BRATTELI DIAGRAMS WHERE RANDOM ORDERS ARE IMPERFECT

J. JANSSEN, A. QUAS, AND R. YASSAWI

ABSTRACT. For the simple Bratteli diagrams B where there is a single edge connecting
any two vertices in consecutive levels, we show that a random order has uncountably
many infinite paths if and only if the growth rate of the level-n vertex sets is super-
linear. This gives us the dichotomy: a random order on a quickly growing Bratteli
diagram admits a homeomorphism, while a random order on a slowly growing Bratteli
diagram does not. We also show that for a large family of infinite rank Bratteli diagrams

B, a random order on B does not admit a continuous Vershik map.

1. INTRODUCTION

Consider the following random process. For each natural number n, we have a collection
of finitely many individuals. Each individual in the n + 1-st collection randomly picks a
parent from the n-th collection, and this is done for all n. If we know how many individuals
there are at each stage, the question “How many infinite ancestral lines are there?” almost
always has a common answer j: what is it? We can also make this game more general, by
for each individual, changing the odds that he choose a certain parent, and ask the same
question.

The information that we are given will come as a Bratteli diagram B (Definition 2.1),
where each “individual” at stage n is represented by a vertex in the n-th vertex set V,,, and
the chances that an individual v € V,,11 chooses v/ € V,, as a parent is the ratio of the
number of edges incoming to v with source v’ to the total number of edges incoming to v.
We consider the space Op of orders on B (Definition 2.4) as a measure space equipped with
the uniform product measure P. A result in [BKY14] (stated as Theorem 3.1 here) tells
us that there is some j, either a positive integer or infinite, such that a P-random order w
possesses j maximal paths.

Bratteli diagrams, which were first studied in operator algebras, appeared explicitly in
the measurable dynamical setting in [Ver81],[Ver85], where it was shown that any ergodic
invertible transformation of a Lebesgue space can be represented as a measurable “successor”
(or Vershik) map on the space of infinite paths Xp in some Bratteli diagram B (Definition
2.8). The successor map, which is defined using an order on B, is not defined on the set
of maximal paths in Xpg, but as this set is typically a null set, it poses no problem in the
measurable framework. Similar results were discovered in the topological setting in [HPS92]:
any minimal homeomorphism on a Cantor Space has a representation as a (continuous,
invertible) Vershik map which is defined on all of Xp for some Bratteli diagram B. To
achieve this, the technique used in [HPS92] was to construct the order so that it had a
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unique minimal and maximal path, in which case the successor map extends uniquely to
a homeomorphism of Xpg. For such an order our quantity j = 1. We were curious to see
whether such an order is typical, and whether a typical order defined a continuous Vershik
map. Clearly this would depend on the Bratteli diagram being considered.

In this article we compute j for a large family of infinite rank Bratteli diagrams (Definition
2.3). Namely, in Theorem 4.2, we show that j is uncountable for the situation where any
individual at stage n is equally likely to be chosen as a parent by any individual at stage
n + 1, whenever the generation growth rate is super-linear. If the generations grow at a
slower rate than this, 7 = 1. We note that this latter situation has been studied in the
context of gene survival in a variable size population, as in the Fisher-Wright model (e.g.
[Sen74], [Don86]). We describe this connection in Section 4.

In Theorem 4.12 we generalise part of Theorem 4.2 to a large family of Bratteli diagrams.
We can draw the following conclusions from these results. First we show in Corollary 4.5 that
Jj is not an invariant of B’s dimension group [Eff81]. Second, an order w is called perfect if it
admits a continuous Vershik map. For a large class of simple Bratteli diagrams (including
the ones we identify in Theorems 4.1 and 4.12), if j > 1, then a P-random order is almost
surely not perfect (Theorem 3.3). This is in contrast to the case for finite rank diagrams,
where almost any order put on “almost any” finite rank Bratteli diagram is perfect (Section
5, [BKY14]). Indeed, one wonders whether for a “reasonable” infinite rank diagram, it is
always the case that j = co. Here the word reasonable needs to be defined in light of the

results above.

2. BRATTELI DIAGRAMS AND VERSHIK MAPS

In this section, we collect the notation and basic definitions that are used throughout the

paper.
2.1. Bratteli diagrams.

Definition 2.1. A Bratteli diagram is an infinite graph B = (V| E) such that the vertex set
V = U;>0 Vi and the edge set E = J;~, F; are partitioned into disjoint subsets V; and E;
where -

(i) Vo = {wo} is a single point;

(ii) V; and E; are finite sets;

(iii) there exists a range map r and a source map s, both from E to V, such that
r(E;) = Vi, s(Ei) = Vi_1.

