Lemma 2.3).

Lemma 4 (Gohberg and Krein). Let V1 be a proper finite-dimensional
subspace of a subspace V2 of a Banach space, X. Then there exists
v ∈ V2 \ {0} such that d(v, V1) = ‖v‖.
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Lemma 5 (Relation between determinants and Fk). Let T be a bounded
linear map from a Banach space X to a Banach space Y . Then

Ek−1(T )Fk(T ) ≤ Ek(T ) ≤ k2k−1Ek−1(T )Fk(T ).

Proof. We first show Ek(T ) ≤ k2k−1Ek−1(T )Fk(T ). We may assume
Ek(T ) > 0 as otherwise the inequality is trivial. Let θ1, . . . , θk be
elements of the unit sphere of X∗ and x1, . . . , xk be elements of the unit
sphere of X. Let U be the matrix with entries θi(Txj). Assume that
detU 6= 0. Since x1, . . . , xk span a k-dimensional space, there exists a
v = a1x1+. . .+akxk of norm 1 such that ‖Tv‖ ≤ Fk(T ). By the triangle
inequality, one of the |a|’s, say |aj0|, must be at least 1

k
. Let x̃j = xj for

j 6= j0 and x̃j0 = v and set Ũ to be the matrix with entries θi(T x̃j). By

properties of determinants, we see | det Ũ | = |aj0| | detU | ≥ 1
k
| detU |.

Next, there exists i0 for which |θi0(Tv)| is maximal, this maximum not
being 0 since | det Ũ | is positive. Let θ̄i = θi − (θi(Tv)/θi0(Tv))θi0 for
i 6= i0 and θ̄i0 = θi0 , so that ‖θ̄i‖ ≤ 2 and θ̄i(Tv) = 0 for i 6= i0.

Now let Ūij = θ̄i(T x̃j), so that | detU | ≤ k| det Ũ | = k| det Ū |. Fi-
nally, the j0th column of Ū has a single non-zero entry that is at most
‖Tv‖ ≤ Fk(T ) in absolute value. The absolute value of the cofactor

is
∣∣∣det

(
θ̄i(T (x̃j))

)
i 6=i0, j 6=j0

∣∣∣ ≤ 2k−1Ek−1(T ). Taking a supremum over

choices of (θi) and (xj), we have shown Ek(T ) ≤ k2k−1Ek−1(T )Fk(T ).
For the other inequality, we may suppose that T has kernel of codi-

mension at least k, otherwise Fk(T ) = 0 and there is nothing to prove.
Let θ1, . . . , θk−1 and x1, . . . , xk−1 be arbitrary. Let ∆ be the determi-
nant of the matrix with entries θi(Txj). Let V be a k-dimensional
subspace such that V ∩ kerT = {0}. Let W = lin(Tx1, . . . , Txk−1).
Using Lemma 4, let z be a point in the unit sphere of T (V ) such that
d(z,W ) = 1. Let v ∈ V ∩ SX be such that T (v) is a multiple of z. Let
θk be a linear functional of norm 1 such that θk|W = 0 and θk(z) = 1
and let xk = v. Now forming the k × k matrix

(
θi(xj)

)
1≤i,j≤k, we

see the absolute value of the determinant is ∆ · θk(Tv) = ∆ · ‖Tv‖ ≥
∆ · infx∈V ∩SX

‖Tx‖. Taking suprema over choices of x’s, θ’s and k-
dimensional V ’s, we see that Ek(T ) ≥ Fk(T )Ek−1(T ) as required.

�

Corollary 6. [of Lemmas 3 and 5] For each k > 0, the quantities
Dk(T ), Dk(T

∗), Ek(T ) and
∏

i≤k Fi(T ) agree up to multiplicative fac-
tors that may be bounded by constants independent of the bounded linear
map T and the Banach spaces X and Y . Further, Fi(T ) and Fi(T

∗)
agree up to a uniformly bounded multiplicative factor.
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We comment that besides these approximate Banach space versions
of singular values, additional related quantities are given by Gelfand
numbers and Kolmogorov numbers (see the book of Pisier [9] for more
information). It can be checked that these quantities also agree with
the sequence of Fi’s up to bounded multiplicative factors (dependent
on i, but independent of X and T ).

By definition, for each natural number k, one can find sequences
(θi)i≤k and (xj)j≤k such that det(U((θi), (xj))) � Ek(T ). We now show
that we can find infinite sequences (θi) and (xj) so that, for each k,
det(U((θi)i≤k, (xj)i≤k)) � Ek(T ).

Lemma 7 (Existence of consistent sequences). Let X and Y be infinite-
dimensional Banach spaces. For any linear map T : X → Y , there exist
(θi)i≥1 in SY ∗ and (xj)j≥1 in SX such that for all k,

det ((θi(Txj))1≤i,j≤k) ≥ 1
2k

∏
i≤k

Fi(T ); and

‖Tx‖ ≥ 4−kFk(T )‖x‖ for all x ∈ lin(x1, . . . , xk).

Proof. The proof is by induction: suppose (θi)i<k and (xj)j<k have
been chosen and satisfy the desired inequalities at stage k − 1. Then
pick an arbitrary k-dimensional space V such that ‖Tv‖ ≥ 1

2
Fk(T )‖v‖

for all v ∈ V . Using Lemma 4, let xk ∈ V ∩ SX be such that
d(Txk, lin(Tx1, . . . , Txk−1)) = ‖Txk‖. Finally choose θk of norm 1 such
that θk(Txi) = 0 for i < k and θk(Txk) = ‖Txk‖. The determinant
inequality at stage k follows.

Let x = a1x1 + . . .+ akxk be of norm 1. Then
(4)
‖Tx‖ ≥ |ak|d(Txk, lin(Tx1, . . . , Txk−1)) = |ak|‖Txk‖ ≥ |ak|Fk(T )/2.

Also,

‖Tx‖ ≥
∥∥∥T (

∑
j<k ajxj)

∥∥∥− |ak|‖Txk‖.
Averaging the inequalities, we get

(5) ‖Tx‖ ≥ 1
2

∥∥∥T (
∑

j<k ajxj)
∥∥∥ .

If |ak| > 1
2
, the first inequality yields ‖Tx‖ ≥ 1

4
Fk(T ). If |ak| ≤ 1

2
,

then ‖
∑

j<k ajxj‖ ≥
1
2

and the second inequality combined with the

inductive hypothesis gives ‖Tx‖ ≥ 1
4
4−(k−1)Fk−1(T ).

