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Abstract

We consider a two-sided sequence of bounded operators in a Banach
space which are not necessarily injective and satisfy two properties (SVG)
and (FI). The singular value gap (SVG) property says that two successive
singular values of the cocycle at some index d admit a uniform exponential
gap; the fast invertibility (FI) property says that the cocycle is uniformly in-
vertible on the fastest d-dimensional direction. We prove the existence of a
uniform equivariant splitting of the Banach space into a fast space of dimen-
sion d and a slow space of codimension d. We compute an explicit constant
lower bound on the angle between these two spaces using solely the con-
stants defining the properties (SVG) and (FI). We extend the results obtained
by Bochi and Gourmelon in the finite-dimensional case for bijective oper-
ators and the results obtained by Blumenthal and Morris in the infinite di-
mensional case for injective norm-continuous cocycles, in the direction that
the operators are not required to be globally injective, that no dynamical sys-
tem is involved and no compactness of the underlying system or smoothness
of the cocycle is required. Moreover we give quantitative estimates of the
angle between the fast and slow spaces that are new even in the case of finite-
dimensional bijective operators in Hilbert spaces.

1 Introduction

Let X be a real Banach space and (Ay)iez be a bi-infinite sequence of bounded
operators of X which are not required to be injective. The cocycle associated to
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(Ak)kez is the sequence of iterated operators
A(k,n) := Agin—1 - Ap+1Ax, Vk€Z and Vn =0,

with the convention A(k, 0) := Id. Our main objective is to find simple conditions
on the sequence (A )xez Which guarantee the existence of constants d > 1, K; > 1
and 7 > 0, and a uniform equivariant splitting X = Ej @ F} of fast/slow subspaces
satisfying the following condition:

o VkeZ, dim(Ex)=d, (Ai|Ex) is injective,
o VkeZ, ArEr=Eyr. and AyFy C Fry1, (the equivariance property),

e infycz y(Ex, Fr) > 0, (the uniform minimal gap property),

|A(k, )| Fi nr ,
< Kge™™,  (the slow/fast ratio prop-

e YVkeZ Yn=1, <
I(A(k,n)|Ex)~"|

erty)

where y(Ey, Fy) denotes the minimal gap between Ej and Fy (a notion of minimal
angle between two complementary spaces, see definition A.19),

Y(Ek, Fi) := inf{dist(u, Fy) : u € Ey, |u| = 1},

and | (A(k,n)|Ex)~!||~" and ||A(k, n)|F)| denote respectively the lowest and largest
expansion of the cocycle restricted to Ey and Fy,

|A(k, n)|Fi|l := sup{[|A(k,n)v] : v e Fy, |v] = 1},
[(A(k, )| E) ™! ™" o= inf{|A(k, n)u| : u € Eg, [u] = 1}.

(The notation ||(A|E)~!|~! will be used only when dim(E) < +c0and A : E — X
is injective). In order to distinguish the two equivariant subspaces in this exponen-
tial dichotomy, we will use the terminology fast space for E; and slow space for
Fy although both operators A(k,n) : Ex — Ejy, and A(k,n) : Fp — Fyi, may
be expanding or contracting. The index k denotes the position of the cocycle and n
represents the order of iteration. We interpret A(k,n) as an operator acting from a
space above k to a space above k + n; in particular the dual operator A(k,n)* acts
on the dual space as an operator from a space above k + n to a space above k.

Our main assumption is related to the existence of a uniform gap in the singular
value decomposition at index d. The notion of singular values for an operator in
a general Banach space is not well defined. We define the singular value of index
d = 1 of an operator A, to be the number

|Au|

A) = inf ———.
7al4) dirr?(ljfl)):d MG}EI{{O} ]
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Equivalent definitions o/,(A), 0”j(A) are given in A.29 and A.31. In the Hilbert
case, all these definitions are equal. To simplify the notations, we use

O'd(k, n) = O'd(A(k, I’l))
The top singular value is oy (k,n) = |A(k,n)| and, in the particular case dim X = d
and A(k, n) is invertible, the bottom singular value is og(k,n) = |A(k,n)~!|~'.

Main hypothesis 1.1. Let X be a real Banach space and (A )xez be a sequence of
bounded operators (not necessarily injective nor surjective). We assume there exist
an integer d > 1 and constants Dgyg, Dy = 1, T, u > 0 such that

e the sequence admits a uniform singular value gap at index d

O-d+1<k’n)HAk+ﬂH < DT
oalk,n+1) N

(SVG) Vk e Z,¥n =0,
|A]oari(k +1,n)
oalk,n+ 1)
(We implicitly assume that o4 (k,n) > 0 for every k € Z and n > 0),

—nt
< Dgyge

o the sequence is d-dimensionally fast invertible

4 oi(k —m,m+ n)

in
keZ.n=0+ 1 oi(k —m,m)oi(k,n)

(FI) Ym = 0, > Dy le™ ™,

Property (FI) is a new property that can be used as a substitute for uniform
invertibility along d-dimensional spaces. It is an asymmetric property with respect
to forward and backward iterations related to the fact that the fast space (respec-
tively the slow space) has dimension d (respectively codimension d). We will show,
thanks to the super-multiplicative property of a similar quotient, that (FI) is equiv-
alent to a seemingly weaker property withm = 1,

d

IV
(FI) < (FDyeue € = kez;gl;o H
1=

oilk—1,1+n)
oi(k—1,1)o(k,n)

> 0.

We have chosen the other form to quantify precisely the minimal gap between the
fast and slow spaces in our main theorem 1.2 in the Banach spaces case. In the
Hilbert spaces case we may choose Dy = 1 and v = .

Property (FI) is used as a sufficient and necessary hypothesis in a bootstrap
argument. Our main result actually shows that the cocycle must satisfy a stronger
property (Fl)gone With a uniform lower bound independent of m,



d
) ) oi(k —m,m+ n)
FI f f
( )strong mn 1N H O'i(k —m, m)O','(k, l”l)

m=0 keZ, n=0

> 0.

‘We will show
(SVG) and (FI) = (FDgyon,-

Notice that we do not assume that the norm of the operators Ay is uniformly
bounded from above. Notice also that A may not be invertible.
If the cocycle is uniformly invertible (UI) in the sense

(U1) supgez |Ak| < M* and infiez HAk_IH_l > M,

for some constants M*, M, > 0, property (FI) is automatically true with Dy = 1
and p := dlog(M*/M.). In that case our main result implies

UD) = (FI), (SVG) and (U) =  (FDgyong-

The singular value gap property (SVG) admits a weaker form. This weaker
form is actually equivalent to the strong one for uniformly invertible cocycles and
was introduced by Bochi and Gourmelon in [3] for the first time,

agar1(k,n)

24\ <D —nt.
oa(k,n) s Psva

(SVG)year Vk € Z,¥n > 0,

The strong form (SVG) was introduced by Blumenthal and Morris in [2] in or-
der to extend the results of Bochi and Gourmelon to the infinite-dimensional case.
They nevertheless assume the cocycle to be norm-continuous over a compact dy-
namical system and each operator A to be injective. Our property (FI) is used
instead of the injectiveness assumption. Moreover we do not assume that the co-
cycle is defined over a dynamical system, nor do we require regularity conditions
as in [3, 2]. Our main objective is to obtain an effective splitting of the Banach
space into a fast and a slow space, equivariant under the cocycle, for which the
angle between the two spaces can be explicitly bounded from below using only the
constants (Dsyg, Drr, 7, ) while avoiding the use of compactness of the underlying
dynamical system and regularity assumptions on the cocycle.

Our estimates depend on a constant K; which is only a function of the dimen-
sion d and the Banach space. For a Hilbert space K; = 1, for a general Banach
space, K, is explicitly computed given a volume distortion A4(X) (see definition
A.4) which measures the distortion of the unit Banach ball to the best fitted Eu-
clidean ball. We have that Ay(X) < +/d for Banach spaces and A4(X) = 1 for
Hilbert spaces. We give an estimate of Ayz(X) in proposition A.5 when X = 55 is
the space of dimension d equipped the p-norm. We do not intend to undertake a



systematic study of A;(X). We have chosen to give a unified proof for both Banach
and Hilbert spaces in such a way the constants appearing in the estimates become
optimal in the Hilbert case.

Our main result is the following.

Theorem 1.2. Let X be a Banach space, d > 1, and (Ay)rez be a sequence of
bounded operators satisfying the two assumptions (SVG) and (Fl) at the index d,
for some constants Dgy,Dr = 1 and T, > 0. Then there exist a constant K
depending only on the dimension d and the Banach norm such that,

1. there exists an equivariant splitting X = Ey @ Fy satisfying for every k € Z,
o dim(E;) = d, Ax(Ex) = Ext1, Ak(Fk) € Fry,

1 3d+7)721 — e THeRY
o y(Ei, Fy) = [( ) T] -
5KyDy, 2KyDy  Dgyge

2. (FI) < (FDgyong- More precisely for every k € Z, m,n > 1,

’

1—[ oilk—m—n,m+ n) - 3 [(3d +7)721— e_T:|/1(ll2+5/1T+8‘r2)/2‘r3

i1 oi(k —m,m)o(k,n) - 25KdD§, 2KyDy Dgyge®

3. The spaces Ey and Fy are called the fast and slow spaces respectively and
satisfy: for every k € Z and n such that,

u(u + 4T)> 1 ( Dy e’ 5
>(1+—=)-1 2(3d + 7)°K, ),
" ( + 272 7 B \T (3d +7)°Ka

o [(Atk,n)|EQ)7Y7! = 2K, 'y (Er, F)oa(k,n),
o |A(k,n)|Fi| < 3Kay(Figns Extn) "o as1(k,n).

Using the definition of Ad(X ) in equation (A.3), and the constants Cy 4 and éo,d in
theorems A.35 and A.43, with € = 0, we obtain

K, = ég’dcgaz;rs A, (X)4d Ad(X)Sd < (2 d)2000d3'
If X is a real Hilbert space then K; = 1 and Dy, may be chosen equal to 1 in (FI).

Our main result extends the results of Bochi and Gourmelon [3] in the case
X = R? in three ways: we do not assume the cocycle to be invertible, we do not
introduce a dynamical system, we do not assume either C° regularity or compact-
ness. The proof used in [3] requires all these assumptions and actually needs the
ergodic Oseledets theorem for invariant probability measures. We have chosen to



work in two directions: a direction which gives explicit estimates, especially for
the lower bound of the angle, with respect to the initial data, and a direction which
gives an unified proof for Banach and Hilbert spaces. In order not to introduce arti-
ficial constants in the Banach setting, we found it necessary to develop in appendix
A a theory of volume distortion A;z(X) which enables us to quantify on each d-
dimensional space the distortion of the Banach norm with respect to the best fitted
Euclidean norm. The volume distortion Ay(X) is 1 in the Hilbert case. We express
all estimates in terms of a constant K that is only a function of A;(X) and satisfies
K; = 1 in the Hilbert case.

In item 1 we obtain an explicit lower bound of the angle between the fast and
slow spaces depending only on Dgyg, Dy, T, u and the dimension d. We have cho-
sen to give a uniform estimate for every k € Z instead of an asymptotic estimate as
k — to0. This choice has led to additional computation.

In item 2 we prove the strong form (FI)yon. This is actually a simple conse-
quence of lemma A.44 and the uniform bound infyez y(Ey, Fr) > 0. We neverthe-
less give a precise estimate valid for all iterates m, n and not just for m,n — +o0.
In the Hilbert case, the estimate is simpler with K; = 1 and Dy, = 1 in (FD).

In item 3 we show that the two equivariant splittings correspond indeed to the
fast and slow spaces; we again made the decision to give explicit but not optimal
estimates. The singular value of index d of the cocycle restricted to the fast space
is comparable up to a factor given by the minimal gap y(Ey, Fy) to the original
d-dimensional singular value. A similar result is obtained for the slow space. For
large n and in the Hilbert case, the two constants %Kd_l and 3K, may be replaced
by 1.

The proof of our main result is divided into 3 parts. In section 2, we show
how property (SVG) implies the existence of two fast and slow spaces that may
not be complementary. This mechanism is standard since Raghunathan [13] in
finite dimension, Ruelle [14] in Hilbert spaces, Blumenthal-Morris [2] in Banach
spaces, and Gonzélez-Tokman-Quas [8] for a shorter proof. Our proof quantifies
precisely the speed of convergence of the approximate spaces. In section 3, we
show how property (FI) implies that the two fast and slow spaces give a splitting
of the ambient space. This part is the heart of the proof and is new. In section 4,
we show that (FI) is a necessary and sufficient condition and actually equivalent
to a stronger condition (FI)yn,- In appendix A, we recall basic definitions of the
geometric theory of Banach spaces. We recall different notions of distance between
subspaces, several notions of singular values, some facts about the projective norm
on the exterior product. The main purpose of this appendix is to recall without
proofs the standard approximate singular value decomposition theorem A.35.