Note that F may contain multiple edges between a pair of vertices. The pair (V;, E;)
or just V; is called the i-th level of the diagram B. A finite or infinite sequence of edges
(e; : €; € E;) such that r(e;) = s(e;41) is called a finite or infinite path, respectively.

Form <n,v € V;, and w € V,,, let E(v,w) denote the set of all paths € = (e1,...,¢ep)
with s(e1) = v and r(e,) = w. For a Bratteli diagram B, let Xp be the set of infi-
nite paths starting at the top vertex vg. We endow Xp with the topology generated by
cylinder sets {U(e;,...,en) @ j, n € N, and (ej,...,e,) € E(v,w),v € V,_1,w € V,,},
where Ulej,...,e,) = {x € Xp : x; = ¢, ¢ = j,...,n}. With this topology, Xp is a

0-dimensional compact metric space.
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Definition 2.2. Given a Bratteli diagram B, the n-th incidence matriz F,, = ( 5"12,), n >0,

is a |Vp41| X |V4,| matrix whose entries fq%)} are equal to the number of edges between the

vertices v € V41 and w € V,,, i.e.
£5 = He € Epga i r(e) = v,s(e) = w}.
Next we define some families of Bratteli diagrams that we work with in this article.

Definition 2.3. Let B be a Bratteli diagram.

(1) We say B has finite rank if for some k, |V,,| < k for all n > 1.

(2) We say that B is simple if for any level n there is m > n such that E(v,w) # 0 for
allv eV, and w € V,,.

(3) We say that a Bratteli diagram is completely connected if all entries of its incidence

matrices are positive.
In this article we work only with completely connected Bratteli diagrams.
2.2. Orderings on a Bratteli diagram.

Definition 2.4. A Bratteli diagram B = (V, E) is called ordered if a linear order ‘>’ is
defined on every set r~1(v), v € Un>1 Ve We use w to denote the corresponding partial
order on E and write (B,w) when we consider B with the ordering w. Denote by Op the

set of all orderings on B.

Every w € Op defines a lexicographic partial ordering on the set of finite paths between
vertices of levels Vi, and Vi: (eg+1,--,e1) > (frx1,-., fi) if and only if there is ¢ with
k+1<i<l,ej=fjfori<j<lande; > f;. It follows that, given w € Op, any two
paths from F(vg,v) are comparable with respect to the lexicographic ordering generated by
w. If two infinite paths are tail equivalent, i.e. agree from some vertex v onwards, then we
can compare them by comparing their initial segments in E(vg, v). Thus w defines a partial
order on X g, where two infinite paths are comparable if and only if they are tail equivalent.

Definition 2.5. We call a finite or infinite path e = (e;) mazimal (minimal) if every e; is

maximal (minimal) amongst the edges from r~*(r(e;)).

Notice that, for v € V;, ¢ > 1, the minimal and maximal (finite) paths in F(vg,v) are
unique. Denote by Xpax(w) and Xpin(w) the sets of all maximal and minimal infinite paths
in X pg, respectively. It is not hard to show that X,.x(w) and Xpin(w) are non-empty closed
subsets of Xp. If B is completely connected, then Xax(w) and Xpin(w) have no interior
points.

Given a Bratteli diagram B, we can describe the set of all orderings Op in the following
way. Given a vertex v € V\Vj, let P, denote the set of all orders on r~!(v); an element in
P, is denoted by w,. Then Op can be represented as
(2.1) Op = H P,.

veV\Vo

The set of all orderings Op on a Bratteli diagram B can be considered also as a measure
space whose Borel structure is generated by cylinder sets. On the set Op we take the
uniform product measure P = HUGV\VO P, where P, is the uniformly distributed measure
on P,: P,({i}) = (r~t(v)|'))~! for every i € P, and v € V\Vy. We will make use of
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conditional probability arguments and the finite o-algebras Fx generated by the cylinder
sets HUGUL v, Po-

The uniform measure P is the only measure we consider in this article, so we will often
use the term “almost every” without explicit reference to P.

Definition 2.6. Let B be a Bratteli diagram, and ng = 0 < n; < ng < ... be a strictly
increasing sequence of integers. The telescoping of B to (ng) is the Bratteli diagram B’,

whose k-level vertex set V! = V,,, and whose incidence matrices (F}) are defined by

F,=F

nHl,lo,..OFnk,

where (F},) are the incidence matrices for B.

If B’ is a telescoping of B, then there is a natural injection L : O — O’. Note that

unless |V,,| = 1 for all but finitely many n, L(Op) is a set of zero measure in in Op.
2.3. Vershik maps.

