A CONCISE PROOF OF THE MULTIPLICATIVE
ERGODIC THEOREM ON BANACH SPACES

CECILIA GONZALEZ-TOKMAN AND ANTHONY QUAS

ABSTRACT. We give a new proof of a multiplicative ergodic theo-
rem for quasi-compact operators on Banach spaces with a separable
dual. Our proof works by constructing the finite-codimensional
‘slow’ subspaces (the subspaces where the growth rate is domi-
nated by some J;), in contrast with earlier infinite-dimensional
multiplicative ergodic theorems which work by constructing the
finite-dimensional fast subspaces. As an important consequence
for applications, we are able to get rid of the injectivity require-
ments that appear in earlier works.

1. INTRODUCTION

The multiplicative ergodic theorem (MET) is a very powerful result
in ergodic theory establishing the existence of generalized eigenspaces
for stationary compositions of linear operators. It is of great interest
in many areas of mathematics, including analysis, geometry and appli-
cations. The MET was first established by Oseledets [8] in the context
of matrix cocycles. The decomposition into generalized eigenspaces is
called the Oseledets splitting.

After the original version, the MET was proved by a different method
by Raghunathan [10]. The result was subsequently generalized to com-
pact operators on Hilbert spaces by Ruelle [11]. Mané [7] proved a
version for compact operators on Banach spaces under some continuity
assumptions on the base dynamics and the dependence of the operator
on the base point. Thieullen [12] extended this to quasi-compact op-
erators. Recently, Lian and Lu [6] proved a version in the context of
linear operators on separable Banach spaces, in which the continuity
assumption was relaxed to a measurability condition.

We prove a non-invertible Oseledets theorem (i.e. we obtain a fil-
tration) for a random dynamical system (the full definition is below)
acting on a Banach space with separable dual. We do not make any
assumption about injectivity of the operators, unlike most previous
Banach-space valued versions of the Multiplicative Ergodic Theorem.

We also prove a semi-invertible Oseledets theorem (i.e. we obtain a
1
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splitting) under the assumption that the underlying Banach space is
separable and reflexive.

An important feature of the present approach is its constructive na-
ture. Indeed, it provides a robust way of approximating the Oseledets
splitting, following what could be considered a power method type
strategy. This makes the work also relevant from an applications per-
spective.

The approach of this work is similar in spirit to that of Raghunathan,
in that we primarily work with the ‘slow Oseledets spaces’. Mané’s
proof works hard to build the fast space, as do the subsequent works
based on Mané’s template. These proofs rely on injectivity of the
operators; some of them make use of natural extensions to extend the
result to non-invertible operators — this was the strategy in [12], and it
was also used by Doan in [2] to extend [6] to the non-invertible context.
In contrast, we establish the non-invertible version first and recover
the (semi-)invertible one, including the ‘fast spaces’, straightforwardly
using duality. Another key simplifying feature of our method is that
we prove measurability at the end of the proof, rather than working to
ensure that all intermediate constructions are measurable.

While Raghunathan’s proof uses singular value decomposition and
hence relies on the notion of orthogonality, we study instead collections
of vectors with maximal volume growth. Another important difference
with Raghunathan’s approach is that instead of dealing with the exte-
rior algebra, we work with the Grassmannian. We claim this is more
natural since subspaces correspond to rank one elements of the exterior
algebra (those that can be expressed as v1 A...Avg). In the Euclidean
setting, rank one elements naturally appear as eigenvectors of A¥(A*A),
but this does not seem to generalize to the Banach space case.

Section 2 analyses notions of volume growth for bounded linear maps
T on a Banach space X. We establish an asymptotic equivalence be-
tween k-dimensional volume growth under 7" and T, as well as other
measures of volume growth and Section 3 uses these results to obtain
the multiplicative ergodic theorems. The main results in this article
are Theorem 16 and Corollary 17. After submitting the current article,
we learned of an independent proof of essentially the same result via
closely related methods due to Blumenthal [1].

2. VOLUME CALCULATIONS IN BANACH SPACES

Let X be a Banach space with norm ||-||. As usual, given a non-empty
subset A of X and a point z € X, we define d(z, A) = inf,c4 d(x,y).
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We denote by By and Sy the unit ball and unit sphere in X, respec-
tively. The linear span of a finite collection C' of vectors in X will be
denoted by lin(C) with the convention that lin() = {0}. The dual
of X will be denoted by X*. In this section, we study the relation-
ships between various notions of volume and singular value for maps of
Banach spaces. Other closely related notions are due to Gelfand and
Kolmogorov and are described in Pisier’s book [9]. For the purposes
of later sections, it will suffice to show that two quantities agree up to
a bounded multiplicative factor. We make no attempt to optimize the
bounds. We use the notation Q < @' if the ratio of the quantities )
and @’ is bounded above and below by constants independent of the
Banach space(s).

We define the k-dimensional volume of a collection, (vy,...,vy), of
vectors in a Banach space by

k

volg(vy, ..., v%) = Hd(vi,lin({vj: J <i})).

i=1

It is easy to see that volg(cq vy, . .. apvr) = |aa] . .. |ag| volg (v, ..., vg).
In the case where the normed space is Euclidean this notion corre-
sponds with the standard notion of k-dimensional volume. Notice that
volg(vy, ..., vg) is not generally invariant under permutation of the vec-
tors.

Given a bounded linear map 7" from X to Y, we define di T (vy, . .., vg)
to be vol(Tvy, ..., Tvy) and DT = supy,, =1, jup =1 AT (1, - - - V).

Lemma 1 (Submultiplicativity). Let T: X — Y and S:Y — Z be
linear maps. Then Dy(S oT) < Dy(S)Dy(T).

Proof. Let T'(v1),...,T(vx) € X be linearly independent. Then one
checks from the definition that for any collection of coefficients (a;), <,
the following holds

(1) volg(vy,...,v) = volg(vy,v9 — @101, ..., vk — Z Qi V).
<k

Since the linear spans in the definition of volume are finite-dimensional
spaces, the minima are attained so that dyT'(vq, . .., vg) = ||T'(v1) ||| T (ve)—
anT(v)] ... [|T(vk) — T (v1) — ... — 1T (vg—1)]| for appropriate
choices of (c;);<i-
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Let wj = v;—>,;_; ajviso that &y T'(vy, ... o) = [T (wi)][ .. ([T (wy)|
and set u; = T'(w;)/||T(w;)||. Using (1), we have
dp(SoT)(vy,...,vx) = volg (ST (v1), ..., ST (vy))
= volg (ST (wy), ..., ST (wg))
= [T (). T (we)[| vole(S(ua), . - ., S (ux))
S dkT(Ul, .. ,Uk)DkS.
Taking a supremum over vy, ..., v, in the unit ball of X, one obtains

the bound Dy (S o T) < Dy(S)Dy(T) as required. O

Lemma 2. LetT: X — Y be linear. Suppose that' V' is a k-dimensional
subspace and | Tz| > M||x|| for all x € V. Then DT > M*.

