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Abstract
We consider a two-sided sequence of bounded operators in a Banach

space which are not necessarily injective and satisfy two properties (SVG)
and (FI). The singular value gap (SVG) property says that two successive
singular values of the cocycle at some index d admit a uniform exponential
gap; the fast invertibility (FI) property says that the cocycle is uniformly in-
vertible on the fastest d-dimensional direction. We prove the existence of a
uniform equivariant splitting of the Banach space into a fast space of dimen-
sion d and a slow space of codimension d. We compute an explicit constant
lower bound on the angle between these two spaces using solely the con-
stants defining the properties (SVG) and (FI). We extend the results obtained
by Bochi and Gourmelon in the finite-dimensional case for bijective oper-
ators and the results obtained by Blumenthal and Morris in the infinite di-
mensional case for injective norm-continuous cocycles, in the direction that
the operators are not required to be globally injective, that no dynamical sys-
tem is involved and no compactness of the underlying system or smoothness
of the cocycle is required. Moreover we give quantitative estimates of the
angle between the fast and slow spaces that are new even in the case of finite-
dimensional bijective operators in Hilbert spaces.

1 Introduction

Let X be a real Banach space and pAkqkPZ be a bi-infinite sequence of bounded
operators of X which are not required to be injective. The cocycle associated to
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pAkqkPZ is the sequence of iterated operators

Apk, nq :“ Ak`n´1 ¨ ¨ ¨ Ak`1Ak, @k P Z and @n ě 0,

with the convention Apk, 0q :“ Id. Our main objective is to find simple conditions
on the sequence pAkqkPZ which guarantee the existence of constants d ě 1, Kd ě 1
and τ ą 0, and a uniform equivariant splitting X “ Ek ‘ Fk of fast/slow subspaces
satisfying the following condition:

• @k P Z, dimpEkq “ d, pAk|Ekq is injective,

• @k P Z, AkEk “ Ek`1 and AkFk Ă Fk`1, (the equivariance property),

• infkPZ γpEk, Fkq ą 0, (the uniform minimal gap property),

• @k P Z, @n ě 1,
}Apk, nq|Fk}

}pApk, nq|Ekq
´1}´1 ď Kde´nτ, (the slow/fast ratio prop-

erty)

where γpEk, Fkq denotes the minimal gap between Ek and Fk (a notion of minimal
angle between two complementary spaces, see definition A.19),

γpEk, Fkq :“ inftdistpu, Fkq : u P Ek, }u} “ 1u,

and }pApk, nq|Ekq
´1}´1 and }Apk, nq|Fk} denote respectively the lowest and largest

expansion of the cocycle restricted to Ek and Fk,

}Apk, nq|Fk} :“ supt}Apk, nqv} : v P Fk, }v} “ 1u,

}pApk, nq|Ekq
´1}´1 :“ inft}Apk, nqu} : u P Ek, }u} “ 1u.

(The notation }pA|Eq´1}´1 will be used only when dimpEq ă `8 and A : E Ñ X
is injective). In order to distinguish the two equivariant subspaces in this exponen-
tial dichotomy, we will use the terminology fast space for Ek and slow space for
Fk although both operators Apk, nq : Ek Ñ Ek`n and Apk, nq : Fk Ñ Fk`n may
be expanding or contracting. The index k denotes the position of the cocycle and n
represents the order of iteration. We interpret Apk, nq as an operator acting from a
space above k to a space above k ` n; in particular the dual operator Apk, nq˚ acts
on the dual space as an operator from a space above k ` n to a space above k.

Our main assumption is related to the existence of a uniform gap in the singular
value decomposition at index d. The notion of singular values for an operator in
a general Banach space is not well defined. We define the singular value of index
d ě 1 of an operator A, to be the number

σdpAq :“ sup
dimpEq“d

inf
uPEzt0u

}Au}
}u}

.
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Equivalent definitions σ1dpAq, σ
2
dpAq are given in A.29 and A.31. In the Hilbert

case, all these definitions are equal. To simplify the notations, we use

σdpk, nq :“ σdpApk, nqq.

The top singular value is σ1pk, nq “ }Apk, nq} and, in the particular case dim X “ d
and Apk, nq is invertible, the bottom singular value is σdpk, nq “ }Apk, nq´1}´1.

Main hypothesis 1.1. Let X be a real Banach space and pAkqkPZ be a sequence of
bounded operators (not necessarily injective nor surjective). We assume there exist
an integer d ě 1 and constants DSVG ,DFI ě 1, τ, µ ą 0 such that

• the sequence admits a uniform singular value gap at index d

(SVG) @k P Z,@n ě 0,

$

’

’

’

’

&

’

’

’

’

%

σd`1pk, nq}Ak`n}

σdpk, n` 1q
ď DSVG e´nτ

}Ak}σd`1pk ` 1, nq
σdpk, n` 1q

ď DSVG e´nτ

(We implicitly assume that σdpk, nq ą 0 for every k P Z and n ě 0),

• the sequence is d-dimensionally fast invertible

(FI) @m ě 0, inf
kPZ, ně0

d
ź

i“1

σipk ´ m,m` nq
σipk ´ m,mqσipk, nq

ě D´1
FI e´mµ.

Property (FI) is a new property that can be used as a substitute for uniform
invertibility along d-dimensional spaces. It is an asymmetric property with respect
to forward and backward iterations related to the fact that the fast space (respec-
tively the slow space) has dimension d (respectively codimension d). We will show,
thanks to the super-multiplicative property of a similar quotient, that (FI) is equiv-
alent to a seemingly weaker property with m “ 1,

(FI) ðñ (FI)weak e´ν :“ inf
kPZ, ně0

d
ź

i“1

σipk ´ 1, 1` nq
σipk ´ 1, 1qσipk, nq

ą 0.