Definition 2.7. Let (B,w) be an ordered Bratteli diagram. We say that ¢ = ¢, : Xp —
Xp is a continuous Vershik map if it satisfies the following conditions:

(i) ¢ is a homeomorphism of the Cantor set Xp;
(ii) (P(Xmax(w)) = Xmin<w)§

(iii) if an infinite path @ = (z1,22,...) is not in Xyae(w), then o(r1,x2,...) =
(29, ..., 2} |, Tk, Tt1, Ty2, - . .), where k = min{n > 1 : z, is not maximal}, Ty is the
successor of xy, in r~1(r(zg)), and (29,...,2%_,) is the minimal path in E(vo, s(Zx)).

If w is an ordering on B, then one can always define the map ¢q that maps Xp \ Xpax(w)
onto Xp \ Xmin(w) according to (iii) of Definition 2.7. If there exists a measure y on Xp
such that p(Xmax(w)) = p(Xmin(w)) = 0, and such that p is invariant under ¢g, then we
may extend ¢y to a measure-preserving transformation ¢ of Xg. In this case, we call ¢ a
measurable Vershik map of (Xp, p).

The question about the existence of a continuous Vershik map is equivalent to that of an
extension of pg : X5\ Xmax(w) = X5 \ Xmin(w) to a homeomorphism of the entire set Xp.
Note that if Xyax(w) and Xpin(w) have empty interiors, and there is a continuous extension

of the measurable Vershik map to the whole space, then this extension is unique.

Definition 2.8. Let B be a Bratteli diagram B. We say that an ordering w € Op is perfect

if w admits a continuous Vershik map ¢, on Xp. If w is not perfect, we call it imperfect.

Let Pg C Op denote the set of perfect orders on B.

3. THE SIZE OF CERTAIN SETS IN Op.

The following result was shown for finite rank Bratteli diagrams in [BKY14]; the proof

for non-finite rank diagrams is very similar.

Theorem 3.1. Let B be a simple Bratteli diagram. Then there exists j € N U {Rg, 2%}
such that for P-almost all orderings, |Xmax(w| = | Xmin(w)| = 7.

Example 3.2. It is not difficult, though contrived, to find a simple finite rank Bratteli

diagram B where almost all orderings are not perfect. Let V,, =V = {vy, v} for n > 1, and
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)y £

define my, . = (n)

= : i.e. My, is the proportion of edges with range v € V,,41 that have
w Fori . o

source w € V,,. Suppose that Y~ m, 7, < oo for i # j. Then for almost all orderings,

there is some K such that for k > K, the sources of the two maximal/minimal edges at level
n are distinct, i.e. j = 2. The assertion follows from [BKY14, Theorem 5.4].

The following result is proved for finite rank diagrams in Theorem 5.4 of [BKY14].

Theorem 3.3. Suppose that B is a completely connected Bratteli diagram of infinite rank
such that P-almost all orderings have j mazximal and minimal elements, with j > 1. Then

P-almost all orderings are imperfect.
Before proving the theorem, we need a combinatorial lemma.

Lemma 3.4. Let S be a finite set of size n and let F and G be maps from S into a set R
with G non-constant. Let the set of n! total orderings on S be equipped with the uniform
probability measure, and let o : {1,2,...,n} — S be such an order. Then
1
P(F(o(i)) = G(o(i+ 1)) for all non-mazimal i € S) < —
n—
Proof. We can represent each total ordering of S as a permutation o : {1,2,...,n} — S,
where o(1) is the minimal element in the ordering, and for 1 <14 < n, o(i+1) is the successor

of o(i). Consider a permutation o to be good if
(3.1) F(o(i)) =G(o(i+1)) for all 1 <i < n.

We shall find an upper bound for the size set of good permutations.

Let V be the union of the range of F' and the range of G. Form a directed multigraph
G = (V,E) as follows. For 1 < i < n, define the ordered pair e; = (G(i), F(i)). Let
E = {ej,ea,...,e,}. Now let o be a good permutation. Then for 1 < ¢ < n, the range of
€5(i) equals the source of e,(;11). Therefore, e,(1)€q(2) - - - €5(n) 18 an Eulerian trail in G.

It is straightforward to check that the map from good permutations to Eulerian trails
is bijective, and thus we need to bound the number of Eulerian trails in G. To do this,
note that each Eulerian trail induces an ordering on the out-edges of each vertex. Let
V ={v1,...,v;}, and let n; be the number of out-edges of v;. Since g is non-constant, there
are at least two directed edges with different sources, and thus n; < n —1for 1 <1 < k.
The number of orderings of out-edges equals nilns!. .. ng!.