Proof. Let vq,...,v; belong to V N Sx and satisty d(v;,lin({v;: 7 <
1) = 1. Then d,T(vy,...,vx) > MF. O

We now proceed to compare volume estimates for a linear operator
T: X — Y and its dual T*: Y* — X*. We introduce a third quantity
to which we compare both Dy(T") and Dy (T™). Given linear functionals
61,...,0, € Y* and points z1, ...,z € X, we let U((6;), (z;)) be the
matrix with entries U;; = 6;(T'(x;)) and define

Ey(T) = sup {det U ((6;), (z;)): [|6;]] =1 and ||z;|| =1 for all ¢,5} .

Lemma 3 (Relationship between volumes for T"and T*). For all k > 0,
there exist positive constants ¢, and Cy, with the following property: For
every bounded linear map T from a Banach space X to itself,

Proof. The statement will follow from the following inequalities:

(2) Dy(T) < Ex(T) < KID(T)
(3) Di(T") < Ex(T) < EDy(T7).
The second inequality of (2) is proved as follows: Let xi,...,xy

and 0y,...,0; all be of norm 1 in X and Y™ respectively. Let o; =
d(Txz;,lin(Txy,...,Tx;_1)). Letc], ... ,cgfl be chosen so that ||T'z;|| =
aj, where z; is defined by z; = x; — (clay + ... + c}flajj_l). Note that
U' = U((6;), (z;)) may be obtained from U = U((6;), (x;)) by column
operations that leave the determinant unchanged. Notice also that
\Ui;| = 10i(T'2)] < ;. From the definition of a determinant, we see
that det U = det U’ < klay ... ag. This inequality holds for all choices
of 0; in the unit sphere of Y*. Now, maximizing over choices of z; in
the unit sphere of X, we obtain the desired result.
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The second inequality of (3) may be obtained analogously. We let
Bi = d(T*0;,1in(T*0y,...,T*0;_1)) and choose linear combinations ¢,
of the 0; for which the minimum is obtained. The matrix U” =
U((¢i), (z;)) is obtained by row operations from U and the |U/;| =
|¢i(Tj)| = [(T" i) ()| < Bs.

To show the first inequality of (2), fix z1, ..., zx of norm 1. As before,
let o = d(T'x;,lin(Txy,...,Tz;—1)). By the Hahn-Banach theorem,
there exist linear functionals (6;)%_, in Sy~ such that 6;(Tz;) = a; and
0;(xr) = 0 for all k < i. Now

det U((6:), (7)) = [ ] e

Maximizing over the choice of (x;), we obtain Ey(T) > Dy(T) as re-
quired.

Finally, for the first inequality of (3), we argue as follows. Let € > 0
be arbitrary and let 6y, ..., 6, belong to the unit sphere of Y*. We may
assume that T%6y,...,T*60; are linearly independent — otherwise the
inequality is trivial. Let ¢; = T%0; — >, _, a0y be such that ||¢;|| =
d(T*0;,lin({T70): k < i})). Weshall pick 21, ...,z inductively in such
a way that | det((¢;(x;))i <) is at least [T._, (||¢i]| —€) for each 1 <1 <
k. Suppose z1, ..., x;—; have been chosen. Then since det((¢;(z;))i <)
is non-zero, the rows span R'~!. Hence there exist (b;);«; such that
Uy = ¢+ Y, bi satisfies ¢y (x;) = 0 for all j < [. By assumption,
il > |lul].- Pick z; € Sx such that ¢ (z;) > ||y]] — €. Then the
matrix with a row for ¢; and a column for z; adjoined has determinant
of absolute value at least Hi:1(||¢zu —¢€). The matrix with ¢; replacing
1y has the same determinant, completing the induction. Maximizing
over the choice of (6;),<k, letting e shrink to 0, and observing that
det((¢i(z}))i <) = det((T%60;(x;)); j<x) completes the proof.

U

A fourth quantity that will play a crucial role in what follows is
Fi(T), defined as

F(T) = dij(uvf)’:kuelvr%fsx [To]].
We make use of the following lemma due to Gohberg and Krein
whose proof may be found in Kato’s book [5] (Chapter 4, Lemma 2.3).

Lemma 4 (Gohberg and Krein). Let Vi be a proper finite-dimensional
subspace of a subspace Va of a Banach space, X. Then there exists
v e Vo \ {0} such that d(v, V1) = ||v]|.
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Lemma 5 (Relation between determinants and Fy). Let T be a bounded
linear map from a Banach space X to a Banach space Y. Then

By 1(T)F(T) < E(T) < k281 B, (T) Fy(T).

Proof. We first show Ey(T) < k2*1E, (T)F,(T). We may assume
Er(T) > 0 as otherwise the inequality is trivial. Let 6y,...,60; be
elements of the unit sphere of X* and 1, ..., x; be elements of the unit
sphere of X. Let U be the matrix with entries 6;(T'xz;). Assume that
det U # 0. Since z1, ..., span a k-dimensional space, there exists a
v = a121+. . .+agxy of norm 1 such that | Tw|| < Fy(T). By the triangle
inequality, one of the |a|’s, say |a;,|, must be at least +. Let #; = x; for
j # jo and &, = v and set U to be the matrix with entries 6;(T%;). By
properties of determinants, we see |det U| = |aj,| | det U| > | det U
Next, there exists 4o for which |6;,(7'v)| is maximal, this maximum not
being 0 since | det U| is positive. Let 6; = 6; — (0;(Tv)/60;,(Tv))b;, for
) 7é io and é’io = 92‘07 so that ||§z|| S 2 and G_Z(TU> =0 for ¢ 7é io.

Now let U;; = 6;(T;), so that |det U| < k|detU| = k| det U|. Fi-
nally, the joth column of U has a single non-zero entry that is at most
|ITv|| < Fi(T) in absolute value. The absolute value of the cofactor
is ’det (BT E)) s, 1
choices of (6;) and (), we have shown Ey(T) < k21 Ey_1(T)Fy(T).

For the other inequality, we may suppose that T" has kernel of codi-
mension at least k, otherwise F(7T") = 0 and there is nothing to prove.
Let 01,...,0,_1 and xq,...,xr_1 be arbitrary. Let A be the determi-
nant of the matrix with entries 6;(7z;). Let V be a k-dimensional
subspace such that V NkerT = {0}. Let W = lin(Txy,...,Txr_1).
Using Lemma 4, let z be a point in the unit sphere of T'(V') such that
d(z,W) =1. Let v € VN Sx be such that T(v) is a multiple of z. Let
0x be a linear functional of norm 1 such that x|y = 0 and Ox(z) = 1
and let z;, = v. Now forming the k£ x k matrix (ei(xj))lgi,jgk’ we
see the absolute value of the determinant is A - 0y (Tv) = A - ||Tv|| >

A -infeyng, ||Tx||. Taking suprema over choices of z’s, 6’s and k-
dimensional Vs, we see that Ex(T) > F(T)Ey_1(T) as required.