2 Construction of the fast and slow spaces

The proof of our main result is based on a version of the singular value decom-
position (SVD) theorem for a single bounded operator in the Banach setting. The
(SVD) theorem is well known for compact operators in a Hilbert space (see [12]).
We did not find a version of the (SVD) theorem adapted to our needs in the liter-
ature. Appendix A fills in this missing piece. The main interest of Appendix A is
theorem A.35 which shows the existence of approximate singular spaces at every
index d. The singular spaces may not be exact because of the non compactness of
the operators and are thus non canonical. They depend for instance on an arbitrar-
ily small constant € > 0 coming from the fact that, in the case of infinite Banach or
Hilbert spaces, the norm of an operator may not be attained by a vector of the unit
sphere. Notice that we shall not use the (FI) condition in this section.

The following theorem is a special version of theorem A.35 applied to each
operator A(k,n) = Agin—1 - - Axr1Ax. We fix € > 0 and the index d > 1. We show
there exist a pair of complementary spaces X = U(k,n) @ V(k,n) of the source
space and a pair of complementary spaces X = U(k + n,n) ® V(k + n,n) of the
target space that are related by A(k,n) and A(k,n)*. We replace the usual notion of
orthogonality by a weaker notion using C-Auerbach families (see definition A.12
for more details). We show that the two splittings are C, 4-orthogonal in the sense
of the following definition.

Definition 2.1. Let X be a Banach space,d > 1, C > 1.

e We say that a family of vectors (uy, ..., us) is C-Auerbach if

Vji=1,....d, C'<dist(u,span(u; : i # j)) < ||uj| < C.

e We say a splitting X = U @ V with dim(U) = d is C-orthogonal if there
exist a C-Auerbach basis (ey,...,e;) spanning U and a C-Auerbach basis
(¢1,...,¢4) spanning V< in the dual space X* which are dual to each other,
that is <¢,’|€j> = 5,',1', Vi,j=1,...,d.

If V < X is a subspace of X, the annihilator of U is the subspace in the dual
space, Ut := {¢p € X* : (p|u) = 0, Vu e U}. If H < X*, the pre-annihilator of H
is the subspace in X, H* := {ve X : (|v) = 0, Vn € H}.

Theorem 2.2 (Approximate singular value decomposition). Let X be a Banach
space, d = 1, € > 0, and (Ay)rez be a sequence of bounded operators. Then there
exists a constant Kg = 1 depending only on the Banach norm and d, such that for
everykeZ n>1,and Ceyq:= (1 + €)Ky,



1. there exist two C¢ g-orthogonal splittings:

e X =U(k,n)®V(k,n), X=U(k,n)®V(k,n),

o dim(U( n)) = dim(U(k,n)) = d,
Alk,n)U(k,n) = U(k +n,n), A(k,n)V(k,n) = V(k + n,n),
Alk,n)*U(k+n,n)* < Ulk,n)*,  A(k,n)*V(k+n,n)*t = V(k,n)t,

2. the singular values of A(k,n) and A(k,n)* restricted to this splitting are
comparable to those of A(k,n) on X: for every 1 <i <d,
(k,

e gi(k,n) = oi(A(k,n)|U(k,n)) = oi(k,n)/Cea,

o oi(k,n) = oi(A(k,n)*|V(k + n,n)*) = oi(k,n)/Ceq,
(k) |[V(k, )| < cay1(k.n)Cea,
(k,

e ogay1(k,n) <A
) < |A(k,n)*|T(k + n,n)*| < oay1(k,n)Cea,

e 04:1(k,n A

3. the minimal gap of the two splittings is uniformly bounded from below,

y(U(k,n), V(k,n))
y(U(k.n), V(k.n))

]/Ce,d’ Y(V(k’n)’U(k )) = l/ced,
1/Cea, y(V(k,n),Ulk,n)) = 1/Cea,

4. there exits a pair of C g-Auerbach families of (the source space) X, X*,

(e1(k,n),...,eq(k,n)), (P1(k,n),...,dq(k,n))

and a pair of Ce 4-Auerbach families of (the target space) X, X*,
(@1(k +mn,n),....,e4(k+n,n)), (d1(k+nn),...,¢qsk+n,n))

satisfying
o Gilkamlejkon)) = 5,5, Blkam)iej(kam) = 5
o A(k,n)ei(k,n) = oi(k,n)é;(k + n,n),
o A(k,n)*¢i(k + n,n) = oi(k,n)¢;i(k,n),
o U(k,n) = span(e;(k,n),...,eq(k,n)),
o V(k,n) = span(¢i(k,n), ..., ¢a(k,n))",
(k + n,n) = span(é;(k + n,n),...,e;(k + n,n)),
(k + n,n) = span(¢y(k + n,n),..., sk + n,n))™

3

<t

5. Moreover K; = 1if X is a Hilbert space and € may be chosen to be zero if X
is finite-dimensional.



We call U(k,n) and V(k,n), the approximate fast and slow forward spaces
above k. Similarly we will call U(k,n) and V(k,n), defined using A(k — n,n),
the approximate fast and slow backward spaces above k. Since the approximate
forward spaces are built using the sequence of operators (Ax, Ak+1s---»Aktn—1)
and the approximate backward spaces are built using (Ax—n, Ax—nt1s--->A%—1),
the two splittings above k, X = U(k,n) ® V(k,n) and X = U(k,n) ® V(k,n), need
not be closely related.

We first consider the construction of the slow spaces (F)xez using the forward
cocycle (A,) !~ and their approximate slow forward spaces V(k, n).

The following lemma shows an exponential contraction between the two ap-
proximate slow forward spaces. The maximal gap 6(V, W) between V and W is a
standard notion of distance between two subspaces (see definition A.17 and equiv-
alent formulations — note the asymmetry in the definition).

6(V, W) = sup{dist(v, W) :veV, |v| = 1}.

Lemma 2.3 (Raghunathan estimate I). Suppose that the sequence of operators
(Ay) satisfies (SVG). Then for everyk € Zandn > 1,

6(V(k n) V(k n + )) X CGdDSVGe VlT,

1
o(V(k,n+1),V(k,n)) < CZ Dyge " /(1 — C2 Dyge™). M

Proof. Letve V(k,n) and ¢ € V(k,n + 1)+ be of norm 1. Choose ¢ € V(k +n +
1,n + 1)t such that ¢ = A(k,n + 1)*@. Using item 2 of theorem 2.2 one obtains

on the one hand
~ O'd(k,n + 1) ~
ol = latkon + 1% > T g,
€,

and on the other hand

(¢lv) = (@lA(k.n + 1)v)
|61 [A(k,n + 1)v]| < |8][|Arsnll| Ak, n)v]
CedlAcsnlloari(k.n)|d][v]

Ainloras (k)
C2
e

2 —nt
< Ce’dDSVG e

//\ N

where the last line follows from (SVG). The first estimate in (1) then follows from
(A.7). The second estimate is obtained using equation (A.11),
5(V(k,n),V(k,n+1))

S(V(k,n+1),V(k,n)) < 1—o(V(kn),Vikn+ 1) -

9



The previous lemma shows that the gap between two successive V(k,n) is ex-
ponentially small. This implies in particular that (V(k, n)),> is a Cauchy sequence
and that V(k,n) — Fj uniformly in k to a subspace Fj of codimension d that we
will call the slow space. We will need a more precise statement where Fy is un-
derstood as a graph over a fixed splitting uniformly in k (see definition A.22). The
reference splitting will be given by X = U(k, N.) @ V(k, N,) for some N, chosen
sufficiently large. An initial choice of N, is made in the following lemma and will
be subsequently tightened in lemma 3.3, 3.8, and finally in Assumption 3.11. It
will be convenient to choose at each step of the proof N, depending on a parameter
0. € (0,1) as in (2), (5) and (7).

Lemma 2.4 (Existence of the slow space). Let 0, € (0, 1) and N, satisfy

—T
sl —e
4
Ce,d

DSVGeiN*T < 0*(1 - 0*)

)

Then for every k € Z, for every n = N, the following 5 items are satisfied.
1. V(k,n) = Graph(®(k,n)) for some @(k,n) € B(V(k,Ny), U(k,Ny))

S(V(k,Ny),V(k,n)) < |®(k,n)| < 0x, 6(V(k,n),V(k,Ny)) < 6.

2. (O(k,n))n=n, is a Cauchy sequence, for every n > 1

1Ok, n + 1) — Ok, n)| < Gue™"Ne)T(1 — 7).

3. Let ©f(Ny) := lim,_, ;o O(k,n) and Fy := Graph(®y(N)). Then
O(V (k. Ny), Fir) < |Ok(Ny)| < s, 6(Fi, V(K. Ny)) < 6s.

Fy is called the slow space of index d; F is independent of the choice of Ni.

4. V(k,n)*+ = Graph(®~(k,n)) for the bounded operator
O (k,n) = —m(k, Nx)*@(k,n)*p(k, Ni.)* € B(V(k,Ny)*, U(k, Ni)b),

where nt(k,n) is the projection onto V(k,n) parallel to U(k,n) and p(k,n) is
the inclusion operator U(k,n) — X. Moreover

O (Ny) = HETOO Ot (k,n) exists,

Fi = Graph(®f (N.)). 0" (k.m)| < 6u.  [OF (Na)] < s

10



5. | (A(k,n)|U(k, Ny) =Y~ Jou(k, n) is uniformly bounded from below,
L4 X = U(kaN*) @Fky
o Vue Uk, Ni), |A(k,n)u| = C_7(1 = 6:)20a(k,n)|u
o Y(U(k,Ni), Fi) = C_; (1 — 6x)*.

’

Proof. In order to simplify the notations, fix k and denote

We want to apply lemma A.25 for the initial splitting X = U, @ V.. where V. plays
the role of Uy. An additional complication comes from the fact that the minimal
angle is not symmetric. We shall show by induction for every n > N,

¢ [0, -0, <O,—1(1 —6), (Oy,—1 = 0by convention),
e V, = Graph(®,) for some @, € B(Vy, U,) with |0, < 0,(1—0,)y(Ux, V),
L4 6(Vn, V*) < H*V(U*, V*)>

where 6, := .~ ""N)T(1 — e T)y(U,, V) < 0.
Suppose that the above conditions are satisfied for the index n. We first claim
that the choice of N, implies

S(Vus1, Vi) < 0,(1 —6,)(1 — 6,)*y(Us, V) < 6.
To see this, on the one hand, from equation (A.16), we have

V(U*’ V*) - 5(Vn’ V*)
1+ 6(Vp, Vi)

(1 —04)y(Us, Vi)
1+ 0,y(UsVy)

V(U*’Vn) =

= (1- 9*)27’(1]*’ V).

On the other hand, from the definition of N, we have
Cg,stvoe_m < 6y (1 — 9*)66_(H_N*)T(1 — e )y(Us, Vi),
< On(1 = 0.)%y(Us Vi),
Combining both estimates, lemma 2.3 and equation (A.11), one obtains

(Vi Vis1) < C2 Dovoe ™™ < 0,(1 = 0,)*y(Us, Vi) < 6, < 64,

O(1 = 6:)*y(Us, Vi)
1 - 9*

(Vi1 Vi) < < O0,(1 —6,)(1 — 0:)>y(Us, V).

11



The claim is proved. We now show the three conditions for the index n + 1. From
item 2 of lemma A.25, V,,| = Graph(®,,+) for some @, € B(V,, U,) and

H@ - @ H < 6(Vn+l’ Vn) V(U*, V*)
" " (U, Vi) — (Vi1 Vi) ¥(Us, Vi) — (Vi Vi)

n

8(Vier V1) < [Onpr| < D) Oc(1 = 6:) < 02(1 = 0,)y(Us, Vi),
k=Ny

6(V*’ Vl’lJrl)
1 —6(Vi, Vir1)

6(Vn+1’V*) < Q*Y(U*, V*)-

The induction is complete and the three first items are proved.
The fact that F is independent of the initial choice N, is proved in the follow-
ing way. Let w € Fy, w = v + @ (N, )v for some v € V(k, N). Then

w—[v+ 0(k,n)v] = [Or(Nx)v — O(k,n)v],
|0k (N+) — Ok, n)|

dist(w, V(k,n)) < |Or(Ny) — Ok, n)| |v|]| < wl,

(0. Vi) < [O(N.) = Ok )] [v] < 14T =2
(S(Fk, V(k,?l)) < H®k(N*> —®(k,l’l)H <6, —(H—N*)T’)/(U*’V*)
’)’(V*,U*) V(V*’U*)

Let F| as in item 3 with another choice of ¢, and N,. Using the weak triangle
inequality
5(Fy, F}) < 26(Fk,V(k,n)) +26(V(k,n), F})
and letting n — +-00, one obtains §(F, F}) = 0 and Fy = F;.
Item 4 is a consequence of lemma A.23. Item 5 is a consequence of item 2 of
theorem 2.2 and equation (A.16),

Y(Us, Vi) = 6(Viy, Vi) 1— 6,
U,,V

Tro vy o *)1+9*

Y(Us, Fr) = y(Us, Vi) (1 — 6’*)2, (by taking the limit n — +00).

y(U*, Vn) = V(U*’ V*)(l - 9*)2’

Moreover for every u € U, such that |u| = 1,
|A(k, n)u| = sup{(BlA(k,n)uy : § € V(k +n.n)*, 6] =1}
k,
> supl(liy 9= V. 10] = 1y in { AL

|l
oa(k,n) . y(U*,Vn)O-d(k’n)
€,d Ce,d

oylk,n
= y(Us, Vi) (1 — 9*)2%-
€,d

cpeVik+ n,n)i}

> dist(u, Vy)

12



Lemma 2.5 (Equivariance of the slow space). For every k € Z,
AkF Kk < F k+1-

Proof. Letve V(k,n+1),and ¢ € V(k + 1,n)*. Then there exists ¢ € V(k +n +
1,n)* such that ¢ = A(k+ 1,7)*@. On the one hand, item 2 of theorem 2.2 implies

oalk+1,n)

6] = ca(Atk + 1,n)*|V(k+ 5+ 1) D) |8 = == — l9l.