We have chosen the other form to quantify precisely the minimal gap between the
fast and slow spaces in our main theorem 1.2 in the Banach spaces case. In the
Hilbert spaces case we may choose DFI “ 1 and ν “ µ.

Property (FI) is used as a sufficient and necessary hypothesis in a bootstrap
argument. Our main result actually shows that the cocycle must satisfy a stronger
property (FI)strong with a uniform lower bound independent of m,
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(FI)strong inf
mě0

inf
kPZ, ně0

d
ź

i“1

σipk ´ m,m` nq
σipk ´ m,mqσipk, nq

ą 0.

We will show
(SVG) and (FI) ùñ (FI)strong.

Notice that we do not assume that the norm of the operators Ak is uniformly
bounded from above. Notice also that Ak may not be invertible.

If the cocycle is uniformly invertible (UI) in the sense

(UI) supkPZ }Ak} ď M˚ and infkPZ }A´1
k }

´1 ě M˚

for some constants M˚,M˚ ą 0, property (FI) is automatically true with DFI “ 1
and µ :“ d logpM˚{M˚q. In that case our main result implies

(UI) ùñ (FI), (SVG) and (UI) ùñ (FI)strong.

The singular value gap property (SVG) admits a weaker form. This weaker
form is actually equivalent to the strong one for uniformly invertible cocycles and
was introduced by Bochi and Gourmelon in [3] for the first time,

(SVG)weak @k P Z,@n ě 0,
σd`1pk, nq
σdpk, nq

ď DSVG e´nτ.

The strong form (SVG) was introduced by Blumenthal and Morris in [2] in or-
der to extend the results of Bochi and Gourmelon to the infinite-dimensional case.
They nevertheless assume the cocycle to be norm-continuous over a compact dy-
namical system and each operator Ak to be injective. Our property (FI) is used
instead of the injectiveness assumption. Moreover we do not assume that the co-
cycle is defined over a dynamical system, nor do we require regularity conditions
as in [3, 2]. Our main objective is to obtain an effective splitting of the Banach
space into a fast and a slow space, equivariant under the cocycle, for which the
angle between the two spaces can be explicitly bounded from below using only the
constants pDSVG ,DFI , τ, µq while avoiding the use of compactness of the underlying
dynamical system and regularity assumptions on the cocycle.

Our estimates depend on a constant Kd which is only a function of the dimen-
sion d and the Banach space. For a Hilbert space Kd “ 1, for a general Banach
space, Kd is explicitly computed given a volume distortion ∆dpXq (see definition
A.4) which measures the distortion of the unit Banach ball to the best fitted Eu-
clidean ball. We have that ∆dpXq ď

?
d for Banach spaces and ∆dpXq “ 1 for

Hilbert spaces. We give an estimate of ∆dpXq in proposition A.5 when X “ `
p
d is

the space of dimension d equipped the p-norm. We do not intend to undertake a
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systematic study of ∆dpXq. We have chosen to give a unified proof for both Banach
and Hilbert spaces in such a way the constants appearing in the estimates become
optimal in the Hilbert case.

Our main result is the following.

Theorem 1.2. Let X be a Banach space, d ě 1, and pAkqkPZ be a sequence of
bounded operators satisfying the two assumptions (SVG) and (FI) at the index d,
for some constants DSVG ,DFI ě 1 and τ, µ ą 0. Then there exist a constant Kd

depending only on the dimension d and the Banach norm such that,

1. there exists an equivariant splitting X “ Ek ‘ Fk satisfying for every k P Z,

• dimpEkq “ d, AkpEkq “ Ek`1, AkpFkq Ă Fk`1,

• γpEk, Fkq ě
1

5KdDFI

”

p3d ` 7q´2

2KdDFI

1´ e´τ

DSVG eτ

ı

µpµ`4τq
2τ2

,

2. (FI) ô (FI)strong. More precisely for every k P Z, m, n ě 1,

d
ź

i“1

σipk ´ m´ n,m` nq
σipk ´ m,mqσipk, nq

ě
3

25KdD3
FI

”

p3d ` 7q´2

2KdDFI

1´ e´τ

DSVG eτ

ıµpµ2`5µτ`8τ2q{2τ3

,

3. The spaces Ek and Fk are called the fast and slow spaces respectively and
satisfy: for every k P Z and n such that,

n ě
´

1`
µpµ` 4τq

2τ2

¯1
τ

log
´ DSVG eτ

1´ e´τ
2p3d ` 7q2Kd

¯

,

• }pApk, nq|Ekq
´1}´1 ě 3

5 K´1
d γpEk, Fkqσdpk, nq,

• }Apk, nq|Fk} ď 3KdγpFk`n, Ek`nq
´1σd`1pk, nq.

Using the definition of ∆̄dpXq in equation (A.3), and the constants C0,d and pC0,d in
theorems A.35 and A.43, with ε “ 0, we obtain

Kd :“ pC7
0,dC8d`5

0,d ∆̄2pXq4d∆̄dpXq8d ď p2dq2000d3
.

If X is a real Hilbert space then Kd “ 1 and DFI may be chosen equal to 1 in (FI).

Our main result extends the results of Bochi and Gourmelon [3] in the case
X “ Rd in three ways: we do not assume the cocycle to be invertible, we do not
introduce a dynamical system, we do not assume either C0 regularity or compact-
ness. The proof used in [3] requires all these assumptions and actually needs the
ergodic Oseledets theorem for invariant probability measures. We have chosen to

5



work in two directions: a direction which gives explicit estimates, especially for
the lower bound of the angle, with respect to the initial data, and a direction which
gives an unified proof for Banach and Hilbert spaces. In order not to introduce arti-
ficial constants in the Banach setting, we found it necessary to develop in appendix
A a theory of volume distortion ∆̄dpXq which enables us to quantify on each d-
dimensional space the distortion of the Banach norm with respect to the best fitted
Euclidean norm. The volume distortion ∆̄dpXq is 1 in the Hilbert case. We express
all estimates in terms of a constant Kd that is only a function of ∆̄dpXq and satisfies
Kd “ 1 in the Hilbert case.