< 28 1E, (T). Taking a supremum over

O

Corollary 6. [of Lemmas 3 and 5] For each k > 0, the quantities
Dy(T), Dyp(T*), Ex(T) and [ [, Fi(T) agree up to multiplicative fac-
tors that may be bounded by constants independent of the bounded linear
map T and the Banach spaces X and Y. Further, F;(T) and F;(T*)
agree up to a uniformly bounded multiplicative factor.
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We comment that besides these approximate Banach space versions
of singular values, additional related quantities are given by Gelfand
numbers and Kolmogorov numbers (see the book of Pisier [9] for more
information). It can be checked that these quantities also agree with
the sequence of F;’s up to bounded multiplicative factors (dependent
on i, but independent of X and T).

By definition, for each natural number k, one can find sequences
(0;)i<k and (x;) <k such that det(U((6;), (x;))) < Ex(T). We now show
that we can find infinite sequences (#;) and (z;) so that, for each k,
det(U((0:)i<k, (7)i<k)) < Ex(T).

Lemma 7 (Existence of consistent sequences). Let X and Y be infinite-
dimensional Banach spaces. For any linear map T': X — Y, there exist
(0;)i>1 in Sy~ and (x;);>1 in Sx such that for all k,

det ((6:(Tj)1<ije) > 3¢ | [ FA(T); and

i<k

|Tx|| > 4 E(T)||2|| for all x € lin(zy, ..., x).

Proof. The proof is by induction: suppose (6;);<x and (z;);<x have
been chosen and satisfy the desired inequalities at stage k£ — 1. Then
pick an arbitrary k-dimensional space V' such that ||Tv| > $Fy(T)]|v||
for all v € V. Using Lemma 4, let x, € V N Sy be such that
d(Tzy, lin(Txy,...,Txi_1)) = || Tx||. Finally choose 6 of norm 1 such
that 0x(Tx;) = 0 for i < k and 0x(Txx) = ||Txk||. The determinant
inequality at stage k follows.

Let x = ayxq + ...+ aixy be of norm 1. Then
@

| Tx|| > |ag|d(Txg, lin(Txy, ..., Ter_1)) = |ag||Tzx|| > |ar|Fx(T)/2.

Also,

172l = |T(, <0 as0)

| laill Tzl
Averaging the inequalities, we get
T(Zj<k ajxj) ‘ .

If |ax| > 3, the first inequality yields ||Tz| > $F(T). If |ax| < 3,

then || 37, aja;l| > 5 and the second inequality combined with the
inductive hypothesis gives ||Tz| > 14~ "V F,_(T).

(5) 1Tl > 3

O

Lemma 8 (Lower bound on volume growth in a subspace of finite codi-
mension). For any natural numbers k > m, there ezists Cy such that if



8 CECILIA GONZALEZ-TOKMAN AND ANTHONY QUAS

X, Y are Banach spaces, T: X — Y 1is a linear map and V is a closed
subspace of X of codimension m, then Di(T) < CyDp(T)Dy—m(T'|v).

Proof. Let € > 0. Let P be a projection from X to V of norm at most
v/m + € (such a projection exists by Corollary II1.B.11 in the book of
Wojtaszezyk [13]). Then, ||I — P|| < v/m + e+ 1. Let a1,..., x4 be a
sequence of vectors in X of norm 1. The proof of Lemma 3 shows that
there exist ¢y,..., ¢ in Sy« such that det(¢;(x;)) > dpT'(x1, ..., xk).
Write P, for P and Fy for I — P, which has m-dimensional range.
There exists a choice €1,...¢; € {0,1}" such that | det(y;(P,2;))| >
27*dyT(xy,...,2p), by multilinearity of the determinant. At most m
of the ¢; can be 0, as otherwise more than m vectors lie in a common
m-~dimensional space, so that at least kK — m of them lie in V. Hence,
there exist vectors zy,...,2z, in Sx and z,41,..., 2 in Sx NV such
that

|det(i(2))] > (2(Vm + e+ 1) *dp T (1, ..., z1).
Using the proof of Lemma 3 again, we deduce that

AT (215 s 2m) AT (a1 -+ 26) = T (21, - -+, 28)
This completes the proof. O

3. RANDOM DYNAMICAL SYSTEMS

A closed subspace Y of X is called complemented if there exists a
closed subspace Z such that X is the direct sum of Y and Z, written
X =Y ®Z. That is, for every x € X, there exist y € Y and z € Z such
that © = y + 2, and this decomposition is unique. The Grassmannian
G(X) is the set of closed complemented subspaces of X. We equip
G(X) with the metric d(Y,Y’) = dg (Y NSx,Y'NSx) where dy denotes
the Hausdorff distance. We denote by G*(X) the collection of closed k-
codimensional subspaces of X (these are automatically complemented),
by Gi(X) the k-dimensional subspaces of X. If U and V are closed
subspaces of X such that U &V = X, then Proj, is the projection
onto U parallel to V' (that is Proj . (z) € U and z — Projy (z) € V).
We record some facts about Grassmannians in the following lemma.

Lemma 9. Let X be a Banach space with separable dual. Let k € N.
The following facts hold:

(1) G¥(X) is complete and separable.
(2) IfV e G(X), W € G(X) and VW = X, then 5 < || Projyw | <

%; where § = infa:eVmSX,yeWmSX H37 - 3/”
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(3) There exists K > 0 (independent of X ) such that if V € G*(X),
there exists a subspace W € G(X) such that || Projy,y || < K
and || Projyy || < K.

(4) (Symmetry of closeness) There exists K > 0 such that if V,V' €

GH(X), then
sup inf Jo—?||<K sup inf |lv—2|.
W' EVNSx veVNSx vEVNSx v'eV'NSx

Proof. The map L: G¥(X) — Gr(X*) defined by V+ = {§ € X*: 0|y =
0} is a bi-Lipschitz bijection [5]. Separability of G¥(X) and symmetry
of closeness are proved in [4]. The completeness is stated but not proved
in Kato’s book. We sketch a proof using results from the appendix of
[4]. Let V' be a k-dimensional subspace of a Banach space Z and let
v1...,U; be an Auerbach basis. By the Hahn-Banach theorem, there
exist 0y,...,0, € Z* of norm 1 such that 6;(v;) = 0;;. Now if 0y,..., 7y
in Z satisfy ||0; — v;|| < €/k for each k, then one has || > a;0;]| > (1 —
€) max |a;| (to see this, apply 6;, where |a;,| = max|a;|). From this, we
see that 01, ...,y is an e-nice basis (as defined in [4]). Now let (V},) be
a Cauchy sequence in G, (7). By refining the sequence, one may assume
d(Vy, Vii1) < (3k)™™. Choosing an Auerbach basis vj, ..., v} for Vi,
one may then obtain elements o7, ..., v} of V,, satisfying ||v]™ —v?|| <
(2k 4+ 1)~™. This is a convergent sequence of %—nice bases. Letting v}
be the limit of v}, Corollary B6 of [4] shows that d(V},, Vi) — 0, where
V. is the subspace spanned by the v}. This establishes completeness of
Gr(X*) and hence completeness of G¥(X). To see (2), if v, € V N Sy
and w, € WNSx, satisty |[v, —wy|| — ¢ then || Projyy (v, —wy)|| = 1
shows the first inequality. For the second inequality, let v € V N Sx. If