On the other hand, item 2 also shows

(plAw) = (BlAk,n + 1)) < [@[[|A(k,n + D[V (k,n + 1)] v],
> O'd+1(k,n+ 1)
|Aks1]oasi(k +2,n—1)
oalk+1,n)
< C2 JAkIDsvae™ Vg V]

< C24lA I8l v

We have thus obtained for every v e V(k,n + 1),

dist(Agv, V(k + 1,n)) = sup{(|Axv) : p € V(k + 1,n)*, ||¢| = 1},
S C?,dHAkHstce‘("‘”’HVH-

Let 0, and N, satisfy equation (2). Assume n > N,. Let v, € V(k,N,) and
wy = O(k,n + 1)vy + v. Then there exists v/, € V(k + 1, N, ) such that

W o= Ok + Ln)v), + ), satisfies | Agwy — w) | — 0.

Since w, — w = O(Ny)vs + vy, the sequences (Agwy)n, (W),)n and (v),), are
Cauchy sequences. We obtain therefore the convergence of v, — V' € V(k+ 1, N,)
and Ag(Or (N vy + vi) = Op1 (N )V + V. O

We now consider the construction of the fast spaces (Ej)iez using the back-

ward cocycle (A,)"-5~! and their approximate fast backward spaces U (k, n). The

following lemma is analogous to lemma 2.3.
Lemma 2.6 (Raghunathan estimate II). Foreveryn > 1, k€ Z,

8(U(k,n+1),U(k,n)) < C2 ;Dgge ™,

N N 3)
8(U(k,n), Ulk,n+ 1)) < C2 Dgce " /(1 = C2 Dsyge™").

13



Proof. Letii € U(k,n + 1) and ¢ € U(k,n)* of norm 1. On the one hand ii =
Ak —n—1,n+ l)uforsome u € U(k —n — 1,n+ 1) and item 2 of theorem 2.2
implies

la| = oalk—n—1,n+ 1)|u|/Ceq.

On the other hand, item 2 also implies
(Bliy = (plA(k —n—1,n+ Duy ={Ak —n—1,n+ 1)*P|lu)
< [Arn 1A (K — n,n)* &)
< [Ak-n—tlloati(k = n.n)Ceald|ul

|Ak—n—1|oas1(k —n,n) -
<C? il
e v L
The second inequality is a consequence of equation (A.11). O

The following lemma is analogous to lemma 2.4. We show that the sequence
of subspaces (U(k,n)),>1 is a Cauchy sequence converging uniformly in k to a
subspace Ej of dimension d. We see Ej as a graph over U(k, N,) in the splitting
X = U(k,Ny) ® V(k, N,) for some large N, defined in (2).

Lemma 2.7 (Existence of the fast space). Let 0, € (0, 1) and N, satisfy equation
(2). Then for every k € Z, for every n = Ny, the following 4 items are satisfied.

1. U(k,n) = Graph(®(k,n)) for some O(k,n) € B(U(k,N,), V(k,Ny)),

S(U(k,Ny), U(k,n)) < |0k, )| < 65, 6(T(kon), U(k, Ny)) < 65

2. (O©(k,n))n=n, is a Cauchy sequence, for everyn > 1

1Ok, n + 1) — Bk, n)| < e "NET(1 — 7T,

3. Let ©y(Ny) :=lim,_, ;o ©(k, n) and E; := Graph(®y(N,)). Then
S(U(k,Ny), Ex) < |Or(Ny)|| < 0, 6(Ex, U(k,Ny)) < 6.
Ey is called the fast space of index d; Ey, is independent of the choice of Ni.
4. |(A(k — n,n)*|V(k,No)H) 7V~ oy (k — n,n) is bounded from below,

hd X = Ek@ V(k$N*)’
o Vo e V(kN)*Y Ak —nn)*@| = C_j(1 — 0.)a(k — n,n)|d
o Y(U(k,n), V(k,Nx)) = (1 - 62)C_).

b
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Proof. The proof of items 1 — 3 is similar to the one in lemma 2.4 by permuting
the role of U and V. For instance we also obtain by induction

6(U(k,Ny), U(k,n)) < 0,y(0(k,Ny.), V(k, Ny)).

For the last item, we choose ¢ € V(k, Ni)*, |4|| = 1, then using (A.6),

|A(k = n.n)*¢|
> sup{{(P|A(k — n,n)u) :uec Uk —n,n), |ul =1}
> sup{(@|a) : i e Uk,n), |a] = 1} inf {Wkﬁ%)“” ue Uk — n,n)}
> dist(@, 0k )y ZEZ) S Dk N, Ok, my -y L)
Ce,d Ce,d
and by using equations (A.16) and (A.17) one concludes
Y(V(k, N Ok,n)*") = y(O(k,n), V(k, Ny))
_ YUk Ny), V(k Ny)) = 6(U(k, Ni), U (k. n))
~ 1+ 6(0(k,Ny), U(k,n))
1 -6, - & 2,1
> 1+9*7(U(k,N*),V(k,N*)) > (1-6.)°C_,. O

Lemma 2.8 (Equivariance of the fast space). For every k € Z,
ArEr = Erq1.

Proof. Letiie U(k,n) and ¢ € U(k+ 1,n+1)*. Then there exists u € U(k—n, n)
such that it = A(k — n,n)u. On the one hand

||| = oa(k —n,n)|ul/Cea.
On the other hand

(BlAxity = (A(k = n.n + 1)*¢luy < [A(k —n,n + 1)*Ju]
2 ocar1(k—nn+1)
e o4k —n,n)

o ]

1l 1]

< Ceavasi (k—n.n+ 1)@ |u] <

Tari(k—nn—1)]|A|
oalk —n,n)
< C2 | A Dsvse™ "V [

< ClalAd

We just have proved for every ii € U(k, n),

dist(Agit, U(k + 1,n + 1) < C2 || Dgyoe™ "7 .

15



Let 6, N, as in equation (2). Let ii, € U(k, Ny) and w,, := ity + O(k, n)it,. Then
there exists i, € U(k + 1, Ny) such that

wh =i, + O(k + 1,n + 1)it, satisfies ||Azw, —w/,| — 0.

n

Since w, — ity + Op(Ny)ity, it, — ', W, — w' = i’ + O, 1(Ny)it'. We have
) =

%
proved Ay (itx + Oy(Ny )il i’ + Ok+1(N,)il' and the equivariance of the fast
space. o

3 Proof of item 1 of theorem 1.2

We present the proof of the bound from below (item 1 of theorem 1.2) of the angle
between Ej and Fj uniformly in k € Z. We use for the first time the property
(FI). Although there should exist a direct proof for any dimension d, we reduce our
analysis to the case d = 1 by introducing the exterior product /\d X. The cocycle
A(k,n) admits a canonical extension to the exterior product that we denote

A(k,n) == NA(k,n).

The approximate singular value decomposition obtained in theorem 2.2 for the
cocycle A(k,n) can be extended to the cocycle A (x,n) by applying theorem A.43
to each A(k, n). We use definition A.39 for the notation U and V, for every subspace
U of dimension d and V of codimension d, respectively. We obtain the following
theorem.

Theorem 3.1. Let X be a Banach space, d > 1, € > 0, and (Ay)rez be a sequence
of bounded operators. Let X = U(k,n) ® V(k,n) = U(k,n) ® V(k,n) be the ap-
proximate singular value decomposition given in theorem 2.2 spanned respectively

by the bases (e1,...,eq), (P1,..-»¢a), (81,...,24), (P15...,Baq). Then there ex-
ists a constant K; depending only on the Banach norm and d, such that, for every
keZn=1,Ceq:=(1+ €Ky,

1L ANX=0(kn)®V(kn), AX=0kn®Vkn),

2. Uk.n) = span(AL ei(k.n).  V(k.n) = span( AL, (k. m))™,
3. Uk.n) = span(A\L &i(k.n),  V(k.n) = span( AL (k. m))™,
4. dim(0(k, n)) = dim(T (k, n)) = 1,

5. Alk,n)U(kon) = Ok +non),  Alk,n)V(kn) < V(k + n,n),

16



6. €2} T, oulken) < AU )| O (k)| < Cea T, (ko)

7. Coy TIL  oilk,n) < A(k, n)* |V (k +n,n)t| < Ceq TIL, oilkon),
8. |A(k,n)|V(k,n)| < Ceq ori(k,n) - gy (k,n)ogs1(k,n),
9. Y(U(k,n), V(k,n)) = C_ ), y(V(k.n), Ulk,n)) = C_ .

This theorem is a direct consequence of theorem A.43. We now recall some nota-
tions introduced in item 3 and 4 of lemma 2.4. We consider Ej and Fj as graphs
over a fixed splitting X = U(k,N,) ® V(k,Ny) and X = U(k,N,) @ V(k,Ny)
respectively.

Notations 3.2. Let 6, € (0, 1) and N, satisfy equation (2). Then

e E; = Graph(©y(N,)) for some O (N,) : U(k,N,) — V(k,N,),

Fi = Graph(®; (Ny))" for some O (N.) : V(k, Nx)= — U(k, Ny)*,

Ey = span( AL, (1d ® Ok (Nx))&;(k, Ny)),

Fy = span(/\?zl (1d @ ©;" (N )ik, N*))ﬂ,

Fi = Graph(©(N,)) for some Ok (N,.) : V(k,N,,) — U(k, Ny),

[Ok(N)| < Ous [OF (N)| < s [Ok(Ni)| < CHKa0:(1 + 0:)77",
(using lemma A .42 for some constant K; = A;(X)¢ given by (A.3)).

The strategy of the proof is based on two steps. In the first step we show that,
for some N, large enough,

VkeZ, y(A(k— Ny, Ny)U(k — Ny, Ny), F) = ¢(Ny),

with a constant that depends on N, (and goes to zero as N, — +00). This estimate
may be considered as a bootstrap argument; this is the only place where property
(FI) is used.

In the second part, we analyze the special backward cocycle associated to the
sequence of operators (K (k—nN,, N*)):j We improve the previous estimate and
show that actually

Vn>1,VkeZ y(A(k—nNy, nNy)U(k — nNy,nN,), F) > constant.
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The proof is complicated by the fact that we are in a Banach space and look for an
explicit lower bound. The proof is also new in the finite dimensional setting. We
conclude the proof by observing

g(k — nN*,nN*)ﬁ(k — nNg,nNy) = 5(1{, nNy) — Ek.

We obtain a uniform bound from below of y(ﬁk, F, «) and therefore a uniform bound
from below of y(Ey, Fy) by using lemma A.40.
We show in the following lemma that the smallest expansion of A(k,n) on
U (k, m) is bounded from below by Hflzl oi(k, n) uniformly in m, n large enough,
d
Vk € Z, Vm,n > Ny, |A(k,n)|U(k,m)| > constant [ | [oi(k.n)].  (4)
i=1
We now choose N, satisfying a more restrictive condition than the one in (2).

Lemma 3.3. Let 0, € (0, 1) and N, satisfy

7N T 71 - e_T
Dgyge ™" < 0*(1 - 0*) 5 . )
Ce,d
Then for everyn,m = N, and k € Z,
d
Vue Ulkom), [A(kn)ul = C 4K (1-6,) (H ) Jul,

where K := Ag(X)3.
Proof. Part 1. We prove in both cases, n > m and m > n, that there exists an oper-
ator @+ : V(k,m)* — U(k,m)* such that V(k,n)* = Graph(®') and |®| < 6,
For n > m the existence of @' is a consequence of item 4 of lemma 2.4 taking
Ny = m.
Form > n, let @ := 0,(1 — 0,)/Cc4, then
6 1 - B_T
4
Cs,d
S(V(k,m),V(k,n)) < € < (1 — 0,)y(V(k,m), U(k,m)).