In item 1 we obtain an explicit lower bound of the angle between the fast and
slow spaces depending only on DSVG ,DFI , τ, µ and the dimension d. We have cho-
sen to give a uniform estimate for every k P Z instead of an asymptotic estimate as
k Ñ ˘8. This choice has led to additional computation.

In item 2 we prove the strong form (FI)strong. This is actually a simple conse-
quence of lemma A.44 and the uniform bound infkPZ γpEk, Fkq ą 0. We neverthe-
less give a precise estimate valid for all iterates m, n and not just for m, n Ñ `8.
In the Hilbert case, the estimate is simpler with Kd “ 1 and DFI “ 1 in (FI).

In item 3 we show that the two equivariant splittings correspond indeed to the
fast and slow spaces; we again made the decision to give explicit but not optimal
estimates. The singular value of index d of the cocycle restricted to the fast space
is comparable up to a factor given by the minimal gap γpEk, Fkq to the original
d-dimensional singular value. A similar result is obtained for the slow space. For
large n and in the Hilbert case, the two constants 3

5 K´1
d and 3Kd may be replaced

by 1.
The proof of our main result is divided into 3 parts. In section 2, we show

how property (SVG) implies the existence of two fast and slow spaces that may
not be complementary. This mechanism is standard since Raghunathan [13] in
finite dimension, Ruelle [14] in Hilbert spaces, Blumenthal-Morris [2] in Banach
spaces, and González-Tokman-Quas [8] for a shorter proof. Our proof quantifies
precisely the speed of convergence of the approximate spaces. In section 3, we
show how property (FI) implies that the two fast and slow spaces give a splitting
of the ambient space. This part is the heart of the proof and is new. In section 4,
we show that (FI) is a necessary and sufficient condition and actually equivalent
to a stronger condition (FI)strong. In appendix A, we recall basic definitions of the
geometric theory of Banach spaces. We recall different notions of distance between
subspaces, several notions of singular values, some facts about the projective norm
on the exterior product. The main purpose of this appendix is to recall without
proofs the standard approximate singular value decomposition theorem A.35.
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2 Construction of the fast and slow spaces

The proof of our main result is based on a version of the singular value decom-
position (SVD) theorem for a single bounded operator in the Banach setting. The
(SVD) theorem is well known for compact operators in a Hilbert space (see [12]).
We did not find a version of the (SVD) theorem adapted to our needs in the liter-
ature. Appendix A fills in this missing piece. The main interest of Appendix A is
theorem A.35 which shows the existence of approximate singular spaces at every
index d. The singular spaces may not be exact because of the non compactness of
the operators and are thus non canonical. They depend for instance on an arbitrar-
ily small constant ε ą 0 coming from the fact that, in the case of infinite Banach or
Hilbert spaces, the norm of an operator may not be attained by a vector of the unit
sphere. Notice that we shall not use the (FI) condition in this section.

The following theorem is a special version of theorem A.35 applied to each
operator Apk, nq “ Ak`n´1 ¨ ¨ ¨ Ak`1Ak. We fix ε ą 0 and the index d ě 1. We show
there exist a pair of complementary spaces X “ Upk, nq ‘ Vpk, nq of the source
space and a pair of complementary spaces X “ Ũpk ` n, nq ‘ Ṽpk ` n, nq of the
target space that are related by Apk, nq and Apk, nq˚. We replace the usual notion of
orthogonality by a weaker notion using C-Auerbach families (see definition A.12
for more details). We show that the two splittings are Cε,d-orthogonal in the sense
of the following definition.

Definition 2.1. Let X be a Banach space, d ě 1, C ě 1.

• We say that a family of vectors pu1, . . . , udq is C-Auerbach if

@ j “ 1, . . . , d, C´1 ď distpu j, spanpui : i , jqq ď }u j} ď C.

• We say a splitting X “ U ‘ V with dimpUq “ d is C-orthogonal if there
exist a C-Auerbach basis pe1, . . . , edq spanning U and a C-Auerbach basis
pφ1, . . . , φdq spanning VK in the dual space X˚ which are dual to each other,
that is xφi|e jy “ δi, j, @i, j “ 1, . . . , d.

If V Ă X is a subspace of X, the annihilator of U is the subspace in the dual
space, UK :“ tφ P X˚ : xφ|uy “ 0, @u P Uu. If H Ă X˚, the pre-annihilator of H
is the subspace in X, Hy :“ tv P X : xη|vy “ 0, @η P Hu.