We distinguish two cases. If all vertices have out-degree equal to in-degree, then each
Eulerian trail is in fact an Eulerian circuit. An Eulerian circuit corresponds to n different
FEulerian trails, distinguished by their starting edge. To count the number of circuits, we
may fix a starting edge e*, and then note that each circuit induces exactly one out-edge
ordering if we start following the circuit at this edge. Note that in each such ordering, the
edge e* must be the first in the ordering of the out-edges of its source. We may choose
e* such that its source, say vy, has maximum out-degree. Thus the number of compatible
out-edge orderings is at most (n; — 1)Iny!...ng! This expression is maximized, subject to
the conditions n1 +ng + -+ nxp <nandn; <ny <n-—1for 1 <i<k, when k =2 and
ny = n — 1, ng = 1. Therefore, there are at most (n — 2)! Eulerian circuits and at most
n(n — 2)! Eulerian trails and good permutations.

If not all vertices have out-degree equal to in-degree, then either no Eulerian trail exists

and the lemma trivially holds, or exactly one vertex, say vi, has out-degree greater than
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in-degree, and this vertex must be the starting vertex of every trail. In this case, an ordering
of out-edges precisely determines the trail. The number of out-edge orderings (and good
permutations) in this case is bounded above by (n — 1)!.
Therefore, there are at most n(n — 2)! out of n! total orderings satisfying (3.1), and the
lemma follows.
O

Proof of Theorem 3.3. Note that if |[V,,| = 1 for infinitely many n, then any order on B has
exactly one maximal and one minimal path. So we shall have that |V,,| > 2 for all large n.

We first define some terminology. Recall that s(e) and r(e) denote the source and range
of the edge e respectively. Given an order w € Op, we let e, ,(v) be the edge labelled o
and whose range is v. If v € Vy+ for some N’ > n, we let ¢, ,(v) be the element of V,, that
the maximal incoming path to v goes through. We call ¢, .,(v) the n-tribe of v. Similarly
the n-clan of v, ¢, (v) is the element of V;, through which the minimal incoming path to v
passes. If n is such that for any N > n, the elements of Viy belong to at least two n-clans
(or n-tribes), we shall say that w has at least two infinite n-clans (or n-tribes.)

Let C, v be the set of orders w such that if the non-maximal paths x and y agree to level
N, then ¢, (z) and ¢, (y) agree to level n.

Fix n and N with N > n, and take any N’ > N. Any order w € C,, y must satisfy the
following constraints: if @ and f are two non-maximal edges whose sources in Vs belong
to the same N-tribe, then their successors must belong to the same n-clan. In particular,
if v is any vertex in Vx+ such that the sources of e, ,,(v) and eg,(v) belong to the same
N-tribe, where o and 8 are both non-maximal, then the sources of eq41,,(v) and egi1,,(v)
must belong to the same n-clan. That is there is a map f: Vy — V,, such that for any
v € Vv and any non-maximal o, f(tnw(S(€q.w(V)))) = cnw(s(€at1w(v))). We think of this
f as mapping N-tribes to n-clans.

Motivated by the preceding remark, if N’ > N > n, we define two subsets of Op. We
let D, n+ be the set of orders such that V/ contains members of at least two n-clans; and
E, n n' to be the subset of orders in D,, n/—1 which additionally satisfy the condition (*):

There is a function f: Vy — V,, such that for all v € Vi, if « is a non-
maximal edge entering v then f(tn,w(s(€a,w(v)))) = cnw(s(ea+1,w(v))).

We observe that D,, y» and E,, ny, n+ are Fns-measurable. We compute P(E,, n n/|Fn'—1)-
Since D, nv—1 is Fnr—1 measurable, we have P(E, y n/|Fn/—1)(w) is 0 for w &€ Dy n/—1.
For a fixed map f: Vy — V,,, and a fixed vertex v € Vv, and w € D,, nv_1, the conditional
probability given Fn/_1 that (*) with the specific function f is satisfied at v is at most
1/(|[VNs—1| — 1). To see this, notice that for w € D, y/_1, the n-clan is a non-constant
function of Viyv_1, so that the hypothesis of Lemma 3.4 is satisfied, with F' = foty, o5
and G = ¢, 4, 08, both applied to the set of incoming edges to v. Also, since B is completely
connected, there are at least |[Vy/_1| edges coming into v.

Since these are independent events conditioned on Fy/_1, the conditional probability
that (*) is satisfied for the fixed function f over all v € Vi is at most 1/(|Var_1| — 1)/V¥l,

There are |V, |!V~| possible functions f that might satisfy (*). Hence we obtain

|Vn|WNIP(Dn,N’71)
(|VN/—1| — l)lvN" ’

P(E, nn') <
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so that for fixed n and N with n < N, one has liminfy/_, o P(E, nn/) = 0. By the
hypothesis, for any € > 0, there exists m(e) such that P(R,) > 1 — e for all n > m(e), where
R, = {w € Op: w has at least 2 infinite n-clans}.