In particular, from item 1 of lemma A.25,
6(V(k,m),V(k,n)) <y(V(k,m),U(k,m)),
s(V(k,n)t, V(k,m)t) < y(U(k,m)*, V(k,m)b),
V(k,n)t = Graph(©1), forsome Ot :V(k,m)* — U(k,m)*,

S(V(k,n)*, V(k,m)*b)
y(U(k,m)+, V(k,m)L) — 6(V(k,n)L, V(k,m)L)

DSVGe_nT < DSVGe_N*T < 9/(1 - 0’)

>

|ot] < < 6.
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Part 2. We now prove the relative rate of expansion of A(k,n). From lemma
A.26, one obtains with K/, = Ay(X)%,

det ([{(gi(k,n)le;(k, m)>]u) > (K&)_lC;?d(l —6,)%
As A*(k,n)¢;(k + n,n) = o;(k,n)¢;(k,n), using equations (A.21) and (A.22), one
obtains

det (|{i(k + n,n)|A(k,n)e;(k,m))]..
det ([(ik,n)e;(k,m))],;) = d ]’),

Hfl yoi(k,n)
< H/\, 1Bilk + nn)| Ak, ) AL ei(k, m)|
Hiil oi(k,n)

From proposition A.34, we have X4(X) < Ay(X)?. From the definition of the
projective norm (A.20), we have

d 3 d
[Nz @k +n.n)| < €&y and [N ej(k.m)| < CZ,. =

The next lemma gives a lower bound of the angle between the approximate
fast space Wk A(k N, N*)U(k N.,m) and the slow space Fk form > N*
This estimate is non trivial as Wy is defined using the operators (Ag—p),>1 and Fy
is defined using the operators (Ax+,)n>0. Property (FI) forces the two spaces to be
complementary. It is the only place where (FI) is used.

Lemma 3.4 (First cruCIal step) Let 0, € (O, 1), Ny satisfy equation (5), k € Z,
and m = N,. Denote Wk = A(k N*,N*)U(k — Ny,m). Then

Y(Wi, Fi) = C_C K, (1 - 0,)'Dy e Mot
where K; := Ag(X)3.

Proof. As V(k n) — F, r in the co-Grassmannian topology, it is enough to bound
from below y(Wk, V(k,n)) for large n > m. We first show that W, is the graph
of some operator I'(k,n) : U(k,n) — V(k,n). We then give an upper bound for
|1d ® T'(k, n)|; or equivalently a lower bound for the angle y(W;, V(k, n)). Let

w e Wk, w=w +w' we ﬁ(k, n) and w' e ‘V/(k,n).

On the one hand w = X(k — Ny, Ny )u for some u € lA/(k — N,,m). Then using
lemma 3.3 with K; = A;(X)3¢ and item 6 of theorem 3.1, one gets

|A(k, n)w] = |A(k — Ny, Ny + n)u|
CHK (1 - 6,) T ik — Nuu Noc+ 1) Jul.,
Il < Ceal T 07i(k — Nuoy Nio) .

\%
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Thus

AU mpw] = EZ)C 2K (1 - 0.)

On the other hand using items 6 and 8 of theorem 3.1,
|AGk.mw'| < Ceal T2 itk )] ],
Ak )| < Ceal [T itk m)] s (k)
N (k,
M%mwﬂéQAﬂﬁﬂMmﬂwﬂHfﬁmlWW}

Property (FI) implies

Ce,
C

Hd 10i(k — Ny, Ny + n)
H 1Uz(k N*’N*)H 1“1(" n)

Combining the two estimates of HA\ (k,n)w|| and using property (SVG), one obtains,

> Dle Nk,

|(d@ Tk, )| = |w] <
C? ,CH K (1 — 6,) D[ 1 + Dyyge ™| (k, )] W],

In particular ||[T(k, n)| is uniformly bounded from above. Using lemma A.24 and
item 9 of theorem 3.1

~ N A—1
yOkn), Vikm) _ Cea

d@ k)| ~ [d@T(kn)

~N— — — -1 = _ =~ —1
> C_7C 'K (1 - 0,)"Dy e (1 + Dyyge [T (k, n)]]

y(W, ‘V/(k, n)) =

We conclude by letting n — +00. |

Similarly to lemma 3.3, we show that the largest expansion of A (k, n) restricted
to F is bounded from above by []_L  i(k,n)]e™"" uniformly for n large enough,

VkeZ, Yn= Ny, |A(kn)|E < constant(l_[a'lkn)> T (6)

Equation (6) together with equation (4) show that the cocycle A (k, n) satisfies prop-
erty (SVG) at index 1. Estimate (6) is the main reason to introduce the exterior
product. The simplest proof based on the original cocycle seems to require a com-
parison between the two ratios o4 (k,n) /o (k,n) and og41(k,n) /o a(k, n).
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Lemma 3.5. Let 0, € (0,1) and N, satisfy equation (5). Then for every n = N
and k € Z,

d
A ) [Fel < 2C2 ,CH K8 (1 + 6,) (TI n))em N,

where K; = Ag(X)“.

Proof. Let Fy = Graph(®;"(n))* and Fi = Graph(©y(n)) as in notations 3.2. We
first notice

—T
sl —e

4
Ce,d

DSVGe_nT < e—(n—N*)TDSVGe—N*T < 9/(1 o 9/)

with @ := 0,e~(""N+)7_Substituting & for 6, and n for N, in item 4 of lemma 2.4,
one obtains [|®; (n)| < ¢'. Then lemma A.42 and proposition A.34 imply

|6k(n)|| < C2 K40/ (1 + 6,)7~!
Letw e Fr, w=w +w", w" € V(k,n) and w = O(n)w” € U(k,n). Then
ww«mwmwmw<amm

|AGk )W < CealTT1ori(k.m) [|©k(m) [,
|A(kn)w"| < Cea oi(kin) -+ ga—i(kam)oasi (kn)|w"],

nmmmw<dAanme@ww+”““hu

oa(k,n)

//\

We conclude using property (SVG),

oa+1(k,n)

— 2d d—1
T < Dyvge " <O < CLyKa0' (1+0,)7 . o

We now change notation and rewrite the cocycle (A(k — nNy, N,)) % as block
matrices along the following splitting. Notice the small circumflex for the new
notation. Define

e A_, = X(k— NNy, Ny), Yn > 1,
o U_, := Uk —nNy,nN,), V_, := V(k — nNy,nNy), ¥n > 1,
o Uo:= Uk, Ny), Vo= V(k.N,),

~

o £ ,:= Ekan*r F_,:= kanN*7 Vn = 0,
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° /\dXZ U_n@ﬁ_n,Vn>0

Notice that the first crucial step, lemma 3.4, implies that Up=A_,U_; and F are
indeed two complementary spaces. We consider the following block splitting

e p_, the projector onto U_, parallel to F_,, Yn >0

§_n, the projector onto F_, parallel to U_,, Vn >0,

; a—p, 0
= A =
A_, [5;1 dn] , Vn=>=1

e a ,= P—(n—1)° (A—n|0—n) : U—n - U—(n—l)a

A

C—n ={4—(n—1)° (AA—n|U—n) : U—n - F—(n—l),

dA_n = (AA_n‘F_n) . F_n — F—(n—l)-

By the equivariance of the slow space A_,F_,  F —(n—1), We obtain

~

e A" =A A, - A_, = A(k — nNy,nN,),

D>

= po o (A(k — nNy,nN,)|U(k — nNy,nNy)),
o d" :=d d o d = (A(k — nNy,nN.)|Fi_ny, ).

Lemma 3.4 implies that A_,U_,, and F_ (n—1) are complementary. In particular
U_, - U_ (n—1) 18 bijective. Define forn = 1,

e A, U_,_, = Graph(F_,,) for some operator ['_,, : U_, — F_,, by
convention, fo =0,

o A" nU_ = Graph("") for some operator = Eo : Uy — Fy. Notice that the
choice of Uy implies Z “0 =0.

Lemma 3.6. Let 0, € (0,1) and N, satisfy equation (5). Then
Vn=1, |[§-n| < dC Kq(1 +9*) ,
where K; = Ag(X)“.

Proof. From notations 3.2 one obtains F_, = Graph(®_n) for some operator
0_,:= O—nn, (nNy) : V_, — U_,. Moreover
q—”l = (Id@é_ )OHV n‘U—n
|6 < C2iKab:(1+6,)7",

A

1g-n| < ée,d(l + HGLnH) Cedc Kq(1 + 9*) : o
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Lemma 3.7. Let 0, € (0, 1) and N, satisfy equation (5). Then
Vn=1, [fo,) < Cl,C¥Ky(1— 0.)" Dy,
where K; 1= Ay(X)*.
Proof. Since['_, = g-n(ld® f_n), we obtain using lemmas A.24, 3.6 and 3.4

N g-— . A~ _
ol < = 1o (< 1A CLCHR(1 0 Dne ™,
—n—1Y—n—1,1—n
with K, = Ay(X)*. O

We now show that the minimal gap between A" n U_, and F is bounded from
below uniformly in n. Since A” nU n = Graph(ﬁg) for some ﬁg : Uy — Fy, itis
enough to bound from above ||Id & ég |. We show how to estimate ||Id @ ég“ | in
terms of ||Id ® éOH. Since A" U_, = ﬁ(k, nN*) — Eo, we obtain a bound from
below of y(Ey, Fj).

Lemma 3.8 (Second crucial step). Let 0, € (0, 1) and N, satisfy

O (1 — 6,)31 l—e 7
DSVGeiN*T < %(1 - 9*)7 Se s @)
ZCE,dCE,deDFI Cf,d

with Ky := Ay(X)>. Then for everyn > 1,

o 1—6,)D;, Nl -1
VAL, O, Bo) = L0V D 0D | | |1+ eMememtr|
Cs,dce,de k=0

Proof. Define
0/ B 9*(1 _ 9*)3d71

AT 8d )
2C€7dC€7deDF]
Notice that N, satisfies equation (5) with & instead of 6,

—T
s1—e
5 b
Ce,d

DSVGeiN*T < 0/(1 - 0/)

Part 1. We estimate the norms ||(a" )~ and |d" || On the one hand, using
item 6 of theorem 3.1, one gets

@%,)~" = (AL,|0-_) " o (@ =),

—n

d
AN — o —1 2An
[@",) 7" < Cea[ [ [ itk — nNu,nN,)] ™ 1d @ &5

i=1
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On the other hand, using lemma 3.5, one gets

d
|d",| < 2C2 ,C24 K0 (1 +¢)*! 1_[ k — nNy, nNy) e~ (DN,

with K/, = Ay(X)4.

Part 2. We bound from above [Id ® Z/*"| in terms of |Id @ Z7||. Notice first
that[_, = ¢_n_1(a_n_1)~'. Moreover

An+1 AT N
Al ajfl 1 21 _ @ O f]dma O
—n— A A N 5
n—l ’i}’l 1 d’il’l 1 C}in d’in c—l’l—] d—l’l—]

an+1 A A n A
¢ = &My +d" e,

6n+1 (&n+1 )—len (alin)—

@t & Lyed e, q(any) @™, "

—n

Since 21 = ¢ (a",)"!