Theorem 2.2 (Approximate singular value decomposition). Let X be a Banach
space, d ě 1, ε ą 0, and pAkqkPZ be a sequence of bounded operators. Then there
exists a constant Kd ě 1 depending only on the Banach norm and d, such that for
every k P Z, n ě 1, and Cε,d :“ p1` εqKd,
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1. there exist two Cε,d-orthogonal splittings:

• X “ Upk, nq ‘ Vpk, nq, X “ Ũpk, nq ‘ Ṽpk, nq,

• dimpUpk, nqq “ dimpŨpk, nqq “ d,

• Apk, nqUpk, nq “ Ũpk ` n, nq, Apk, nqVpk, nq Ă Ṽpk ` n, nq,

• Apk, nq˚Ũpk` n, nqK Ă Upk, nqK, Apk, nq˚Ṽpk` n, nqK “ Vpk, nqK,

2. the singular values of Apk, nq and Apk, nq˚ restricted to this splitting are
comparable to those of Apk, nq on X: for every 1 ď i ď d,

• σipk, nq ě σipApk, nq|Upk, nqq ě σipk, nq{Cε,d,

• σipk, nq ě σipApk, nq˚|Ṽpk ` n, nqKq ě σipk, nq{Cε,d,

• σd`1pk, nq ď }Apk, nq|Vpk, nq} ď σd`1pk, nqCε,d,

• σd`1pk, nq ď }Apk, nq˚|Ũpk ` n, nqK} ď σd`1pk, nqCε,d,

3. the minimal gap of the two splittings is uniformly bounded from below,

γpUpk, nq,Vpk, nqq ě 1{Cε,d, γpVpk, nq,Upk, nqq ě 1{Cε,d,

γpŨpk, nq, Ṽpk, nqq ě 1{Cε,d, γpṼpk, nq, Ũpk, nqq ě 1{Cε,d,

4. there exits a pair of Cε,d-Auerbach families of (the source space) X, X˚,

pe1pk, nq, . . . , edpk, nqq, pφ1pk, nq, . . . , φdpk, nqq

and a pair of Cε,d-Auerbach families of (the target space) X, X˚,

pẽ1pk ` n, nq, . . . , ẽdpk ` n, nqq, pφ̃1pk ` n, nq, . . . , φ̃dpk ` n, nqq

satisfying

• xφipk, nq|e jpk, nqy “ δi, j, xφ̃pk, nq|ẽ jpk, nqy “ δi, j,

• Apk, nqeipk, nq “ σipk, nqẽipk ` n, nq,

• Apk, nq˚φ̃ipk ` n, nq “ σipk, nqφipk, nq,

• Upk, nq “ spanpe1pk, nq, . . . , edpk, nqq,

• Vpk, nq “ spanpφ1pk, nq, . . . , φdpk, nqqy,

• Ũpk ` n, nq “ spanpẽ1pk ` n, nq, . . . , ẽdpk ` n, nqq,

• Ṽpk ` n, nq “ spanpφ̃1pk ` n, nq, . . . , φ̃dpk ` n, nqqy.

5. Moreover Kd “ 1 if X is a Hilbert space and ε may be chosen to be zero if X
is finite-dimensional.
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We call Upk, nq and Vpk, nq, the approximate fast and slow forward spaces
above k. Similarly we will call Ũpk, nq and Ṽpk, nq, defined using Apk ´ n, nq,
the approximate fast and slow backward spaces above k. Since the approximate
forward spaces are built using the sequence of operators pAk, Ak`1, . . . , Ak`n´1q

and the approximate backward spaces are built using pAk´n, Ak´n`1, . . . , Ak´1q,
the two splittings above k, X “ Upk, nq ‘ Vpk, nq and X “ Ũpk, nq ‘ Ṽpk, nq, need
not be closely related.

We first consider the construction of the slow spaces pFkqkPZ using the forward
cocycle pAnq

`8

n“k and their approximate slow forward spaces Vpk, nq.
The following lemma shows an exponential contraction between the two ap-

proximate slow forward spaces. The maximal gap δpV,Wq between V and W is a
standard notion of distance between two subspaces (see definition A.17 and equiv-
alent formulations – note the asymmetry in the definition).

δpV,Wq “ suptdistpv,Wq : v P V, }v} “ 1u.

Lemma 2.3 (Raghunathan estimate I). Suppose that the sequence of operators
pAkq satisfies (SVG). Then for every k P Z and n ě 1,

δpVpk, nq,Vpk, n` 1qq ď C2
ε,dDSVG e´nτ,

δpVpk, n` 1q,Vpk, nqq ď C2
ε,dDSVG e´nτ{p1´C2

ε,dDSVG e´nτq.
(1)

Proof. Let v P Vpk, nq and φ P Vpk, n` 1qK be of norm 1. Choose φ̃ P Ṽpk ` n`
1, n ` 1qK such that φ “ Apk, n ` 1q˚φ̃. Using item 2 of theorem 2.2 one obtains
on the one hand

}φ} “ }Apk, n` 1q˚φ̃} ě
σdpk, n` 1q

Cε,d
}φ̃},

and on the other hand

xφ|vy “ xφ̃|Apk, n` 1qvy

ď }φ̃} }Apk, n` 1qv} ď }φ̃}}Ak`n}}Apk, nqv}

ď Cε,d}Ak`n}σd`1pk, nq}φ̃}}v}

ď C2
ε,d
}Ak`n}σd`1pk, nq
σdpk, n` 1q

}φ}}v}

ď C2
ε,dDSVG e´nτ,

where the last line follows from (SVG). The first estimate in (1) then follows from
(A.7). The second estimate is obtained using equation (A.11),

δpVpk, n` 1q,Vpk, nqq ď
δpVpk, nq,Vpk, n` 1qq

1´ δpVpk, nq,Vpk, n` 1qq
. �
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The previous lemma shows that the gap between two successive Vpk, nq is ex-
ponentially small. This implies in particular that pVpk, nqqně1 is a Cauchy sequence
and that Vpk, nq Ñ Fk uniformly in k to a subspace Fk of codimension d that we
will call the slow space. We will need a more precise statement where Fk is un-
derstood as a graph over a fixed splitting uniformly in k (see definition A.22). The
reference splitting will be given by X “ Upk,N˚q ‘ Vpk,N˚q for some N˚ chosen
sufficiently large. An initial choice of N˚ is made in the following lemma and will
be subsequently tightened in lemma 3.3, 3.8, and finally in Assumption 3.11. It
will be convenient to choose at each step of the proof N˚ depending on a parameter
θ˚ P p0, 1q as in (2), (5) and (7).

