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AND ANTHONY QUAS

Abstract. We study cocycles of compact operators acting on a
separable Hilbert space, and investigate the stability of the Lya-
punov exponents and Oseledets spaces when the operators are sub-
jected to additive Gaussian noise. We show that as the noise is
shrunk to 0, the Lyapunov exponents of the perturbed cocycle
converge to those of the unperturbed cocycle; and the Oseledets
spaces converge in probability to those of the unperturbed cocy-
cle. This is, to our knowledge, the first result of this type with
cocycles taking values in operators on infinite-dimensional spaces.
The infinite dimensionality gives rise to a number of substantial
difficulties that are not present in the finite-dimensional case.

1. Introduction

A question of paramount importance in applied mathematics is: How
to tell if the conclusions derived from a model indeed capture relevant
features of an underlying system? Stability results address this question
by giving conditions under which small changes in a model produce only
small changes in the outcomes of the analysis.

In the last decade, multiplicative ergodic theory has been developed
in the so-called semi-invertible setting (that is the setting in which the
underlying base dynamics are assumed to be invertible, but no invert-
ibility assumptions are made on the matrices) [11, 12, 14, 15]. This
enables a fine analysis of time-dependent or driven dyanamics, where
the driving is invertible, but the phase space dynamics need not be
invertible. Driven linear dynamics, modelled by cocycles of (possibly
non-invertible matrices or non-injective linear operators) fits into this
framework, but one may also consider a variety of linearisations of
driven nonlinear dynamics. An important linearisation is the replace-
ment of a nonlinear dynamical system on a finite-dimensional phase
space with its transfer operator describing the linear action of the dy-
namics on real- or complex-valued functions of the phase space. This
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linearisation provides a useful mathematical tool to numerically anal-
yse phase space transport in time-dependent nonlinear systems, such
as models of (driven) geophysical flows [13].

The Lyapunov spectrum of the linear (or linearised) cocycle quanti-
fies the magnitudes and timescales of growth and decay in the driven
dynamics, and the corresponding so-called Oseledets spaces determine
the modes in which this growth or decay occurs. From a modelling per-
spective, it is important to know that Lyapunov spectral analyses of
models are robust to model errors and to numerical errors. That is, do
the Lyapunov exponents and Oseledets spaces – obtained using either
mathematical models or observational data, both of which contain er-
rors – correspond to real features of the driven system? Further, are the
Lyapunov exponents and Oseledets spaces insensitive to the inevitable
numerical approximation errors in the numerical schemes required to
extract these ergodic-theoretic objects from models or observational
data?

The aim of this work is to provide an initial step in establishing con-
ditions for the stability of Lyapunov exponents and Oseledets spaces,
the essential components underlying multiplicative ergodic theory, in
an infinite-dimensional context. The infinite dimensionality aspect
is crucial for stability results for driven linear dynamics on infinite
phase spaces and to eventually encompass the setting of transfer op-
erators and other infinite-dimensional linearisations. In the infinite-
dimensional context, and aside from works focusing exclusively on the
i.i.d. perturbation (noise) setting, stability results have only been es-
tablished either (i) under uniform hyperbolicity assumptions on the
underlying cocycle, which for example cover the case of random per-
turbations of a fixed map [1, 6]; or (ii) for the top (first) component of
the splitting, in the context of transfer operators [9], where the leading
Lyapunov exponent is always 0, corresponding to a random fixed point.

Early results concerning stability of Lyapunov exponents for finite-
dimensional (matrix) cocycles include [23, 18, 19, 16]. In the setting of
invertible matrix cocycles, the closest results to this work are due to
Ledrappier, Young and Ochs [24, 21, 22]. The difficulty of the stability
problem at hand, even in the finite-dimensional setting, is highlighted
by the existence of negative stability results for Lyapunov exponents
of matrix cocycles [3, 4], which show that for non-uniformly hyperbolic
cocycles, carefully chosen arbitrarily small perturbations may collapse
the entire spectrum of Lyapunov exponents to a single exponent. In this
finite-dimensional setting, the stability problem remains an active topic
of research, and related recent results include [5, 2]. In the setting of
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semi-invertible matrix cocycles, the authors established stability results
under stochastic perturbations in [10, 8].

In this paper, we study cocycles taking values in compact operators
on a separable Hilbert space. The unperturbed cocycle is assumed
to be strongly coercive, with exponentially-decaying transmission be-
tween higher order modes, so that the leading Oseledets spaces tend
to be concentrated on low order modes. This issue of the cocycle
sending an arbitrarily high-order mode to a low-order mode does not
arise in the finite-dimensional setting. Additionally, unlike the finite-
dimensional case, there is no natural Lebesgue-like measure on the
infinite-dimensional space of perturbations. Hence as our model of
noise we use additive Gaussian perturbations. The Gaussian nature of
the perturbations allows for unbounded changes, and is also convenient
for calculations. In order to maintain the noise as a small perturbation,
the Gaussian perturbations are required to have stronger exponential
decay than the unperturbed cocycle. We regard the model as a nat-
ural generalisation of the finite-dimensional Ledrappier-Young setting
to infinite dimensions.

The main results of the paper, Theorems A and B, yield, respec-
tively, convergence of Lyapunov exponents and Oseledets spaces of the
randomly perturbed cocycles. The method of proof of stability of Lya-
punov exponents builds on the work of Ledrappier and Young [21],
which dealt with Lyapunov exponents in invertible matrix cocycles, as
well as on our recent work [10], which had to handle the complications
arising from non-invertibility of the matrices. Section 2.2 presents ex-
amples for which Theorems A and B apply.

2. The model and principal results

Throughout the paper σ : Ω → Ω is an invertible measurable trans-
formation, P is an ergodic invariant probability measure, and H is a
separable Hilbert space with basis e1, e2, . . ..

The Hilbert-Schmidt norm is ‖A‖2
HS =

∑
i,j〈Aei, ej〉2. Define a

stronger norm: ‖A‖2
SHS =

∑
i,j 22(i+j)〈Aei, ej〉2. We frequently think

of operators with bounded HS norm as infinite matrices where the en-
tries are square-summable. We write HS for the collection of Hilbert-
Schmidt operators on H (those operators, A, satisfying ‖A‖HS < ∞),
and SHS for the collection of strong Hilbert-Schmidt operators (those
operators satisfying ‖A‖SHS <∞).

We write A
(n)
ω for the unperturbed cocycle: A

(n)
ω = Aσn−1ω · · ·Aω,

and call A : Ω→ SHS the generator of the operator cocycle. Through-
out the article, ∆ will denote the random Hilbert-Schmidt operator
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with independent normal entries with mean 0 and where the (i, j) en-
try has standard deviation 3−(i+j). Write γ for the measure on SHS
corresponding to this distribution. We apply a sequence of indepen-
dent perturbations ∆ = (∆n)n∈Z, where each ∆n has the distribution
above. For ω lying in the base space, we denote by ω̄ the pair (ω,∆)
specifying the point of the base space and the sequence of perturba-
tions. The space of such pairs is denoted by Ω̄, and is equipped with
the transformation σ̄ = σ × s, where s is the left shift on the sequence
of perturbations and the ergodic invariant measure P̄ = P × γZ. The
perturbed cocycle is parameterized by ε (a measure of the size of the
perturbation) and defined by

Aε
(n)
ω̄ = (Aσn−1ω + ε∆n−1) · · · (Aω + ε∆0).

Theorem A. Let σ : Ω → Ω be an invertible measurable transforma-
tion and let P be an ergodic invariant probability measure for σ. Let
H be a separable Hilbert space and let A : Ω→ SHS be the generator of
an operator cocycle satisfying

∫
log ‖Aω‖SHS dP(ω) <∞.

Let Ω̄, σ̄ and P̄ be as defined above. For each parameter ε > 0, define
a new cocycle Aε : Ω̄→ SHS over σ̄ with generator Aε(ω̄) = A(ω)+ε∆0.
Then the Lyapunov exponents of Aε (listed with multiplicity) converge
to those of A as ε→ 0.

Theorem B. Assume the hypotheses and notation of Theorem A. Let
the (at most countably many) distinct Lyapunov exponents of the co-
cycle A be λ1 > λ2 > . . . > −∞, with corresponding multiplicities
d1, d2, . . .. Let the corresponding Oseledets decomposition be SHS =
Y1(ω) ⊕ Y2(ω) ⊕ . . .. Let D0 = 0, Di = d1 + . . . + di and let the Lya-
punov exponents (with multiplicity) be ∞ > µ1 ≥ µ2 ≥ . . . > −∞, so
that µj = λi if Di−1 < j ≤ Di.

Let Ui = (λi − α, λi + α) be a neighbourhood of λi not containing
any other exponent of the unperturbed cocycle. Let ε0 be such that for
each ε ≤ ε0 and each Di−1 < j ≤ Di, the jth Lyapunov exponent µεj
of the perturbed cocycle satisfies µεj ∈ Ui. For ε < ε0, let Y ε

i (ω̄) denote
the sum of the Oseledets subspaces of Aε having exponents in Ui. Then
Y ε
i (ω̄) converges in probability to Yi(ω) as ε→ 0.

For λ > 1, we let Dλ be the diagonal matrix whose (i, i) entry is λ−i.
Formally we can write the random operator ∆ from Theorem A as
D3ND3, where N is a countably infinite square matrix of independent
standard normal random variables.

Throughout the remainder of the paper there will be numerous con-
stants. We will mostly just use the symbol C to indicate a constant,
where C may refer to different constants at different places, even in
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the same proof. That is, whenever we write C, we refer to a quantity
that may depend on k (the number of exponents that we aim to con-
trol), and on the underlying dynamical system, but not on ε, the size of
the perturbations. The exception to this will be some of the principal
propositions where estimates are collected for assembly in Section 9. In
these propositions, constants will be numbered according to the propo-
sition in which they are found, so that C34, for example, is defined in
Lemma 34.

2.1. Discussion of proof strategy. The strategies in all three pa-
pers, [21, 10] and this one, are similar in spirit: The idea is to split
long sequences of matrices observed along the cocycle into good and bad
blocks, depending on whether or not the long term behaviour of the co-
cycle corresponds to the observed behaviour within the block, and then
handle carefully the concatenations. However, at the technical level,
there are substantial complications in this new infinite-dimensional set-
ting, arising from the need to handle wild perturbations occurring in
possibly higher and higher modes.

As in the previous works [22, 10], the stability of Oseledets spaces is
deduced from the stability of the Lyapunov exponents, but the strategy
of the proof here is different. The approach of Ochs [22] applies only to
invertible matrices, and the proof is essentially finite-dimensional. The
core of the argument is: if the perturbed slowest Oseledets spaces were
often far from its unperturbed counterpart, the contribution to the bot-
tom exponent of the perturbed system on this part of the base space
would be at least λd−1. Hence, convergence of the exponents implies
the perturbed and unperturbed slow spaces are mostly nearby. This
is basically an expectation argument. Subsequent Oseledets spaces
are similarly controlled using exterior powers. The approach of [10]
in the context of not necessarily invertible matrices relies on the use
of Möbius transformations or graph transforms. The essence of the
argument is one fixes all of the perturbations to the matrices other
than the perturbation at time −1. Since there is exponential contrac-
tion in a cone around the unperturbed fast space (that is the span of
the k-dimensional Oseledets spaces with largest Lyapunov exponents),
all but a very small set of perturbations at time −1 cause the fast
space to fall into the basin of attraction, and to end up near the un-
perturbed fast space. While this approach would still apply in the
infinite-dimensional case, the new argument of this paper has the ad-
vantages that it is simpler and more general; in particular, it does not
rely on any special structure for the perturbations, such as absolute
continuity, which played a role in [10]. All that is required is that
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the perturbations are small with high probability. The approach in
the current paper goes as follows: If the perturbed k-dimensional fast
space is not close to the unperturbed fast space at time N (where N
is the block size), then the minimum angle between the perturbed fast
space at time 0 and the unperturbed slow space at time 0 has to be
exponentially small. Whenever this happens, there is a growth drop of
the k-dimensional volume of order exp(−(λk−λk+1)N) over this block.
An expectation argument ensures that this must happen rarely because
otherwise the perturbed λk would be much less than the unperturbed
λk.

Finally, we briefly describe in more detail the structure of the proof
of Theorem A since there is considerable preparation before we start
the proof. The bulk of the proof is concerned with giving a lower
bound for the sum of the k leading perturbed exponents, that is the
maximal logarithmic growth rate of k-volumes. Given ε, one defines
a block length, N ∼ | log ε|. For a large n, we estimate the top expo-

nents of the product Aε
(nN)
ω̄ , a perturbed block of length nN . First,

we replace the (sub-additive) logarithmic k-volume growth, Ξk(·) by
a related approximately super-additive quantity, Ξ̃k(·) (Sections 7 and

8). We use this super-additivity to split Aε
(nN)
ω̄ into good super-blocks

(of length a multiple of N) and bad blocks (of length N − 2), that

is Ξk(A
ε(nN)
ω̄ ) & Ξ̃k(A

ε(nN)
ω̄ ) &

∑
Ξ̃k(blocks). In section 4, ingredients

for the estimate Ξk(G
ε) & Ξk(G) are established, where G represents

a good super-block and Gε its perturbed version. In sections 5 and 6,
ingredients for Ξ̃k(B

ε) & Ξ̃k(B) are established (where B is a bad block
and Bε is its perturbed version). The estimates Ξ̃k(B) & Ξk(B) and
Ξ̃k(G

ε) & Ξk(G
ε) are based on ingredients in Section 8. Re-assembling

the pieces using sub-additivity of Ξk and accounting for the errors gives
the result.