1= < [lw]| < 144, then [lv+w]| > [lo+12hw| —[[|v]| = [[w]] > 3. Tt
|lw|| lies outside this range, then the same conclusion follows from the
triangle inequality, so that || Projyu (v + w)|| = [Jv]| < F[lv 4+ w]|. (3)
can be found in [13], Corollary III1.B.11. O

For a Banach space X, the bounded linear maps from X to itself
will be written B(X,X) and Bx will be the Borel o-algebra on X.
In this section, we consider random dynamical systems. These consist
of a tuple R = (Q, F,P,0, X, L), where (2, F,P) is a complete prob-
ability space; o is a measure preserving transformation of €2; X is a
separable Banach space; the generator L: Q — B(X,X) is strongly
measurable (that is for fixed z € X, w— L,z is (F, Bx)-measurable);
and log || £, || is integrable. An alternative description of strong mea-
surability is that the map w — L, is (F,S)-measurable, where S is
the Borel o-algebra of the strong operator topology on B(X, X) (see
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Appendix A of [4] for details). In the context where X is separable
and the operators are bounded, strong measurability is equivalent to
(F ® Bx, Bx)-measurability of the map (w,z) — L,z ([4]).

A random dynamical system gives rise to a cocycle of bounded linear
operators £V on X, defined by L0 (2) = Lyn-1,0 -+ 0 Loz, We will
consider F and P to be fixed, and thus refer to a random dynamical
system as R = (2,0, X, L£). We say R is ergodic if o is ergodic.

When the base o is invertible, we can also define the dual random
dynamical system R* = (2, F,P,0~ !, X* L£*), where X* is the dual of
X and L5 (0) := (L,-1,,)"0. Notice that L is not (L,)*. The rationale
for this is that £,, maps the X-fibre over w to the X-fibre over o(w) and
similarly £* maps the X*-fibre over w to the X*-fibre over o~ 'w. In

6(x) = (L8 )

on

this way, 0(L,z) = L% _0(x) and, more generally, £
for every x € X,0 € X*. Thus, £:\") = (ﬁfun))*.

Lemma 10 (Measurable dense subset of a family of subspaces). Let
X be a separable Banach space. Let V: Q — GF(X) be measurable.
Then there exist sequences of measurable functions u,: 2 — Sx and
ul,: Q@ — Bx such that {u,(w): n € N} is a dense subset of V(w) N Sx
and {ul, (w): n € N} is a dense subset of V(w) N Bx.

Proof. First, for fixed v € X,w — d(v,V(w)) is a measurable function,
as it is the composition of continuous and measurable functions. Fix a
dense sequence vy, v, ... € Sx. Now for each j, set u?(w) = v;, and let

u?“(w) = vy, where | = min{m : d(vn,, V(w)NSx) < 1d(uf(w), V(w)N

Sx) and d(vp,, uf(w)) < 2d(uf(w), V(w) N Sx)}. For each j, this is a
measurable convergent sequence and hence the limit point u$°(w) is
measurable, and belongs to V/(w) N Sx. The sequence (u$°(w)) is dense
in V(w) N Sx because there are v; arbitrarily close to all points of

V(w) N'Sx. The functions u!, are produced exactly analogously. U

Lemma 11 (Measurability of growth measurements). Let R be a ran-
dom dynamical system R = (Q,0, X, L) acting on a separable Banach
space. The following functions are measurable:

o wr— Di(L,);

o w I Lyll;

. r > 0: L,(Bx) can be covered by

o wrrally) = inf {ﬁnz’tely man(y ba)lls of radius r }
Further, if V: Q = G*(X) is measurable, then w — || Lylvw)| is mea-
surable.

Proof. Let (x,) be a dense subsequence of Bx. By strong measurability,
for each fixed n, w — ||L,x,|| is measurable. Then for each ji,...,j;,
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we have that fji\jlp--,jiﬂ (w) = inflhw--,qz‘flGQ ||£iji - Zl§l<i Qlﬁwsz H is
measurable, so

Di(Lo) = sup [T fiissiis @)

n—o0

I0eeesdk G
is measurable. In particular, w — [|L,| = D1(L,,) is measurable. We
claim that
(6) a(L) = lim sup mf HE:BJ 2||£||ka

If this limit is r, then there exists n such that sup,infi<,

El’j —

2||£w||ka < r+e. This gives a covering of {Lx;: j € N} by n balls

of radius 7 + €, so that the left side of (6) is dominated by the right
side. Conversely, if a(L) = r, let L(Bx) be covered by finitely many
balls of radius r +¢. These must have centres with norm at most 2|| ||
otherwise they do not intersect £(Bx). The centres must therefore be
e-approximable by points of the form 2||L||zx, so that the right side
of (6) is at most r + 2e. We deduce (6) holds and w +— «(L,) is
measurable.

Finally, if V: Q — G*(X) is measurable, let (u,(w))nen be a sequence
of measurable functions such that {u,(w): n € N} is dense in Sy(,).
Then || Ly|v(w || = sup,, ||[Loun(w)]|, which is therefore measurable. [

When R is ergodic, Lemma 11 combined with Kingman’s sub-additive
ergodic theorem ensures the existence of the maximal Lyapunov expo-

nent of R, defined by
A(R) == lim Llog| L,

TL—>OO
for P-a.e. w € ). Similarly, using the fact that the Kuratowski index
of compactness, x(L), is also sub-multiplicative and bounded above by
the norm, we have existence of the index of compactness of R, defined

by
k(R):= lim ~log a(L'(” ),

n-}OO
with the property that kK(R) < A(R).

In the case where £, is independent of w, A(R) and x(R) are the
spectral radius and essential spectral radius respectively, so that k(R) <
A(R) is the quasi-compact case. If the operator is compact, then x(R)
is 0.
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Our previous paper [4] studies the case in which R is a random
dynamical system where the operators L, are Perron-Frobenius oper-
ators of a family of expanding maps and gives sufficient conditions for
K(R) < A(R).

Lemma 12. Given an ergodic random dynamical system R, there exist
constants A, = Ag(R) such that for almost every w € €2,

lim Llog Dy(L£V) = Ay
n—oo

Furthermore, %log Ek(ﬁin)) — Ag. Define Ag =0 and let p, = Ay —
Aj_y for each k > 1. Then, +log Fk([.&n)) — i,

Proof. The first claim follows from Kingman’s sub-additive ergodic the-
orem, via Lemma 11 and Lemma 1. The remaining two claims are
consequences of Corollary 6. U

The py’s of the previous lemma are called the Lyapunov exponents of
R. When py, > k(R), uy is called an exceptional Lyapunov exponent.

Theorem 13 (Lyapunov exponents and index of compactness). Let R
be a random dynamical system with ergodic base acting on a separable
Banach space X. Then

® [y = fig = ...

e For any p > Kk(R), there are only finitely many exponents that
exceed p;

o [f o is invertible, then R and R* have the same Lyapunov ez-
ponents.