Lemma 2.4 (Existence of the slow space). Let θ˚ P p0, 1q and N˚ satisfy

DSVG e´N˚τ ď θ˚p1´ θ˚q
6 1´ e´τ

C4
ε,d

. (2)

Then for every k P Z, for every n ě N˚, the following 5 items are satisfied.

1. Vpk, nq “ GraphpΘpk, nqq for some Θpk, nq P BpVpk,N˚q,Upk,N˚qq

δpVpk,N˚q,Vpk, nqq ď }Θpk, nq} ď θ˚, δpVpk, nq,Vpk,N˚qq ď θ˚.

2. pΘpk, nqqněN˚ is a Cauchy sequence, for every n ě 1

}Θpk, n` 1q ´ Θpk, nq} ď θ˚e´pn´N˚qτp1´ e´τq.

3. Let ΘkpN˚q :“ limnÑ`8Θpk, nq and Fk :“ GraphpΘkpN˚qq. Then

δpVpk,N˚q, Fkq ď }ΘkpN˚q} ď θ˚, δpFk,Vpk,N˚qq ď θ˚.

Fk is called the slow space of index d; Fk is independent of the choice of N˚.

4. Vpk, nqK “ GraphpΘKpk, nqq for the bounded operator

ΘKpk, nq “ ´πpk,N˚q˚Θpk, nq˚ρpk,N˚q˚ P BpVpk,N˚qK,Upk,N˚qKq,

where πpk, nq is the projection onto Vpk, nq parallel to Upk, nq and ρpk, nq is
the inclusion operator Upk, nq ãÑ X. Moreover

ΘKk pN˚q :“ lim
nÑ`8

ΘKpk, nq exists,

FKk “ GraphpΘKk pN˚qq, }ΘKpk, nq} ď θ˚, }ΘKk pN˚q} ď θ˚.
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5. }pApk, nq|Upk,N˚q´1}´1{σdpk, nq is uniformly bounded from below,

• X “ Upk,N˚q ‘ Fk,

• @u P Upk,N˚q, }Apk, nqu} ě C´2
ε,d p1´ θ˚q

2σdpk, nq}u},

• γpUpk,N˚q, Fkq ě C´1
ε,d p1´ θ˚q

2.

Proof. In order to simplify the notations, fix k and denote

Vn :“ Vpk, nq, V˚ :“ Vpk,N˚q, U˚ :“ Upk,N˚q.

We want to apply lemma A.25 for the initial splitting X “ U˚‘V˚ where V˚ plays
the role of U0. An additional complication comes from the fact that the minimal
angle is not symmetric. We shall show by induction for every n ě N˚

• }Θn ´ Θn´1} ď θn´1p1´ θ˚q, (ΘN˚´1 “ 0 by convention),

• Vn “ GraphpΘnq for some Θn P BpV˚,U˚qwith }Θn} ď θ˚p1´θ˚qγpU˚,V˚q,

• δpVn,V˚q ď θ˚γpU˚,V˚q,

where θn :“ θ˚e´pn´N˚qτp1´ e´τqγpU˚,V˚q ď θ˚.
Suppose that the above conditions are satisfied for the index n. We first claim

that the choice of N˚ implies

δpVn`1,Vnq ď θnp1´ θnqp1´ θ˚q
2γpU˚,Vnq ď θn.

To see this, on the one hand, from equation (A.16), we have

γpU˚,Vnq ě
γpU˚,V˚q ´ δpVn,V˚q

1` δpVn,V˚q

ě
p1´ θ˚qγpU˚,V˚q

1` θ˚γpU˚V˚q
ě p1´ θ˚q

2γpU˚,V˚q.

On the other hand, from the definition of N˚ we have

C2
ε,dDSVG e´nτ ď θ˚p1´ θ˚q

6e´pn´N˚qτp1´ e´τqγpU˚,V˚q2,

ď θnp1´ θ˚q
6γpU˚,V˚q.

Combining both estimates, lemma 2.3 and equation (A.11), one obtains

δpVn,Vn`1q ď C2
ε,dDSVG e´nτ ď θnp1´ θ˚q

4γpU˚,Vnq ď θn ď θ˚,

δpVn`1,Vnq ď
θnp1´ θ˚q

4γpU˚,Vnq

1´ θ˚
ď θnp1´ θnqp1´ θ˚q

2γpU˚,Vnq.
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The claim is proved. We now show the three conditions for the index n` 1. From
item 2 of lemma A.25, Vn`1 “ GraphpΘn`1q for some Θn`1 P BpV˚,U˚q and

}Θn`1 ´ Θn} ď
δpVn`1,Vnq

γpU˚,Vnq ´ δpVn`1,Vnq

γpU˚,V˚q
γpU˚,V˚q ´ δpVn,V˚q

ď θnp1´ θ˚q,

δpV˚,Vn`1q ď }Θn`1} ď

n
ÿ

k“N˚

θkp1´ θ˚q ď θ˚p1´ θ˚qγpU˚,V˚q,

δpVn`1,V˚q ď
δpV˚,Vn`1q

1´ δpV˚,Vn`1q
ď θ˚γpU˚,V˚q.

The induction is complete and the three first items are proved.
The fact that Fk is independent of the initial choice N˚ is proved in the follow-

ing way. Let w P Fk, w “ v` ΘkpN˚qv for some v P Vpk,N˚q. Then

w´ rv` Θpk, nqvs “ rΘkpN˚qv´ Θpk, nqvs,

distpw,Vpk, nqq ď }ΘkpN˚q ´ Θpk, nq} }v} ď
}ΘkpN˚q ´ Θpk, nq}

γpV˚,U˚q
}w},

δpFk,Vpk, nqq ď
}ΘkpN˚q ´ Θpk, nq}

γpV˚,U˚q
ď θ˚e´pn´N˚qτγpU˚,V˚q

γpV˚,U˚q
.