2.2. Examples. Here we present a simple class of cocycles for which
Theorems A and B apply. Let σ : Ω → Ω be an invertible measurable
transformation of (Ω,P), P an ergodic invariant probability measure
for σ and H = `2. Consider a sequence of log-integrable functions
ai : Ω → R, each inducing a one-dimensional cocycle over σ, with
generator ω 7→ ai(ω) and associated Lyapunov νi =

∫
log |ai| dP. For

each ω ∈ Ω, consider the (infinite) diagonal matrix A(ω), with diagonal
entries ai(ω). Notice that ‖A(ω)‖2

SHS =
∑∞

i=1 24iai(ω)2, which may
be translated into explicit necessary and sufficient conditions for the
hypotheses (i) A : Ω→ SHS and (ii)

∫
log ‖A‖SHS dP <∞ to hold, and

thus for Theorems A and B to apply.
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Notice that, in a similar manner, one can construct examples of block
diagonal and triangular cocycles with explicit conditions prescribed to
ensure A(ω) ∈ SHS and

∫
log ‖A‖SHS dP < ∞, so that the theorems

apply.

3. Notation and the quantity Ξ̃k

Recall that the Grassmannian of a Banach space is the space of closed
complemented subspaces. In a Hilbert space, every closed subspace is
complemented (by its orthogonal complement). We define Gk(H) to
be the space of (necessarily closed) k-dimensional subspaces of H and
Gk(H) to be the space of closed k-codimensional subspaces of H. The
collection of all closed subspaces of H will be written G(H). We will
reserve the symbol S for the unit sphere of H throughout the article.

We define a metric on G(H) by

∠(U, V ) = max

(
max
u∈U∩S

min
v∈V ∩S

‖u− v‖, max
v∈V ∩S

min
u∈U∩S

‖u− v‖
)
,

that is the Hausdorff distance between the intersections of the two
subspaces with the unit sphere. We remark that this differs by at
most a bounded factor from another metric, the ‘gap’ between closed
subspaces defined in Kato [17]. This is a complete metric on G(H).

We also make use of a measure of transversality between two sub-
spaces of complementary dimensions: if U ∈ Gk(H) and V ∈ Gk(H),
then

⊥(U, V ) =
1√
2

min
u∈U∩S,v∈V ∩S

‖u− v‖.

The normalization is chosen so that if U and V have a common vector,
then ⊥(U, V ) = 0, while if they are orthogonal complements, then
⊥(U, V ) = 1. We have the reverse triangle inequality: if U ′, U ∈ Gk(H),
V, V ′ ∈ Gk(H), then ⊥(U ′, V ′) ≥ ⊥(U, V )− ∠(V, V ′)− ∠(U,U ′).

We already introduced the classes of linear operators HS and SHS on
H with their associated norms, so that we have SHS ⊂ HS ⊂ K(H),
where K(H) stands for the compact linear operators on H. We write
‖ · ‖op for the operator norm, so that ‖ · ‖SHS ≥ ‖ · ‖HS for elements of
SHS and ‖ · ‖HS ≥ ‖ · ‖op for elements of HS.

For compact operators on H, the notions of singular vectors and
singular values pass directly from the finite-dimensional case. If A ∈
K(H), we write s1(A) ≥ s2(A) ≥ . . . for the singular values (with
multiplicity in decreasing order). The maximal logarithmic rate of k-
dimensional volume growth is given by Ξk(A) := log(s1(A) · · · sk(A)).

Define
Ξ̃k(A) = EΞk(Πk∆A∆′Πk),
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where Πk denotes orthogonal projection onto the subspace ofH spanned
by e1, . . . , ek and ∆ and ∆′ are independent copies of the random
Hilbert-Schmidt operator. The key reason for the introduction of Ξ̃k is
that it satisfies an approximate super-additivity property (see Proposi-
tion 24) that complements the sub-additivity of Ξk.

We denote by Ω̄, the space Ω × SHSZ and act on Ω̄ with the trans-
formation σ × s, where s is the left-shift map on SHSZ. The space
Ω̄ is equipped with the measure P × γZ, where γ is the multi-variate
normal distribution on SHS described above in which distinct elements
of ∆ are independent and the (i, j) element is normal with mean 0 and
variance 3−2(i+j). We write ω̄ for a typical element of Ω̄, that is a pair
(ω,∆), where ∆ = (∆n)n∈Z.

Informally, we expect an inequality like Ξ̃k(A) ≥ Ξk(A)− EL
k(A)−

ER
k(A). By EL

k(A) (which stands for ‘left energy’), we mean a measure
of the modes on which the top k left singular vectors are distributed,
while ER

k(A) measures the modes where the right singular vectors are
supported. For example, if the top left singular vectors are e7, e8, e11

and e13, we expect EL
4(A) to be approximately 39 log 3.

Lemma 1. Let V be a k-dimensional subspace of H. Let D be a
bounded operator on H. There exists an orthonormal basis v1, . . . , vk
for V with the property that Dv1, . . . , Dvk are mutually orthogonal.

This follows from the singular value decomposition of finite-dimensional
operators.

Lemma 2. Let U and V be k-dimensional subspaces of H. Then the
two quantities appearing in the definition of ∠(U, V ) are equal:

max
u∈U∩S

min
v∈V ∩S

‖u− v‖ = max
v∈V ∩S

min
u∈U∩S

‖u− v‖.

Proof. Let ΠU be the orthogonal projection onto U and ΠV be the
orthogonal projection onto V . Then the singular vectors of ΠV ◦ ΠU

give an orthogonal basis of U , u1, . . . , un with images s1v1, . . . , snvn,
where v1, . . . , vn form an orthogonal basis of V (if ΠV ΠUui = 0, then
vi can be chosen to be an arbitrary unit vector of V satisfying the
orthogonality condition). Write ui = sivi + wi with wi ∈ V ⊥. One can
then check that 〈ui, vj〉 = 0 if i 6= j. Notice that ui and sivi are either
equal or non-collinear. It follows from the above that U + V may be
expressed as the orthogonal direct sum lin{u1, v1} ⊕ . . . ⊕ lin{un, vn}.
One can now check that the linear map R from U+V to itself mapping
ui to vi and vice versa is an isometry interchanging U and V . Applying
this map yields the desired equality. �
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Let V be a k-dimensional subspace of H, and Π be the orthogonal
projection onto V . We define the energy of Π (also the ‘energy of V ’)
to be

Ek(Π) = −Ξk(Π ◦ D3) = −
k∑
i=1

log ‖D3vi‖,

where the (vi) are as guaranteed by the Lemma 1 with the operator D
taken to be D3.

Lemma 3. For any k ∈ N, there exists a C > 0 such that if Π and Π′

are orthogonal projections onto k-dimensional subspaces and Q ⊂ HS
satisfies γ(Q) ≥ 1

2
, then∣∣E (Ξk(Π∆Π′)

∣∣∆ ∈ Q)+ (Ek(Π) + Ek(Π′))
∣∣ ≤ C.

Proof. Let u1, . . . , uk be the basis guaranteed by Lemma 1 (applied
with D = D3) for the range of Π and v1, . . . , vk be the corresponding
basis for Π′.

Now Ξk(Π∆Π′) = log det |M |, where M is a random matrix whose
(i, j) entry is 〈ui,∆vj〉. The entries of M therefore have a multi-variate
normal distribution. Each has mean 0, so the unconditioned distribu-
tion of M is determined by the covariance of the pairs of entries of the
matrix.

Using the fact that the coordinates of the u’s and v’s are bounded
and the entries of ∆ decay exponentially, we calculate

Cov(Mij,Mi′j′) = E
∑

l,m,l′,m′

(ui)l∆lm(vj)m(ui′)l′∆l′m′(vj′)m′

=
∑
l,m

3−2(l+m)(ui)l(ui′)l(vj)m(vj′)m

= 〈D3ui,D3ui′〉〈D3vj,D3vj′〉,

where for the second line, we used the fact that distinct entries of
∆ are independent, and so have 0 covariance. We see then, by the
choice of u’s and v’s, that distinct entries of M have 0 covariance,
and so are independent. The variance of the (i, j) entry of the matrix
is ‖D3ui‖2‖D3vj‖2, hence the unconditioned distribution of the (i, j)
entry of the matrix is ‖D3ui‖‖D3vj‖ times a standard normal.

Notice that the entire i row has a multiplicative factor of ‖D3ui‖
and the entire j column has a multiplicative factor of ‖D3vj‖, so that
the determinant is

∏
i ‖D3ui‖

∏
j ‖D3vj‖ det(Nk), where Nk is a k ×

k random matrix with independent standard normal entries, so that
taking logarithms, we see Ξk(Π∆Π′) = −Ek(Π)−Ek(Π′)+log | detNk|.
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Replacing ∆ with a conditioned version has the effect of multiplying
the density of Nk by a factor in the range [0, 2]. Since log | det(Nk)| is
an integrable function, there are uniform upper and lower bounds for∫

log | det(Nk)|ρ(Nk) over all functions ρ taking values in [0, 2], so that∣∣E (Ξk(Π∆Π′)
∣∣∆ ∈ Q)+ Ek(Π) + Ek(Π′)

∣∣ ≤ C,

as required. �

Corollary 4. There exists K > 0 such that if Π′ and Π′′ are two
orthogonal projections and Q ⊂ HS satisfies γ(Q) > 1

2
, then∣∣∣E (Ξk(Π∆Π′)|∆ ∈ Q

)
−
(
EΞk(Π∆Πk) + EΞk(Πk∆Π′)

)∣∣∣ < C

Proof. By Lemma 3, we have the following∣∣E (Ξk(Π∆Π′)
∣∣∆ ∈ Q)+ Ek(Π) + Ek(Π′)

∣∣ ≤ C;∣∣EΞk(Π∆Πk) + Ek(Π) + Ek(Πk)
∣∣ ≤ C;∣∣EΞk(Πk∆Π′) + Ek(Π) + Ek(Πk)
∣∣ ≤ C,

where C is the constant from Lemma 3.
We calculate that Ek(Πk) = 1

2
k(k − 1) log 3, so that combining the

inequalities, we obtain∣∣E (Ξk(Π∆Π′)
∣∣∆ ∈ Q)− (EΞk(Π∆Πk) + EΞk(Πk∆Π′)

)∣∣∣ ≤ K,

where K = 3C + k(k − 1) log 3. �

4. Good Blocks

This section deals with good blocks. The strategy we follow goes
back to Ledrappier and Young in the context of invertible matrices
[21, Lemmas 3.3, 3.6 & 4.3], and it was later used in [10]. Lemma 7
is the main tool to control the effect of perturbations on good blocks.
Lemma 8 collects standard facts about Lyapunov exponents, Oseledets
splittings and their approximations via singular vectors, which are used
to define good blocks. Lemma 9 establishes the conditions defining
tame perturbations. Proposition 10 provides a lower bound on Ξk

over a sequence of tame perturbations, comparable with Ξk for the
unperturbed cocycle.

For each k ∈ N, we define Ek(A) to be the space spanned by the im-
ages of the singular vectors with k largest singular values under A, and
Fk(A) to be the space spanned by the orthogonal complement of the
pre-image of Ek(A) under A. Thus, Fk(A) is exactly the space spanned
by those singular vectors of A whose singular value is not amongst the
k largest. We note that the spaces Fk(A), Ek(A) are uniquely defined
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when the singular values sk(A) and sk+1(A) are distinct. We will al-
ways use our results in this setting, and therefore do not worry about
the possibility of non-uniqueness.

We collect some properties of singular values and singular vectors for
compact operators on Hilbert spaces and matrices.

Lemma 5. Let A be a compact operator on a Hilbert space, H. Let
the singular values be s1(A), s2(A), . . ..

(a) sj(A) = minV ∈Gj−1(H) maxx∈V ∩S ‖Ax‖;
(b) sj(A) = maxV ∈Gj(H) minx∈V ∩S ‖Ax‖;
(c) |sj(A)− sj(B)| ≤ ‖A−B‖op;

Proof. The characterizations (a) and (b) are well known.
To show (c), using (b), let V be a j-dimensional space such that
‖Ax‖ ≥ sj(A) for all x ∈ V ∩ S. Then ‖Bx‖ ≥ sj(A)− ‖A− B‖op for
all x ∈ V ∩S, so that using (b) again, we see sj(B) ≥ sj(A)−‖A−B‖op.
By symmetry, sj(A) ≥ sj(B)− ‖A−B‖op, giving the result. �

Lemma 6. Let U ∈ Gk(H) and V ∈ Gk(H). Then sk(ΠU⊥ΠV ) ≥
⊥(U, V ).