�

Lemma 8 (Lower bound on volume growth in a subspace of finite codi-
mension). For any natural numbers k > m, there exists Ck such that if
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X, Y are Banach spaces, T : X → Y is a linear map and V is a closed
subspace of X of codimension m, then Dk(T ) ≤ CkDm(T )Dk−m(T |V ).

Proof. Let ε > 0. Let P be a projection from X to V of norm at most√
m + ε (such a projection exists by Corollary III.B.11 in the book of

Wojtaszczyk [13]). Then, ‖I − P‖ ≤
√
m + ε + 1. Let x1, . . . , xk be a

sequence of vectors in X of norm 1. The proof of Lemma 3 shows that
there exist ψ1, . . . , ψk in SY ∗ such that det(ψi(xj)) ≥ dkT (x1, . . . , xk).
Write P1 for P and P0 for I − P , which has m-dimensional range.
There exists a choice ε1, . . . εk ∈ {0, 1}k such that | det(ψi(Pεjxj))| >
2−kdkT (x1, . . . , xk), by multilinearity of the determinant. At most m
of the εj can be 0, as otherwise more than m vectors lie in a common
m-dimensional space, so that at least k −m of them lie in V . Hence,
there exist vectors z1, . . . , zm in SX and zm+1, . . . , zk in SX ∩ V such
that

| det(ψi(zj))| ≥ (2(
√
m+ ε+ 1))−kdkT (x1, . . . , xk).

Using the proof of Lemma 3 again, we deduce that

dmT (z1, . . . , zm)dk−mT (zm+1, . . . , zk) ≥ dkT (z1, . . . , zk)

≥ (2(
√
m+ ε+ 1))−k/(k!)dkT (x1, . . . , xk).

This completes the proof. �

3. Random dynamical systems

A closed subspace Y of X is called complemented if there exists a
closed subspace Z such that X is the direct sum of Y and Z, written
X = Y ⊕Z. That is, for every x ∈ X, there exist y ∈ Y and z ∈ Z such
that x = y + z, and this decomposition is unique. The Grassmannian
G(X) is the set of closed complemented subspaces of X. We equip
G(X) with the metric d(Y, Y ′) = dH(Y ∩SX , Y ′∩SX) where dH denotes
the Hausdorff distance. We denote by Gk(X) the collection of closed k-
codimensional subspaces of X (these are automatically complemented),
by Gk(X) the k-dimensional subspaces of X. If U and V are closed
subspaces of X such that U ⊕ V = X, then ProjU‖V is the projection
onto U parallel to V (that is ProjU‖V (x) ∈ U and x−ProjU‖V (x) ∈ V ).
We record some facts about Grassmannians in the following lemma.

Lemma 9. Let X be a Banach space with separable dual. Let k ∈ N.
The following facts hold:

(1) Gk(X) is complete and separable.
(2) If V ∈ G(X), W ∈ G(X) and V⊕W = X, then 1

δ
≤ ‖ProjV ‖W ‖ ≤

2
δ
, where δ = infx∈V ∩SX ,y∈W∩SX

‖x− y‖.
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(3) There exists K > 0 (independent of X) such that if V ∈ Gk(X),
there exists a subspace W ∈ Gk(X) such that ‖ProjW‖V ‖ ≤ K
and ‖ProjV ‖W ‖ ≤ K.

(4) (Symmetry of closeness) There exists K > 0 such that if V, V ′ ∈
Gk(X), then

sup
v′∈V ′∩SX

inf
v∈V ∩SX

‖v − v′‖ ≤ K sup
v∈V ∩SX

inf
v′∈V ′∩SX

‖v − v′‖.

Proof. The map ⊥ : Gk(X)→ Gk(X∗) defined by V ⊥ = {θ ∈ X∗ : θ|V =
0} is a bi-Lipschitz bijection [5]. Separability of Gk(X) and symmetry
of closeness are proved in [4]. The completeness is stated but not proved
in Kato’s book. We sketch a proof using results from the appendix of
[4]. Let V be a k-dimensional subspace of a Banach space Z and let
v1 . . . , vk be an Auerbach basis. By the Hahn-Banach theorem, there
exist θ1, . . . , θk ∈ Z∗ of norm 1 such that θi(vj) = δij. Now if ṽ1, . . . , ṽk
in Z satisfy ‖ṽi − vi‖ < ε/k for each k, then one has ‖

∑
aiṽi‖ ≥ (1−

ε) max |ai| (to see this, apply θi0 where |ai0| = max |ai|). From this, we
see that ṽ1, . . . , ṽk is an ε-nice basis (as defined in [4]). Now let (Vn) be
a Cauchy sequence in Gk(Z). By refining the sequence, one may assume
d(Vn, Vn+1) < (3k)−n. Choosing an Auerbach basis v1

1, . . . , v
1
k for V1,

one may then obtain elements vn1 , . . . , v
n
k of Vn satisfying ‖vn+1

i −vni ‖ <
(2k + 1)−n. This is a convergent sequence of 1

2
-nice bases. Letting v∗i

be the limit of vni , Corollary B6 of [4] shows that d(Vn, V∗)→ 0, where
V∗ is the subspace spanned by the v∗i . This establishes completeness of
Gk(X∗) and hence completeness of Gk(X). To see (2), if vn ∈ V ∩ SX
and wn ∈ W ∩SX , satisfy ‖vn−wn‖ → δ then ‖ProjV ‖W (vn−wn)‖ = 1
shows the first inequality. For the second inequality, let v ∈ V ∩SX . If

1− δ
2
< ‖w‖ < 1 + δ

2
, then ‖v+w‖ ≥ ‖v+ ‖v‖

‖w‖w‖− |‖v‖−‖w‖| ≥
δ
2
. If

‖w‖ lies outside this range, then the same conclusion follows from the
triangle inequality, so that ‖ProjV ‖W (v + w)‖ = ‖v‖ ≤ 2

δ
‖v + w‖. (3)

can be found in [13], Corollary III.B.11. �

For a Banach space X, the bounded linear maps from X to itself
will be written B(X,X) and BX will be the Borel σ-algebra on X.
In this section, we consider random dynamical systems. These consist
of a tuple R = (Ω,F ,P, σ,X,L), where (Ω,F ,P) is a complete prob-
ability space; σ is a measure preserving transformation of Ω; X is a
separable Banach space; the generator L : Ω → B(X,X) is strongly
measurable (that is for fixed x ∈ X, ω 7→ Lωx is (F ,BX)-measurable);
and log ‖Lω‖ is integrable. An alternative description of strong mea-
surability is that the map ω 7→ Lω is (F ,S)-measurable, where S is
the Borel σ-algebra of the strong operator topology on B(X,X) (see
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Appendix A of [4] for details). In the context where X is separable
and the operators are bounded, strong measurability is equivalent to
(F ⊗ BX ,BX)-measurability of the map (ω, x) 7→ Lωx ([4]).