Let F1k as in item 3 with another choice of θ1˚ and N1˚. Using the weak triangle
inequality

δpFk, F1kq ď 2δpFk,Vpk, nqq ` 2δpVpk, nq, F1kq

and letting n Ñ `8, one obtains δpFk, F1kq “ 0 and Fk “ F1k.
Item 4 is a consequence of lemma A.23. Item 5 is a consequence of item 2 of

theorem 2.2 and equation (A.16),

γpU˚,Vnq ě
γpU˚,V˚q ´ δpVn,V˚q

1` δpVn,V˚q
ě γpU˚,V˚q

1´ θ˚
1` θ˚

ě γpU˚,V˚qp1´ θ˚q
2,

γpU˚, Fkq ě γpU˚,V˚qp1´ θ˚q
2, (by taking the limit n Ñ `8).

Moreover for every u P U˚ such that }u} “ 1,

}Apk, nqu} ě suptxφ̃|Apk, nquy : φ̃ P Ṽpk ` n, nqK, }φ̃} “ 1u

ě suptxφ|uy : φ P VKn , }φ} “ 1u inf
!

}Apk, nq˚φ̃}
}φ̃}

: φ̃ P Vpk ` n, nqK
)

ě distpu,Vnq
σdpk, nq

Cε,d
ě γpU˚,Vnq

σdpk, nq
Cε,d

ě γpU˚,V˚qp1´ θ˚q
2σdpk, nq

Cε,d
. �
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Lemma 2.5 (Equivariance of the slow space). For every k P Z,

AkFk Ă Fk`1.

Proof. Let v P Vpk, n` 1q, and φ P Vpk` 1, nqK. Then there exists φ̃ P Ṽpk` n`
1, nqK such that φ “ Apk`1, nq˚φ̃. On the one hand, item 2 of theorem 2.2 implies

}φ} ě σdpApk ` 1, nq˚|Ṽpk ` n` 1, nqKq}φ̃} ě
σdpk ` 1, nq

Cε,d
}φ̃}.

On the other hand, item 2 also shows

xφ|Akvy “ xφ̃|Apk, n` 1qvy ď }φ̃}}Apk, n` 1q|Vpk, n` 1q} }v},

ď C2
ε,d
σd`1pk, n` 1q
σdpk ` 1, nq

}φ} }v}

ď C2
ε,d}Ak}

}Ak`1}σd`1pk ` 2, n´ 1q
σdpk ` 1, nq

}φ} }v}

ď C2
ε,d}Ak}DSVG e´pn´1qτ}φ} }v}.

We have thus obtained for every v P Vpk, n` 1q,

distpAkv,Vpk ` 1, nqq “ suptxφ|Akvy : φ P Vpk ` 1, nqK, }φ} “ 1u,

ď C2
ε,d}Ak}DSVG e´pn´1qτ}v}.

Let θ˚ and N˚ satisfy equation (2). Assume n ě N˚. Let v˚ P Vpk,N˚q and
wn :“ Θpk, n` 1qv˚ ` v˚. Then there exists v1n P Vpk ` 1,N˚q such that

w1n :“ Θpk ` 1, nqv1n ` v1n satisfies }Akwn ´ w1n} Ñ 0.

Since wn Ñ w :“ ΘkpN˚qv˚ ` v˚, the sequences pAkwnqn, pw1nqn and pv1nqn are
Cauchy sequences. We obtain therefore the convergence of v1n Ñ v1 P Vpk`1,N˚q
and AkpΘkpN˚qv˚ ` v˚q “ Θk`1pN˚qv1 ` v1. �

We now consider the construction of the fast spaces pEkqkPZ using the back-
ward cocycle pAnq

n“k´1
´8 and their approximate fast backward spaces Ũpk, nq. The

following lemma is analogous to lemma 2.3.

Lemma 2.6 (Raghunathan estimate II). For every n ě 1, k P Z,

δpŨpk, n` 1q, Ũpk, nqq ď C2
ε,dDSVG e´nτ,

δpŨpk, nq, Ũpk, n` 1qq ď C2
ε,dDSVG e´nτ{p1´C2

ε,dDSVG e´nτq.
(3)

13



Proof. Let ũ P Ũpk, n ` 1q and φ̃ P Ũpk, nqK of norm 1. On the one hand ũ “
Apk ´ n´ 1, n` 1qu for some u P Upk ´ n´ 1, n` 1q and item 2 of theorem 2.2
implies

}ũ} ě σdpk ´ n´ 1, n` 1q}u}{Cε,d.

On the other hand, item 2 also implies

xφ̃|ũy “ xφ̃|Apk ´ n´ 1, n` 1quy “ xApk ´ n´ 1, n` 1q˚φ̃|uy

ď }Ak´n´1}}Apk ´ n, nq˚φ̃}}u}

ď }Ak´n´1}σd`1pk ´ n, nqCε,d}φ̃}}u}

ď C2
ε,d
}Ak´n´1}σd`1pk ´ n, nq
σdpk ´ n´ 1, n` 1q

}φ̃}}ũ}.

The second inequality is a consequence of equation (A.11). �

The following lemma is analogous to lemma 2.4. We show that the sequence
of subspaces pŨpk, nqqně1 is a Cauchy sequence converging uniformly in k to a
subspace Ek of dimension d. We see Ek as a graph over Ũpk,N˚q in the splitting
X “ Ũpk,N˚q ‘ Ṽpk,N˚q for some large N˚ defined in (2).