Proof. Choose v ∈ V with ‖v‖ = 1. Let v = u+w with u ∈ U and w ∈
U⊥. Let û ∈ U ∩S be such that u = ‖u‖û (û may be chosen arbitrarily
if u = 0) and let θ be the angle between û and v, so that 0 < θ ≤ π

2
. By

assumption ‖û− v‖ ≥
√

2⊥(U, V ). We have ‖û− v‖ = 2 sin θ
2
. Notice

that ‖w‖ = ‖ΠU⊥v‖ = sin θ = 2 sin θ
2

cos θ
2
≥
√

2⊥(U, V ) cos θ
2
. Since

θ ≤ π
2
, we see ‖ΠU⊥v‖ ≥ ⊥(U, V ) for all v ∈ V ∩ S. �

Lemma 7. For any δ < 1
2
, there exists a K > δ−(4k+3) such that if

(i) the kth singular value of a compact linear operator A : X → X
exceeds K; (ii) the (k + 1)st singular value of A is at most 1; and (iii)
‖B − A‖ ≤ 1, then the following hold:

(a) e−δ ≤ sj(A)/sj(B) ≤ eδ for each j ≤ k and sj(B) ≤ 2 for each
j > k;

(b) ∠(Ek(A), Ek(B)) and ∠(Fk(A), Fk(B)) are less than δ;
(c) If V is any subspace of dimension k such that ⊥(V, Fk(A)) > δ,

then ∠(BV,Ek(A)) < δ;
(d) If V is a subspace of dimension k and ⊥(V, Fk(A)) > 2δ, then
| det(B|V )| ≥ δk exp Ξk(B).

Proof. For each closed subspace W of X, let ΠW : X → W be the
orthogonal projection onto W .

(a) For the first part, notice that by assumption, for j ≤ k, we have
sj(A) ≥ K. Also by Lemma 5(c), we have |sj(A) − sj(B)| ≤ 1,
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so that K
K+1
≤ sj(A)/sj(B) ≤ K

K−1
. The second part of the claim

follows from Lemma 5(c) also.
(b) Let K > 1 + 6

δ
. For symmetry, in this part, we assume only

sk(A), sk(B) ≥ K − 1, sk+1(A), sk+1(B) ≤ 2 and ‖A−B‖op ≤ 1.
Let v ∈ S satisfy d(v, Fk(A) ∩ S) ≥ δ. We will show that v 6∈

Fk(B). Let v = u + w with u ∈ Fk(A) and w ∈ Fk(A)⊥. By
assumption, ‖w‖ ≥ δ

2
, so that ‖Bv‖ ≥ ‖Av‖ − 1 ≥ ‖Aw‖ − 1 >

(K−1)‖w‖−1 > 2. On the other hand, if v ∈ Fk(B), then ‖Bv‖ ≤
sk+1(B) ≤ 2. The identical argument shows that if v ∈ Fk(A) ∩ S,
then d(v, Fk(B) ∩ S) < δ

To show the closeness of the fast spaces, first let v ∈ Fk(B)⊥∩S,
and write v as au + w, where u ∈ Fk(A) ∩ S and w ∈ Fk(A)⊥.
Let u′ ∈ Fk(B) ∩ S satisfy ‖u − u′‖ < δ (such a u′ exists by the
paragraph above). Now 〈v, u〉 = 〈v, u′〉 + 〈v, u − u′〉. The first
term is 0 and the second term is less than δ in absolute value.
Hence |a| < δ and ‖w‖ ≥ 1

2
. Now Bv = aAu + Aw + (B − A)v.

In particular, ‖Bv − Aw‖ ≤ 2δ + 1 ≤ 2 while ‖Bv‖ ≥ K − 1.
Hence if z ∈ Ek(B) ∩ S, we have d(z, Ek(A)) ≤ 2/(K − 1), so
d(z, Ek(A) ∩ S) ≤ 4/(K − 1). The identical argument holds if the
roles of A and B are reversed, so ∠(Ek(A), Ek(B)) < 4/(K−1) < δ.

(c) Let K > 4/δ2 + 2/δ. Let v ∈ V ∩ S and write v = u + w with
u ∈ Fk(A) and w ∈ Fk(A)⊥. By assumption, ‖w‖ ≥ δ. Hence
‖Aw‖ ≥ Kδ, while ‖Au‖ ≤ 1. Since ‖B−A‖op ≤ 1, we have ‖Bv−
Aw‖ ≤ ‖Bv−Av‖+ ‖Av−Aw‖ ≤ 2, so that ‖Bv−Aw‖/‖Bv‖ ≤
2/(Kδ− 2). Hence for an arbitrary element, y of BV ∩ S, we have
d(y, Ek(A)) ≤ 2/(Kδ−2) < δ

2
and d(y, Ek(A)∩S) ≤ 4/(Kδ−2) <

δ. By Lemma 2, we deduce that ∠(BV,Ek(A)) < δ as required.
(d) We have that log | det(B|V )| ≥ Ξk(ΠEk(B)B|V ) = Ξk(BΠFk(B)⊥ |V ) =

Ξk(BΠFk(B)⊥ΠV ) = Ξk(BΠFk(B)⊥) + Ξk(ΠFk(B)⊥ΠV ) ≥ Ξk(B) +
k log δ. The last inequality follows from the facts that Ξk(BΠFk(B)⊥) =

Ξk(B); and⊥(Fk(B)⊥, V ) ≥ ⊥(Fk(A)⊥, V )−∠(Fk(A)⊥, Fk(B)⊥) >
δ so that ‖ΠFk(B)⊥ΠV v‖ ≥ δ‖v‖ for every v ∈ V by Lemma 6, hence
Ξk(ΠFk(B)⊥ΠV ) ≥ k log δ. The claim follows.

�

The following lemma underlies the definition of good blocks: Using
the notation of the lemma, if n ≥ n0 and ω ∈ G, and we say the block

A
(n)
ω is good. See [10, Lemma 2.4] for a proof in the context of matrix

cocycles, which applies without changes in our setting.
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Lemma 8 (Good blocks). Let σ be an invertible ergodic measure-
preserving transformation of (Ω,P) and let A : Ω→ SHS be a measur-
able map, taking values in the strong Hilbert-Schmidt operators on H,
and such that

∫
log+ ‖A(ω)‖SHS dP(ω) < ∞. Let the Lyapunov expo-

nents of the cocycle A be ∞ > µ1 ≥ µ2 ≥ . . . ≥ −∞, counted with mul-
tiplicities. Suppose k ≥ 1 is such that µk > 0 > µk+1. Let Ek(ω) and
Fk(ω) denote the k-dimensional and k-codimensional Oseledets spaces
of A at ω corresponding to Lyapunov exponents µ1 ≥ · · · ≥ µk and
µk+1 ≥ . . . , respectively.

Let ξ > 0 and δ1 > 0 be given. Then there exist n0 > 0, τ ≤
min(δ1,

1
4
µk) and 0 < δ ≤ δ1 such that: for all n ≥ n0, there exists a

set G ⊆ Ω with P(G) > 1− ξ such that for ω ∈ G, we have

(a) ⊥ (Fk(ω), Ek(ω)) > 10δ;

(b) ∠(Ek(A
(n)
ω ), Ek(σ

nω)) < δ;

(c) ∠(Fk(A
(n)
ω ), Fk(ω)) < δ;

(d) e(µk+τ)n > sk(A
(n)
ω ) > max(K(δ), e(µk−τ)n) and sk+1(A

(n)
ω ) < 1,

where K(δ) is as given in Lemma 7.
(e) 1

n

∑n−1
i=0 log(1 + ‖Aσiω‖SHS) < 2

∫
log(1 + ‖Aω‖SHS) dP(ω).

Assume that ε > 0 is fixed. A perturbation ∆ is said to be tame if
|∆s,t| ≤ ε−1/2(2

3
)s+t for all s, t (otherwise ∆ is wild). A quick calculation

shows that if ∆ is tame, then ‖ε∆‖HS < 2
√
ε.

Lemma 9 (Good block length). Let σ : (Ω,P) 	 be an ergodic measure-
preserving transformation. Let A : Ω → B(H) be a measurable map,
taking values in the bounded linear operators on H, such that log+ ‖A(ω)‖op
is integrable. There exists C9 > 0 such that for all η0 > 0, there exists
ε0 such that for all ε < ε0, there exists G ⊆ Ω of measure at least 1−η0

such that for all ω ∈ G, if (∆n) ∈ HSZ satisfies ∆n is tame for each
0 ≤ n < N , then

‖Aε(N)
ω̄ − A(N)

ω ‖op ≤ 1,

where ω̄ = (ω, (∆n)), N = bC9| log ε|c and Aε
(N)
ω̄ = AεN−1(ω̄) . . . Aε1(ω̄)Aε0(ω̄).

The probability that one of ∆0, . . . ,∆N−1 is wild is O(e−1/(2ε)).

Proof. Let g(ω) = log+(‖Aω‖op+1) and let C > 0 satisfy
∫
g(ω) dP(ω) <

1/(2C). Notice that provided ε < 1
4

(and assuming that the pertur-
bations (∆n)0≤n<N are tame, so that ‖ε∆n‖op ≤ ‖ε∆n‖HS ≤ 2

√
ε for

0 ≤ n < N), log+ ‖Aεσ̄nω̄‖ ≤ g(σnω) for each 0 ≤ n < N , and

‖Aε(N)
ω̄ − A(N)

ω ‖op ≤
N−1∑
i=0

‖Aε(N−i−1)

σ̄iω̄
(Aεσ̄iω̄ − Aσiω)A(i)

ω ‖op

≤ 2N
√
ε exp(g(ω) + . . .+ g(σN−1ω)).
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There exists n0 such that for N ≥ n0, g(ω)+. . .+g(σN−1ω) ≤ N/(2C)−
log(4N) on a set of measure at least 1−η0, hence 2N

√
ε exp(g(ω)+. . .+

g(σN−1ω)) ≤ 1
2

√
ε exp(N/(2C)) on a set of measure at least 1− η0. In

particular, provided bC| log ε0|c > n0, taking N = bC| log ε|c, we have

‖Aε(N)
ω̄ −A(N)

ω ‖op ≤ 1 provided that the perturbations ∆0, . . .∆N−1 are
all tame.

Recall that (i, j)th entry of ∆ is distributed as 3−(i+j) times a stan-
dard normal random variable. Hence the probability that |∆i,j| >
ε−1/2(2

3
)i+j is P(|N | > ε−1/22i+j). Using a standard estimate on the

tail of a normal random variable [7, Theorem 1.2.3], this is at most
2
√
ε√

2π
2−(i+j) exp(−22i+2j−1/ε).

In particular, using the union bound, the probability that one of
∆0, . . . ,∆N−1 is wild is O(e−1/(2ε)). �

We comment that once ξ > 0 and δ1 > 0 are fixed, Lemma 8 guar-
antees the existence of an n0 such that for all sufficiently large n, the
good set defined in the lemma has measure at least 1 − ξ. Now for
ε sufficiently small, the length N = bC9| log ε|c exceeds n0. For the
remainder of the proof, we let G be the good set from Lemma 8 with
n taken to be N (so that the good set, G, depends on ξ, δ1 and ε, but
this dependence will not be made explicit). We further introduce the

notation Ḡ = G ∩
⋂N−1
i=0 {∆i is tame}, which we shall also use for the

remainder of the proof.

Proposition 10 (Glueing good blocks). Under the assumptions of
Lemma 8, suppose j < l and σ̄jN ω̄, σ̄(j+1)N ω̄, . . . , σ̄(l−1)N ω̄ ∈ Ḡ. Then,

(1) Ξk(A
ε((l−j)N)
ω̄ ) ≥ Ξk(A

((l−j)N)
ω ) + 2(l − j)k log δ.

Proof. Let Bn = A
(N)

σnNω
and B̃n = Aε

(N)

σ̄nN ω̄
. This is proved by induction

using Lemma 7. Recall that since Bn is a good block, ‖Bn − B̃n‖ ≤ 1
by Lemma 9. We let Ṽj = Vj = Fk(Bj)

⊥ and define Vn+1 = BnVn and

Ṽn+1 = B̃nṼn.
We claim that the following hold, for each n = j, j + 1, . . . , l − 1:

(i) ∠(Vn, Ṽn) < 2δ;
(ii) ⊥ (Vn, Fk(Bn)) > δ and ⊥ (Ṽn, Fk(Bn)) > δ.

Item (i) and the first part of (ii) hold immediately for the case n =
j. The second part of (ii) holds because Ṽj = Vj = Fk(Bj)

⊥ and

∠(Fk(Bj), Fk(B̃j)) < δ by Lemma 7(b).

Given that (i) and (ii) hold for n = m, Bm is a good block and B̃m is
a good perturbation, Lemma 7(c) implies that ∠(Vm+1, Ek(Bm)) < δ,
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∠(Ṽm+1, Ek(Bm)) < δ so that ∠(Ṽm+1, Vm+1) < 2δ, yielding (i) for
n = m+ 1.

Making use of the induction hypothesis and Lemma 8, we have that
∠(Ek(σ

(m+1)Nω), Ek(Bm)) < δ,∠(Fk(σ
(m+1)Nω), Fk(Bm)) < δ and ⊥

(Ek(σ
(m+1)Nω), Fk(σ

(m+1)Nω)) > 10δ. Thus, we obtain (ii) for n =
m+ 1.