0 , we obtain (Id ® ’"”H) =(lde® ég) + dA’lnIA“_n(&”_n)_l,
. POV 7 [ o [ ]
na@ ;| < @ (1+ )
FEE]

Using the estimates of part 1 and ¢ instead of 6, in lemma 3.7, we obtain

@, JIE-all @) "]
[1d @ =f|

<2C chdK 0/( —0 )_3d+1DFI€N*'u€_(n_1)N*T
€,
< eN*yef(nfl)N*‘r‘
Using |Id ® é(l)H = 1, one obtains
n—2 .
ez <] [1 + eN*ﬂe*kN*T]
k=0

Using the bound from below in lemma 3.4 for y(Uy, F) and the comparison esti-
mate in lemma A.24, one gets

P A B dr—1 n—2 1
Y0y o) > 200 L) o (L0 Du s T [ Mosetier| ™
Mo =~ € 4K, P

We now explain how to choose 6, so that N, is the smallest possible. We

use the following lemma whose proof is left to the reader. We will choose later
a = 3d+6.
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Lemma 3.9. Let a > 1. Then

° 0, = 1%& =argmax{f(1 —0)*: 1 <6< 1},

o 0,(1 —0,)% = 0,(1 —ab,) = m

We estimate the infinite product in lemma 3.8 using the following lemma. We
will choose later p = u/7t and a = e~ N+7,

Lemma 3.10. Letra € (0,1) and p > 0. Then

i <m0 (0"

—a a

Proof. We choose n, such that n, < p < ny + 1. We split the infinite product in
two parts. On the one hand

Ny Ny N
1 anop_n
= [l
E)[ +a"] ,E)[a +1] -
&y 1 (et Dp—ns(nge+1)/2 aP =\ 1\ P(p+2)/2
<exp () (;) <ew ()05
= a —a/ \a
On the other hand
n*+1—p
H [1+a"*] éexp( Z a"_’)> < exp (al )
n=ny+1 n=ng+1 —da

Using the convexity of the function p € [n4, 1 + 1] = a"*+17° 4 a°~"*  we obtain
a"=+t1=P 4 g™ < 1 + a and conclude the proof. O

Assumption 3.11. Let 6, = ﬁ and N, satisfy

1—e 7 _
AT 8d+5 < Dse Nt
zce’dce,d KdDFl

DSVGe_N*T < 9*(1 - 0*)3d+6 e, ®)

with Kg := Ag(X).
Proof of theorem 1.2, item 1. Using the estimate

d 2d+7 _ 2
= >

_ d> — = —
(1-6.)7>1 3d+7 3d+7° 3
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the second crucial step 3.8, lemma 3.10 with

—-N _H N
=e *T,p.Z;,e [ —

a

we obtain for every n = 0,

A" [ 7 A 1
V(Alan—n, FO) = %Cs_sce_:;de_lDlgl exp ( _ 1 + a)ap(p+4)/2
T a

with K; = Ad(X)w. Using a < %9*, we obtain

l+a _6d+15 15 2 1+ay 1
= (-2

— 2 6d+13°13 3P\ 174/ 753
( i D N ) aPo+4)/2 o
yia_ U—mFO = —.
' ch,dciindDFl
. 3d+7)72 1]—e 7 .
Using a > A( 8d 5) ¢ , we obtain
2CZ,dCe,d+ KyDx Dygyge?
y(A" U_,, F) = 1 [ Bd+7)"% 1- er]pw;@
— —n» = — — .
" 5C2/CéiKaDn ZCZ,dCE,?SKdDm Dyyge?

We conclude by using A” nf] _» — Eg and the comparison between the minimal
gaps, y(Eo, Fo) > y(Eo, Fo)/K!, where the constant K, = Ay(X)*A,(X)* is
given by lemma A.40. m|

4 Proof of items 2 and 3 of theorem 1.2

We first show that property (FI) is related to a super-multiplicative sequence (10)
(fm(k))m=0. We use the notion of Jacobian of index d, introduced in definition in
A.30 and denoted by X;(A). Proposition A.32 implies,

d d d
[ [i(A) < Zaa) = [ [ o4(4) < Ka [ [ oA)
i=1 i=1 i=1

where K; = Ay(X)”. In the Hilbert case Ky = 1 and E4(A) = ]_[?:1 oi(A).
Proposition A.34 shows that the Jacobian is sub-multiplicative,

VkeZ, Vm;,my =0, Zd(k,ml + I’I’lz) < Zd(k,m])zd(k + ml,mz),
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where X;(k,n) := Z;(A(k,n)). We define for every k € Z and m > 0,

_ Yi(k —m,m+ n)
k) := inf .
St = I S )

(10)

We have obviously f,(k) < Ky(X)~! < 1. We show in the following lemma
that f,(k) is super-multiplicative and that the ratio appearing in property (FI) is
comparable to f, (k).

Lemma 4.1. For every k € Z,

1L Vmy,my =20, fin+m, (k) = fm (k)fmz (k— ml) and fm(k) <1

d d

d ;goizl oi(k — m,m)oi(k, n) Jm (k) drllgoi:

oi(k —m,m+n) oilk—m,m+n)

oi(k —m,m)oi(k,n)’

1

d

3. Vm,n =0, H
i=1

oi(k —m,m+ n)

oi(k —m,m)oi(k,n) S K‘%’
with Kq = Ag(X)%,
Proof of item 1. As Xg(k—mj—my,mi+my) < Xg(k—my—my,mp)Zq(k—my, my),
Yk —my —mp,my + mp + n)
Yk —my — ma,my + mp)Xy(k,n)

ik —my —my,my + my + n) Xi(k — my,my + n)
- Zd(k —my — mz,MZ)Zd(k —my,my + n) Zd(k — ml,ml)zd(k,l’l) '

The first quotient is bounded from below by f,,,, (k — m;), the second by f,,, (k).
Proof of item 2 and 3. The proof follows the comparison between X;(k, n) and

[T oilk,n). o

In the following lemma we estimate a bound from below of f,,(k) from partial
information on fy,x, (k).

Lemma4.2. Let N, > 1, @ > 1, and (Ay)iez be a sequence of operators satisfying
property (FI). Then for every k € Z,

) . Yi(k — mNy,mN, + n)
inf fm(k) > Ky "Dp"e m=1. nzaNy La(k — mNy, mNy ) Za(k, 1)

where K; = Ad(X)Sdz.
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Proof. We claim for every m > 1,

o . Yi(k — mNy,mN, + n)
k) = K;'Dle™®Nxl inf .
S (k) 2 Ky D e N N NS o)

It is enough to bound from below in the definition of f,,y, (k),

- 2i(k — mNy,mNy + n)
in
1<n<aNy Zg(k — mNy,mN,).2q(k,n)

Consider 1 < n < aN, and choose p such that N, < p. Then
Yi(k — mNy,mNy + n)Zq(k + n,p — n) = Z4(k — mNy,mNy + p).
Dividing by X;(k — mN, mN)X4(k,n) and rewriting in a different way, we obtain

Yi(k — mNy,mN, + n) -
Ya(k — mNy,mNy)Zq(k,n) =
Yi(k — mNy,mN, + p) Yk +n—n,p)
[Ed(k — mNy, mNy)Z4(k, p)] [Zd(k +n—n,n)Zgk+n,p— n)]

The second bracket is bounded from below using property (FI) by
fion(n) > KDl e > K Dok

where K/, = Ay(X)** is obtained from lemma 4.1. The claim is proved. We
conclude by using the super-multiplicative property

Vo< n< N*, me*+n(k) = me* (k)fn(k + mN*) = me* (k)KfljilDlgle_N*#' ]

Proof of theorem 1.2, item 2. Step 1. We use lemma A.44 to bound from below the
ratio in property (FI) by the angle between the fast and slow local spaces,

d

Vm,n = 0, H
i=1

oi(lk —m,m+ n) ~

> C_; y(U(k,m), V(k,n)).

oi(k — m,m)o;(k,n)

Step 2. We show for every n > (1 + M)N* andm > 1,

5

§(V(k,n), Fy) <
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From the definition of N, in assumption 3.11, we obtain

61 —e 7 . —(n—Ns)T (1 - 9*)3d
s e— = Uge

Dgyge "™ < 9/(1 - 9,) 4 ~ 8d+1
Cla 2C7 €2 KaDn

with Ky := A4(X)>?. From notations 3.2 and lemma 2.4 and A .42,

Fkl = Graph(@(n)*) forsome Oy(n)t: V(k,n)* — U(k,n)*,
= Graph(©y(n)) forsome ©y(n): V(k,n) — U(k,n),
|@x(n) | <€, [Ox(n)]| < C24KE (1 + 6"

with K/, := A4(X)?. Using (1 + ¢') < (1 — 6,) " and lemma A 25, we obtain

s(V k,n ,F/k < | Ok(n)]| < 04(1 — 64 2t p=(n=N)r =~ . ’
(V). F2) < 18(n)] < 041 - 6,) o
(3d + 7)1 K} (e M) O
< .
2 CZdCSizHK Dy

On the other hand, using equation (9),

| ( 7N*T)p(p+4)/2

l:J\kmN F S —
( ( *) k) 5 C3 C4deDF1

and using the bound K Zl < Ccgq, we conclude the proof of the claim,

5

§(V(k,n), Fy) <

Step 3. We conclude the proof of item 2 of theorem 1.2. Equations (A.16) imply

- . 0 (k.mNy), Fr) — 6(V(k,
y(U(k,mN*),V(k,n))>7( (k,mNs), Fi) = 6(V(k,n), F )’
1+ 6(V(k,n), F )
6d+9 : 3 e~ ~
> z k,mN.,), F).
Using lemma 4.2 witha = 1 + p(p+4) , one gets

3 R _ (e_N*“)2+p(p+4)/2
inf fu(k) = 5 inf y(0(k,mN..), Fi)

> N3 2
m=1 CE’deDFI

29



where K/} = Ay(X )8¢* Using

u=1p, Ad( )Sd +5d < Czd’
plp +4) plp +4)
(T“(“T> — Lo(p® + 5p + 8),

and item 2 of lemma 4.1, one obtains

d
oi(k—m,m+n)
sl

m=0 (k — m,m)o;(k,n) ~
3 [ (Bd+7)7% 1- e_T]p(P2+5,0+3)/2 -
A6 6d )3 LHAT o8d+5 :
25C, ,CuDr F2C L ,C Ly KaDy Dy e®
Proof of theorem 1.2, item 3. We assume n > (1 + M)N* and write the as-

sumptions 3.11 on 6., N, in the form

61 —e g = O (1 — 9*)3d e—(n—N*)T

4 ’ 8d+1
C., 2CZ Ce d+ K;Dp

DSVGe_nT < 0/(1 - 0/)
with K := A4(X)>?. Notice that 1 6)*(1 —6,)% < 210
Part 1. We first estimate y(Ek, V(k,n)) by y(Ex, Fr). Equation (A.16) gives,

Y(Ex, Fi) — 6(V(k,n), Fy)
1+ 6(V(k,n), Fr)

Y(Ex, V(k,n)) =

Item 1 of lemma 2.4 and (n — Ny)7 > p(p—ZH)N*T gives
S(V(k.n), Fi) <O < 5C_1C 3 K D! (e Mem )t d)/2,
By taking n — 400 in equation (9) and by using lemma A.40, one obtains,
Y(Ew Fi) = Ky~ y(En Fi) > 57 C3C 1K, T Ky D (e Memp et 2,
where K/, = Ay (X)*Aq(X)*. As K/ Kq = A (X)*Ay(X)¥ < Ceq, we have,

6(V(k,n), Fx) <0 < 3y(Ex, Fr), v(Ex,V(k,n)) = 2y(Ex, Fy).

30



Using item 4 of theorem A.35, we have for every w € Ej,

|A(k.n)w| = [(BA(k.m)w)l, (Ve V(k+nn)™, ] = 1)
|A(k,n)*¢|| = C o-d(k n)|, (item 2 of theorem 2.2)

nw An' "
|A(k, n)w| = <HA( ) ¢H‘ w|A(k, n)*¢

> sup{[(glw)| : p € V(k,n)*, 6] = 1IC_oa(k,n)
> y(Ex, V(k,n)) ;}a'd(k,n) (equation (A.12))
> 3y(Ex, Fi)C_joalk,n)|w].

Part 2. We estimate y(F, U(k,n)) by y(Fy, E;). Using equation (A.16) and
item 1 of lemma 2.7, we have

~ Y(Fi, Ex) — 6(U(k,n), Ex)
Y(Fi, Uk, n)) = 1+ 6(0(k.n). Ex)

6(U(k,n), Ex) < 0 < 1y(Ex. Fr) < 3y(Fi. Ex)
¥(Fi, U(k,n)) = 3y(Fi, Ex).

Letw € Fy,w = u + v where u € U(k,n) and v € V(k,n). Then |v| < Ceq|w|
thanks to item 3 of theorem 2.2,

Alk,n)w = it + 9, ﬁeU(k—l—nn) ve V(k+n,n),
[ < Ceaoasi (kn) V]| < C2 071 (k n)|wl,
[9] = Ak, ))w| y(Fiesn, Uk + n,n)).

Hence
|A(k, n)w| < 3C2 ¥ (Fins Exn) ™ Tasr (kon) |wl. O

Appendices

The purpose of this appendix is to clarify the notion of approximate singular value
decomposition of a bounded operator in a Banach space. We need two precise the-
orems A.35 and A.43. The first theorem is usually stated for compact selfadjoint
operators in an Hilbert space (see [12]). In Hilbert spaces, for non compact opera-
tors, we did not find good references, although the results are certainly known by
the specialists. In Banach spaces, we are not aware of any statements as in A.35
and A.43. Nevertheless quite similar ideas may be found in [1] and [8].
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A Basic results in Banach spaces

Let (X,| - |) be a real Banach space. We do not assume X to be reflexive. We
call X* the topological dual space and denote by {(r7|u) the duality between n € X*
and u € X. If X is an Hilbert space we identify X* = X and the duality {-|-) with
the scalar product. If U is a closed (vector) subspace of X, U becomes a Banach
space with the induced norm, U* denotes the corresponding dual space, and U+
denotes the annihilator of U, the subspace of linear forms of X* vanishing on U.
Conversely if H < X* is a subspace, the pre-annihilator of H is the subspace
H' := {u € X : {(nluy = 0, Vn € H}. Write B(X) for the space of bounded
linear operators on X. If (Y, | - |) is another Banach space, write B(X, Y) for the
space of bounded linear operators from X to Y. If U < X is a closed subspace of
X, we denote by A|U the restriction to U of A € B(X,Y). We say that a splitting
X = U@V of two closed subspaces is topological if the projector gy onto U
parallel to V (or equivalently 7ryy;) is a bounded operator. For a Bounded operator
Ae B(X,Y), wecall A* € B(Y*, X*) the dual operator.