A random dynamical system gives rise to a cocycle of bounded linear

operators L(n)
ω on X, defined by L(n)

ω (x) = Lσn−1ω ◦ · · · ◦ Lωx. We will
consider F and P to be fixed, and thus refer to a random dynamical
system as R = (Ω, σ,X,L). We say R is ergodic if σ is ergodic.

When the base σ is invertible, we can also define the dual random
dynamical system R∗ = (Ω,F ,P, σ−1, X∗,L∗), where X∗ is the dual of
X and L∗ω(θ) := (Lσ−1ω)∗θ. Notice that L∗ω is not (Lω)∗. The rationale
for this is that Lω maps the X-fibre over ω to the X-fibre over σ(ω) and
similarly L∗ω maps the X∗-fibre over ω to the X∗-fibre over σ−1ω. In

this way, θ(Lωx) = L∗σωθ(x) and, more generally, L∗(n)
σnωθ(x) = θ(L(n)

ω x)

for every x ∈ X, θ ∈ X∗. Thus, L∗(n)
σnω = (L(n)

ω )∗.

Lemma 10 (Measurable dense subset of a family of subspaces). Let
X be a separable Banach space. Let V : Ω → Gk(X) be measurable.
Then there exist sequences of measurable functions un : Ω → SX and
u′n : Ω→ BX such that {un(ω) : n ∈ N} is a dense subset of V (ω)∩SX
and {u′n(ω) : n ∈ N} is a dense subset of V (ω) ∩BX .

Proof. First, for fixed v ∈ X,ω 7→ d(v, V (ω)) is a measurable function,
as it is the composition of continuous and measurable functions. Fix a
dense sequence v1, v2, . . . ∈ SX . Now for each j, set u0

j(ω) = vj, and let

uk+1
j (ω) = vl, where l = min{m : d(vm, V (ω)∩SX) ≤ 1

4
d(ukj (ω), V (ω)∩

SX) and d(vm, u
k
j (ω)) ≤ 2d(ukj (ω), V (ω) ∩ SX)}. For each j, this is a

measurable convergent sequence and hence the limit point u∞j (ω) is
measurable, and belongs to V (ω)∩SX . The sequence (u∞j (ω)) is dense
in V (ω) ∩ SX because there are vj arbitrarily close to all points of
V (ω) ∩ SX . The functions u′n are produced exactly analogously. �

Lemma 11 (Measurability of growth measurements). Let R be a ran-
dom dynamical system R = (Ω, σ,X,L) acting on a separable Banach
space. The following functions are measurable:

• ω 7→ Dk(Lω);
• ω 7→ ‖Lω‖;
• ω 7→ α(Lω) := inf

{
r > 0 : Lω(BX) can be covered by
finitely many balls of radius r

}
.

Further, if V : Ω→ Gk(X) is measurable, then ω 7→ ‖Lω|V (ω)‖ is mea-
surable.

Proof. Let (xn) be a dense subsequence of BX . By strong measurability,
for each fixed n, ω 7→ ‖Lωxn‖ is measurable. Then for each j1, . . . , ji,
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we have that fji|j1,...,ji−1
(ω) := infq1,...,qi−1∈Q ‖Lωxji −

∑
1≤l<i qlLωxjl‖ is

measurable, so

Dk(Lω) = sup
j1,...,jk

∏
i≤k

fji|j1,...,ji−1
(ω)

is measurable. In particular, ω 7→ ‖Lω‖ = D1(Lω) is measurable. We
claim that

(6) α(L) = lim
n→∞

sup
j

inf
k≤n

∥∥∥Lxj − 2‖L‖xk
∥∥∥.

If this limit is r, then there exists n such that supj infk≤n

∥∥∥Lxj −
2‖Lω‖xk

∥∥∥ < r + ε. This gives a covering of {Lxj : j ∈ N} by n balls

of radius r + ε, so that the left side of (6) is dominated by the right
side. Conversely, if α(L) = r, let L(BX) be covered by finitely many
balls of radius r+ ε. These must have centres with norm at most 2‖L‖
otherwise they do not intersect L(BX). The centres must therefore be
ε-approximable by points of the form 2‖L‖xk, so that the right side
of (6) is at most r + 2ε. We deduce (6) holds and ω 7→ α(Lω) is
measurable.

Finally, if V : Ω→ Gk(X) is measurable, let (un(ω))n∈N be a sequence
of measurable functions such that {un(ω) : n ∈ N} is dense in SV (ω).
Then ‖Lω|V (ω)‖ = supn ‖Lωun(ω)‖, which is therefore measurable. �

WhenR is ergodic, Lemma 11 combined with Kingman’s sub-additive
ergodic theorem ensures the existence of the maximal Lyapunov expo-
nent of R, defined by

λ(R) := lim
n→∞

1
n

log ‖L(n)
ω ‖,

for P-a.e. ω ∈ Ω. Similarly, using the fact that the Kuratowski index
of compactness, κ(L), is also sub-multiplicative and bounded above by
the norm, we have existence of the index of compactness of R, defined
by

κ(R) := lim
n→∞

1
n

logα(L(n)
ω ),

with the property that κ(R) ≤ λ(R).
In the case where Lω is independent of ω, λ(R) and κ(R) are the

spectral radius and essential spectral radius respectively, so that κ(R) <
λ(R) is the quasi-compact case. If the operator is compact, then κ(R)
is 0.
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Our previous paper [4] studies the case in which R is a random
dynamical system where the operators Lω are Perron-Frobenius oper-
ators of a family of expanding maps and gives sufficient conditions for
κ(R) < λ(R).

Lemma 12. Given an ergodic random dynamical system R, there exist
constants ∆k = ∆k(R) such that for almost every ω ∈ Ω,

lim
n→∞

1
n

logDk(L(n)
ω ) = ∆k.

Furthermore, 1
n

logEk(L(n)
ω ) → ∆k. Define ∆0 = 0 and let µk = ∆k −

∆k−1 for each k ≥ 1. Then, 1
n

logFk(L(n)
ω )→ µk.