Hence using Lemma 7(d), we see that log |det(B̃n|Ṽn)| ≥ k log δ +

Ξk(B̃n) ≥ k log δ − kδ + Ξk(Bn) ≥ Ξk(Bn) + 2k log δ, where we made
use of Lemma 7(a) for the second inequality.

Since Ξk(B̃l−1 · · · B̃j) ≥
∑l−1

i=j log | det(B̃i|Ṽi)|, summing yields

Ξk(B̃l−1 · · · B̃j) ≥ 2(l − j)k log δ +
l−1∑
i=j

Ξk(Bi)

≥ 2(l − j)k log δ + Ξk(Bl−1 · · ·Bj),

(2)

as required. �

Lemma 11. Let the Hilbert-Schmidt cocycle, A : Ω → HS and all
parameters and perturbations be as above. If σ̄iNω ∈ Ḡ for each

0 ≤ i < n, then ∠
(
Fk(A

ε(nN)
ω̄ ), Fk(A

(N)
ω )

)
< δ.

Proof. By the first part of (2), Ξk(A
ε(nN)
ω̄ ) >

∑n−1
i=0 Ξk(A

(N)

σiNω
)+2nk log δ.

Also, Ξk+1(Aε
(nN)
ω̄ ) ≤

∑n−1
i=0 Ξk+1(Aε

(N)

σ̄iN ω̄
) ≤

∑n−1
i=0 Ξk(A

ε(N)

σ̄iN ω̄
)+n log 2 ≤∑n−1

i=0 Ξk(A
(N)

σiNω
)+n log 2+nkδ ≤

∑n−1
i=0 Ξk(A

(N)

σiNω
)−2nk log δ by Lemma

7(a). Since we have log sk+1(Aε
(nN)
ω̄ ) = Ξk+1(Aε

(nN)
ω̄ ) − Ξk(A

ε(nN)
ω̄ ), we

deduce sk+1(Aε
(nN)
ω̄ ) ≤ δ−4nk.

On the other hand, if v ∈ S is such that ⊥(v, Fk(A
(N)
ω )) > δ, an

inductive argument exactly like the proof of Proposition 10 shows that

‖Aε(nN)
ω̄ v‖ ≥ ( δ

3
)ne−nδ

∏n−1
i=0 sk(A

(nN)
ω ) ≥ (δ3K(δ))n. The choice of K(δ)

in Lemma 7 ensures ‖Aε(nN)
ω̄ v‖ > sk+1(Aε

(nN)
ω̄ ), so that v 6∈ Fk(Aε(nN)

ω̄ ).
�

Proposition 12. Let ω be such that σ̄iN ω̄ ∈ Ḡ for 0 ≤ i < n. Then for

any V such that ⊥(V, Fk(A
(N)
ω )) > 2δ, one has log | det(Aε

(nN)
ω̄ |V )| ≥

Ξk(A
ε(nN)
ω̄ ) + k log δ.
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Proof. We argue as in Lemma 7(d).

log | det(Aε
(nN)
ω̄ |V )| ≥ Ξk(ΠEk(Aε

(nN)
ω̄ )

Aε
(nN)
ω̄ ΠV )

= Ξk(A
ε(nN)
ω̄ Π

Fk(Aε
(nN)
ω̄ )⊥

ΠV )

= Ξk(A
ε(nN)
ω̄ Π

Fk(Aε
(nN)
ω̄ )⊥

) + Ξk(ΠFk(Aε
(nN)
ω̄ )⊥

ΠV )

≥ Ξk(A
ε(nN)
ω̄ ) + k log⊥(Fk(A

ε(nN)
ω̄ ), V ),

where we used Lemma 6 for the last line. Lemma 11 and the triangle
inequality allow us to conclude. �

5. Comparing perturbed and unperturbed bad blocks
(Type I)

We distinguish two ways in which a block can be bad: types I and
II. A type I bad block is one where the unperturbed cocycle has bad
properties. On the other hand, a type II bad block is one where the
unperturbed cocycle is well-behaved, but the perturbations are wild.

Conditional on being in a type I bad block, the perturbations are
unconstrained, whereas conditional on being in a type II bad block at
least one perturbation is constrained to be large. For later use with the
type II bad blocks, we state some of the lemmas when one is conditioned
to be in a high probability event (but the high probability event will
be taken to be the whole space when dealing with type I blocks.)

Lemma 13. Let k > 0. There exists a C > 0 with the following prop-
erty. Let T be a multi-variate normal Hilbert-Schmidt-valued random
operator whose entries have mean 0, let A ∈ HS and let Π and Π′ be
orthogonal projections onto k-dimensional subspaces of H. Then for
any subset Q of HS such that P(T ∈ Q) ≥ 1

2
, one has

E
((

Ξk(Π(A+ T )Π′)− Ξk(ΠAΠ′)
)−∣∣∣T ∈ Q) ≥ −C,

where x− denotes min(x, 0).

Proof. We assume Ξk(ΠAΠ′) > −∞ as otherwise the result is trivial.
Let Π̃ be Π composed with an isometry from the range of Π to Rk

and similarly let Π̃′ be an isometry from Rk to the range of Π′. Then
we have Ξk(ΠBΠ′) = log | det(Π̃BΠ̃′)| for any bounded operator B on
H so that we need to show

E
((

log | det(Π̃(A+ T )Π̃′)| − log | det(Π̃AΠ̃′)|
)− ∣∣∣T ∈ Q) ≥ −C.

Let Y = Π̃AΠ̃′ and Z = Π̃T Π̃′, so that Y is a fixed k × k matrix and
Z is a k × k matrix-valued random variable with multivariate normal
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entries. By our earlier assumption, Y is invertible, so let X = ZY −1

(this also has multi-variate normal entries for unconditioned T ). We
then need a lower bound for E

(
log det(I +X)

∣∣T ∈ Q).
The unconstrained matrix-valued random variable X can be written

as
∑d

l=1NlB
l, where the Bl are fixed k×k matrices, d is the dimension

of the support of X (at most k2 depending on the pattern of entries
in the unperturbed A’s) and the Nl are independent standard normal
random variables (see for example [7, Example 3.9.2]).

Let Ψ denote the map from Rd to Mk×k defined by x 7→
∑
xlB

l. Let
S be the image under Ψ of the unit sphere and µ be the measure on S
that is the push-forward of the normalized volume measure on the unit
sphere. The unconditioned measure on X is then the push forward of
µ × Cdr

d−1e−r
2/2 dr, where Cd is chosen so that Cd

∫
rd−1e−r

2/2 dr =
1. The conditioned measure on X (since the event being conditioned
upon is of measure at least 1

2
) is of the same form, but the density is

multiplied by a varying factor in the range [0,2].
It then suffices to lower bound

2Cd

∫
S
dµ(M)

∫ ∞
0

log− | det(I + rM)| rd−1e−r
2/2 dr.

In particular, it is enough to give a uniform lower bound for

G(d,M) =

∫ ∞
0

log− | det(I + rM)| rd−1e−r
2/2 dr

as d ranges over the range 1 to k2 and M ranges over Mk×k.
For each fixed M , write pM(r) = det(I + rM), so that pM is a

polynomial of degree k satisfying pM(0) = 1. Hence pM(r) can be

written as a product
∏k

i=1(1− bir). Define

F (d, b) =

∫ ∞
0

log− |1− br| rd−1e−r
2/2 dr,

so that G(d,M) ≥
∑k

i=1 F (d, bi). Hence it suffices to show that F (d, b)
is uniformly bounded below as b runs over the complex plane and as d
runs over the range 1 to k2.

Next, notice that log |1− br| ≥ log |1−Re(b)r|, so F (d, b) ≥ F (d, |b|)
and it suffices to give a lower bound for positive real values of b. Also

F (d, b) =
1

bd

∫ ∞
0

log− |1− r| rd−1e−r
2/(2b2) dr

=
1

bd

∫ 2

0

log |1− r| rd−1e−r
2/(2b2) dr.
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For b ≥ 1
2
, F (b, d) ≥ 1

bd

∫ 2

0
log |1 − r|rd−1 dr ≥ −2d/bd ≥ −4d. For

0 < b < 1
2
, one has

F (d, b)

≥ 1

bd

∫ bd/(1+d)

0

log |1− r|rd−1 dr +
1

bd

∫ 2

bd/(1+d)

log |1− r|rd−1e−r
2/(2b2) dr

≥ −2
1

bd

∫ bd/(1+d)

0

rd dr + (2/b)d exp(−1/(2bα))

∫ 2

0

log |1− r| dr

≥ −2/(d+ 1)− 2d+1 exp(−1/(2bα))/bd

where α = 2/(1 + d). This converges to −2/(d + 1) as b approaches 0
from the right. By continuity and compactness, for each of the finitely
many values of d, F (d, b) is bounded below as b ranges over (0, 1

2
]. �

Proposition 14. Let k > 0. Then there exists a C14 with the following
property. For every finite sequence A0, . . . , An−1 of Hilbert-Schmidt
operators, let ∆0, . . . ,∆n−1 be independent copies of the perturbation
∆ as described above. Let Aεi denote Ai + ε∆i.

Then one has

E∆0,...,∆n−1

(
Ξ̃k(A

ε
n−1 · · ·Aε0)− Ξ̃k(An−1 · · ·A0)

)−
≥ −C14n.

Proof. We have

E
(

Ξ̃k(A
ε
n−1 · · ·Aε0)− Ξ̃k(An−1 · · ·A0)

)−
≥

n−1∑
j=0

E
(

Ξ̃k(A
ε
n−1 · · ·AεjAj−1 · · ·A0)− Ξ̃k(A

ε
n−1 · · ·Aεj+1Aj · · ·A0)

)−
.

We focus on giving a lower bound for one of the terms in the sum-
mation. We write such a term as

E∆j

(
Ξ̃k(L(Aj + ε∆)R)− Ξ̃k(LAjR)

)−
.

This expectation should be interpreted as being conditioned on the
values of ∆j+1, . . . ,∆n, so that L = (An + ε∆n) · · · (Aj+1 + ε∆j+1).

The above expectation can be rewritten as:

(3) E∆,∆′ E∆j

[
Ξk(Πk∆L(A+ ε∆j)R∆′Πk)− Ξk(Πk∆LAR∆′Πk)

]−
.

Once ∆ and ∆′ are fixed, the inner expectation is

(4) E∆j

[
Ξk(Πk∆L(A+ ε∆j)R∆′Πk)− Ξk(Πk∆LAR∆′Πk)

]−
.

Now let Π be the orthogonal projection onto the orthogonal comple-
ment of the kernel of Πk∆L and Π′ be the orthogonal projection onto
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the range of R∆′Πk. Then we have

Ξk(Πk∆L(A+ ε∆j)R∆′Πk) = Ξk(Πk∆L) + Ξk(Π(A+ ε∆j)Π
′) + Ξk(R∆′Πk);

Ξk(Πk∆LAR∆′Πk) = Ξk(Πk∆L) + Ξk(ΠAΠ′) + Ξk(R∆′Πk);

Now the quantity in (4) is

E∆j

[
Ξk(Π(A+ ε∆j)Π

′)− Ξk(ΠAΠ′)
]−

Applying Lemma 13 with Q = HS, this is bounded below by −C,
independently of ∆ and ∆′, so that the quantity in (3) is also bounded
below by −C. Since there are n such terms, the statement in the lemma
follows. �

6. Type II bad block perturbations

Here we give an argument for good blocks in the base that have large
perturbations. We will obtain a drop in Ξ̃k over a bad block of size
O(log ε) at worst, that is a drop of size O(1) per symbol since blocks
are of length proportional to | log ε|. However since the frequency of
these blocks is O(e−C/ε), the contribution of this drop to the singular
values of a large string of blocks is minuscule.

Lemma 15. There exists a constant C > 0 such that if N is a standard
normal random variable and Λ > 2, then for each a ∈ C,

E
(

log− |1− aN |
∣∣N ≥ Λ

)
≥ −C log Λ.

Before giving the proof, let us give a heuristic explanation for why
this should be true. Conditional on N ≥ Λ, the distribution of N is
approximately Λ + Exp(Λ), that is it typically takes values that are
Λ + O(1/Λ). The worst case for the inequality is approximately when
a = 1/Λ and then the quantity inside the logarithm is roughly O(1/Λ2).

Proof. We first recall that
∫ a

0
log x dx = a(log a−1), so that the average

value of the logarithm function over [0, a] is log a − 1. We claim that
for any interval J , one has

(5)
1

|J |

∫
J

log− |x| dx ≥ 2(max
x∈J

log− |x| − 1).

Indeed, this follows already for intervals [0, a] with 0 < a < 1, and hence
for sub-intervals of [0, 1] and [−1, 0]. For intervals [−a, b] with a < 0 <

|a| ≤ b ≤ 1, we have 1/(a + b)
∫ b
−a log− |x| dx ≥ 1/b

∫ b
−b log− |x| dx =

2(log b− 1). If the interval J is entirely outside [−1, 1], the inequality
is trivial; and if J intersects [−1, 1], we have already established the
inequality for J ∩ [−1, 1], from which the inequality for J follows.
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For a ∈ C, the integrand in the statement reduced if a is replaced
by |a| so we may assume a > 0. If a > 2/Λ, the integral is 0.