A.1 Auerbach basis and distortion

The purpose of this section is to clarify the notion of a distortion of a Banach norm
with respect to the best euclidean norm. We use the notion of Auerbach bases as
a substitute for orthonormal bases. We begin by recalling the notion of Auerbach
families.

Definition A.1. Let X be a Banach space, and d > 1.
e A family of vectors (uy,...,uy) in X is said to be Auerbach if

Vj=1,....,d, |uj| =1 and dist(u;, span(u : k # j)) = 1.

o If (uj,...,uy) are linearly independent in X, a dual family is any family
of linear forms (11,...,14) of X* satisfying (n;lu;) = 6;;. Similarly if
(m1,...,nq) are linearly independent in X*, a predual family is any family

of vectors (uj,...,uq) of X satistying (n;|u;) = 6;;.

If dim(X) = d, dual bases and predual families do always exist and they are
unique. We show in the following lemma that Auerbach families can be character-
ized by the existence of normalized dual families.

Lemma A.2. Let X be a Banach space, and d > 1.

1. A family of vectors (uy, ..., uq) of X is Auerbach if and only if |u;|| = 1 for
every j = 1,...,d and there exists a dual family (n1,...,nq) of X* satisfying
Inill = 1 forevery j=1,....d.
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2. Suppose dim(X) = d. A family of linear forms (ni,...,nq) of X* is an Auer-
bach basis if and only if |n;|| = 1 and its unique predual family (uy, ..., ug)
of X satisfies |ujl| = 1 forevery j=1,...,d.

If dim(X) = +o00, an Auerbach family in X* does not admit in general a pre-
dual Auerbach family. We will show in lemma A.11 that such predual families do
exist if we relax a little the notion of Auerbach family. If X is an Hilbert space of
finite dimension, an Auerbach family is an orthonormal family, and two families of
vectors (ug,...,uy) and (11, ...,14) are dual to each other if and only if they are
equal.

The following lemma shows that Auerbach families exist in any Banach space.
We will see that this notion is a key tool for the notion of singular values of bounded
operators.

Lemma A.3. Let X, Y be Banach spaces, dim(X) =d > 1, A € B(X,Y) injective,
and X = AX. Let (uy,...,uy) be vectors of X and (i1, .. .,ii4) be linear forms of

X* realizing the supremum in
Za(A) = sup { det ([(nlAupli<ij<a) @ i € X" uje X, i = |u;| = 1}.

Let n; be a Hahn-Banach extension to Y of ij; with |n;| = 1. Then (uy,...,uyg) is
an Auerbach family of X, (n1, . ..,na) is an Auerbach family of Y*, and

24(A) = sup { det ([(G|Aupi<ijea) © G€Y™, uje X, |&] = Ju;| = 1}

Notice in the previous lemma that, in the case X = Y and A = Id, (n1,...,74)
and (uy,...,uy) are not a priori dual to each other. We call the particular constant
Y4(A) appearing in lemma A.3 when A = Id, the projective distortion

Za(X) := sup { det ([(niluj))1<ijca) = mi€ X*uj€ X, |mi] = |uj]| = 1}. (A1)

The name “projective distortion” is related to the notion of projective norm intro-
duced in (A.20) and the estimate of the distortion of the canonical duality (A.21)
and (A.22).

A Banach norm introduces a distortion in the volume of unit balls of finite-
dimensional subspaces. This distortion may depend on the dimension of the sub-
space. In order to obtain optimal estimates when X is actually an Hilbert space, we
introduce a notion of volume distortion that turn out to be trivial for Hilbert spaces.

Definition A.4. Let X be a Banach space and d > 1. The volume distortion is

4
Ay(X) = sup{ ( |2 )

———  : uis an Auerbach family and A # 0} (A.2)
S )
J=
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where the supremum is realized over every u = (uj,...,uy) Auerbach family of X
and every non-zero 1 = (4y,...,4,) € R If X is a Hilbert space Ay(X) = 1. In
general we have 1 < Ay(X) < +/d. In order to simplify the estimates, we will use
instead a simplified volume distortion

Ad(X) = max(Ad(X),Ad(X*),Ad(X**). (A.3)

Although we do not intend to compute this constant for different Banach spa-
ces, we give an exact estimate of Ay(X) for X = [5 the space R? endowed with the

1 .
norm ||x|, = (Zzzl |xa7) /p, x = (x1,...,xq), with natural change for p = +o0.
Recall that the Banach-Mazur distance between two isomorphic spaces X and Y is

the number
dpy(X,Y) := inf{|T||T~"||, T : X — Y linear bounded isomorphism}.
Proposition A.5. For every p € [1,2], Ay(€)) = dpu (€}, 63) = d'773. Hence
lim Ay(€8) = 1.
p—>27 d( d)
If U < X is a subspace of X, then Ay(U) < Ay(X). We have for instance
As(X) < Ag(X*). By extending any Auerbach family (7;,...,n4) of U* by
Hahn-Banach while keeping |n;]| = 1, we still obtain an Auerbach family in X*

and thus Ag(U*) < A4(X*). We show in the following lemma that A;(X) and
A4(X*) admit equivalent definitions in the case dim(X) = d.

Lemma A.6. Let be d > 1 and X be a Banach space of dimension d. Then

(S 4"
1. Ay(X*) = sup {;— . u is an Auerbach basis of X, 1 # 0}},
| 251 4l
(S )"
2. Ay(X) = sup {_d— : 1 is an Auerbach basis of X*, 1 # 0},
| =1 Aimi

3. Ag(X) = Ag(X*).

In particular we obtain an “explicit” bound between the Banach norm and the
Euclidean norm either in U or in U*.

Corollary A.7. Let d = 1 and X be a Banach space of dimension d.
1. If (uy,...,uq) is an Auerbach basis of X, then

J 1 d N\ 172 d d N
ek, s (NIUR) < | M bl < au0 (N 14R)
j=1 j=1 j=1

34



2. If (m,...,nq) is an Auerbach basis of X*, then

d 1 d 2 172 a * d 2 172
VﬁeR,m<ZMi\> <||Zﬂim\|<Ad(X)(Z|ﬂil) .
i=1 i=1 i=1

Every subspace U < X of finite dimension d admits a topological complement
(a closed subspace V such that X = U@®V). For instance, if (u1, ..., uy) is an Auer-
bach basis of U, if (n1,...,74) is an Auerbach basis in U* dual to (uy,... ug),
that has been extended to X by Hahn-Banach as linear forms of norm one, then
(m1,...,n4) is again an Auerbach family in X*, and V = ﬂ?zl ker(n;) is a topo-
logical complement to U where the projector 7y onto U parallel to V' is given
by

d
myy(w) = Z<m\w>ui, Vwe X. (A.4)
i=1

Notice that if (uy,...,us) and (11, ...,n4) are dual to each other but not necessarily
Auerbach, then in addition to (A.4), we have,

b4 =Id—n =mg0---0m, Where
viu Ul =7 1 (AS)
m(w) =w— pe|lwoug, Ywe X.

Definition A.8. Let X be a Banach space, d > 1,and X = U@V be a splitting such
that dim(U) = d. We say that the splitting is orthogonal if there exist Auerbach
families (uy,...,uy) of X and (11, ...,14) of X* dual to each other such that

d
U = span(ui,...,ug) and V = ﬂker(m) = span(ny,...,04)".
i=1
If X is a Hilbert space, we recover the usual notion of orthogonal complements.
In particular the two projectors my|y and gy have norm one. In general if X is a
Banach space, the norm of the projectors is not any more one. We give two results
giving the bound of the norm of these projectors in terms of the volume distortion.
We use the simplified volume distortion given in (A.3).

Lemma A.9. Let X be a Banach space, u € X, n € X*, such that {nluy = 1, and
7| = 1. Let U = span(u), V = ker(n), and K, := Ay(X)3. Then

lzuvll = lul, and |zvy| < Kalul.

For any dimension, we obtain the following bound.
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Lemma A.10. Let X be a Banach space, d > 1, dim(U) =d, and X = U @V be
an orthogonal splitting. Let K; := Ay(X)*Ay(X)%. Then

1
Vue U, Ve Ve [ ul? + [v[* < u+ v < Kaful? + v
d

In particular |my|y| < Ky and |myjy| < K.

We are now able to extend item 2 of lemma A.2 to Banach spaces of infinite
dimension.

Lemma A.11. Let X be a Banach space and d > 1. Let be K; := Ay (X)34. Then
for every Auerbach family (n1, . ..,nq4) of X*, for every € > 0, there exist a predual
Sfamily (uy,...,uq) in X satisfying

1 < dist(ug, span(u; : [ # k)) and ||ug| < (1 +€)Ky, Vk=1,...,d.
If X is a Hilbert space, € = 0, Ky = 1 and (uy,...,ug) = (M1,--.,04)-
The previous result suggests the following definition.

Definition A.12. Let X be a Banach space, d > 1 and C > 1. A family of vectors
(uy,...,uq) is said to be a C-Auerbach family if

C™' < dist(ug, span(uy : [ £ k)) and || <C, Vk=1,....d.

A splitting X = U@V where dim(U) = d, is said to be C-orthogonal if there exist
C-Auerbach families (u,...,uq) of X and (11,...,14) of X* dual to each other
such that U = span(uy, ...,uy) and V = span(ny,...,n4)".

Lemma A.11 shows that, if V is a subspace of X of codimension d, and € > 0,
then there exists U such that X = U @ V is a (1 + €) K -orthogonal splitting.

If X is a Hilbert space, a 1-Auerbach family corresponds to an orthonormal
family, a C-Auerbach family represents a distorted orthonormal family. We give in
the following lemma several equivalent characterizations of C-Auerbach bases in
the case X is a finite dimensional Hilbert space.

Lemma A.13. Let P = [P; ;]1<i j<a be a real matrix and C > 1. R? is equipped
with the standard euclidean norm || - | . The following 3 conditions are equivalent.

1. The column vectors 6; := (P;;)_, form a C-Auerbach basis.

2. The singular values of P satisfy C >0y > -+~ > 04 > 1/C.
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3. Forevery (1,...,4) € RY,
d d d
1 N\ 1/2 N N\ 12
(X IP) T <X aT <c (S r) "
j=1 j=1 j=1
In particular, since the singular values of P and P* coincide, the 3 conditions are

also equivalent to

4. The row vectors R, 1= (P;, j)j.lzl form a C-Auerbach basis.

5. Forevery (d,...,4) € R4
1,¢ 1/2 d- d 1/2
E(Z\/b\2> < ||Z/liRiH2 SC(Z\/EP) .
i=1 i=1 i=1

If X is a Banach space, many previous results involving Auerbach families
can be extended to C-Auerbach families. The volume distortion of a C-Auerbach
family can be expressed using the volume distortion defined in A.4.

Lemma A.14. Let X be a Banach space, d > 1, and C > 1. Define K; := Ay(X)>.
If (e1,...,eq) is a C-Auerbach family, then for every (11,...,1,) € RY,

1 d 1/2 d d 12
e (S1P) " <1 X el < ki (S 14P)
Jj=1 j=1 oy

We extend lemma A.10 to C-Auerbach families.

Lemma A.15. Let X be a Banach space,d > 1 and C =2 1. Let X = U ®V be a
C-orthogonal splitting with dim(U) = d. Define K; := Ay(X)*Aq(X)*. Then

1
czr, VP + P < vl < C?Ka [ ul? + [v]>.

We also extend lemma A.2 to C-Auerbach families.

Lemma A.16. Let X be a Banach space, C > 1,d > 1, and Kg 1= A, (X)3d5d(X)2.