Proof. The first claim follows from Kingman’s sub-additive ergodic the-
orem, via Lemma 11 and Lemma 1. The remaining two claims are
consequences of Corollary 6. �

The µk’s of the previous lemma are called the Lyapunov exponents of
R. When µk > κ(R), µk is called an exceptional Lyapunov exponent.

Theorem 13 (Lyapunov exponents and index of compactness). Let R
be a random dynamical system with ergodic base acting on a separable
Banach space X. Then

• µ1 ≥ µ2 ≥ . . .;
• For any ρ > κ(R), there are only finitely many exponents that

exceed ρ;
• If σ is invertible, then R and R∗ have the same Lyapunov ex-

ponents.

Proof. That the µi are decreasing follows from Lemma 12 and the ob-
servation that Fk(T ) ≤ Fk−1(T ). That the system and its dual have
the same exponents follows from Lemma 3 together with the simple
result (in [3, Lemma 8.2]) that if (fn) is sub-additive and satisfies
fn(ω)/n→ A almost everywhere, then one has fn(σ−nω)/n→ A also.

It remains to show that for ρ > κ, the system has at most finitely
many exponents that exceed ρ. Let κ < α < β < ρ. Since log ‖Lω‖ is
integrable, there exists a 0 < δ < (β − α)/2|α| such that if P(E) < δ,
then

∫
E

log+ ‖Lω‖ dP(ω) < (β − α)/2. By the sub-additive ergodic

theorem, there exists L > 0 such that P(α(L(L)
ω ) ≥ eαL) < δ/2. If

α(L(L)
ω ) < eαL, then by definition, L(L)

ω BX may be covered by finitely
many balls of size eαL. By linearity, if α(A) = ζ, one sees that if B is
a ball with arbitrary centre and radius ρ, then A(B) may be covered
by finitely many balls of size ζρ.
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Let r be chosen large enough so that P(G) > 1 − δ, where G (the
good set) is defined by

G = {ω : L(L)
ω BX may be covered with erL balls of size eαL}.

We split the orbit of ω into blocks: if σiω ∈ G, then the block length
is L; otherwise, if σiω is bad, we take a block of length 1. Consider the
following iterative process: start with a ball of radius ρ0 = 1. Then

look at the current iterate of ω, σiω, and suppose that L(i)
ω BX is covered

by Ni balls of radius ρi. If σiω ∈ G, then L(i+L)
ω BX is covered by at

most Ni+L = Nie
rL balls of radius ρi+L = eαLρi and the new iterate

is σi+Lω. If σiω 6∈ G, then L(i+1)
ω BX is covered by at most Ni+1 = Ni

balls of radius ρi+1 = ‖Lσiω‖ρi and the new iterate is σi+1ω.

We claim that for almost all ω, for sufficiently large N , L(N)
ω (BX) is

covered by at most erN balls of size eβN . Indeed, given ω, let n0 be
chosen such that for all N ≥ n0, one has

∑N−1
i=0 1Gc(σiω) log+ ‖Lσiω‖ <

(β − α)N/2. If α ≥ 0, then for large N , through the good steps, the
balls are inflated by a factor at most eαN . If α < 0, then combining the
good blocks, the balls are scaled by a factor of eα(1−δ)N < e(α+β)N/2 or
smaller. In both cases, we see that overall, balls are scaled by at most
eβN . The splitting only takes place in the good blocks, and yields at
most erN balls.

Now suppose that µk > ρ. For almost all ω, we have that for all

large N , Dk(L(N)
ω ) > ekNρ. Fix such an N , and suppose that x1, . . . , xk

belong to SX and have the property
∏

i≤kDi > ekNρ where

Di = d(L(N)
ω xi, lin({L(N)

ω xj : j < i})).

Let Ti = {0, 1, . . . , bDi/(2ke
βN)c} and notice that |T1 × · · · × Tk| ≥

ekN(ρ−β)/(2k)k. For (j1, . . . , jk) ∈ T1 × · · · × Tk, define

yj1,...,jk =
k∑
i=1

2jie
βN

Di

L(N)
ω xi.

It is not hard to see that all of these points belong to the image of

the unit ball of X under L(N)
ω . Further, from the definition of Di, one

can check that these points are mutually separated by at least 2eβN ,

so that one requires at least ekN(ρ−β)/(2k)k balls to cover L(N)
ω (BX).

Hence we obtain
ekN(ρ−β)

(2k)k
≤ erN .

Since this holds for all large N , we deduce k ≤ r/(ρ−β) as required. �
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Lemma 14 (Measurability II). Suppose that X is a Banach space with
separable dual. Suppose further that R is an ergodic random dynamical
system acting on X.

Assume there exist λ′ > λ ∈ R and d ∈ N such that for P-almost
every ω, there is a closed d-codimensional subspace V (ω) of X such
that:

(1) for all v ∈ V (ω), lim supn→∞
1
n

log ‖L(n)
ω v‖ ≤ λ; and

(2) for each a > 0 and ε > 0, there is an n0 such that for v ∈ SX
satisfying d(v, V (ω)) > a, one has ‖L(n)

ω v‖ ≥ en(λ′−ε) for all
n ≥ n0.

Then ω 7→ V (ω) is measurable.

Proof. Given V ∈ Gd(X), fix w1, . . . , wd such that V ⊕lin(w1, . . . , wd) =
X and define a neighbourhood of V by

NV,k = {U ∈ Gd(X) : U ∩ lin(w1, . . . , wd) = {0};
‖Projlin(wi)‖U⊕lin({wj : j 6=i}) |V ‖ ≤ 1

k
for 1 ≤ i ≤ d}.

Since Gd(X) is separable, fix a countable sequence (Vn) of subspaces,
dense in Gd(X). Using Lemma 9 items (3) and (4), there exists K > 0
such that for each V ∈ Gd(X), there exists W ∈ Gd(X) such that
‖ProjW‖V ‖ ≤ K, ‖ProjV ‖W ‖ ≤ K. If w1, . . . , wd is an Auerbach basis
for W , then ‖Projlin(wi)‖lin({wj : j 6=i}) |W‖ ≤ 1. For each Vn, let Wn be a
subspace satisfying the above inequalities and let wn,1, . . . , wn,d be an
Auerbach basis. Let Pn,i denote Projlin(wn,i)‖V (ω)⊕lin({wn,j : j 6=i}).

We obtain a countable collection of basic sets (NVn,k) which generate
the Borel σ-algebra on Gd(X). To see this, we claim that for each
V ∈ Gd(X) and each open set O containing V , there are n and k such
that V ∈ NVn,k ⊂ O. Then each open set is the union of the basic sets
that it contains.