If 1/(3Λ) ≤ a ≤ 2/Λ, let I = [Λ, 2
a
), the sub-interval of [Λ,∞)

where log |1 − ax| < 0; and J = [ 1
a
− 1

aΛ2 ,
1
a

+ 1
aΛ2 ], the interval where

log |1− ax| < −2 log Λ.
The quantity to be bounded is∫

I
log− |1− ax|e−x2/2 dx∫∞

Λ
e−x2/2 dx

≥
∫
I

log− |1− ax|e−x2/2 dx∫
I
e−x2/2 dx

=

∫
I∩J log− |1− ax|e−x2/2 dx+

∫
I\J log− |1− ax|e−x2/2 dx∫

I∩J e
−x2/2 dx+

∫
I\J e

−x2/2 dx

The ratio of the two integrals over I\J is bounded below by −2 log Λ.
Using (5), the ratio of the two integrals over I ∩ J is bounded below

by 2(−2 log Λ− 1) maxI∩J e
−x2/2/minI∩J e

−x2/2 ≥ 2e2/(a2Λ2)(−2 log Λ−
1) ≥ −2e18(2 log Λ + 1). Since both ratios are bounded below by a
constant multiple of log Λ, so is the ratio of the sums.

If a < 1/(3Λ), we argue similarly. In this case, we let J = [ 1
2a
, 3

2a
].

On I \ J , log |1− ax| is bounded below by − log 2, so that∫
I\J log |1− ax|e−x2/2 dx∫∞

Λ
e−x2/2 dx

≥

∫
I\J log |1− ax|e−x2/2 dx∫

I\J e
−x2/2 dx

≥ − log 2.

On I ∩ J , we have e−x
2/2 ≤ e−1/(8a2). Also

∫∞
Λ
e−x

2/2 dx ≥ e−Λ2/2/(2Λ),
using [7, Theorem 1.2.3]. Hence∫

I∩J log− |1− ax|e−x2/2 dx∫∞
Λ
e−x2/2 dx

≥
2e−1/(8a2)(− log 2− 1) 1

a

e−Λ2/2/(2Λ)
,

using (5). When a = 1/(3Λ), this is 4(− log 2 − 1)3Λ2e−5Λ2/8 and
the lower bound increases as a is further reduced. Minimizing this
expression over Λ, we see that there is a C, independent of Λ, such
that E

(
log− |1− aN |

∣∣N ≥ Λ
)
≥ −C for all |a| < 1/(3Λ). �

Lemma 16. Let k > 0 and ∆ be as throughout the article. There exists
C > 0 such that for all sufficiently small ε > 0, for each a, b and each
pair of k-dimensional orthogonal projections Π and Π′,

E
((

Ξk(Π(A+ ε∆)Π′)− Ξk(ΠAΠ′)
)−∣∣∣Wilda,b

)
> C(log ε− a− b),

where Wilda,b is the event that ∆ satisfies |∆l,m| < (2
3
)l+mε−1/2 for

each (l,m) that is lexicographically smaller than (a, b) and |∆a,b| ≥
ε−1/2(2

3
)a+b (where (l,m) is lexicographically smaller than (a, b) if l < a

or l = a and m < b).
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Proof. We deal with the case ∆a,b positive. The case where it is negative
is exactly analogous. Let Ba,b be the collection of those ∆ satisfying
∆a,b ≥ ε−1/2(2

3
)a+b (and no other condition). The argument of Lemma

9 shows that P(Wilda,b|Ba,b) >
1
2
. This allows us to deduce as in the

proof of Lemma 13 that

E
((

Ξk(Π(A+ ε∆)Π′)− Ξk(ΠAΠ′)
)−∣∣∣∆ ∈ Wilda,b

)
> 2E

((
Ξk(Π(A+ ε∆)Π′)− Ξk(ΠAΠ′)

)−∣∣∣∆ ∈ Ba,b

)
Hence it suffices to show that

E
((

Ξk(Π(A+ ε∆)Π′)− Ξk(ΠAΠ′)
)−∣∣∣∆ ∈ Ba,b

)
> C(log ε− a− b).

Using the same reduction as in Lemma 13, the calculation reduces
to showing that there is a C such that for sufficiently small ε > 0, one
has for an arbitrary k × k multi-variate normal matrix-valued random
variable, R, whose entries have zero mean and for an arbitrary rank 1
k × k matrix Y ,

EN,R
(

Ξk(I +R + εNY )−
∣∣N > 2a+bε−1/2

)
≥ C(log ε− a− b),

where N is an independent standard normal random variable. First
fixing N and taking the expectation over R using Lemma 13 (taking
Q to be the full range of ∆), we obtain

EN,R
(

Ξk(I +R + εNY )−
∣∣N > 2a+bε−1/2

)
≥ EN

(
Ξk(I + εNY )−

∣∣N > 2a+bε−1/2
)
− C.

Hence it suffices to show

E
(
Ξk(I + εNY )−

∣∣N > 2a+bε−1/2
)
≥ C(log ε− a− b).

Since Y has rank 1, the polynomial det(I + tY ) is of the form 1 + at.
To see this, notice the determinant is unchanged if I+tY is conjugated
by an orthogonal matrix, O. Then choose O so that the first column
spans the range of Y so that O−1(I+ tY )O = I+ tỸ , where Ỹ has only
one non-zero row. det(I + tY ) is then 1 + tỸ1,1. Hence we are seeking
a lower bound for

E(log− |1 + cN |
∣∣N > 2a+bε−1/2),

which is of the desired form by Lemma 15. �
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Proposition 17. There exists a C17 > 0 with the following property.
For any m > 0, let B be the event that at least one of the perturbations
∆0, . . . ,∆m−1 is wild. Then

E
(
Ξ̃k(A

ε(m)
ω̄ )

∣∣B) ≥ Ξ̃k(A
(m)
ω ) + C17(log ε−m).

Proof. We write B as B0 ∪ . . . ∪ Bm−1, where Bi is the event that the
ith perturbation matrix is wild, and all previous ones are tame. Since
the Bi are disjoint, it suffices to establish that there is a C > 0 such
that for each i,

(6) E(Ξ̃k(A
ε(m)
ω̄ )|Bi) ≥ Ξ̃k(A

(m)
ω ) + C(log ε−m).

We argue as in Proposition 14:

E
(

Ξ̃k(A
ε(m)
ω̄ )− Ξ̃k(A

(m)
ω )

∣∣∣Bi

)
=

m−1∑
j=0

E
(

Ξ̃k

(
Aε

(m−j)
σ̄j ω̄

A(j)
ω

)
− Ξ̃k

(
Aε

(m−j−1)

σ̄j+1ω̄
A(j+1)
ω

)∣∣∣Bi

)
As in Proposition 14, finding lower bounds for this reduces to finding

lower bounds for E
(

Ξ̃k(ΠA
ε
σ̄j ω̄Π′)− Ξ̃k(ΠAσjωΠ′)

∣∣∣Bi

)
.

In this case, for j > i, the conditional distribution of ∆j is the same
as the distribution used in Lemma 13 with Q = HS, so that lemma
gives a bound

(7) E
(

Ξ̃k

(
Aε

(n−j)
σ̄j ω̄

A(j)
ω )− Ξ̃k

(
Aε

(n−j−1)

σ̄j+1ω̄
A(j+1)
ω

)∣∣∣Bi

)
≥ −C.

In the case j < i, ∆j is conditioned to be tame. By Lemma 9, this
is a set of probability (much) greater than 1

2
, so that Lemma 13 gives

a similar bound to (7).
Finally, we address the term with j = i. Given that ∆i is wild, the

probability that the first oversized entry occurs in the (a, b) coordinate
is O(exp(−1

2
ε−1(22a+2b − 1))) (as seen from the estimate P(N > t) ≈

(2π)−1/2e−t
2/2/t for large t [7, Theorem 1.2.3]).

Hence by conditioning and using Lemma 16, we obtain

(8) E
(

Ξ̃k

(
Aε

(m−i)
σ̄iω̄

A(i)
ω )− Ξ̃k

(
Aε

(m−i−1)

σ̄i+1ω̄
A(i+1)
ω

)∣∣∣Bi

)
> C(log ε− 1).

Combining equations (7) and the equation (8), we obtain the statement
of the proposition. �

7. Joining good and bad blocks

Lemma 18. For all k ∈ N, there is a constant C > 0 such that for
any A ∈ HS, any orthogonal projections Π1 and Π2 onto k-dimensional
subspaces, and any Q ⊂ HS such that P(∆ ∈ Q) ≥ 1

2
, one has
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EΞk

(
Π1(A+ ∆)Π2

∣∣∆ ∈ Q) ≥ EΞk

(
Π1∆Π2

∣∣∆ ∈ Q)− C.
Proof. Let Π̃1 be an isometry from the range of Π1 to Rk. Similarly
let Π̃2 be the post-composition of Π2 with an isometry from Rk to the
span of the range of Π2. Let Ã = Π̃1AΠ̃2 and let ∆̃ = Π̃1∆Π̃2 be the
k×k multi-variate normal induced from the unconditioned distribution
of ∆.

As in Lemma 13, we radially disintegrate the random variables ∆̃,
writing ∆̃ as tM̃ , where M̃ belongs to a ‘unit sphere’ equipped with a
normalized probability measure and t having an absolutely continuous
distribution on [0,∞) with density rk

2−1e−r
2/2/Γ(k2/2). On condition-

ing on ∆ ∈ Q, the density is bounded above by 2rk
2−1e−r

2/2/Γ(k2/2)
We prove that there is a C > 0 such that for all M̃ of rank k,

2

Γ(k2/2)

∫ ∞
0

(
Ξk(Ã+ rM̃)− Ξk(rM̃)

)−
rk

2−1e−r
2/2 dr > −C.

Notice that since the matrices are k×k, Ξk is just the logarithm of the
absolute value of the determinant. Let p(r) = det(Ã+ rM̃)/ det(rM̃),
a polynomial in powers of 1/r of degree at most k with constant coef-

ficient 1. It can therefore be expressed as p(r) =
∏d

i=1(1− bi/r), with
d ≤ k.

We are trying to bound∫ ∞
0

log− |p(r)|rk2−1e−r
2/2 dr ≥

k∑
i=1

∫ ∞
0

log− |1− bi/r|rk
2−1e−r

2/2 dr.

As in the proof of Lemma 15, it suffices to give a bound in the case
where b > 0. We have∫ ∞

0

log− |1− b/r|rk2−1e−r
2/2 dr =

∫ ∞
b/2

log− |1− b/r|rk2−1e−r
2/2 dr.

The logarithm is bounded below by − log 2 on (2b,∞), so that the con-
tribution from this range is at least −Γ(k2/2) log 2. For the contribu-

tion from the range [ b
2
, 2b], we have a lower bound of −16(2b)k

2−2e−b
2/8

(obtained by bounding e−r
2/2 above by e−b

2/8). Hence we obtain the
required uniform lower bound. �

The following lemma plays a key role, as it provides an approximate
super-additivity property for Ξ̃k (making strong use of the nature of the
perturbations), complementing the well-known sub-additivity property
of Ξk.
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Lemma 19. There exists C > 0 such that if ∆ is distributed as above
and Q is any subset of HS such that P(Q ∈ ∆) ≥ 1

2
), then

E
(
Ξ̃k(L(A+ ε∆)R)

∣∣∆ ∈ Q) ≥ Ξ̃k(L) + Ξ̃k(R)− k| log ε| − C.

Proof. We may assume that L and R have rank at least k as otherwise
there is nothing to prove. Recalling the definition of Ξ̃, we have

E
(
Ξ̃k(L(A+ ε∆)R)

∣∣∆ ∈ Q)
= E∆1,∆2 E

(
Ξk(Πk∆1L(A+ ε∆)R∆2Πk)

∣∣∆ ∈ Q) and

E
(
Ξ̃k(L(ε∆)R)

∣∣∆ ∈ Q) = E∆1,∆2 E
(
Ξk(Πk∆1L(ε∆)R∆2Πk)

∣∣∆ ∈ Q)
We first show that for fixed ∆1 and ∆2,

E
(
Ξk(Πk∆1L(A+ ε∆)R∆2Πk)

∣∣∆ ∈ Q)
≥ E

(
Ξk(Πk∆1L(ε∆)R∆2Πk)

∣∣∆ ∈ Q)− C.(9)

We have Ξk(Πk∆1L(A+ε∆)R∆2Πk) = Ξk(Πk∆1L)+Ξk(Π(A+ε∆)Π)+

Ξk(R∆2Πk) and Ξk(Πk∆1L(ε∆)R∆2Πk) = Ξk(Πk∆1L)+Ξk(Π(ε∆)Π)+
Ξk(R∆2Πk), where Π is the orthogonal projection onto the k-dimensional

orthogonal complement of the kernel of Πk∆1L and Π is the orthogonal
projection onto the range of R∆2Πk. Hence

Ξk(Πk∆1L(A+ ε∆)R∆2Πk)− Ξk(Πk∆1L(ε∆)R∆2Πk)

= Ξk(Π(A+ ε∆)Π)− Ξk(Π(ε∆)Π)

= Ξk(Π(1
ε
A+ ∆)Π)− Ξk(Π∆Π).