Proof. That the u; are decreasing follows from Lemma 12 and the ob-
servation that Fi(T) < Fy_1(T). That the system and its dual have
the same exponents follows from Lemma 3 together with the simple
result (in [3, Lemma 8.2]) that if (f,,) is sub-additive and satisfies
fn(w)/n — A almost everywhere, then one has f,(c7"w)/n — A also.

It remains to show that for p > k, the system has at most finitely
many exponents that exceed p. Let k < a < f < p. Since log ||L,]| is
integrable, there exists a 0 < § < (8 — «)/2|a] such that if P(E) < 4,
then [, log™ || Ls| dP(w) < (8 — @)/2. By the sub-additive ergodic
theorem, there exists L > 0 such that P(a(ﬁg)) > e*t) < /2. If
oz(ﬁc(f)) < e*E| then by definition, cPB x may be covered by finitely
many balls of size e*F. By linearity, if a(A) = ¢, one sees that if B is
a ball with arbitrary centre and radius p, then A(B) may be covered
by finitely many balls of size (p.
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Let r be chosen large enough so that P(G) > 1 — 0, where G (the
good set) is defined by

G = {w: LY Bx may be covered with e"* balls of size e*L'}.

We split the orbit of w into blocks: if 0w € G, then the block length
is L; otherwise, if o'w is bad, we take a block of length 1. Consider the
following iterative process: start with a ball of radius pg = 1. Then
look at the current iterate of w, o'w, and suppose that B x 18 covered
by N; balls of radius p;. If o'w € G, then ,CSJFL)BX is covered by at
most Ny = N;e'l balls of radius pirr = €*Fp; and the new iterate
is o' lw. If o'w &€ G, then £ BX is covered by at most N;;1 = N;
balls of radius p;11 = ||Lsi,||p; and the new iterate is o' w.

We claim that for almost all w, for sufficiently large IV, &(JN)(B x) is
covered by at most e balls of size e’V. Indeed, given w, let ng be
chosen such that for all N > ng, one has E@']\L—ol 1ge(0'w) log™ || Lo
(B —a)N/2. If a > 0, then for large N, through the good steps, the
balls are inflated by a factor at most e*. If o < 0, then combining the
good blocks, the balls are scaled by a factor of e®1=IN < elatBN/2 oy
smaller. In both cases, we see that overall, balls are scaled by at most
e®N. The splitting only takes place in the good blocks, and yields at
most eV balls.

Now suppose that pi > p. For almost all w, we have that for all
large N, Dk(ﬁ( )) > efNe Fix such an N, and suppose that z1, ...,z
belong to Sx and have the property [], <« Di > e#NP where

D; = d(LMz; lin({LMz;: § <i})).

Let T; = {0,1,...,|D;/(2ke®™)]} and notice that [T} x -+ x Ty| >
e*Nw=B) /(2k)*. For (ji,...,jk) € Ty X - -+ x Ty, define

k .
2ji€BN
Yiodi = D Lz,
i=1 ¢

It is not hard to see that all of these points belong to the image of

the unit ball of X under £V, Further, from the definition of D;, one

can check that these points are mutually separated by at least 2e°V,
so that one requires at least e*N(?=%) /(2k)* balls to cover /QEJN)(BX).

Hence we obtain

ekN(p—B)

- <

(2k)~ —

Since this holds for all large N, we deduce k < r/(p—f) as required. [

erN



14 CECILIA GONZALEZ-TOKMAN AND ANTHONY QUAS

Lemma 14 (Measurability II). Suppose that X is a Banach space with
separable dual. Suppose further that R is an ergodic random dynamical
system acting on X.

Assume there exist N > A € R and d € N such that for P-almost
every w, there is a closed d-codimensional subspace V(w) of X such
that:

(1) for allv € V(w), limsup,,_,, = log ||£fu")v]| < A; and

n

(2) for each a > 0 and € > 0, there is an ny such that for v € Sx
satisfying d(v,V(w)) > a, one has ||£5Jn)v|| > "9 for all
n > ng.

Then w — V(w) is measurable.

Proof. Given V € G4(X), fix wy, ..., wq such that V@lin(wy, ..., wy) =
X and define a neighbourhood of V' by

Ny, ={U € gd(X): U Nlin(wy, ..., wg) = {0};
|| Projlin(wi)HUEBlin({wjlj?ﬁi}) |V|| S % for 1 S 1 S d}

Since G¥(X) is separable, fix a countable sequence (V},) of subspaces,
dense in G4(X). Using Lemma 9 items (3) and (4), there exists K > 0
such that for each V € G4(X), there exists W € G4(X) such that
| Projy v [| < K, | Projyw || < K. If wy, ..., wq is an Auerbach basis
for W, then || Projy, ;) jiin({w; : j2ip) lwll < 1. For each V,,, let W), be a
subspace satisfying the above inequalities and let w,, 1,...,w, 4 be an
Auerbach basis. Let F,; denote Projinw,, .)v(w)elin({uwn,,: j#i)-

We obtain a countable collection of basic sets (Ny,, ) which generate
the Borel o-algebra on G4(X). To see this, we claim that for each
V € G4(X) and each open set O containing V, there are n and k such
that V € Ny, C O. Then each open set is the union of the basic sets
that it contains.

Given V € G4(X) and an open set O containing it, let B,(V) C O.
Let k& > 4Kd/r and 6 = min(1/(2K),1/(4kK),r/2). Let n be such
that dg(V N Sx,V,NSx) < 6. Let v € VN Sy and w € W, N Sx.
There exists v' € V,, N Sx such that |jv —¢'|] < §. By Lemma 9(2),
||lw—7v'|| > 1/K, so that ||w—wv| > 1/(2K). Hence VNW,, = {0} and
| Projy, v [| < 4K. Now given v’ € V,NSx, there exists v € VNSx and
x € X with v/ = v+ 2 and ||z|| < 0. We have ||P,;(v')|| = || Pni(z)]| =
| Pri o Projy, v ()| < 4K4, so that V' € Ny, . Finally let U € Ny,
and let o' € V,,NSx. By definition, we have || P, ;(v')|| < 1 for each 7, so
that || Projy, o(¢v)|| < £. In particular, there exists u € U such that
lu— '] < ¢ and hence there is u € U N Sx such that [ju —o'|| < 22.
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Using Lemma 9(4), we deduce dg(U N Sx,V, N Sx) < %l, so that
dH(U N SX,V N Sx) S (5+ 2]9& <r, Showing NVn,k C O.

Hence to show the desired measurability, it suffices to show that for
cach N = Ny, j, {w: V(w) € N} is measurable. First, {U: UNW,, =
{0}} is an open set, so that {w: V(w) N W,, = {0}} is measurable.