Yue U, VveV,

o If (uy,...,uq) is a C-Auerbach family of X, then there exists a C-Auerbach
Sfamily (n1,...,nq) of X* dual to (uy, ..., ug).

o If (n1,...,n4) is a C-Auerbach family of X*. Then for every € > 0, there
exists a CKy(1 + €)-Auerbach family of X predual to (1, .. .,14).

e [fU is a subspace of dimension d, (1, .. .,7q) is a C-Auerbach basis of U*
and (n1, . ..,nq) is some Hahn-Banach extension such that ||| = |n;|, then
(M ...,na) is again a C-Auerbach family and there exists a C-Auerbach
basis (uy,...,ug) in U predual to (11, ...,1n4)-

37



A.2 Grassmannian, gaps, and graphs

The geometry of Grassmannian spaces is a well studied object in the case of Hilbert
spaces. For Banach spaces, the notion of angle is not canonically well-defined
and several equivalent definition could be used. The d-dimensional Grassmannian
space is the set, Grass(d, X), of all subspaces of X of dimension d > 1. The
d-dimensional coGrassmannian space is the set, coGrass(d, X), of all closed sub-
spaces of X of codimension d. We denote by S x the unit sphere of X. We first
recall two estimates (see also Kato [10], chapter 4, section 2.3); for every closed
non trivial subspace N of X,

dist(u, N) = sup{(¢|u) : ¢ € N+,
dist(¢, N*) = sup{(¢|u) : u € N,

ol =1}, VuelX,

A6
u| =1}, Ve X* (A0

Definition A.17. Let X be a Banach space and M, N be two closed non-trivial
subspaces of X. The maximal gap between M and N is

6(M,N) :=sup {dist(u, N) : u € M, |u| =1}, (A.7)
=sup {($luy 1 ue M. g€ N+, |ul = [¢] = 1}.
We also define another equivalent distance

d(M,N) := sup {dist(u,Sy) : u € M,

ul| =1}, (A.8)
and observe that d satisfies the triangle inequality and the estimate
6(M,N) < d(M,N) <25(M,N). (A.9)

The notion of maximal gap between subspaces 6(M, N) was introduced by Go-
hberg and Marcus [6], (see also Kato [10], chapter 4, section 2.1), under the name
opening or aperture. We use mainly §(M, N) in two cases: either for dim(M) =
dim(N) < 400 or for codim (M) = codim (N) < +oco. We recall the duality
identity (see equation (2.19) in Kato [10], chapter 4, section 2.3)

§(M,N) = 6(N*,M*), VYM,N closed subspace of X. (A.10)
In general the maximal gap is not symmetric, but for finite-dimensional subspaces
of equal dimension we have (see [9], Lemma 213)

S(N, M)

dimM = dimN < 4+ 6(M,N) £ ————.
im im = 6 ) T (V. M)

(A.11)

We use another estimate which enables us to recover the standard estimate in the
Hilbert case.
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Lemma A.18. Let X be a Banach space and d > 1. Define
K; := min(2, Ay (X)2 Ay (X*)?).
For every subspaces M, N of X, ifdimM = dim N = d, then
6(M,N) < K26(N,M).
In particular, if X is a Hilbert space, 5§(M,N) = 6(N, M).

For complementary subspaces we use another notion called the minimal gap
(see Kato [10], chapter 4, section 4.1).

Definition A.19. Let X be a Banach space and M, N be two closed non trivial
subspaces of X. Theminimal gap is

y(M,N) := inf {dist(u, N) : u € M, ||ul = 1}. (A.12)
A similar notion has been introduced in [4]

L(M,N):=inf{|u—v|:ueM veN,

ul = |v| = 1}. (A.13)
The second definition is more symmetric and equivalent to the first one
vy(M,N) < L(M,N) <2y(M,N). (A.14)

The notion of minimal gap is equivalent to the notion of minimal angle 6(M, N)
that is used in Gohberg and Krein [7] (chapter VI, section 5.1) where

6(M,N) := arcsiny(M,N), 6¢€ [0,n/2],

We use mainly the notion of minimal gap for complementary subspaces X = M@N
where M and N are closed. The norm of the projector onto M parallel to N is not
necessarily bounded. Whether it is bounded or not, we have (see equation (4.7) in
Kato [10], chapter 4, section 4.1),

X=MON=y(MN) = ||~ (A.15)

Notice that lemma A.15 shows that, if the splitting X = M @ N, with dim(M) = d,
is C-orthogonal, then y(M, N) = 1/(C?Ky). If X is an Hilbert space, y(M, M*) =
1. If two closed subspaces N and N’ are complementary with respect to the same
M, X =M®N = M@ N, then their minimal gaps are comparable (see equation
(4.34) in Kato [10], chapter 4, section 4.5) provided §(N, N') is small enough

y(M,N) —6(N',N)
1+6(N',N)

y(N, M) — 5(N,N")
1+ 6(N,N')

y(M,N") > y(N', M) > (A.16)
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The duality identity (A.10) is also valid for the minimal gap (see equation (4.14)
Kato [10], chapter 4, section 4.2)

X=M®@®N = y(N*t, M) = y(M,N). (A.17)

The minimal gap can also be computed using duality between subspaces of
complementary dimension. Let M < X, & < X*, such that dim(M) = d and
dim(E) = d. Define

(E|M) = sup { det([¢&ilupli<ijca) 1 & € E. uj€ M,

Notice that

&l = [uj| = 1}. (A.18)

2i(X) = sup{EIM): M c X, E c X*, dim(M) = dim(E) = d}.

Lemma A.20. Let X be a Banach space, d = 1, M and N be two closed subspaces
such that X = M @ N and dimM = d. Define Ky := Ay(X)* and K/, :=
Ao (X)3 Ag(X)*. Then

(K~ 'y(M.N)* < (N*|M) < Kqgy(M,N).

The topology on the Grassmannian space Grass(d,X) and coGrassmannian
space coGrass(d, X) is given by a fundamental system of open neighborhoods.

Definition A.21. Let X be a Banach space and Vj be a subspace of X of finite
dimension or codimension. The basic neighborhood complementary to Vj is the
subset

N(Vy) = {U < X : Uis aclosed subspace and X = U @ V) is topological}.

The set {N(Vp) : codim (V) = d} defines a topology of Grass(d, X); similarly
the set {N(Uy) : dim(Uy) = d} defines a topology of coGrass(d, X).

Each basic neighborhood is modeled on a Banach space. The following con-
struction shows that N(Uy) is bijectively mapped to B(Vy, Up).

Definition A.22. Let X = Uy @ V) be a topological splitting of closed subspaces.

1. If ® € B(Vy, Uy), the graph of @ is the closed subspace

Graph(0©) := {v + Qv :ve Vp} € N(Up).

2. Conversely every V € N(Uy) is the graph of some operator ® € B(Vy, Up).
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Notice that V € N(Up) if and only if V* = Graph(@+) € N(U;") for some
O e B(V), Uy).

Lemma A.23. Let X be a Banach space, d = 1, and X = Uy @ Vyy be a splitting
of closed subspaces of X where dim(Uy) = d. Assume Uy = span(uy,...,uy) and
Vo = span(n,...,nq4)" Let Ve N(Up), ® € B(Vy, Uy) such that V.= Graph(®),
and ©* € B(V, Uy ) such that V- = Graph(®1). Then

o« eV, 00) = -3 (O,

1 % * *
* O =y, ° 07 o r,

where py, : Uy — X is the canonical injection.

In the following lemma, we show that the norm of Id @ ® and the minimal gap
v(U, Vp) are inverse proportional. We interpret

[d®O®: Uy — U = Graph(®), © e B(Uy, Vy), (A.19)

as an isomorphism between U and U and call it the canonical isomorphism be-
tween Ug and U parallel to Vy. Notice that (Id @ ©)~! = (7y, v, |U).

Lemma A.24. Let X be a Banach space and X = Uy@®Vy be a topological splitting
of X of subspaces of finite dimension or codimension. Then for every U € N(Vp)
and © € B(Uy, Vo) such that U = Graph(0),

¥(Uo, Vo) < y(U, Vo) [ld@ O] < 1.

The following lemma shows that the maximal gap between two subspaces U
and U’ of N(Vp) sufficiently close to some fixed Uy € N(Vj) is equivalent to the
distance ||®@ — @/|.

Lemma A.25. Let X be a Banach space, X = Uy @® Vyy be a topological direct sum
of subspaces of X of finite dimension or codimension. For every ©,®' € B(U, V)
define U := Graph(®) and U’ := Graph(®’). Then

6(U, Uy)

1. if6(U, Uy) < y(Vo, Up), th 0| < ,
l.f ( 0) 7( 0 0) en H H y(V07 U())—(S(U, UO)

2. if6(U, Uy) < y(Vo,Up) and (U, U) < y(Vo, U), then

¥(Vo, Uo) ] s(U',U)
¥(Vo, Uo) — 6(U, Up) 1 y(Vo, U) — 6(U", U)’

lo' -] <|
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6(U, Up) 1~! / /
e Y UO)] S(UU) < |0—0.

Let X = Up® Vo = U @ V be two splittings of X by closed subspaces where
dim(Up) = d and dim(U) = d. Assume Uy € N(V) or U € N(Vy). The fol-
lowing lemma shows that the minimal gap y(Uy, V) or y(U, Vp) can be measured
by a d-dimensional determinant adapted to (V*, Up) or (VOL, U) that are both of
dimension d.

3. 6(Up,U) < |©®

Lemma A.26. Let X be a Banach space, d = 1, Co = 1, and X = Uy ® Vy be
a Co-orthogonal splitting with dim Uy = d. Let (ey,...,eq) and (¢1,...,¢q) be
Co-Auerbach bases dual to each other generating Uy and VOL. Let Kj:= Ay (X )2‘1.

1. Let ®F € B(Vy, Uy), [0+ < 1, V = Graph(®1)* and (y,...,¥q) be a
C-Auerbach basis of V*. Then

. L
(CoO) VHUp) > [ det([(Wile)ij)| = Kid (%)d'

2. Let ® € B(Up, Vp), |®| < 1, U = Graph(®) and (fi,..., fs) be a C-
Auerbach basis of U. Then

1

(CoCY Vi Uy = [det([oil )| > = (

1— H®H)d
K, '

CoC
A.3 Singular values decomposition

The notion of singular values for operators in Banach spaces is not canonically
well-defined. Our starting definition is the following.

Definition A.27. Let X, Y be Banach spaces, A € B(X,Y), and d > 1. We define
the singular value of A of index d by

. Aw
ga(A) = . S(l;.][; dmf{% twEe U\{O}},

where the supremum is realized over every subspace U of X of dimension d.
We recall some elementary properties.

Lemma A.28. Let X, Y be Banach spaces, A € B(X,Y), andd > 1. Then
1. 04(A) = gas1(A),

2. 04(AB) < |Afoa(B), ca(AB) < cq(A)|B

>
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3. 04(A) >0 and 0441(A) = 0 < codim (ker(A)) = d.

Another definition could be used instead of o;(A). It coincides with the first
one when X and Y are Hilbert spaces.

Definition A.29. Let A € B(X,Y). For every d > 1, define

: Aw|
"(A) 1= f H— : VA\{0} ¢,
7a4) codiml(I\l/):d—lsup{ [w] we Vil }}

where the infimum is realized over every closed subspace V of codimension d — 1.

It will be convenient to introduce a third notion of singular values using the
notion of Jacobian.

Definition A.30. Let A € B(X, Y). The Jacobian of A of index d is defined by,
24(A) = sup { det ([(&|Aupli<ij<a) © G €Y, uje X, 4] = u;] = 1},
By convention X(A) = 1. Notice that, if dim(U) = d,
24(A|lU) =0 < dim(AU) <d < A is not injective on U.

We may choose in the previous definition 77; € Im(A) " and take {; an extension
of 7j; to Y* by the Hahn-Banach theorem. If U is a closed subspace of X, we define
the Jacobian of A restricted to U of index d, denoted X;(A|U), to be the Jacobian
of A|U € B(U,Y). If U has finite dimension and A|U is injective, the supremum is
attained by vectors u; € U and linear forms #; € U*, U = AU, of norm one. Both
(ur,...,uq) and (71, ..,74) are Auerbach bases by lemma A.3.

The third definition of singular values is based on the notion of Jacobian.

Definition A.31. Let A € B(X, Y), define (assuming by convention Xy(A) = 1),

oa) = o2

= if 25-1(A) #0, "(A) =0 if Z4_1(A) = 0.

If U is a closed subspace of X, we define similarly o”)(A|U) of the restriction of
(A|U) € B(U,Y).

The three definitions o4(A), /,(A) and 0/}(A) are comparable in Banach spaces,
and equal in Hilbert spaces.

Proposition A.32. Let X, Y be Banach spaces, d > 1, and Ky := [Aqg(Y*)Aq(X)]%.
Then for every A € B(X,Y),

oa(A) < oy(A) < oy(A) < K oa(A).
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It may not be true that the singular values of A and A* coincide. On the other
hand the Jacobian admits a very symmetric definition using the identity

(ilAu) = (A*flud, Vue X, Vi e Y*.

Proposition A.32 and the following proposition shows that o-4(A) and o4 (A*)
are comparable modulo a constant depending only on the Banach norm of X. This
constant is 1 for Hilbert spaces.