Given V ∈ Gd(X) and an open set O containing it, let Br(V ) ⊂ O.
Let k > 4Kd/r and δ = min(1/(2K), 1/(4kK), r/2). Let n be such
that dH(V ∩ SX , Vn ∩ SX) < δ. Let v ∈ V ∩ SX and w ∈ Wn ∩ SX .
There exists v′ ∈ Vn ∩ SX such that ‖v − v′‖ < δ. By Lemma 9(2),
‖w− v′‖ ≥ 1/K, so that ‖w− v‖ ≥ 1/(2K). Hence V ∩Wn = {0} and
‖ProjWn‖V ‖ ≤ 4K. Now given v′ ∈ Vn∩SX , there exists v ∈ V ∩SX and
x ∈ X with v′ = v + x and ‖x‖ < δ. We have ‖Pn,i(v′)‖ = ‖Pn,i(x)‖ =
‖Pn,i ◦ ProjWn‖V (x)‖ ≤ 4Kδ, so that V ∈ NVn,k. Finally let U ∈ NVn,k

and let v′ ∈ Vn∩SX . By definition, we have ‖Pn,i(v′)‖ ≤ 1
k

for each i, so

that ‖ProjWn‖U(v′)‖ ≤ d
k
. In particular, there exists u ∈ U such that

‖u − v′‖ ≤ d
k

and hence there is u ∈ U ∩ SX such that ‖u − v′‖ ≤ 2d
k

.
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Using Lemma 9(4), we deduce dH(U ∩ SX , Vn ∩ SX) ≤ 2Kd
k

, so that

dH(U ∩ SX , V ∩ SX) ≤ δ + 2Kd
k
< r, showing NVn,k ⊂ O.

Hence to show the desired measurability, it suffices to show that for
each N = NVn,k, {ω : V (ω) ∈ N} is measurable. First, {U : U ∩Wn =
{0}} is an open set, so that {ω : V (ω) ∩Wn = {0}} is measurable.

Fix a dense set v1, v2, . . . in the unit sphere of Vn. We claim that for
those ω lying in the set G of full measure on which dimV (ω) = d and
hypotheses (1) and (2) of the Lemma hold, we have that V (ω) lies in
N if and only if the following condition holds:

For each rational ε > 0 and each j ∈ N, there is m0 > 0
such that for each m ≥ m0, there are rationals aj1, . . . , a

j
d

in [− 1
k
, 1
k
] such that ‖L(m)

ω (vj −
∑d

i=1 a
j
iwn,i)‖ ≤ e(λ+ε)m.

To see the ‘only if’ direction, suppose that V (ω) ∈ N . Now given
vj ∈ Vn ∩ SX , by definition of N , there are b1, . . . , bd in [− 1

k
, 1
k
] such

that vj = v′ + b1wn,1 + . . . + bdwn,d with v′ ∈ V (ω). Hence v′ =

vj −
∑d

i=1 biwn,i ∈ V (ω), and therefore we have ‖L(m)
ω v′‖ < e(λ+ε)m

for all sufficiently large m. Now for any such m, one can take ai’s

that are suitably close rational approximations to bi so that ‖L(m)
ω (vj−∑d

i=1 aiwn,i)‖ ≤ e(λ+ε)m.
Conversely, suppose that V (ω)∩ linWn = {0}, but V (ω) 6∈ N . Then

there exists a v ∈ Vn ∩ SX and an i such that ‖Pn,i(v)‖ > 1
k
. By

continuity, there exists a vj satisfying the same property. Let δ =

‖Pn,i(vj)‖− 1
k
. Then ‖Pn,i(v−

∑d
l=1 alwl)‖ ≥ δ for all (al)

d
l=1 ∈ [− 1

k
, 1
k
]d.

By hypothesis, we now see that the condition is not satisfied.
Since this condition is obtained by taking countable unions and in-

tersections of measurable sets, the measurability of G∩{ω : V (ω) ∈ N}
is demonstrated. Using completeness of (Ω,F ,P), we deduce that
{ω : V (ω) ∈ N} is measurable, so that ω 7→ V (ω) is measurable as
required. �

Lemma 15. Let σ be an ergodic measure-preserving transformation of
a probability space (Ω,P). Let g be a non-negative measurable function
and let h ≥ 0 be integrable. Suppose further that g(ω) ≤ h(ω)+g(σ(ω)),
P-a.e. Then g is tempered; that is limn→∞ g(σnω)/n = 0, P-a.e.

A proof of this lemma appears in Mañé’s paper [7].

Proof. Let ε > 0 and let K >
∫
h. By the maximal ergodic theorem,

B1 = {ω : h(ω)+ . . .+h(σn−1ω) < nK, for all n} has positive measure.
Let M be such that B2 := {ω : g(ω) < M} has positive measure. As
a consequence of the Birkhoff ergodic theorem, for any measurable set
B with P(B) > 0, for P-a.e. ω, for all sufficiently large k, there exists
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j ∈ [(1 + ε)k, (1 + ε)k+1) such that σj(ω) ∈ B. Now for ω ∈ Ω, let k0

be such that for all k ≥ k0, there exist j ∈ [(1 + ε)k, (1 + ε)k+1) such
that σjω ∈ B1 and j′ ∈ ((1 + ε)k+2, (1 + ε)k+3) such that σj

′
ω ∈ B2.

If n > (1 + ε)k0+1, then n ∈ [(1 + ε)k+1, (1 + ε)k+2) for some k ≥ k0. Let
j ∈ [(1 + ε)k, (1 + ε)k+1) and j′ ∈ [(1 + ε)k+2, (1 + ε)k+3) be as above.

Then g(σnω) ≤
∑j′−1

k=n h(σkω) + g(σj
′
ω) ≤

∑j′−1
k=j h(σkω) + g(σj

′
ω) ≤

K(j′− j) +M , so that lim sup g(σnω)/n ≤ 4ε. Since ε is arbitrary, the
conclusion follows. �

Theorem 16 (Multiplicative ergodic theorem: the Oseledets filtra-
tion). Let R be an ergodic random dynamical system acting on a Ba-
nach space X with separable dual. Suppose that κ(R) < λ(R). Then
there exist 1 ≤ r ≤ ∞ 1 and:

• a sequence of exceptional Lyapunov exponents λ(R) = λ1 >
λ2 > . . . > λr > κ(R);
• a sequence m1,m2, . . . ,mr of positive integers; and
• a measurable filtration of closed subspaces, X = V1(ω) ⊃ V2(ω) ⊃
· · · ⊃ Vr(ω) ⊃ V∞(ω), with the equivariance property Lω(Vi(ω)) ⊂
Vi(σ(ω)) for each i.

such that for P-a.e. ω, codimV`(ω) = m1 + · · · + m`−1; for all v ∈
V`(ω) \ V`+1(ω), one has lim 1

n
log ‖L(n)

ω v‖ = λ`; and for v ∈ V∞(ω),

lim sup 1
n

log ‖L(n)
ω v‖ ≤ κ(R).