Since Cp, vy N R, C E, n ' for all N’ > N > n, we conclude that P(C,, y N R,) = 0 for
N > n, so that P(C,, n) < € for N > n > m(e). Now since Pg = (., Uy—,, Cn,n and
Cn,n C Cp Ny1 for each N > n, we conclude that P(Pp) = 0.

U

4. DIAGRAMS WHOSE ORDERS ARE ALMOST ALWAYS IMPERFECT

4.1. Bratteli diagrams and the Wright-Fisher model. Let J denote a matrix (size
determined by the context) all of whose entries are 1. If V,, is the n-th vertex set in B,
define M,, = |V,,|. In this section, all Bratteli diagrams that we consider have incidence
matrices F,, = J for each n, where the size of J can vary with n.

We wish to give conditions on (M,,) so that a P-random order has infinitely many maximal
paths. We first comment on the relation between our question and the Wright-Fisher model
in population genetics. Given a subset Ay C Vi, and an ordering w € Op, we let A, for
n > k be the collection of vertices v in V,, such that the unique upward maximal path
through v passes through Aj. If informally, we can consider the tree formed by all maximal
edges, whose levels are the sets V,,, then A, is the set of vertices in V,, that have “ancestors”
in Ak

Let Y,, = |A,|/M,,. We observe that conditional on Y;,, ¥;,11 is distributed as the average
of M, 1 independent Bernoulli random variables with parameter Y,, (i.e. M, 1,41 is a
binomial random variable with parameters M,, 1 and Y,,). In particular, (Y},) is a martingale
with respect to the natural filtration (F,), where F,, is the o-algebra generated by the first n
levels of B. Since (Y;,) is a bounded martingale, it follows from the martingale convergence
theorem that (Y,,) almost surely converges to some limit Y., where 0 < Y, < 1.

It turns out that this is exactly the same as the Wright-Fisher model in population
genetics. Here one studies populations where there are disjoint generations; each population
member inherits an allele (gene type) from a uniformly randomly chosen member of the
previous generation. Analogous to Y,,, one studies the proportion of the population that
have various alleles. If one declares the vertices in Ay C Vi to have allele type A and the
other vertices in that level to have allele type a, then there is a maximal path through Ay if
and only if in the Wright-Fisher model, the allele A persists - that is there exist individuals
in all levels beyond the nth with type A alleles.

In a realization of the Wright-Fisher model, an allele type is said to fizate if the proportion
Y,, of individuals with that allele type in the nth level converges to 0 or 1 as n — oo. An
allele type is said to become eztinct if Y;, = 0 for some finite level, or to dominate if Y;, = M,

for some finite level.

Theorem 4.1. [Don86, Theorem 3.2] Consider a Wright-Fisher model with population

structure (M, )n>0. Then domination of one of the alleles occurs almost surely if and only
if ano 1/M,, = cc.

Theorem 4.1 is also true if in the Wright-Fisher model, individuals can inherit one of k
alleles with & > 2. We indicate a proof of the simpler fact that if >° -,1/M, = oo then
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each allele type fixates, that is that its density converges to 0 or 1 ([Don86, Theorem 3.2 ]).
To see this, let @, =Y, (1 —Y,). Now we have

E(Qnu:nfl) =Y 1— Yng—l - (E(Ynglynfl) - E(Ynlynfl)z) =Qn-1— Var(Yn|Yn,1).
Since M,,Y,, is binomial with parameters M,, and Y,,_1,
Var(Y, |V, 1) = (1/M2) (MY, 1(1 =Y, 1)) = Qu_1/M,.

This gives E(Qn|Fn-1) = (1 — 1/M,)Q,—1. Now using the tower property of conditional
expectations, we have EQ,, = E(Q,|Fo) = [}—, (1 — 1/M;)EQq, which converges to 0. As
noted above, the sequence (Y, (w)) is convergent for almost all w to Y (w) say. It follows
that @, (w) converges pointwise to Yo (1 — Y5). By the bounded convergence theorem, we
deduce that EY (1 — Y ) = 0, so that Y., is equal to 0 or 1 almost everywhere.

We shall use Theorem 4.1 to prove the first part of the following theorem.

Theorem 4.2. Consider a Bratteli diagram with M, > 1 vertices in the nth level and whose
incidence matrices are all of the form J. We have the following dichotomy:
If >, 1/M,, = oo, then there is P-almost surely a unique maximal path.

If 7, 1/M,, < oo, then there are P-almost surely uncountably many mazimal paths.
To prove the second part of this result we will need the following tools.

Lemma 4.3. Let (Z,,)n>0 be a bounded sub-martingale with respect to the filtration (Fy)n>0-
Let 71 and T2 be two stopping times such that 71 < mo almost surely. Then EZ., <EZ.,.