Fix a dense set vy, v, ... in the unit sphere of V,,. We claim that for
those w lying in the set G of full measure on which dim V(w) = d and
hypotheses (1) and (2) of the Lemma hold, we have that V(w) lies in
N if and only if the following condition holds:

For each rational € > 0 and each j € N, there is mg > 0

such that for each m > my, there are rationals a, ..., a),
in [—, ] such that [| L5 (v; — ¥, alw,)|| < e,

To see the ‘only if’ direction, suppose that V(w) € N. Now given
v; € V,, N Sx, by definition of N, there are by,...,b; in [—%, %] such
that v; = v/ + bjw,1 + ... + byw, g with v € V(w). Hence v =
vj — Zle bw,,;, € V(w), and therefore we have ||££Jm)v’|| < etam
for all sufficiently large m. Now for any such m, one can take a;’s
that are suitably close rational approximations to b; so that |]££Jm)(vj -
Yoy aiwn)|| < et

Conversely, suppose that V(w)Nlin W,, = {0}, but V(w) € N. Then
there exists a v € V,, N Sx and an i such that ||P,;(v)| > +. By

%
continuity, there exists a v; satisfying the same property. Let § =

| Pa ()| = . Then [Py (v— Y0, aun) | > & for all (@), € [~4, 2%
By hypothesis, we now see that the condition is not satisfied.

Since this condition is obtained by taking countable unions and in-
tersections of measurable sets, the measurability of GN{w: V(w) € N}
is demonstrated. Using completeness of (€2, F,P), we deduce that
{w: V(w) € N} is measurable, so that w +— V(w) is measurable as
required. U

Lemma 15. Let o be an ergodic measure-preserving transformation of
a probability space (Q,P). Let g be a non-negative measurable function
and let h > 0 be integrable. Suppose further that g(w) < h(w)+g(o(w)),
P-a.e. Then g is tempered; that is lim, . g(c"w)/n =0, P-a.e.

A proof of this lemma appears in Mané’s paper [7].

Proof. Let € > 0 and let K > [ h. By the maximal ergodic theorem,
By = {w: h(w)+...+h(c" 'w) < nK, for all n} has positive measure.
Let M be such that By := {w: g(w) < M} has positive measure. As
a consequence of the Birkhoff ergodic theorem, for any measurable set
B with P(B) > 0, for P-a.e. w, for all sufficiently large k, there exists



16 CECILIA GONZALEZ-TOKMAN AND ANTHONY QUAS

J € [(1+ ek, (14 €)*1) such that 0’/(w) € B. Now for w € €, let k
be such that for all k > ko, there exist j € [(1 + €)*, (1 + €)¥*1) such
that o/w € By and j' € ((1 4 €)**2, (1 4+ €)*+3) such that 07w € Bs.
Ifn > (1+e)kot then n € [(1+4 €)1, (1+¢€)**2) for some k > kq. Let
jel(l+ ek (1+e)kh) and j' € [(1 4 €)% 2, (1 + €)**3) be as above.
Then g(0"w) < Y71 h(o*w) + g(o7'w) < ng:jl h(o*w) + g(o7'w) <
K(j"—j)+ M, so that limsup g(0"w)/n < 4e. Since € is arbitrary, the
conclusion follows. O

Theorem 16 (Multiplicative ergodic theorem: the Oseledets filtra-
tion). Let R be an ergodic random dynamical system acting on a Ba-
nach space X with separable dual. Suppose that K(R) < A(R). Then

there exist 1 < r < oo ' and:
e a sequence of exceptional Lyapunov exponents \(R) = A\ >
Ay > ... >N > kK(R);
® a sequence mi, Mo, ..., m, of positive integers; and

e a measurable filtration of closed subspaces, X = Vi(w) D Va(w) D
- D Vi(w) D Violw), with the equivariance property L, (Vi(w)) C
Vi(o(w)) for each i.
such that for P-a.e. w, codim Vy(w) = mq + -+ + my_1; for allv €
Vo(w) \ Vig1(w), one has lim *log HE&")UH = A¢; and for v € Vy(w),
lim sup < log ||£L(u")v|| < k(R).

While the theorem is stated for ergodic random dynamical systems,
a standard application of ergodic decomposition allows one to deduce
a version for non-ergodic systems, in which constants are replaced by
invariant functions.

Proof. Let puy > po > ... be as in Lemma 12. Let Ay > Ay > ... be
the decreasing enumeration of the distinct p-values that exceed x(R) (if
this an infinite sequence, then Theorem 13 establishes that \; — k(R)).
The fact that A(R) = A; is straightforward from the definitions. Let
my be the number of times that A\, occurs in the sequence (p;) and let
My=mq+ ...+ my, so that pa, , = A1 and pag,_,+1 = Ao

We now turn to the construction of Vy(w). For a fixed w, let the

sequences (6>, and (:Ugn)

h );>1 be as guaranteed by Lemma 7 for the
operator £5”. We let V™ (w) be lin((£5)6™, .. (E&"))*QE\Z)Z_I)L, let

Y, (w) be lin({z{": j < M.}). Thus, X = V" (w) @ Y™} (w). All of

'If 7 = oo, the conclusions are replaced by: A(R) =
mi,ma,... € Nand X = Vi(w) D Va(w) D...; Vo(w) =
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these depend on the choice of #’s and x’s. No claim of uniqueness or
measurability is made.

The space VZ(”) (w) is an approximate slow space.
The proof will go by the following steps:
(a) For almost all w, for arbitrary ¢ > 0 and for sufficiently large n,
1£5 ]| < ePetomz|| for all z € V™ (w);
(b) VZ(") (w) is a Cauchy sequence for almost all w — we define the limit
to be Vy(w);
(¢) The Vi(w) are equivariant: L, (Vy(w)) C Vi(o(w));
(d) If x € Viy1(w), then ||[,£,n)v|| > eMe=Ing(v, Vi1 (w)) for large n;
(e) For all @ > 0 and € > 0, there exists ng so that for all n > ng and
all x € Sx such that d(z, Vy11(w)) > a, one has ||££,n)a:|| > ee—on,
The remaining steps are proved by induction on /.

(f) If z € Vi(w), then limsup < log ||££]n)x|| <\

(g) wr Vy(w) is measurable;

(h) The restriction, R,, of R to Vy(w) has the same exponents as R
with the initial M,_; exponents removed.

Proof of (a). Note that by construction
det (01" (£02 1<igern, ) = KB, , (£87),

where K is a constant depending only on M,_; arising from Lemmas
5 and 7. For an arbitrary z € VZ(") N Sx, let ¢ € Sx+ be such that
H(LPz) = |£52|. Then, adding a column for  and a row for ¢ to
the matrix U((6™), (x?)))lg,jg/w,__l, we see that the x column has all
0 entries except for the 1 + M,_;-st (by definition of VZ(") (w)), and so

we arrive at the bound (uniform over z € Sy N Ve("))7
(7) KEpm, (L)L 2] < Brapm, , (£87).