Proposition A.33. Let X,Y be Banach spaces, A € B(X,Y), d > 1, and K; :=
max(Ay(X), Ay(Y))?¢. Then

1. Z4(A) = Z4(A%),
2. Kd_IO'd(A) < O'd(A*) < KdO'd(A).

The following lemma shows that the projective distortion X;(X), equation (A.1),
may not be equal to one and that the Jacobian may not be multiplicative. This
anomaly disappears when the spaces are Hilbert.

Proposition A.34. Let X, Y, Z be Banach spaces, A € B(X,Y), Be B(Y,Z),d > 1,
and Ky := Ay(X)?. Then

1. 1 <2;(X) < Ky

2. X4(BA) < Z4(B)Z4(A),

3. if U is a subspace of dimension d, 24(B|AU)Z4(A|U) < Z4(X)Z4(BA).
In the case X, Y are Hilbert spaces, the previous inequalities are equalities.

The following theorem is the main result of this appendix. The existence of sin-
gular vectors depends on a small parameter € > 0 that can be as small as we want.
We do not assume that the operators are compact nor asymptotically compact, and
there is thus no reason to find true eigenvectors even in Hilbert spaces. The param-
eter € measures the discrepancy between a true and an approximate eigenvector.
The estimates depend moreover in Banach spaces on the volume distortion intro-
duced in the definition A.4. Although the following result is certainly well known
to specialists, we did not find a good reference adapted to our needs.

Theorem A.35 (Approximate singular value decomposition). Let X, Y be Banach
spaces, A € B(X,Y), and d > 1. Assume o4(A) > 0 and choose € > 0. Define

— — 2 2
Ay = max(As(X),Aq(Y)), Cea(X,Y):=(1+ E)Agd +15d+4 A;d +ad+4

Then A admits an approximate singular value decomposition of index d and dis-
tortion Cey = Ccq(X,Y), defined in the following way:
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o there exist two Ceg-orthogonal splittings X = U@V, Y = UV,

e there exist Ccq-Auerbach bases, (e1,...,eq) of U and (¢1,...,¢q) of V*
dual to each over, such that U = span(ey,...,eq ) and V = span(éy, ..., dq)",

o there exist Ccq-Auerbach bases, (&1,...,8;) of U and (¢1,...,dq) of v+
dual to each over; such that U = span(éy, . ..,&;) and V = span(¢y, ..., da)",

satisfying the following properties, for everyi = 1,...,d,
1. AU = U, AV c V, A*VE = VvE AT+ < UL, dim(U) = dim(0) = d,
2. Ae; = gi(A)g;, A*¢; = ci(A)g;
3. C;;ai(A) < 0i(A|U) < 0i(A),
4. C_yoi(A) < oi(A*|[VH) < oi(A),
5. 0a11(A) < |AIV] < Ceaoari(A)
6. Tar1(A) < |A*|OF] < Ceaoari(A),
7. ¥(UV), y(V,U), ¥(0.V), y(V.0) > C_,.

If X is a Hilbert space, one may choose Ceq = 1+ €. If X, Y are of finite dimension,
one may choose € = 0. If X,Y are Hilbert spaces of finite dimension, one may
choose V = U+, V = U1, Cea=1,e=0,8 =0, (er,...,eq) and (&1,...,2,)
are orthonormal bases.

A.4 Exterior product

The algebraic exterior product /\d X is defined canonically of the following proce-
dure. We first consider the space of almost null functions of X¢ — R,

3'";:{ Z Awby : Ay €R, card{w : 4, # 0} < +oo}

wexd

where §,, : X¢ — R is the Dirac function at w € X¢. We next consider the subspace
G of ¥ defined by

5(W1,...,wi71,W,{,w;+],w,-+z ..... xa) T 6(W1,...,wi71,w".+,,W,’-,w,-+z ..... wq) *

1<i<d-—1, wl,...,wd,wll,...,wzleXd, /l,,ueR}.
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The algebraic exterior product the vector space of equivalent classes
NX:=F/G={w+G:weF}

We define the canonical injection X¢ — /\d X into the quotient space by

,,,,,

It is then easy to check that /\d X is spanned by simple vectors, vectors of the form
Wi A ... A wg. The canonical map (wy,...,wgz) — wi A ... A wg is multilinear
alternating, and its image generates /\d X. Moreover /\dX satisfies the universal
property: every multilinear and alternating function f : X¢ — Y, where Y is
any vector space, factorizes uniquely through a linear map F : /\dX — Y by
Fwi A oo Awg) = f(Wi,...,wg).

Several norms may be chosen for the exterior product. In the case where X
is a Banach space, we choose the projective norm defined in the following way.
Every w € /\dX is a finite sum of vectors of the form wi A ... A w9 where « is
an index. As this representation is not unique, we introduce the projective norm of

|w|| defined by

: d
Iw| = 1nf{ZHi:1Hw§’H W= WI AL AW (A.20)
(07

It is easy to check that | - | is a genuine norm: w # 0 = |w| # 0. In the case X
is a Hilbert space, we choose instead the Euclidean norm associated to the scalar
product defined by extending by bilinearity to A% X x A X

Wi Ao AwgW A AW = det([<wi|w;~>]1<,~,j<d).

The projective norm and the Euclidean norm are not equal in general when X is a
Hilbert space. We call the completion of the algebraic exterior product with respect
to the chosen norm, the normed exterior product, and we denote it by /\d X. We
point out that /\d(X *) denotes the normed exterior product of X* and not the dual
of AYX. If X is a Hilbert space, X* = X and A“(X*) = AYX = (A X)*.

We define a canonical duality between /\d(X*) and /\dX by extending by
linearity for every 6; € X* and w; € X,

<91 Ao A 9d|W1 Ao A Wd> 1= det ([<9i|wj>]1<i,j<d)- (A.21)

We notice that the canonical linear map A (X*) — (A X)* is injective but may
have a norm X;(X) greater than one (see A.34 for a bound from above of Z;(X)),

voe A(X*), Ywe AX, [0y < Za(X)[6]|w],

d d d A.22
w; € X, H;lﬂlpl<A,-=lei|A,-zle> > AL w. (A22)
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In particular, for every Auerbach family (uj,...,u,) of X,

TaX) V< ug A Aug| < 1L (A.23)

Let (uy,...,uq) be a linearly independent family of X, U = span(uy,...,uy),
and 1 < r < d. For every sequence I = (ij,...,i,) of r ordered elements in
{1,...,d}, we denote u; := u;, A ... u;. Then {us}; is a basis of /\" X spanning

/\"U. The following lemma gives an estimate on the volume distortion of this
basis in A" X.

Lemma A.36. Let X be a Banach space, 1 < r < d, (uy,...,ug) be a C-Auerbach
family of X dual to a C-Auerbach family (n1,...,n4) of X*. Then {u;}; and {n;},
are a C",(X)-Auerbach families dual to each other of /\" X and /\" X* respec-
tively.

Let 0 < r < d. Wedenote by (w,w/) e A" X x A" X —>waw' e A\’ X the
canonical bilinear map extending

WEA o AWe) A (Wrg ] A vl AWG) = WA Lo A W

Lemma A.37. If X is a Banach space and || - | is the projective norm, or if X is a
Hilbert space and || - | is the Euclidean norm, then for every 0 < r < d

Ywe A'X, Y e ATX, waw| < [w] W]
The following lemma extends the volume distortion estimate of lemma A.36.

Lemma A.38. Let X be a Banach space, d > 1, C = 1, X = UV be a C-
orthogonal splitting of closed subspaces with dim(U) = d. Let (uy,...,uy) and
(11, ...,nq) be C-Auerbach bases dual to each other spanning U and V*. Let
V' < V be a subspace of V of dimension d' > 0 and X' := U @ V'. Define
Ki = Za(X)A gy (A"X)? max (z,(x)A o /\’X)Z)A2 (X)84A,(X)%.
) o<r<d’ )
Then every w € /\d X' admits a unique decomposition w = Y, u; A v; where the

summation is realized over every ordered sequence I = (iy,...,i,) of {1,...,d},
d— :
Up = uj A+ AUj, V[ € A" V'is any vector, and 0 < r < d. Moreover

K (N i) < Il < K (3 InlP)
7 1

Non-zero simple vectors in /\d X are in one-to-one correspondence with sub-
spaces of X of dimension d. We introduce the following notations to clarify this
correspondence.
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Definition A.39. Let X be a vector space and d > 1

1. If U is a subspace of X of dimension d, we call
U := span{ A\_,w; : Vi, wi e U} = \X.
2. If V is a subspace of codimension d, we call
= span{/\lew,- 230, wi eV, Vi, wie X} C /\dX.

Then dim(U) = 1 and codim (V) = 1.

IfX = U®V withdim(U) = d, then A“X = U@ V. If (1, ...,n4) are linearly
independent and V = span(ny,...,n4)", then V is the kernel of a simple linear
form of A\ X,

—{we AX:n A ... Aqgw) =0} = span(/\j-izln,-)ﬂ.

The followmg lemma compares the angle between U and V and the angle be-
tween U and V. Usmg equation (A. 15) we also obtain a comparison between

Lemma A.40. Let X be a Banach space, d = 1, X = U®YV be a splitting of closed
subspaces with dim(U) = d and K; = Ay(X)*Ay(X)>. Then N°X = U@ V and

K;dv(ﬁ V) <y(U.V) < Ky(U, V)",
1/d

d
Ky gl < lmgvll < Kglagyl-

In the case the splitting X = U @ V is C-orthogonal, using lemma A.9, the
norm of the two projectors admits a simpler estimate.

Lemma A.41. Let X be a Banach space, d > 1, C 2 1, X = U® V be a C-
orthogonal splitting with dim U = d and Ky := Ay (N X)3. Then

Il < Za(X)C*, and |xy5] < Za(X)KaC>.

Angles between subspaces can also be measured by the norm of some graphs
over a reference splitting as in lemma A.24. Consider a splitting X = Uy @ V with
dim(Up) = d and a subspace V € N(Uy). Then V = Graph(®) for some operator
® € B(Vy, Up) or equivalently, as explained in lemma A.23, V+ = Graph(©+) for
some ©1 € B(Vy", Uy ). Lemma A.40 implies

/\dX:ﬁo@)‘v/o:ﬁo@‘V/,

and in particular V € N(0) is equal to the graph of some © € B(Vy, Up). The
following lemma gives an estimate of |®|| with respect to ||©~|.
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Lemma A.42. Let X be a Banach space, d = 1, C = 1, and X = Uy ® V\ be
a C-orthogonal splitting of closed subspaces with dim(Uy) = d. Let (uy, ..., ug)
and (n1,...,nq4) be C-Auerbach families in X and X* respectively, dual to each
over, such that Uy = span(uy, . ..,uy) and Vo = span(ny,...,nq4)"

Let ®+ € B(Vy, Uy ) and V = Graph(©4)“. Then

o V = span(AL,(Id® ©1)n;)" = Graph(®) for some ® € B(Vy, Up),
° Vwe ‘70’ W) _</\l 1 T]l + @ i |W>/\l 14>
o 18] < C¥5,(x) |04 (1 + [©*])!

The next theorem shows that the approximate singular value decomposition of
index d of a bounded operator A € B(X,Y) admits a particular form when the
operator is considered in the exterior product. Let

A= N4 e BNX N\Y)
Theorem A.43. Let X,Y be Banach spaces, d > 1, € > 0, and A € B(X,Y)
satisfying c4(A) > 0. Let X = U® V and Y = U ® V, be the approximate
singular value decomposition of index d and distortion Ceq4 given in theorem A.35.
Let
Cea i= CLZAX)(B o (NX)) max (Z,(X) (A (A"X))?) Ba(X) 2 By(X)2.
() 0<r<d ()

Then

1. ( /\?zle,-) and ( /\?:1@) are ée,d-orthogonal bases dual to each over,
U =span(ALe). V= span(ALL1)",
2. ( /\?Zléi) and ( /\f.l:l&i) are Ce g-orthogonal bases dual to each over,

U = span(AL12), V= span(AL;6:)",

L o
5. C 5 TIL, oi(A) < JA|U| < |A] < Cea TTL 0i(A),

~ d d
6. Coy TIi oi(A) < |A*VH] < JA* | < Cea TTL, o(4),
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7. 2(A) < |AIV| < Ceqori(A) -+ Tam1(A)oari(A),

8. 72(A) < |A*|UH| < Ceavi(A) -+ o 1(A)Tari(A),

In the following lemma we consider a product BA of two operators and the
relative position of the approximate singular value decomposition of A and B.

Lemma A.44. Let X,Y,Z be three Banach spaces, A € B(X,Y), B € B(Y,Z),
d>1,and e > 0. Assume o4(A) > 0 and o4(B) > 0. Let

/\dX: Up® Vy, /\dY: U@ Vs =Up® Vs, /\dZ: Up @ Vg,

be the two approximate singular value decompositions of index 1 and distortion
Ceq of A and B obtained in theorem A.43. Then

————=C Uga, Vp).
U'L(A)O_I(B) E,d y( A B)

~

i=1
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