Proof. Assume initially that 7 and 7o are bounded. Then

Ly —Zry = Z 1{71§n<72}(Zn+1 - Zn)~

Notice that the event {71 < n < m} = {m < n}\ {2 < n}, so that it is F,,-measurable.
Hence

E(l{rlgn<7—2}(Zn+1 o Z")) - E(E(1{71Sn<7’2}<2n+1 - Zn)‘fn))
= E(1{71§"<7'2}E(Zn+1 - Zn|—7:n))

By the submartingale property, this quantity is non-negative, so that EZ,, > EZ., . In the
case where 71 and 75 are unbounded, we use the stopping times min(7;, N) and min(7, N)
and take the limit (using the bounded convergence theorem). O

Proposition 4.4. Consider a Wright-Fisher model with population structure (My)n>o. If
ano 1/M,, < oo, then for each € > 0 and n > 0, there exists an | such that then with
probability 1 — ¢, one has |Y,, = Y| <n for allm > 1.

Proof. Let | be chosen so that ", | 1/M, < 4en®. Consider the (possibly infinite) stop-
ping time 7 = min{n: Y, & [V, — 1, Y, +n|}. Set Z, = (V,, — Y})? and notice that (Z,),>
is a bounded sub-martingale by the conditional expectation version of Jensen’s inequality.
Since Y,, — Yoo, it follows by continuity that Z,, — Zo = (Yoo — ¥7)%
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We have
EZ, = E(E((Y, — Y1)*| 7))
=E(E(Y,) - Y7|F))
—E(YZ - ¥7)

E(Y7, —Y7).
l

<.
I

A calculation shows that

E(Y7 i — Y2IF;) = BV 1F;) — (Yl F)?
= Var(Yj+1|F;)
_ (1Y)
M

so that E(Y?, — Y}?) < 1/(4M; 1) and we obtain EZ,, < E 141 1/(4Mj). In particular
we have for all n > [, EZ,, < en?.

Applying Lemma 4.3, we have for all [ < n < m,
(4.1) EZwinn,7) SEZp < 6772.
Hence we have EZyin(rn) < en?, for each n > I. Now

Z, if T <oo;or
lim Zinrn) =Y =
nreo Zso Otherwise.

The bounded convergence theorem implies EY < en?, but Y > n? if 7 < oo, so that
P(7 < 00) < e. This establishes the claim in the proposition.
O

Proof of Theorem 4.2. Suppose first that > 1/M, = oo. We show for all k, with
probability 1, there exists n > k such that all maximal paths from each level n vertex to
the root vertex pass through a single vertex at level k.

To do this, we consider the M}, vertices at level k to each have a distinct allele type. By
Theorem 4.1, there is for almost every w, a level n such that by level n one of the M), allele
types has dominated all the others. This is, of course, a direct translation of the statement
that we need.

Now we consider the case ), 1/M, < oo. In this case we consider the vertices to have
one of two possible allele types. The event that there are uncountably many maximal paths
has P-measure 0 or 1. Hence to show that it has measure 1, it suffices to show that the
measure is positive.

Using Proposition 4.4, choose an increasing sequence of levels (ng);>1 with the properties
that nj, > 4F and that if an allele at level n;, has density Y}, then with probability at least
1 — 8%, it has density in the range [V}, — 4~ *+1 ¥, +4~*+D] in all subsequent levels.

In particular, if an allele has density Y; at the nith level, then with probability at least
1 — 8% it has density in the range [V — 4~ *+1) Y}, + 4= *+D] at the ny, st level. Given
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this, we can establish the positivity of the measure of the set of orderings with uncountably
many maximal paths as follows.

We will show that for a set of orders of positive mass, we can realize a Cantor set as
a subset of Xy ax(w). We do this by defining, for each finite binary string x of length 7,
disjoint sets A, = Az(w) C Vi, such that if 2 is a prefix of y, then vertices in A, have level
n; maximal ancestors in A;. We then show that for a set of orders of positive mass, A, # ()
for any word z, so that given any increasing sequence of words (), there is a maximal path
which runs through vertices in A, for each j.

The symbol A will denote the empty string. For a finite string z € {0,1}7, let 20 and z1
be the extensions of the finite word x by 0 and 1 respectively. Let Ay be the set consisting
of the vertex at the top level. Given a subset A of V;,,, we let ¢;(A) consist of those vertices
in Vi,
formed by the maximal edges, ¢;(A) is the set of vertices in level nj41 that have ancestors
in A.