While the theorem is stated for ergodic random dynamical systems,
a standard application of ergodic decomposition allows one to deduce
a version for non-ergodic systems, in which constants are replaced by
invariant functions.

Proof. Let µ1 ≥ µ2 ≥ . . . be as in Lemma 12. Let λ1 > λ2 > . . . be
the decreasing enumeration of the distinct µ-values that exceed κ(R) (if
this an infinite sequence, then Theorem 13 establishes that λi → κ(R)).
The fact that λ(R) = λ1 is straightforward from the definitions. Let
m` be the number of times that λ` occurs in the sequence (µi) and let
M` = m1 + . . .+m`, so that µM`−1

= λ`−1 and µM`−1+1 = λ`.
We now turn to the construction of V`(ω). For a fixed ω, let the

sequences (θ
(n)
i )i≥1 and (x

(n)
j )j≥1 be as guaranteed by Lemma 7 for the

operator L(n)
ω . We let V

(n)
` (ω) be lin((L(n)

ω )∗θ
(n)
1 , . . . , (L(n)

ω )∗θ
(n)
M`−1

)⊥, let

Y
(n)
` (ω) be lin({x(n)

j : j ≤ M`}). Thus, X = V
(n)
` (ω)⊕ Y (n)

`−1(ω). All of

1If r = ∞, the conclusions are replaced by: λ(R) = λ1 > λ2 > . . . → κ(R),
m1,m2, . . . ∈ N and X = V1(ω) ⊃ V2(ω) ⊃ . . . ; V∞(ω) =

⋂
Vi(ω).
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these depend on the choice of θ’s and x’s. No claim of uniqueness or
measurability is made.

The space V
(n)
` (ω) is an approximate slow space.

The proof will go by the following steps:

(a) For almost all ω, for arbitrary ε > 0 and for sufficiently large n,

‖L(n)
ω x‖ ≤ e(λ`+ε)n‖x‖ for all x ∈ V (n)

` (ω);

(b) V
(n)
` (ω) is a Cauchy sequence for almost all ω – we define the limit

to be V`(ω);
(c) The V`(ω) are equivariant: Lω(V`(ω)) ⊆ V`(σ(ω));

(d) If x 6∈ V`+1(ω), then ‖L(n)
ω v‖ > e(λ`−ε)nd(v, Vl+1(ω)) for large n;

(e) For all a > 0 and ε > 0, there exists n0 so that for all n ≥ n0 and

all x ∈ SX such that d(x, V`+1(ω)) ≥ a, one has ‖L(n)
ω x‖ ≥ e(λ`−ε)n.

The remaining steps are proved by induction on `.

(f) If x ∈ V`(ω), then lim sup 1
n

log ‖L(n)
ω x‖ ≤ λ`;

(g) ω 7→ V`(ω) is measurable;
(h) The restriction, R`, of R to V`(ω) has the same exponents as R

with the initial M`−1 exponents removed.

Proof of (a). Note that by construction

det
(

(θ
(n)
i (L(n)

ω x
(n)
j ))1≤i,j≤M`−1

)
≥ KEM`−1

(L(n)
ω ),

where K is a constant depending only on M`−1 arising from Lemmas

5 and 7. For an arbitrary x ∈ V
(n)
` ∩ SX , let φ ∈ SX∗ be such that

φ(L(n)
ω x) = ‖L(n)

ω x‖. Then, adding a column for x and a row for φ to

the matrix U((θ
(n)
i ), (x

(n)
j ))1≤i,j≤M`−1

, we see that the x column has all

0 entries except for the 1 +M`−1-st (by definition of V
(n)
` (ω)), and so

we arrive at the bound (uniform over x ∈ SX ∩ V (n)
` ),

(7) KEM`−1
(L(n)

ω )‖L(n)
ω x‖ ≤ E1+M`−1

(L(n)
ω ).

The conclusion follows from Lemma 12.
Proof of (b). Let us assume that n0 is chosen large enough that for
all n ≥ n0, the following conditions are satisfied: ‖Lω‖, ‖Lσnω‖ are

less than eεn; ‖L(n)
ω x‖ ≤ e(λ`+ε)n‖x‖ for all x ∈ V

(n)
` ; and ‖L(n)

ω x‖ ≥
e(λ`−1−ε)n‖x‖ for all x ∈ Y

(n)
`−1(ω) (using integrability of log ‖Lω‖; (a);

and Lemma 7). Let n ≥ n0. Let x ∈ V (n)
` (ω)∩SX and write x = u+w

where u ∈ V (n+1)
` (ω) and w ∈ Y (n+1)

`−1 (ω). Now we have

‖L(n+1)
ω x‖ ≤ e(λ`+ε)n‖Lσnω‖ ≤ e(λ`+2ε)n.
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We also have ‖u‖ ≤ 1 + ‖w‖, ‖L(n+1)
ω w‖ ≥ e(λ`−1−ε)(n+1)‖w‖ and

‖L(n+1)
ω u‖ ≤ e(λ`+ε)(n+1)(1 + ‖w‖). Manipulation with the triangle in-

equality yields

(8) ‖w‖ ≤ e−n(λ`−1−λ`−4ε).

Hence, each point in the unit sphere of V
(n)
` (ω) is exponentially close

to V
(n+1)
` (ω). Since the two spaces have the same codimension, one

obtains a similar inequality in the opposite direction by Lemma 9(4).

This establishes that V
(n)
` (ω) is a Cauchy sequence.