The conclusion follows from Lemma 12.
Proof of (b). Let us assume that ng is chosen large enough that for
all n > ng, the following conditions are satisfied: | L], ||Lonw| are

less than e; [|[L07z]| < e@Peton||z|| for all z € V™; and ||£7z]| >
eQe1=97| || for all = € Ye(fi(w) (using integrability of log ||L,]; (a);
and Lemma 7). Let n > ng. Let x € Ve(n) (w)NSx and write z = u+w
where u € Vz,(nﬂ)(w) and w € Ye(ffrl)(w). Now we have

| £GH02]) < Pt £ | < et20m,
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We also have |lu]| < 1+ |jw|, |£5w| > ePe1=90+D) ||| and
||££;n+1)u|| < Mt D(1 4 |jw||). Manipulation with the triangle in-
equality yields

(5) o] < enthemareme

Hence, each point in the unit sphere of Ve(n) (w) is exponentially close

to VE(”H)(w). Since the two spaces have the same codimension, one
obtains a similar inequality in the opposite direction by Lemma 9(4).

This establishes that Vg(n) (w) is a Cauchy sequence.
Proof of (c). We argue essentially as in (b). For large n, we take

v E \Q(n+1)(w) N Sx. We write £,(v) as u + w with u € Ve(n)(a(w))
and w € Yé(_nf(a(w)) We have bounds of the form HE&”H)UH < et
lull S 1+ ol 1£ggul S €1+ [l and [1E7wl] 2 eXlw]

(here < means ‘is smaller up to sub-exponential fac(tors’). Combining
the inequalities as before, one obtains a bound |w| < e~(e-172dn,
Taking a limit, we obtain £, V,(w) C Vi(o(w)) as required.

Proof of (d). Let x &€ Vy11(w), with ||z|| = 1. For large n, if z is
written as u, + v, with u, € ‘/g(_:_? (w) and v, € Yg(n) (w), then ||v,] >

Ld(x, Vepr (w)) and [Jun] < 1+ [[oa]l. By (7), [|1£57u,|| < ePernton(1 4

|[vn]]) for large n, and Lemma 7 gives ||£57 v, || > 4=M Fyy, (L5 |0, >
ePe=en |y, || for large n. The conclusion follows. The proof of (e) is the
same, using the uniformity in Lemma 7.

For the inductive part, notice that the case £ = 1 is trivial. Let £ > 2
and suppose that the claims have been established for the case ¢ — 1.
We know from (a) that elements of Ve(n) (w) expand at exponential rate

approximately A\, under £, We need to show that the analogous
statement holds for the limiting subspace V;(w). We mimic the start of
the proof to control the slow m,_;-codimensional subspace of V;_1(w).
This will be exactly V,(w).

Proof of (f). By the inductive hypothesis, the top Lyapunov exponent
of £ applied to the bundle {V;_;(w) : w € Q} is A; with mul-
tiplicity my_1, with the following Lyapunov exponent being A\,. Let

(z](-"))?zl’l € Sx NVy_1(w) and (wj(-n));n:‘zl’l be as guaranteed by Lemma

7 and let V™ (w) = Vi (w) Nlin(\™, ... 4 ). The same argu-
ment as in (a) shows that for arbitrary € > 0 and sufficiently large n,
1L 2| < eGeton|z| for = € V™ (w). The argument used in (b) also
works, showing that \Q'(”)(w) converges to a space V/(w) C Vp_q(w)
and, crucially, we obtain an analogue of (8): for all sufficiently large n,
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if 2 € VJ(w), then 2 may be expressed as u +w with u € V/™(w) and
w € Vo_i(w) satisfying |[w]| < e "Pe-1=%=49 Then, ||£L{u]| < M by
the above; and [|L0w]|| < e=Ge-1=2n.ehe-in So || £ 2| < eMm by the
triangle inequality. From (d), we deduce V}/(w) C Vj(w). Since, by (h)
(applied to Re—1), Vi(w) and V/(w) have the same finite co-dimension
as subspaces of V,_;(w), Vi(w) = V/(w) and (f) follows.
Proof of (g). From (f) and (d), we see that Vi(w) = {v: limsup + log ||£5J")UH <
A¢} and the assumptions of Lemma 14 hold. Measurability of V;(w) fol-
lows.
Proof of (h). Let W(w) = {w € Vi1 (w): d(w, Vy(w)) > L|lw|}. Let
e > 0. We claim that for sufficiently large n,
(9) d(w',v') > e for all w' € Sx N LMW (w) and v € Vy(o"w).
Let 0 < %. Let go(w) = sup,ey e PN HE&I))M(UJ)H. This
is measurable by Lemma 11. Notice that log™ gs(w) < log™ || L, | +
max(—A,—4,0)+log" gi(ow). By Lemma 15, lim,,_, = log™ gi(0"w) =
0.
Then, there exists ng(w) such that for p,n > ng, one has

10) 1£%),2]| < Lexp(ng + p(Ae_t + 8))||2] for all = € V,_y(0"w);

||£((fi)wv|| < %exp(ng +p(Ae +9))||v]| for all v € V(c"w).
Additionally by (e), ny may be chosen so that

(11)
e"Pem170) || LMy < et for all w € W (w) N Sx and n > ng.

We will show (9) by contradiction. Suppose d(ﬁ&")w,Vg(o”w)) <
e‘enHE&")wH for some n > ng, and such that en/(A—1 — \¢) > no.
Write £0w = v + z, with v € Vi(o"w) and ||z|| < e “*||v||. Now
£Py = £% v+ £P) 2 Taking p = en/(A_1 — A¢), the bounds on
the two terms coming from (10) agree, giving

| L0HPly|| < em/2ePtm)Ae-1+9)

One checks, however, that by the choice of ¢, this is smaller than
e+ Ae-1=9) " contradicting (11). This establishes claim (9). Notice
that combining (9) and (11), we see that the restriction of the random

dynamical system to the equivariant family Q1 (w) = Vi1 (w)/Vi(w)
satisfies for all sufficiently large n,

(12) 1LY, (e = €M7 @]|g, () for all @ € Qp_;(w),

where £, denotes the induced action of £, on Qo1 (w).
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Set m = my_1. To complete the proof of (h), let n > ng be arbitrary;
let vy, ..., Uk, be unit vectors in Vy(w) and wy, . . ., w,, be unit vectors
in Vy_1(w). Then

dkﬁfu")(vl, ey Uk, W1,y e vy W)
> A £ (V1 Vg ) o L5 (0, . . . ),
where w; is w; + Vy(w). We therefore see
DLy 1) 2 Dyl - Dl

By (12) and Lemma 2, D,, L3V > ere-imn.
This gives a matching upper bound for Dk_mﬁgf)m(w) to the lower
bound that we obtained in Lemma 8. Hence we deduce the first k&

exponents of R,_; are m = my_; repetitions of A\,_; followed by the
first k — m exponents of Ry, establishing (h). O

The next corollary provides a splitting when the base o is invertible
and the Banach space is reflexive. Note that the methods of [4] obtain
the same conclusion under the weaker assumption that X* has separa-
ble dual. We include this new proof, as we find it to be illuminating.