The inductive hypothesis is that at each stage j < k, one has disjoint subsets A, C V,,

whose (unique) maximal upward path passes through A. In other words, in the tree

for each z € {0,1}7 satisfying the following:
(1) |Ag|/M,, > 477 for each x € {0,1}7.
(2) ¢j(Ay) = Ao U Ay for each x € {0, 1};

We will show that assuming the stages up to the jth of the induction are satisfied, then
the (j + 1)st stage can be satisfied with probability at least 1 —477. The initial stage of the
induction is the set A..

Suppose that all stages up to the jth are satisfied. Then the sets A, for z € {0,1}/ form
a partition of V;,,, with each one consisting of at least M,, /47 elements. Then for each
x €{0,1}, let p, = |A|/M,,. With probability at least 1 — 877, |p;(Az)|/M,,,, is in the
range [p, — 470D p, +470U+D] Let A,o and A,y be the almost equal division of ¢;(A,)
obtained by putting the first [|¢;(A)|/2] into Azo and the rest into A,;. The densities
of these are at least 3|¢;(Ay)|/M,,,, —1/(2M,,,,). Provided that the density of ¢;(A,)
exceeds p, —47UTD | the densities of Ao and A,y exceed 3p, — 3470FD —1/(2M,,,,,) >
%pm — 4G+ > 4=G+D),

In order for this induction step to fail, for one of the 27 sets A, at the jth level we must
have a drop in density from A, to ¢(A,) of more than 4~U+1 . Using the union bound, the
probability that this happens is at worst 2/ x 877, Since these probabilities sum to less than

1, we see that with positive probability the induction steps can all be completed.

Corollary 4.5. The number of mazximal paths that a random order on B possesses is not

invariant under telescoping of B.

Proof. Consider the Bratteli diagram B where Ms, ;1 = 1 and M,, = n? for each n, and
where the incidence matrices of B are all F,, = J. Any order on B has one maximal path.
Let B’ be the diagram with M,, = n? for each n, and let the incidence matrices of B’ all be
F, = J. By Theorem 4.2, a random order on B’ has infinitely many maximal paths. On
the other hand, B can be telescoped to B’'. (]

4.2. Other Bratteli diagrams whose orders support many maximal paths. Next

we partially extend the results in Section 4.1 to a larger family of Bratteli diagrams.

Definition 4.6. Let B be a Bratteli diagram.
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e We say that B is superquadratic if there exists 6 > 0 so that M,, > n?*9 for all large
n.

e Let B be superquadratic with constant §. We say that B is exponentially bounded
if 300 [Vig1 | exp(—|Vi|/n?+29/3) converges.

We remark that the condition that B is exponentially bounded is very mild.
In Theorem 4.12 below we show that Bratteli diagrams satisfying these conditions have

infinitely many maximal paths. Given v € V,, 1, define
Veti={w eV, 1 f1) =i},

so that if the incidence matrix entries for B are all positive and bounded above by 7, then
Vo =U;_, ;! for each v € Vj 4.

Definition 4.7. Let B be a Bratteli diagram with positive incidence matrices. We say
that B is impartial if there exists an integer r so that all of B’s incidence matrix entries are
bounded above by r, and if there exists some « € (0, 1) such that for any n, any ¢ € {1,...,7}
and any v € V41, [V,VY > a|V,].

In other words, B is impartial if for any row of any incidence matrix, no entry occurs
disproportionately rarely or often with respect to the others. Note that our diagrams in
Theorem 4.2 are impartial. However the vertex sets can grow as fast as we want, so the
diagrams are not necessarily exponentially bounded. We remark also that if a Bratteli
diagram is impartial, then it is completely connected, which means that we can apply
Theorem 3.3 if j > 1.

Definition 4.8. Suppose that B is a Bratteli diagram each of whose incidence matrices has
entries with a maximum value of r. We say that A C V,, is (8, €)-equitable for B if for each
v € Vpy1 and foreach i =1,...,7,

Vi nAl

|V1),i| <e
n

B

In the case § = %, we shall speak simply of e-equitability.

Given v € V\Vj and an order w € Op, recall that we use &, = €,(w) to denote the

maximal edge with range v.

Lemma 4.9. Suppose that B is impartial. Let A C V,, be (B, ¢€)-equitable, and v € V,41.
Let the random variable X,, be defined as

x={y et
Then f—e <E(X,) < B+e.
Proof. We have
21 JANV
S dIVa

Sy dlvlB + )

DD Ao
the last inequality following since A is e-equitable. Similarly, E(X,) > 8 —e. O

]E(Xv) =

=B +e
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Lemma 4.10. Let B be an impartial Bratteli diagram with impartiality constant o and the
property that each entry of each incidence matriz is between 1 and r. Let 3, § and € be
positive, let (Dy)vevy Satisfy |p, — B < 0 for each v € Vy and let A C Viy be a randomly
chosen subset, where each v is included with probability p, independently of the inclusion
of all other vertices. Then the probability that A fails to be (8,0 + €)-equitable is at most
2T‘VN+1|€_Q‘VN‘€2 .