Taking an expectation as ∆ runs over Q and using Lemma 18, we
obtain (9). Hence, taking the expectation over ∆1 and ∆2, we have

E
(
Ξ̃k(L(A+ ε∆)R)

∣∣∆ ∈ Q) ≥ E
(
Ξ̃k(L(ε∆)R)

∣∣∆ ∈ Q)− C
= E

(
Ξ̃k(L∆R)

∣∣∆ ∈ Q)− C + k log ε.

For the last part of the argument, we have

E
(
Ξ̃k(L∆R)

∣∣∆ ∈ Q) = E∆1,∆2 E∆

(
Ξk(Πk∆1L∆R∆2Πk)

∣∣∆ ∈ Q)
= E∆1,∆2

(
Ξk(Πk∆1LΠ) + E∆

(
Ξk(Π∆Π)

∣∣∆ ∈ Q)+ Ξk(ΠR∆2Πk)
)
,

where Π and Π are as above. By Corollary 4, the middle term is

E∆3 Ξk(Π∆3Πk) + E∆4 Ξk(Πk∆4Π)±C. Substituting and recombining
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the expressions, we get

E
(
Ξ̃k(L(A+ ε∆)R)

∣∣∆ ∈ Q)
≥ E∆1,∆3 Ξk(Πk∆1L∆3Πk) + E∆2,∆4 Ξk(Πk∆4R∆2Πk)− C + k log ε

= Ξ̃k(L) + Ξ̃k(R)− C + k log ε,

as required. �

Since the statement includes the case where ∆ is conditioned to lie
in a large set, this is sufficient to cover the case where ∆ is conditioned
to be tame. We need a version of this inequality to deal with the case
where ∆ is constrained to be wild.

Lemma 20. There exists C > 0 such that for all polynomials, p(x),
one has ∣∣∣∣∣

∫ ∞
−∞

e−x
2/2

√
2π

log |p(x)| dx− logM(p)

∣∣∣∣∣ ≤ C deg(p),

where M(p) is the Mahler measure of p: If p(x) = a(x − z1)(x −
z2) · · · (x− zk), then M(p) = a

∏
|zi|>1 |zi|.

Proof. Write p(x) as a(x− z1) · · · (x− zk). The inequality then follows
from ∣∣∣∣∣

∫ ∞
−∞

e−x
2/2

√
2π

log |x− z| dx− log+ |z|

∣∣∣∣∣ ≤ C.

While we will not give all the details, the idea is to notice that the
integral can be expressed as E log |N−z| where N is a standard normal
random variable. If z is small, then this is the integral of a function
with a logarithmic singularity. If z is large, then sinceN is concentrated
near 0, the integrand is close to log |z| with very high probability. �

Lemma 21. For each k > 0, there exists a constant C such that for
each polynomial p(x) =

∑k
i=0 aix

i, one has∣∣ logM(p)−max log |ai|
∣∣ ≤ C.

The proof can be found in Lang’s book [20, Theorem 2.8].

Lemma 22. Let Λ > 2 and let N be a standard normal random vari-
able. There exists a C > 0 such that for all a, b ∈ C,

E
(

log |a+ bN |
∣∣∣N > Λ

)
≥ max(log |a|, log |b|)− C log Λ.

Proof. The case where |a| > |b| follows from Lemma 15 (writing log |a+
bN | = log |a| + log |1 + b

a
N |). If |b| ≥ |a|, then |a + bN | ≥ |b|Λ/2

whenever N > Λ. The result follows. �
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Lemma 23. There exists a constant C > 0 such that for all i, j,

E Ξ̃k(L(A+ ε∆)R
∣∣Wildi,j)

≥ Ξ̃k(L) + Ξ̃k(R)− C| log ε| − C(i+ j + 1),

where Wildi,j is the event that |∆i,j| ≥ (2
3
)i+jε−1/2 and |∆a,b| < (2

3
)a+bε−1/2

for all pairs (a, b) that are lexicographically smaller than (i, j).

Proof. As in the proof of Lemma 19, the proof reduces to showing a
version of Lemma 18:

EΞk

(
Π1(A+ ε∆)Π2

∣∣Wildi,j
)
≥ EΞk(Π1ε∆Π2)− C(i+ j + 1).

We first compare EΞk

(
Π1(A+ε∆)Π2

∣∣Wildi,j
)

to EΞk

(
Π1(A+ε∆)Π2

∣∣Tamei,j
)
,

where Tamei,j is the event that |∆a,b| < (2
3
)a+bε−1/2 for all pairs (a, b)

that are lexicographically smaller than (i, j). Fixing all entries of ∆
other than ∆i,j, this amounts to comparing E

(
log | det(B+NZ)|

∣∣N >

2i+jε−1/2
)

to E
(

log | det(B + NZ)|
)
, where B is an invertible k × k

matrix and Z is rank 1. As pointed out in Lemma 16, det(B +
NZ) = a + bN for constants a and b, so that it suffices to compare
E
(

log |a+bN |
∣∣N > 2i+jε−1/2

)
to E log |a+bN |. By Lemma 22, the first

of these is at least max(log |a|, log |b|)−C(i+ j+log ε) and by Lemmas
20 and 21, the second of these is within C of max(log |a|, log |b|). We
deduce that

EΞk

(
Π1(A+ε∆)Π2

∣∣Wildi,j
)
> EΞk

(
Π1(A+ε∆)Π2

∣∣Tamei,j
)
−C(i+j+log ε).

Hence, using the same cancellation argument that occurs in Lemma
19, we have

E Ξ̃k(L(A+ε∆)R|Wildi,j) ≥ E Ξ̃k(L(A+ε∆)R|Tamei,j)−C(i+j+log ε).

Finally using Lemma 19 to bound E Ξ̃k(L(A+ε∆)R|Tamei,j), the result
follows. �

Proposition 24. There exists C24 > 0 with the following property: Let
L, R, and A be Hilbert-Schmidt operators and let ∆ be the multivariate
normal perturbation described earlier. Then each of E Ξ̃k(L(A+ε∆)R),
E
(
Ξ̃k(L(A+ ε∆)R)

∣∣∆ is wild
)

and E
(
Ξ̃k(L(A+ ε∆)R)

∣∣∆ is tame
)

is

bounded below by Ξ̃k(L) + Ξ̃k(R) + C24 log ε.

Proof. The cases of E Ξ̃k(L(A+ε∆)R), E
(
Ξ̃k(L(A+ε∆)R)

∣∣∆ is tame
)

are handled by Lemma 19. The case of E
(
Ξ̃k(L(A+ ε∆)R)

∣∣∆ is wild
)

is handled using Lemma 23 by conditioning on the first entry of ∆ that
is large analogously to the end of the proof of Proposition 17. �
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8. Comparison of Ξk and Ξ̃k

Lemma 25. Let Ck be the expected value of log | detNk| where Nk

is a k × k matrix-valued random variable with independent standard
normal entries. Let n ≥ k, let A be an n × n matrix and let N be a
k×n matrix-valued random variable with independent standard normal
entries. Then EΞk(NA) ≥ Ξk(A) + Ck.

Proof. Write A = UDV where U and V are orthogonal and D is diago-
nal with decreasing entries. Then by an argument like that in Lemma 3
(computing covariances between elements) NU has the same distribu-
tion as N , so that we have EΞk(NA) = EΞk(NUDV ) = EΞk(ND) ≥
EΞk(NDΠk). Notice that since D is diagonal, NDΠk has the form(
NkDk|0

)
, where Nk is the left k × k submatrix of N and Dk is the

top left k × k submatrix of D. Hence EΞk(NDΠk) = EΞk(NkDk) =
Ck + Ξk(Dk) = Ck + Ξk(A) as required. �

Lemma 26. Let A, B and C be Hilbert-Schmidt matrices, and let
An = ΠnAΠn. Then Ξk(BAnC)→ Ξk(BAC) as n→∞.

Proof. Let Rn = A − An, so that ‖Rn‖ → 0. We have |si(BAnC) −
si(BAC)| ≤ ‖B‖ · ‖Rn‖ · ‖C‖ for each i so that si(BAnC)→ si(BAC)
for each i. The conclusion follows. �

Proposition 27. Let k > 0. Then there exists a constant C27 such
that for an arbitrary Hilbert-Schmidt operator A on H,

Ξ̃k(A) ≥ Ξk(D3AD3)− C27.

Proof. We have Ξ̃k(A) = E∆,∆′ Ξk(Πk∆A∆′Πk) where ∆ and ∆′ are in-
dependent copies of the perturbation operator. Since Ξk(Πk∆An∆′Πk) ≤
k log ‖Πk∆An∆′Πk‖op ≤ k log(‖∆‖op ·‖An‖op ·‖∆′‖op); ‖An‖op ≤ ‖A‖HS
and E log ‖∆‖op < E ‖∆‖op ≤ E ‖∆‖HS <∞, we see that the family of
functions, (∆,∆′) 7→ Ξk(Πk∆An∆′Πk) is dominated by an integrable
function. Hence, by the Reverse Fatou Lemma and Lemma 26, we have

lim sup
n→∞

Ξ̃k(An) = lim sup
n→∞

EΞk(Πk∆An∆′Πk) ≤ Ξ̃k(A).

However, we have

E∆,∆′ Ξk(Πk∆An∆′Πk) = E∆,∆′ Ξk(∆k×nAn∆′n×k),

where ∆k×n denotes the random Hilbert Schmidt operator ∆ with all
entries outside the top left k × n corner replaced by 0’s (and ∆′n×k
similarly). Hence

Ξ̃k(An) = EN,N ′ Ξk

(
(D3)k×kNk×n(D3)n×nAn(D3)n×nN

′
n×k(D3)k×k

)
= EN,N ′ Ξk

(
Nk×n(D3)n×nAn(D3)n×nN

′
n×k
)
− k(k − 1) log 3
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Applying Lemma 25 twice, we deduce Ξ̃k(An) ≥ Ξk(D3AnD3) + C,
so that on taking the limit, we deduce Ξ̃k(A) ≥ Ξk(D3AD3) + C as
required. �

Corollary 28. There is a C28 with the following property. Let L, R,
A and A′ be Hilbert-Schmidt operators and ∆ and ∆′ be independent
copies of the standard perturbation. Then we have

E Ξ̃k(L(A′ + ε∆′)(A+ ε∆)R) ≥ Ξ̃k(L) + Ξ̃k(R) + C28 log ε.

The same inequality holds if either or both of ∆ and ∆′ are constrained
to be either tame or wild (or one of each).

Proof. Let L′ = L(A′ + ε∆′) = L(A′ + ε∆′)I. By Proposition 24,
E∆′ Ξ̃k(L

′) ≥ Ξ̃k(L)+Ξ̃k(I)+C24 log ε, with this inequality still satisfied
if ∆′ is constrained to be tame or wild. By Proposition 27, Ξ̃k(I) is
a finite constant. Finally, E∆ Ξ̃k(L

′(A + ε∆)R) ≥ Ξ̃k(L
′) + Ξ̃k(R) +

C24 log ε. Combining the inequalities, the result is proved. �

Lemma 29. Let f(t) =
∑n

i=1 aie
bit where ai > 0 for each i. Then f(t)

is log-convex.

Proof. We have (log f)′ = f ′/f , so that (log f)′′ = (ff ′′ − (f ′)2)/f 2.
Now

ff ′′ − (f ′)2 =
∑
i 6=j

aiaje
(bi+bj)t(b2

j − bibj) +
∑
i

a2
i e

2bit(b2
i − b2

i )

=
∑
i<j

aiaje
(bi+bj)t(b2

i + b2
j − 2bibj)

≥ 0.

�

Lemma 30. Let V be a k-dimensional subspace of H and let ΠV be the
orthogonal projection onto V . Then f(s) := Ξk(Des ◦ ΠV ) is a convex
function.

Proof. We first prove that for 0 < s < t, f(s) ≤ s
t
f(t). To see this,

let v1, . . . , vk be an orthogonal basis of V such that Detv1, . . . ,Detvk
are orthogonal. Then f(s) ≤

∑k
i=1 log ‖Desvi‖. By Lemma 29, s 7→

log ‖Desvi‖ = 1
2

log(
∑

j e
−2sj(vi)j

2) is convex, so that log ‖Desvi‖ ≤
s
t

log ‖Detvi‖. Hence f(s) ≤ s
t
f(t) as claimed.

Now if 0 < a < b < c, let W = DeaV , let s = b − a and t = c − a.
Let α = Ξk(DeaΠV ). Now we have f(a) = α, f(b) = Ξk(DebΠV ) =
Ξk(Deb−aDeaΠV ) = Ξk(Deb−aΠW )+Ξk(DeaΠV ) = α+Ξk(DesΠW ). Sim-
ilarly f(c) = α+Ξk(DetΠW ) and the result follows from the above. �
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Lemma 31. Let A be a Hilbert-Schmidt operator on H. Then g(s) : =
Ξk(DesA) is a convex function. Similarly h(s) : = Ξk(ADes) is convex.