Proof of (c). We argue essentially as in (b). For large n, we take

v ∈ V
(n+1)
` (ω) ∩ SX . We write Lω(v) as u + w with u ∈ V

(n)
` (σ(ω))

and w ∈ Y
(n)
`−1(σ(ω)). We have bounds of the form ‖L(n+1)

ω v‖ . eλ`n;

‖u‖ . 1 + ‖w‖, ‖L(n)
σ(ω)u‖ . eλ`n(1 + ‖w‖) and ‖L(n)

σ(ω)w‖ & eλ`−1n‖w‖
(here . means ‘is smaller up to sub-exponential factors’). Combining
the inequalities as before, one obtains a bound ‖w‖ . e−(λ`−1−λ`)n.
Taking a limit, we obtain LωV`(ω) ⊂ V`(σ(ω)) as required.
Proof of (d). Let x 6∈ V`+1(ω), with ‖x‖ = 1. For large n, if x is

written as un + vn with un ∈ V (n)
`+1(ω) and vn ∈ Y (n)

` (ω), then ‖vn‖ ≥
1
2
d(x, V`+1(ω)) and ‖un‖ ≤ 1 + ‖vn‖. By (7), ‖L(n)

ω un‖ ≤ e(λ`+1+ε)n(1 +

‖vn‖) for large n, and Lemma 7 gives ‖L(n)
ω vn‖ ≥ 4−M`FM`

(L(n)
ω )‖vn‖ ≥

e(λ`−ε)n‖vn‖ for large n. The conclusion follows. The proof of (e) is the
same, using the uniformity in Lemma 7.

For the inductive part, notice that the case ` = 1 is trivial. Let ` ≥ 2
and suppose that the claims have been established for the case ` − 1.

We know from (a) that elements of V
(n)
` (ω) expand at exponential rate

approximately λ` under L(n)
ω . We need to show that the analogous

statement holds for the limiting subspace V`(ω). We mimic the start of
the proof to control the slow m`−1-codimensional subspace of V`−1(ω).
This will be exactly V`(ω).
Proof of (f). By the inductive hypothesis, the top Lyapunov exponent

of L(n)
ω applied to the bundle {V`−1(ω) : ω ∈ Ω} is λ`−1 with mul-

tiplicity m`−1, with the following Lyapunov exponent being λ`. Let

(z
(n)
j )

m`−1

j=1 ∈ SX ∩ V`−1(ω) and (ψ
(n)
j )

m`−1

j=1 be as guaranteed by Lemma

7 and let V ′`
(n)(ω) = V`−1(ω) ∩ lin(ψ

(n)
1 , . . . , ψ

(n)
m`−1)

⊥. The same argu-
ment as in (a) shows that for arbitrary ε > 0 and sufficiently large n,

‖L(n)
ω x‖ ≤ e(λ`+ε)n‖x‖ for x ∈ V ′`

(n)(ω). The argument used in (b) also

works, showing that V
′(n)
` (ω) converges to a space V ′` (ω) ⊂ V`−1(ω)

and, crucially, we obtain an analogue of (8): for all sufficiently large n,
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if x ∈ V ′` (ω), then x may be expressed as u+ w with u ∈ V ′`
(n)(ω) and

w ∈ V`−1(ω) satisfying ‖w‖ ≤ e−n(λ`−1−λ`−4ε). Then, ‖L(n)
ω u‖ . eλ`n by

the above; and ‖L(n)
ω w‖ . e−(λ`−1−λ`)n ·eλ`−1n. So ‖L(n)

ω x‖ . eλ`n by the
triangle inequality. From (d), we deduce V ′` (ω) ⊆ V`(ω). Since, by (h)
(applied to R`−1), V`(ω) and V ′` (ω) have the same finite co-dimension
as subspaces of V`−1(ω), V`(ω) = V ′` (ω) and (f) follows.

Proof of (g). From (f) and (d), we see that V`(ω) = {v : lim sup 1
n

log ‖L(n)
ω v‖ ≤

λ`} and the assumptions of Lemma 14 hold. Measurability of V`(ω) fol-
lows.
Proof of (h). Let W (ω) = {w ∈ V`−1(ω) : d(w, V`(ω)) ≥ 1

2
‖w‖}. Let

ε > 0. We claim that for sufficiently large n,

(9) d(w′, v′) > e−εn for all w′ ∈ SX ∩ L(n)
ω W (ω) and v′ ∈ V`(σnω).

Let δ < ε(λ`−1−λ`)
4(λ`−1−λ`+ε)

. Let g`(ω) = supp∈N e
−p(λ`+δ)

∥∥∥L(p)
ω |V`(ω)

∥∥∥. This

is measurable by Lemma 11. Notice that log+ g`(ω) ≤ log+ ‖Lω‖ +
max(−λ`−δ, 0)+log+ g`(σω). By Lemma 15, limn→∞

1
n

log+ g`(σ
nω) =

0.
Then, there exists n0(ω) such that for p, n ≥ n0, one has

‖L(p)
σnωz‖ ≤ 1

3
exp(n ε

2
+ p(λ`−1 + δ))‖z‖ for all z ∈ V`−1(σnω);

‖L(p)
σnωv‖ ≤ 1

3
exp(n ε

2
+ p(λ` + δ))‖v‖ for all v ∈ V`(σnω).

(10)

Additionally by (e), n0 may be chosen so that
(11)
en(λ`−1−δ) < ‖L(n)

ω w‖ < en(λ`−1+δ) for all w ∈ W (ω) ∩ SX and n ≥ n0.

We will show (9) by contradiction. Suppose d(L(n)
ω w, V`(σ

nω)) <

e−εn‖L(n)
ω w‖ for some n > n0, and such that εn/(λ`−1 − λ`) > n0.

Write L(n)
ω w = v + z, with v ∈ V`(σ

nω) and ‖z‖ < e−εn‖v‖. Now

L(p+n)
ω w = L(p)

σnωv + L(p)
σnωz. Taking p = εn/(λ`−1 − λ`), the bounds on

the two terms coming from (10) agree, giving

‖L(n+p)
ω w‖ ≤ e−εn/2e(p+n)(λ`−1+δ).

One checks, however, that by the choice of δ, this is smaller than
e(p+n)(λ`−1−δ), contradicting (11). This establishes claim (9). Notice
that combining (9) and (11), we see that the restriction of the random
dynamical system to the equivariant family Q`−1(ω) = V`−1(ω)/V`(ω)
satisfies for all sufficiently large n,

(12) ‖L̄(n)
ω w̄‖Q`−1(σnω) ≥ e(λ`−1−ε)n‖w̄‖Q`−1(ω) for all w̄ ∈ Q`−1(ω),

where L̄ω denotes the induced action of Lω on Q`−1(ω).
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Set m = m`−1. To complete the proof of (h), let n > n0 be arbitrary;
let v1, . . . , vk−m be unit vectors in V`(ω) and w1, . . . , wm be unit vectors
in V`−1(ω). Then

dkL(n)
ω (v1, . . . , vk−m, w1, . . . , wm)

≥ dk−mL(n)
ω (v1, . . . , vk−m)dmL̄(n)

ω (w̄1, . . . , w̄k−m),

where w̄i is wi + V`(ω). We therefore see

DkL(n)
ω |V`−1(ω) ≥ Dk−mL(n)

ω |V`(ω) ·DmL̄(n)
ω .