Lemma 2.7 (Existence of the fast space). Let θ˚ P p0, 1q and N˚ satisfy equation
(2). Then for every k P Z, for every n ě N˚, the following 4 items are satisfied.

1. Ũpk, nq “ GraphpΘ̃pk, nqq for some Θ̃pk, nq P BpŨpk,N˚q, Ṽpk,N˚qq,

δpŨpk,N˚q, Ũpk, nqq ď }Θ̃pk, nq} ď θ˚, δpŨpk, nq, Ũpk,N˚qq ď θ˚.

2. pΘ̃pk, nqqněN˚ is a Cauchy sequence, for every n ě 1

}Θ̃pk, n` 1q ´ Θ̃pk, nq} ď θ˚e´pn´N˚qτp1´ e´τq,

3. Let Θ̃kpN˚q :“ limnÑ`8 Θ̃pk, nq and Ek :“ GraphpΘ̃kpN˚qq. Then

δpŨpk,N˚q, Ekq ď }Θ̃kpN˚q} ď θ˚, δpEk, Ũpk,N˚qq ď θ˚.

Ek is called the fast space of index d; Ek is independent of the choice of N˚.

4. }pApk ´ n, nq˚|Ṽpk,N˚qKq´1}´1{σdpk ´ n, nq is bounded from below,

• X “ Ek ‘ Ṽpk,N˚q,

• @φ̃ P Ṽpk,N˚qK, }Apk ´ n, nq˚φ̃} ě C´2
ε,d p1´ θ˚q

2σdpk ´ n, nq}φ̃},

• γpŨpk, nq, Ṽpk,N˚qq ě p1´ θ˚q
2C´1

ε,d .
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Proof. The proof of items 1 – 3 is similar to the one in lemma 2.4 by permuting
the role of U and V . For instance we also obtain by induction

δpŨpk,N˚q, Ũpk, nqq ď θ˚γpŨpk,N˚q, Ṽpk,N˚qq.

For the last item, we choose φ̃ P Ṽpk,N˚qK, }φ̃} “ 1, then using (A.6),

}Apk ´ n, nq˚φ̃}

ě suptxφ̃|Apk ´ n, nquy : u P Upk ´ n, nq, }u} “ 1u

ě suptxφ̃|ũy : ũ P Ũpk, nq, }ũ} “ 1u inf
!

}Apk ´ n, nqu}
}u}

: u P Upk ´ n, nq
)

ě distpφ̃, Ũpk, nqKq
σdpk ´ n, nq

Cε,d
ě γpṼpk,N˚qK, Ũpk, nqKq

σdpk ´ n, nq
Cε,d

,

and by using equations (A.16) and (A.17) one concludes

γpṼpk,N˚qK, Ũpk, nqKq “ γpŨpk, nq, Ṽpk,N˚qq

ě
γpŨpk,N˚q, Ṽpk,N˚qq ´ δpŨpk,N˚q, Ũpk, nqq

1` δpŨpk,N˚q, Ũpk, nqq

ě
1´ θ˚
1` θ˚

γpŨpk,N˚q, Ṽpk,N˚qq ě p1´ θ˚q
2C´1

ε,d . �

Lemma 2.8 (Equivariance of the fast space). For every k P Z,

AkEk “ Ek`1.

Proof. Let ũ P Ũpk, nq and φ̃ P Ũpk`1, n`1qK. Then there exists u P Upk´n, nq
such that ũ “ Apk ´ n, nqu. On the one hand

}ũ} ě σdpk ´ n, nq}u}{Cε,d.

On the other hand

xφ̃|Akũy “ xApk ´ n, n` 1q˚φ̃|uy ď }Apk ´ n, n` 1q˚φ̃}}u}

ď Cε,dσd`1pk ´ n, n` 1q}φ̃}}u} ď C2
ε,d
σd`1pk ´ n, n` 1q

σdpk ´ n, nq
}φ̃} }ũ}

ď C2
ε,d}Ak}

σd`1pk ´ n, n´ 1q}Ak´1}

σdpk ´ n, nq
}φ̃} }ũ}

ď C2
ε,d}Ak}DSVG e´pn´1qτ}φ̃} }ũ}.

We just have proved for every ũ P Ũpk, nq,

distpAkũ, Ũpk ` 1, n` 1q ď C2
ε,d}Ak}DSVG e´pn´1qτ}ũ}.
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Let θ˚,N˚ as in equation (2). Let ũ˚ P Ũpk,N˚q and wn :“ ũ˚ ` Θ̃pk, nqũ˚. Then
there exists ũ1n P Ũpk ` 1,N˚q such that

w1n :“ ũ1n ` Θ̃pk ` 1, n` 1qũ1n satisfies }Akwn ´ w1n} Ñ 0.

Since wn Ñ ũ˚ ` Θ̃kpN˚qũ˚, ũ1n Ñ ũ1, w1n Ñ w1 “ ũ1 ` Θ̃k`1pN˚qũ1. We have
proved Akpũ˚ ` Θ̃kpN˚qũ˚q “ ũ1 ` Θ̃k`1pN˚qũ1 and the equivariance of the fast
space. �

3 Proof of item 1 of theorem 1.2

We present the proof of the bound from below (item 1 of theorem 1.2) of the angle
between Ek and Fk uniformly in k P Z. We use for the first time the property
(FI). Although there should exist a direct proof for any dimension d, we reduce our
analysis to the case d “ 1 by introducing the exterior product

Źd X. The cocycle
Apk, nq admits a canonical extension to the exterior product that we denote

pApk, nq :“
ŹdApk, nq.