Proof. Let 0 < a < b < c. Let V be the k-dimensional space spanned
by the top k right singular vectors of DebA and ΠV be the orthogonal
projection onto V . Let W = A(V ) and ΠW be the orthogonal projec-
tion onto W . Then we have Ξk(DetAΠV ) = Ξk(DetΠW ) + Ξk(AΠV ),
the sum of a convex function and a constant by Lemma 30. Now g(b) =
Ξk(DebA) = Ξk(DebAΠV ) ≤ c−b

c−aΞk(DeaAΠV ) + b−a
c−aΞk(DecAΠV ) ≤

c−b
c−ag(a) + b−a

c−ag(c) as required.
We have h(s) = Ξk(ADes) = Ξk(DesA∗), which is convex by the

above. �

Proposition 32. Let A be a Hilbert-Schmidt operator on H. Then

Ξk(D3AD3)− Ξk(A) ≥
(

log 3

log 2

)2 (
Ξk(D2AD2)− Ξk(A)

)
.

Proof. Let f(s, t) = Ξk(DesADet)− Ξk(A). Since Da is contractive for
a > 1, we have f(log 3, 0) ≤ 0 and f(0, log 2) ≤ 0. Now Lemma 31 ap-
plied to Ξk(D3ADet)−Ξk(A) implies that f(log 3, log 2) ≤ log 2

log 3
f(log 3, log 3).

Applying the lemma to Ξk(DesAD2)− Ξk(A) implies

f(log 2, log 2) ≤ log 2

log 3
f(log 3, log 2) ≤

(
log 2

log 3

)2

f(log 3, log 3),

as required. �

Lemma 33. Let σ be an ergodic measure-preserving transformation
of (Σ,P). Let (fn) be a sub-additive sequence of functions (that is
fn+m(ω) ≤ fn(σmω) + fm(ω) for each ω ∈ Ω and n,m > 0) such that
infn>0

∫
1
n
fn dP > −∞. For any ε > 0, there exist χ > 0 and n0 such

that if M ≥ n0 and A is any set with P(A) < χ then
∫
A
fM dP > −εM .

Proof. Let α = lim
∫

(fn/n) dP. Let ε > 0 be given. Let χ be small
enough that

∫
B
f1 dP < ε

3
for any set B with P(B) ≤ χ and so that

2χ(α+ ε
3
) > − ε

3
. By the Kingman sub-additive ergodic theorem, there

exists m0 such that for M ≥ m0, P({ω : fM(ω) > (α + ε
3
)M}) < χ.

Now let A be an arbitrary set with P(A) < χ. We split Ω into three
sets: A, G = {ω ∈ Ac : fM(ω) ≤ (α+ ε

3
)M} and B = Ac \G (and note
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that P(Gc) ≤ 2χ). Now we have

αM ≤
∫

Ω

fM dP

=

∫
A

fM dP +

∫
B

fM dP +

∫
G

fM dP

≤
∫
A

fM dP +

∫
B

(f1 + . . .+ f1 ◦ σM−1) dP + (α + ε
3
)MP(G).

Hence we see∫
A

fM dP ≥ αM −M ε
3
− (α + ε

3
)M(1− P(Gc))

= −2ε
3
M + (α + ε

3
)MP(Gc) ≥ −εM,

as required. �

Lemma 34. For all k, there exists a C34 such that for any bounded
operator A one has

Ξk(A) ≥ Ξ̃k(A)− C34.

Proof. We have Ξ̃k(A) = E∆1,∆2 Ξk(Πk∆1A∆2Πk) ≤ 2EΞk(∆)+Ξk(A) ≤
2k E log ‖∆‖op +Ξk(A), where we used sub-additivity of Ξk for the first
inequality and the fact that si(B) ≤ ‖B‖op for the second. Hence it
suffices to show that E log ‖∆‖op < ∞. But E log ‖∆‖op ≤ E ‖∆‖op ≤
E ‖∆‖HS ≤

∑
i,j E |∆ij| =

∑
i,j 3−(i+j) E |N | <∞. �

9. Convergence of the Lyapunov exponents

Proof of Theorem A. Rather than control the exponents directly, it is
more straightforward, and clearly equivalent, to control the partial
sums of the exponents. Let µ1(A) ≥ µ2(A) ≥ . . . denote the Lya-
punov exponents of the cocycle A listed with multiplicity in decreasing
order. We then let Λk(A) = µ1(A) + . . . + µk(A). We are aiming to
show that Λk(A

ε)→ Λk(A) for each k. By an argument of Ledrappier
and Young [21], explained slightly differently in our earlier paper [10],
it suffices to show that ε 7→ Λk(A

ε) is upper semi-continuous for each
k; and lower semi-continuous for those k such that µk+1(A) < µk(A).

9.1. Upper semi-continuity. We shall show lim supε→0 Λk(A
ε) ≤ Λk(A).

To see this, let η > 0. By the sub-additive ergodic theorem, there

exists an n such that 1
n

∫
Ξk(A

(n)
ω ) dP(ω) < Λk(A) + η. As ε → 0,

we have ‖Aε(n)
ω̄ − A

(n)
ω ‖ → 0 and hence Ξj(A

ε(n)
ω̄ ) → Ξj(A

(n)
ω ) for all

ω̄ ∈ Ω̄. Set g(ω̄) = 1 + ‖A(ω0)‖ and h(ω̄) = ‖∆0‖. Then for ε < 1,

log ‖Aε(n)
ω̄ ‖ ≤

∑n−1
i=0 log(g+h)(σ̄iω̄). Since this is integrable, the Reverse
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Fatou Lemma implies that lim supε→0
1
n

∫
Ξj(A

ε(n)
ω̄ ) dP̄(ω̄) < Λk(A)+η.

Hence Λk(A
ε) < Λk(A) + η for sufficiently small ε.

9.2. Choice of Parameters. Now we move to showing the lower semi-
continuity of Λk(A

ε) in the case where µk+1(A) < µk(A). We assume
without loss of generality (by scaling the entire cocycle by a constant
if necessary) that µk+1(A) < 0 < µk(A).

Let η > 0. We are seeking an ε0 such that for ε < ε0, Λk(A
ε) >

Λk(A)−η. First, choose an n0 and χ such that the following inequalities
are satisfied:

χ < min

(
C9η

48 max(C24, C28)
,

η

18 max(C14, C17(1 + 2
C9

))

)
;

χ <
η

72k
∫

log(1 + ‖Aω‖SHS) dP(ω)
;∫

B

Ξk(A
(N)
ω ) dP(ω) > −ηN

72
for N ≥ n0 if P(B) < χ;∫

B

log+ ‖Aω‖SHS dP(ω) <
η

108k
if P(B) < χ.

That n0 and χ can be chosen to satisfy the third inequality is a con-
sequence of Lemma 33. Let δ be chosen so that P(Gc) < χ/2, where

G is the event that the block A
(N)
ω is good as in Lemma 8. Let ε1 be

chosen so that Nε := bC9| log ε|c > n0 for all ε < ε1. Let ε2 be such that
the probability that an Nε-block of ∆’s contains a wild perturbation
is less than χ/2 for all ε < ε2 (such an ε2 exists by Lemma 9). Let
Ḡ = {ω̄ ∈ Ω̄ : ω ∈ G; ∆0, . . . ,∆N−1 are tame}. We will only consider
ε’s that are smaller than ε1 and ε2 for the remainder of the argument.
In particular P̄(Ḡc) < χ.

We need to control EΞk(A
(nN)
ω̄ ), where N is the length of a block

(as given by Lemma 9), and we let n → ∞. Here and below, the
superscript ε indicates that we are studying the perturbed cocycle.

9.3. Replacing Ξk with Ξ̃k. We have

(10) Ξk(A
ε(nN)
ω̄ ) ≥ Ξ̃k(A

ε(nN)
ω̄ )− C34,

by Lemma 34. The advantage of Ξ̃k over Ξk is that it admits a lower
bound in terms of sub-blocks.

9.4. Splitting Aε
(nN)
ω̄ into good and bad blocks. Recall a block

Aε
(N)

σ̄jN ω̄
is said to be good if σjN ω̄ ∈ Ḡ, that is the unperturbed cocycle

is well-behaved, and the perturbations are tame. Given ω̄, we split up

Aε
(nN)
ω̄ into blocks of length N . Whenever three or more consecutive
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blocks are good, we form a super-block, Gε, consisting of the concate-
nation of the good blocks other than the first and last good blocks. All
of the remaining blocks are called filler blocks. The Bε are the filler
blocks stripped of their first and last matrices.

We have

E
(

Ξ̃k(A
ε(nN)
ω̄ )

)
≥

E
(

Ξ̃k(B
ε) + Ξ̃k(G

ε) + Ξ̃k(B
ε) + Ξ̃k(B

ε) + Ξ̃k(B
ε) + . . .

)
− E1,

(11)

where the splitting in the last line is into super-blocks (of variable
length, all a multiple of N), here designated by Gε, and filler blocks,
Bε, all of length N − 2 and E1 denotes an expected error term that we
now estimate.

To obtain (11), we split the concatenation of n blocks of length N
into the super-blocks and filler blocks as described above by repeatedly
applying Proposition 24, which sacrifices a single matrix as ‘glue’ at
each splitting site (or Corollary 28 in the case of two consecutive filler
blocks when two matrices are sacrificed). Since the expected number
of non-good N -blocks is less than χn and each such block gives rise
to at most 4 transitions between adjacent blocks in the concatenation
(the worst case happens when two super-blocks are joined by three
fillers), we deduce E1 ≤ 4χnmax(C24, C28)| log ε|. From Lemma 9,
| log ε| ≤ 2N/C9, so that

(12) E1 ≤ 8χnN max(C24, C28)/C9 ≤ 1
6
ηnN.

9.5. Comparison of Ξ̃k(G
ε) and Ξk(G

ε). To bound one of the Ξ̃k(G
ε),

the contribution from one of the super-blocks, we first compare to
Ξk(G

ε), the corresponding contribution to the genuine singular values;
and then compare to Ξk(G

0), the singular values of the unperturbed
block. Recall that each Gε is preceded by an N -block Lε and followed
by an N -block Rε such that the enlarged block LεGεRε consists entirely
of good blocks.

For the first comparison, we have

Ξ̃k(G
ε) ≥ Ξk(D3G

εD3)− C27

≥ Ξk(G
ε) + 3(Ξk(D2G

εD2)− Ξk(G
ε))− C27,

(13)

using Propositions 27 and 32 respectively. Now

(14) Ξk(D2G
εD2) ≥ Ξk(L

εGεRε)− Ξk(L
εD−1

2 )− Ξk(D−1
2 Rε)
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by sub-additivity, and

Ξk(L
εGεRε) ≥ log | det(LεGεRε|F⊥(R0))|

= log | det(Lε|GεRε(F⊥(R0)))|+ log | det(Gε|Rε(F⊥(R0)))|
+ log | det(Rε|F⊥(R0))|
≥ Ξk(L

ε) + Ξk(G
ε) + Ξk(R

ε) + 3k log δ,

(15)

where we made use of Proposition 12 for the second inequality (Lem-
mas 7(c) and 8(a), (b) and (c) were used to ensure the hypotheses of
that Proposition are satisfied). Combining inequalities (13), (14) and
(15), we obtain

Ξ̃k(G
ε) ≥ Ξk(G

ε) + 3
(

Ξk(L
ε) + Ξk(R

ε)− Ξk(L
εD−1

2 )

− Ξk(D−1
2 Rε) + 3k log δ

)
− C27.

By Lemmas 5(c), 8(d) and 9, we have Ξk(L
ε) and Ξk(R

ε) are non-
negative. By Lemma 8(e), using sub-additivity, we have Ξk(L

εD−1
2 ),Ξk(D−1

2 Rε) ≤
2kN

∫
log(1 + ‖Aω‖SHS) dP(ω). Hence for each good block, we have

Ξ̃k(G
ε) ≥ Ξk(G

ε)− ηN/(6χ) + 9k log δ − C27.

9.6. Comparison of Ξk(G
ε) and Ξk(G

0). Next, by Proposition 10,
we have Ξk(G

ε) ≥ Ξk(G
0) + 2k` log δ, where ` is the number of blocks

forming the Gε super-block, so that overall, for each good block, we
have

(16) Ξ̃k(G
ε) ≥ Ξk(G

0)− ηN/(6χ) + 11k` log δ − C27,

where G0 is the corresponding unperturbed block.
In summary,

E
(

Ξ̃k(A
ε(nN)
ω )

)
≥

E
(

Ξ̃k(B
ε) + Ξk(G

0) + Ξ̃k(B
ε) + Ξ̃k(B

ε) + Ξ̃k(B
ε) + . . .

)
− E1 − E2,

(17)

where E2 is the combined contribution of the errors coming from good
blocks via (16).

9.7. Comparison of E Ξ̃k(B
ε) and Ξ̃k(B

0). We next work on giving
a lower bound for the terms of the form E Ξ̃k(B

ε). It turns out to
be convenient to bound this in the opposite order than the way we
obtained bounds for E Ξ̃k(G

ε). Namely, we show E Ξ̃k(B
ε) & Ξ̃k(B

0) &
Ξk(B

0).
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If the filler blockBε = Aε
(N−2)

σ̄jN+1ω̄
is not type II bad, we have E Ξ̃k(B

ε) ≥
Ξ̃k(B

0) − C14N by Proposition 14, where B0 = A
(N−2)

σjN+1ω
, the unper-

turbed block. When Bε is type II bad, we have E Ξ̃k(B
ε) ≥ Ξ̃k(B

0) +
C17(log ε−N) by Proposition 17. Since by Lemma 9, we have log ε >
−2N/C9, we get E Ξ̃k(B

ε) ≥ Ξ̃k(B
0) − C17N(1 + 2/C9) in this case.