Corollary 17 (Multiplicative Ergodic Theorem: The Oseledets split-
ting). Let R be a random dynamical system acting on a reflexive sep-
arable Banach space. Suppose that the base, o, is invertible; and that
kK(R) < MR). Then there exist 1 < r < oo and exceptional Lyapunov
exponents and multiplicities as in Theorem 16. Furthermore, there is
a measurable direct sum decomposition >

X=7Z1(w) @ @ Z(w) ® Ve(w),
such that for P-a.e. w, L,(Z;(w)) = Z;i(o(w)) for each i, L,(Vo(w)) C
Vao(o(w)), dim Z;(w) = m; and lim,_ = log 18| = N for v €
Zi(w) \ {0}; limsup,_,_ L log [|L{0]| < k(R) for v € Vig(w).

n

We make use of the following facts valid for reflexive Banach spaces.
If X is reflexive and © is a closed subspace of X* of codimension k,
then its annihilator, ©+ is k-dimensional. Further if 6 is a bounded
functional such that 6|g. = 0, then 6 € ©.

Proof. Let R* be the dual random dynamical system to R as defined
above. Applying Theorem 16 to R*, and recalling from Theorem 13
that the Lyapunov exponents and multiplicities of R and R* coincide,
yields a o0~! equivariant measurable filtration X* = V*(w) D -+ D
V¥(w) D VE(w), with the same codimensions as those of R.

2In the case 7 = oo, the decomposition is X = D2, Zi(w) ® Voo (w)
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Let Yy(w) = V;(w)". Notice that dim Yj(w) = M,_;. Since V;(w)
is measurable and (-)* : G(X*) — G(X) is continuous [5, IV §2], then
Y;(w) is measurable. Also, for every ¢ € V,*(ow), we have L} i €
V) (w) by equivariance of V(). Hence, for every y € Yi(w), 0 =
L: () =v(Lyy). Thus, L,Y(w) C Yi(ow), yielding equivariance.

We define Z,(w) = Yoi1(w)NVi(w). It remains to show that V,_; (w) =
Vi(w) @ Zy_1(w). To prove this, it suffices to show that Vy(w) @Y, (w) =
X. Suppose this is not the case. Then, there exists v € Vy(w) N Yy(w) N
Sx. Let @ € Sx- be such that #(v) = 1. Let @ be the equivalence class
of 0 in Q*(w) = X*/V(w).

We record a corollary of (12). For almost every w, one has for all
large n

“‘Zz(n)’l/_}”Q*(a—”w) Z 67()%7176)”“'1;‘ Q* (w) fOI' all ”LE € Q*(w)

Since Q*(w) is a finite-dimensional space whose dimension does not
depend on w, the above implies that £ is bijective. Furthermore, the
quantity

Cw) = _inf e_(/\‘f—l_e)"||£_:(”)@5|
nEN;YES x»NQ* (w)

Q*(07"w)

is positive. We claim that C'(w) is measurable. Let (¢,(w)) be a mea-
surable dense subsequence of V;*(w). If 1(w) is the equivalence class
of ¥ in Q*(w), then we have || (w)||g(w) = infx || (w) — §(w)||, which
depends measurably on w. Proceeding as in Lemma 11, we see that
C(w) is measurable and by (12) is positive almost everywhere. Hence
C(w) exceeds some quantity ¢ on a set of positive measure.

Let ¢, € Q*(0"w) be such that £ &, = 0. Then
£ bnllgrw) > C(0™w)e™ |G, lgr(ore)-
By ergodicity, there exist arbitrarily large values of n for which

(13) I6nllQ () < ¢7'e™ M1 7|B|g- .
On the other hand, one has v € Yj(w), so that ¥(v) = 0 for every

Y € Vi*(w). Thus, if we express ,Cz(r@d)n + 1, = 0, where ¢, € X* is a
representative of ¢,, and 1, € V;*(w), the following holds

1= 6(v) = Lién(v) + ¢a(v) = 62(L0).

In addition, for every ¢ € V;*(0-"w), (¢n + V)(LV) = ¢ (L) =
1. Thus, for sufficiently large n and every ¢ € V*(07"w), |én +
Ylleetn > 1. Therefore, ||@nllg+(onw) > e MT9", giving a contra-
diction with (13). Hence, V;_1(w) = Vi(w) @ Zy_1(w) as required.

O



22 CECILIA GONZALEZ-TOKMAN AND ANTHONY QUAS

Acknowledgments. CGT acknowledges support from Australian Re-
search Council Discovery Project DP110100068 at UNSW. AQ ac-
knowledges support from the Canadian NSERC, and thanks the Uni-
versidade de Sao Paulo for the invitation to deliver a mini-course from
which this work originated.

The authors would like to thank the referees for a very careful reading
and helpful suggestions.

REFERENCES

[1] A.Blumenthal. A volume-based approach to the multiplicative ergodic theorem
on Banach spaces. arXiv:1502.06554.

[2] T.S. Doan. Lyapunov Ezponents for Random Dynamical Systems. PhD thesis,
Fakultat Mathematik und Naturwissenschaften der Technischen Universitat
Dresden, 2009.

[3] G.Froyland, S. Lloyd, and A. Quas. Coherent structures and isolated spectrum
for Perron-Frobenius cocycles. Ergodic Theory Dynam. Systems, 30:729-756,
2010.

[4] C. Gonzélez-Tokman and A. Quas. A semi-invertible operator Oseledets theo-
rem. Ergodic Theory Dynam. Systems, 34:1230-1272, 2014.

[5] T. Kato. Perturbation theory for linear operators. Classics in Mathematics.
Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

[6] Z.Lian and K. Lu. Lyapunov exponents and invariant manifolds for random dy-
namical systems in a Banach space. Mem. Amer. Math. Soc., 206(967):vi+106,
2010.

[7] R. Mané. Lyapounov exponents and stable manifolds for compact transforma-
tions. In Geometric dynamics (Rio de Janeiro, 1981), volume 1007 of Lecture
Notes in Math., pages 522-577. Springer, Berlin, 1983.

[8] V. I. Oseledec. A multiplicative ergodic theorem. Characteristic Ljapunov, ex-
ponents of dynamical systems. Trudy Moskov. Mat. Obsé., 19:179-210, 1968.

[9] G. Pisier. The volume of convex bodies and Banach space geometry. Cambridge,
1989.

[10] M. S. Raghunathan. A proof of Oseledec’s multiplicative ergodic theorem. Is-
rael J. Math., 32(4):356-362, 1979.

[11] D. Ruelle. Characteristic exponents and invariant manifolds in Hilbert space.
Ann. of Math., 115:243-290, 1982.

[12] P. Thieullen. Fibrés dynamiques asymptotiquement compacts. Exposants de
Lyapounov. Entropie. Dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire,
4(1):49-97, 1987.

[13] P. Wojtaszczyk. Banach spaces for analysts, volume 25 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1991.

(Gonzélez-Tokman) SCHOOL OF MATHEMATICS AND PHYSICS, THE UNIVER-
SITY OF QUEENSLAND, ST Lucria, QLD, 4072, AUSTRALIA

(Quas) DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF VIC-
TORIA, VICTORIA, BC, CANADA, VW 3R4



	1. Introduction
	2. Volume calculations in Banach spaces
	3. Random dynamical systems
	References