By (12) and Lemma 2, DmL̄(n)
ω & eλ`−1mn.

This gives a matching upper bound for Dk−mL(n)
ω |V`(ω) to the lower

bound that we obtained in Lemma 8. Hence we deduce the first k
exponents of R`−1 are m = m`−1 repetitions of λ`−1 followed by the
first k −m exponents of R`, establishing (h). �

The next corollary provides a splitting when the base σ is invertible
and the Banach space is reflexive. Note that the methods of [4] obtain
the same conclusion under the weaker assumption that X∗ has separa-
ble dual. We include this new proof, as we find it to be illuminating.

Corollary 17 (Multiplicative Ergodic Theorem: The Oseledets split-
ting). Let R be a random dynamical system acting on a reflexive sep-
arable Banach space. Suppose that the base, σ, is invertible; and that
κ(R) < λ(R). Then there exist 1 ≤ r ≤ ∞ and exceptional Lyapunov
exponents and multiplicities as in Theorem 16. Furthermore, there is
a measurable direct sum decomposition 2

X = Z1(ω)⊕ · · · ⊕ Zr(ω)⊕ V∞(ω),

such that for P-a.e. ω, Lω(Zi(ω)) = Zi(σ(ω)) for each i, Lω(V∞(ω)) ⊂
V∞(σ(ω)), dimZi(ω) = mi and limn→∞

1
n

log ‖L(n)
ω v‖ = λi for v ∈

Zi(ω) \ {0}; lim supn→∞
1
n

log ‖L(n)
ω v‖ ≤ κ(R) for v ∈ V∞(ω).

We make use of the following facts valid for reflexive Banach spaces.
If X is reflexive and Θ is a closed subspace of X∗ of codimension k,
then its annihilator, Θ⊥ is k-dimensional. Further if θ is a bounded
functional such that θ|Θ⊥ = 0, then θ ∈ Θ.

Proof. Let R∗ be the dual random dynamical system to R as defined
above. Applying Theorem 16 to R∗, and recalling from Theorem 13
that the Lyapunov exponents and multiplicities of R and R∗ coincide,
yields a σ−1 equivariant measurable filtration X∗ = V ∗1 (ω) ⊃ · · · ⊃
V ∗r (ω) ⊃ V ∗∞(ω), with the same codimensions as those of R.

2In the case r =∞, the decomposition is X =
⊕∞

i=1 Zi(ω)⊕ V∞(ω)
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Let Y`(ω) = V ∗` (ω)⊥. Notice that dimY`(ω) = M`−1. Since V ∗` (ω)
is measurable and (·)⊥ : G(X∗) → G(X) is continuous [5, IV §2], then
Y`(ω) is measurable. Also, for every ψ ∈ V ∗` (σω), we have L∗σωψ ∈
V ∗` (ω) by equivariance of V ∗` (·). Hence, for every y ∈ Y`(ω), 0 =
L∗σωψ(y) = ψ(Lωy). Thus, LωY`(ω) ⊂ Y`(σω), yielding equivariance.

We define Z`(ω) = Y`+1(ω)∩V`(ω). It remains to show that V`−1(ω) =
V`(ω)⊕Z`−1(ω). To prove this, it suffices to show that V`(ω)⊕Y`(ω) =
X. Suppose this is not the case. Then, there exists v ∈ V`(ω)∩Y`(ω)∩
SX . Let θ ∈ SX∗ be such that θ(v) = 1. Let θ̄ be the equivalence class
of θ in Q∗(ω) = X∗/V ∗` (ω).

We record a corollary of (12). For almost every ω, one has for all
large n

‖L̄∗(n)
ω ψ̄‖Q∗(σ−nω) ≥ e−(λ`−1−ε)n‖ψ̄‖Q∗(ω) for all ψ̄ ∈ Q∗(ω).

Since Q∗(ω) is a finite-dimensional space whose dimension does not
depend on ω, the above implies that L̄∗ω is bijective. Furthermore, the
quantity

C(ω) = inf
n∈N;ψ̄∈SX∗∩Q∗(ω)

e−(λ`−1−ε)n‖L̄∗(n)
ω ψ̄‖Q∗(σ−nω)

is positive. We claim that C(ω) is measurable. Let (ζn(ω)) be a mea-
surable dense subsequence of V ∗` (ω). If ψ̄(ω) is the equivalence class
of ψ in Q∗(ω), then we have ‖ψ̄(ω)‖Q∗(ω) = infk ‖ψ(ω)− ζk(ω)‖, which
depends measurably on ω. Proceeding as in Lemma 11, we see that
C(ω) is measurable and by (12) is positive almost everywhere. Hence
C(ω) exceeds some quantity c on a set of positive measure.

Let φ̄n ∈ Q∗(σnω) be such that L̄∗(n)
σnωφ̄n = θ̄. Then

‖L̄∗(n)
σnωφ̄n‖Q∗(ω) ≥ C(σnω)e(λ`−1−ε)n‖φ̄n‖Q∗(σnω).

By ergodicity, there exist arbitrarily large values of n for which

(13) ‖φ̄n‖Q∗(σnω) ≤ c−1e−(λ`−1−ε)n‖θ̄‖Q∗(ω).

On the other hand, one has v ∈ Yl(ω), so that ψ(v) = 0 for every

ψ ∈ V ∗l (ω). Thus, if we express L∗(n)
σnωφn + ψn = θ, where φn ∈ X∗ is a

representative of φ̄n and ψn ∈ V ∗l (ω), the following holds

1 = θ(v) = L∗(n)
σnωφn(v) + ψn(v) = φn(L(n)

ω v).

In addition, for every ψ ∈ V ∗l (σ−nω), (φn + ψ)(L(n)
ω v) = φn(L(n)

ω v) =
1. Thus, for sufficiently large n and every ψ ∈ V ∗l (σ−nω), ‖φn +
ψ‖e(λ`+ε)n ≥ 1. Therefore, ‖φ̄n‖Q∗(σn(ω)) ≥ e−(λ`+ε)n, giving a contra-
diction with (13). Hence, V`−1(ω) = V`(ω)⊕ Z`−1(ω) as required.

�
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4(1):49–97, 1987.

[13] P. Wojtaszczyk. Banach spaces for analysts, volume 25 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1991.
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