We therefore have in either case that

(18) E Ξ̃k(B
ε) ≥ Ξ̃k(B

0)− η/(18χ)N,

9.8. Comparison of Ξ̃k(B
0) and Ξk(B

0). For the estimate Ξ̃k(B
0) &

Ξk(B
0), we use an argument similar to that in (13) and (14) above.

Namely, let the matrices preceding and following B0 in the unperturbed

cocycle be L0 and R0. We also write B̄0 = A
(N)

σjNω
for the N -block,

L0B0R0. Then as before, we have

Ξ̃k(B
0) ≥ Ξ(B0) + 3(Ξk(D2B

0D2)− Ξk(B
0))− C27

≥ Ξk(B
0) + 3

(
Ξk(B̄0)− Ξk(L

0D−1
2 )− Ξk(D−1

2 R0)− Ξk(B
0)
)
− C27

= Ξk(B̄
0) + 2

(
Ξk(B̄

0)− Ξk(B
0)
)
− 3
(
Ξk(L

0D−1
2 ) + Ξk(D−1

2 R0)
)
− C27.

(19)

We have the estimate for the subtracted terms in (19):

2Ξk(B
0) + 3(Ξk(L

0D−1
2 ) + Ξk(D−1

2 R0)) ≤ 3kF (σjNω),

where F (ω) =
∑N−1

i=0 log+ ‖A(σiω)‖SHS. This is a consequence of sub-
additivity of Ξk, the fact that ‖AD−1

2 ‖op, ‖A‖op ≤ ‖A‖SHS for every
A ∈ SHS and Ξk(A) ≤ k log ‖A‖op. By the choice of χ, we have∫
Ḡc
F (ω) dP̄(ω̄) < ηN/(108k). The combined contribution from the

subtracted terms in (19) to all of the Ξ̃k(B
ε) terms in (11) is bounded

above by

3k
n−1∑
j=0

1Filler(σ̄
jN ω̄)F (σjNω),

where Filler is Ḡc ∪ σ̄−NḠc ∪ σ̄NḠc, the set of points which are the first
index of a filler block. Hence the expectation of the contribution of the
subtracted terms in (19) is at most ηnN/12.

We use a similar argument to give a lower bound for the sum of the
added 2Ξk(B̄0) terms in (19). These terms are

(20) 2
n−1∑
j=0

1Filler(σ̄
jN ω̄)Ξk(A

(N)

σjNω
).
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By the choice of χ,
∫
B

Ξk(A
(N)
ω ) ≥ −ηN/72 for any set, B, of measure at

most χ. Hence, the expected value of the expression in (20) is bounded
below by −ηnN/12.

Combining these estimates along all filler blocks occuring in (11), we
see

(21) E

(
n−1∑
j=0

1Filler(σ̄
jN ω̄)

(
Ξ̃k(A

(N−2)

σjN+1ω
)− Ξk(A

(N)

σjNω
)
))
≥ −ηnN/6.

9.9. Combining the inequalities. At this point, we have (combining
inequalities (11), (16), (18) and (21)),

E
(

Ξ̃k(A
ε(nN)
ω̄ )

)
≥

E
(

Ξk(B̄
0) + Ξk(G

0) + Ξk(B̄
0) + Ξk(B̄

0) + Ξk(B̄
0) + . . .

)
− E1 − E2 − E3,

(22)

where E3 comes from the contributions of (18) and (21). Then using
(10),

EΞk(A
ε(nN)
ω̄ )

≥ E
(
Ξk(B̄

0) + Ξk(G
0) + Ξk(B̄

0) + Ξk(B̄
0) + Ξk(B̄

0) + . . .
)
− C34

−
(

1
6
ηnN

)
−
(

1
6
(ηN/χ)EnSuper + C27 EnSuper − 11kn log δ

)
−
(

1
18

(ηN/χ)EnFiller + 1
6
ηnN

)
,

where nFiller and nSuper are the number of filler and super-blocks respec-

tively in Aε
(nN)
ω̄ . By sub-additivity, the first term in parentheses is at

least EΞk(A
(nN)
ω ). We have EnFiller < 3χn and EnSuper < χn,

EΞk(A
ε(nN)
ω̄ ) ≥EΞk(A

(nN)
ω )− C34 − 2

3
ηnN − C27χn+ 11kn log δ.

As ε is reduced to 0, δ does not grow, but N →∞ so that for sufficiently
small ε, we have

EΞk(A
ε(nN)
ω̄ ) ≥ EΞk(A

(nN)
ω )− ηnN.

Hence we deduce Λk(A
ε) ≥ Λk(A)− η, as required. �

10. Convergence of the Oseledets spaces

Proof of Theorem B. Let k = Di be as in the statement of the theorem.
Let us assume, by possibly rescaling the cocycle by a constant, that
µk > 0 > µk+1. Let δ0 < 1 and

Uε =
{
ω̄ : ∠

(
Eε
k(ω̄), Ek(ω)

)
> 2δ0

}
.
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We will show that for every 0 < η < 1 and every sufficiently small
ε > 0, P̄(Uε) < η.

Once this is established, convergence in probability of the Oseledets
spaces Y ε

k (ω̄) to Y 0
k (ω) follows via the identity Y ε

k (ω̄) = Eε
k(ω̄)∩F ε

k−1(ω̄),
and the fact that F ε

k−1(ω̄) coincides with the orthogonal complement
of the top k-dimensional Oseledets space of the adjoint cocycle (Aε)∗,
which converges in probability by the same argument. See [10, §4] for
details.

In what follows, we will repeatedly apply Lemma 8, assuming ξ <
η
2
, δ1 < min{δ0,

µkη
10k
}, and so the value of τ provided by Lemma 8 sat-

isfies τ ≤ δ1 ≤ µkη
10k

.
Let Wε = σ̄−NUε ∩ Ḡ, where N depends on ε as in Lemma 9. For

sufficiently small ε, we have P̄(Ḡ ∩ σ̄−NḠ) ≥ 1 − η
2
, so that once we

show P̄(Wε) <
η
2
, we will be able to conclude that P̄(Uε) = P̄(σ̄−NUε) ≤

P̄(Wε) + P̄(Ḡc) < η.

Lemma 35. Suppose that ω̄ ∈ Ḡ, and that ∠(Eε
k(σ̄

N ω̄), Ek(σ
Nω)) >

2δ. Then ⊥(Eε
k(ω̄), Fk(A

(N)
ω )) < 4δ−1e−(µk−τ)N .

Proof. We suppose the contrapositive: assume that⊥(Eε
k(ω̄), Fk(A

(N)
ω )) ≥

4δ−1e−(µk−τ)N . Then let v ∈ Eε
k(ω̄) ∩ S. Write v = u + w with

u ∈ Fk(A(N)
ω ) and w ∈ Fk(A(N)

ω )⊥. Then Aε
(N)
ω̄ v = A

(N)
ω u+ A

(N)
ω w + z,

where z = (Aε
(N)
ω̄ − A(N)

ω )v.

By Lemmas 8(d) and 9, ‖A(N)
ω u‖ ≤ 1 and ‖z‖ ≤ 1, while ‖A(N)

ω w‖ ≥
4δ−1. Recalling that Aε

(N)
ω̄ Eε

k(ω̄) = Eε
k(σ̄

N ω̄) and normalizing, we see

that an arbitrary point of Eε
k(σ̄

N ω̄)∩S lies within δ/2 of Ek(A
(N)
ω ), and

so within δ of Ek(A
(N)
ω )∩S. By Lemma 2, we deduce ∠(Eε

k(σ̄
N ω̄), Ek(A

(N)
ω )) <

δ. Now by Lemma 8(b), we see that ∠(Eε
k(σ̄

N ω̄), Ek(σ
Nω)) < 2δ. �

Lemma 36. If ε is sufficiently small so that 4δ−1 + 2 < ekτN , ω̄ ∈ Ḡ
and ⊥(Eε

k(ω̄), Fk(A
(N)
ω )) < 4δ−1e−(µk−τ)N , we have

Ξk(A
ε(N)
ω̄ |Eεk(ω̄)) ≤ (µ1 + . . .+ µk−1 + 2kτ)N.

Proof. By hypothesis, there exists a unit length v ∈ Eε
k(ω̄) such that

v = f+f⊥, with f ∈ Fk(A(N)
ω ), f⊥ ∈ Fk(A(N)

ω )⊥ and ‖f⊥‖ < 4δ−1e−(µk−τ)N .

Now, since Eε
k(ω̄) is k-dimensional, Ξk(A

ε(N)
ω̄ |Eεk(ω̄)) is the logarithm of

the volume growth of any k-dimensional parallelepiped in Eε
k(ω̄) under

Aε
(N)
ω̄ . Let v, v2, . . . , vk be an orthonormal basis for Eε

k(ω̄). Then,

Vol(Aε
(N)
ω̄ v,Aε

(N)
ω̄ v2, . . . , A

ε(N)
ω̄ vk) ≤ Vol(Aε

(N)
ω̄ f, Aε

(N)
ω̄ v2, . . . , A

ε(N)
ω̄ vk)

+ Vol(Aε
(N)
ω̄ f⊥, Aε

(N)
ω̄ v2, . . . , A

ε(N)
ω̄ vk).
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By the choice of f ,

Vol(Aε
(N)
ω̄ f, Aε

(N)
ω̄ v2, . . . , A

ε(N)
ω̄ vk) ≤ ‖Aε(N)

ω̄ f‖eΞk−1(Aε
(N)
ω̄ )

≤ 2e(µ1+...+µk−1+(k−1)τ)N ,

where we have used that ‖Aε(N)
ω̄ f‖ ≤ ‖A(N)

ω f‖+‖Aε(N)
ω̄ f −A(N)

ω f‖ ≤ 2.

Since ‖f⊥‖ < 4δ−1e−(µk−τ)N , then Vol(Aε
(N)
ω̄ f⊥, Aε

(N)
ω̄ v2, . . . , A

ε(N)
ω̄ vk) ≤

‖f⊥‖eΞk(Aε
(N)
ω̄ ) < 4δ−1e(µ1+...+µk−1+kτ)N . �

Lemma 37. There exists ε0 > 0 and M ∈ N such that for every
ε < ε0, N ≥M and B ⊂ Ω̄, we have that∫

B

Ξk(A
ε(N)
ω̄ ) dP̄ < N(µ1 + · · ·+ µk)P̄(B) + 2τN.

In particular, for all sufficiently small ε, the above holds for N chosen
as in Lemma 9.

Proof. By the L1 convergence in the sub-additive ergodic theorem,

there exists M > 0 be such that ‖Ξk(A
(n)
ω ) − n(µ1 + · · · + µk)‖1 ≤ nτ

for every n ≥M . In particular, for every n ≥M and every B ⊂ Ω̄,∫
B

Ξk(A
(n)
ω ) dP̄ < n(µ1 + · · ·+ µk)P̄(B) + nτ.

Notice that Ξk(A
ε(n)
ω̄ ) ≤ k log+ ‖Aε(n)

ω̄ ‖op ≤ k
∑n−1

j=0 (log+ ‖Aσjω‖op +

ε‖∆j‖op), where we have used the fact that log+(x+y) ≤ log+(x)+ |y|.
For a fixed n, this shows that the family of functions gε(ω̄) = Ξk(A

ε(n)
ω̄ )

for 0 ≤ ε < 1 is dominated, and converges as ε → 0 to Ξk(A
(n)
ω ).

Hence, by the reverse Fatou lemma, for sufficiently small ε > 0, n ∈
{M, . . . , 2M − 1} and every B ⊂ Ω̄,∫

B

Ξk(A
ε(n)
ω̄ ) dP̄ < n(µ1 + · · ·+ µk)P̄(B) + 2τn.

Using sub-additivity of Ξk, we conclude that for every N ≥ M , and
every B ⊂ Ω̄,∫

B

Ξk(A
ε(N)
ω̄ ) dP̄ < N(µ1 + · · ·+ µk)P̄(B) + 2τN.

�

Notice that if ω̄ ∈ Wε, then by Lemmas 35 and 36 (the first lemma

establishing the hypothesis of the next one), then Ξk(A
ε(N)
ω̄ |Eεk(ω̄)) ≤
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(µ1 + . . .+ µk−1 + 2kτ)N . Combining this with Lemma 37, we see

µε1 + . . .+ µεk = lim
n→∞

1

n

∫
Ξk(A

ε(n)
ω̄ |Eεk(ω̄)) dP̄(ω̄)

≤ 1

N

∫
Wε

Ξk(A
ε(N)
ω̄ |Eεk(ω̄)) dP̄(ω̄) +

1

N

∫
W c
ε

Ξk(A
ε(N)
ω̄ ) dP̄(ω̄)

≤ (µ1 + . . .+ µk−1 + 2kτ)P̄(Wε) + (µ1 + · · ·+ µk)P̄(W c
ε ) + 2τ.

Hence,

µkP̄(Wε) ≤ (µ1 + . . .+ µk)− (µε1 + . . .+ µεk) + 4kτ.

In particular, in view of the convergence of the exponents, for all suf-
ficiently small ε, we have P̄(Wε) ≤ 5kτ/µk <

η
2
. �
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