Proof. Let (Z,)vevy be lyca, so that these are independent Bernoulli random variables,
where Z, takes the value 1 with probability p,
For u € Vy41 and 1 <4 < r, define

1 u,i . A A u,i
(4.2) e Y 7, = HvGVNM’UE H_ | ﬂyfv N
VNl VNl

i
| N |v€V1$’i

Using Hoeffding’s inequality [Hoe63], since 8 — § < E(Y, ;) < 5+ § we have that

P({[Yui = Bl = (6 +€)}) <P({|[Yu — E(Yui)| > €})

< 26—2|v§=i\52 < 26—2a|VN|62.

This implies that

(4.3) P U U (Vi = Bl > 6+ €} | <2V |e2IVrlac)

i=lueVN41

O

Lemma 4.11. Suppose that B is impartial, superquadratic and exponentially bounded. Then

for any € small there exist n and A C V,, such that A is (%, €)-equitable.

Proof. We apply the probabilistic method. Let r and « be as in the statement of Lemma
4.10 and apply that lemma with p, = % for each v € V,,. By the superquadratic and

—20|Vale® < 1 for large n. Since the

exponentially bounded properties, one has 2r|V,;1le
probability that a randomly chosen set is (%, €)-equitable is positive, the existence of such a

set is guaranteed. O

Theorem 4.12. Suppose that B is a Bratteli diagram that is impartial, superquadratic and

exponentially bounded. Then P-almost all orders on B have infinitely many maximal paths.

We note that in the special case where B is defined as in Section 4.1, the following
proof can be simplified and does not require the condition that B is exponentially bounded.
Instead of beginning our procedure with an equitable set, which is what we do below, we

can start with any set Ay C Vv whose size relative to Vi is around 1/2.

Proof. Since B is superquadratic, we find a sequence (¢;) such that

(4.4) Zej < 0o and
j=1
(4.5) Mje? > j7 for some v > 0 and large enough j.

Fix N so that (4.5) holds for all j > N, and let NV be large enough so that Z;‘;N € < 3.

Moreover, we can also choose our sequence (¢;) and our N large enough so that there exists
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a set Ay C Vi which is ey-equitable: by Lemma 4.11, this can be done. For all k& > 0,

define also

k
ON+k = E EN+i-
i=0

Finally, let r be so that all entries of all F}, are bounded above by 7.

Define recursively, for all integers £ > 0 and all v € Vv, the Bernoulli random variables
{X, : 05 = {0,1} : v € Vy11}, and the random sets {An 1 : Op — 2VV++ 1 k > 1}, where
X,(w)=1if s(€,) € ANtk—1, and 0 otherwise, and Ay = {v € Vnyr + X, = 1}.

We shall show that for a large set of w, each set Ayt is dn4r-equitable. This implies
that the size of Anyy is not far from %|VN+;€|. For, if k > 1, define the event

Dnik i={w: Ayyk I8 Oyt — equitable}.
We claim that
P(D i1 Dvgr) > 1= 27 Vivgppole 20V smstltn,

To see this, notice that if w € Dk, then by Lemma 4.9, given Fnik, each vertex in
VN+k+1 is independently present in Anix41 with probability in the range [ — dn+k, 8 +
On+k). Hence by Lemma 4.10, Anyr11 iS Oy yrt1-equitable with probability at least 1 —
2T‘VN+k+2|6_0‘|VN+k+1|E?\I+Ic+2_

Next we show that our work implies that a random order has at least two maximal paths.
Let v =1 — ZJO';N €;. Notice that if A, # V,, for all n > N, then there are at least two
maximal paths. By our choice of N and v > 0 we have that

P({w : | Xmax(w)| > 2}) 21@((] {w:7< [ AN k] <1l-~n })

Y = Vgl T

>P (ﬂ DN+k>
k=1

= lim P(Dys1)

n—oo

=

P(Dnykt1|DNyk)

b
Il
—

(1 - 2T|VN+k+2|€_2‘VN+IH’1‘QE?\I+I¢+1)’

=

n—oo

=
Il
_

and the condition that B is superquadratic and exponentially bounded ensures that this last
term converges to a non-zero value.

We can repeat this argument to show that for any natural k, a random order has at least
k maximal paths. We remark also that the techniques of Section 4.1 could be generalized
to show that a random order would have uncountably many maximal paths.

We now apply Theorem 3.3.
O

Acknowledgements. We thank Richard Nowakowski and Bing Zhou for helpful discussions

around Lemma 3.4.
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