The approximate singular value decomposition obtained in theorem 2.2 for the
cocycle Apk, nq can be extended to the cocycle pApx, nq by applying theorem A.43
to each Apk, nq. We use definition A.39 for the notation pU and qV , for every subspace
U of dimension d and V of codimension d, respectively. We obtain the following
theorem.

Theorem 3.1. Let X be a Banach space, d ě 1, ε ą 0, and pAkqkPZ be a sequence
of bounded operators. Let X “ Upk, nq ‘ Vpk, nq “ Ũpk, nq ‘ Ṽpk, nq be the ap-
proximate singular value decomposition given in theorem 2.2 spanned respectively
by the bases pe1, . . . , edq, pφ1, . . . , φdq, pẽ1, . . . , ẽdq, pφ̃1, . . . , φ̃dq. Then there ex-
ists a constant pKd depending only on the Banach norm and d, such that, for every
k P Z, n ě 1, pCε,d :“ p1` εqpKd,

1.
Źd X “ pUpk, nq ‘ qVpk, nq,

Źd X “ pŨpk, nq ‘ qṼpk, nq,

2. pUpk, nq “ spanp
Źd

i“1eipk, nqq, qVpk, nq “ spanp
Źd

i“1φipk, nqqy,

3. pŨpk, nq “ spanp
Źd

i“1ẽipk, nqq, qṼpk, nq “ spanp
Źd

i“1φ̃ipk, nqqy,

4. dimp pUpk, nqq “ dimp pŨpk, nqq “ 1,

5. pApk, nq pUpk, nq “ pŨpk ` n, nq, pApk, nqqVpk, nq Ă qṼpk ` n, nq,
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6. pC´1
ε,d

śd
i“1 σipk, nq ď }pApk, nq| pUpk, nq} ď pCε,d

śd
i“1 σipk, nq,

7. pC´1
ε,d

śd
i“1 σipk, nq ď }pApk, nq˚|qṼpk ` n, nqK} ď pCε,d

śd
i“1 σipk, nq,

8. }pApk, nq|qVpk, nq} ď pCε,d σ1pk, nq ¨ ¨ ¨ σd´1pk, nqσd`1pk, nq,

9. γp pUpk, nq, qVpk, nqq ě pC´1
ε,d , γpqVpk, nq, pUpk, nqq ě pC´1

ε,d .

This theorem is a direct consequence of theorem A.43. We now recall some nota-
tions introduced in item 3 and 4 of lemma 2.4. We consider Ek and Fk as graphs
over a fixed splitting X “ Ũpk,N˚q ‘ Ṽpk,N˚q and X “ Upk,N˚q ‘ Vpk,N˚q
respectively.

Notations 3.2. Let θ˚ P p0, 1q and N˚ satisfy equation (2). Then

• Ek “ GraphpΘ̃kpN˚qq for some Θ̃kpN˚q : Ũpk,N˚q Ñ Ṽpk,N˚q,

• Fk “ GraphpΘKk pN˚qq
y for some ΘKk pN˚q : Vpk,N˚qK Ñ Upk,N˚qK,

• pEk “ span
`
Źd

i“1pId‘ Θ̃kpN˚qqẽipk,N˚q
˘

,

• qFk :“ span
`
Źd

i“1pId‘ ΘKk pN˚qφipk,N˚q
˘y,

• qFk “ GraphppΘkpN˚qq for some pΘkpN˚q : qVpk,N˚q Ñ pUpk,N˚q,

• }Θ̃kpN˚q} ď θ˚, }ΘKk pN˚q} ď θ˚, }pΘkpN˚q} ď C2d
ε,dKdθ˚p1 ` θ˚q

d´1,
(using lemma A.42 for some constant Kd “ ∆̄dpXqd given by (A.3)).

The strategy of the proof is based on two steps. In the first step we show that,
for some N˚ large enough,

@k P Z, γppApk ´ N˚,N˚q pUpk ´ N˚,N˚q, qFkq ě cpN˚q,

with a constant that depends on N˚ (and goes to zero as N˚ Ñ `8). This estimate
may be considered as a bootstrap argument; this is the only place where property
(FI) is used.

In the second part, we analyze the special backward cocycle associated to the
sequence of operators ppApk´nN˚,N˚qq`8n“1. We improve the previous estimate and
show that actually

@n ě 1, @k P Z, γppApk ´ nN˚, nN˚q pUpk ´ nN˚, nN˚q, qFkq ě constant.
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The proof is complicated by the fact that we are in a Banach space and look for an
explicit lower bound. The proof is also new in the finite dimensional setting. We
conclude the proof by observing

pApk ´ nN˚, nN˚q pUpk ´ nN˚, nN˚q “ pŨpk, nN˚q Ñ pEk.

We obtain a uniform bound from below of γppEk, pFkq and therefore a uniform bound
from below of γpEk, Fkq by using lemma A.40.

We show in the following lemma that the smallest expansion of pApk, nq on
pUpk,mq is bounded from below by

śd
i“1 σipk, nq uniformly in m, n large enough,

@k P Z, @m, n ě N˚, }pApk, nq| pUpk,mq} ě constant
“

d
ź

i“1

σipk, nq
‰

. (4)

We now choose N˚ satisfying a more restrictive condition than the one in (2).

Lemma 3.3. Let θ˚ P p0, 1q and N˚ satisfy

DSVG e´N˚τ ď θ˚p1´ θ˚q
7 1´ e´τ

C5
ε,d

. (5)

Then for every n,m ě N˚ and k P Z,

@u P Ûpk,mq, }Âpk, nqu} ě C´4d
ε,d K´1

d p1´ θ˚q
d
´

d
ź

i“1

σipk, nq
¯

}u},

where Kd :“ ∆̄dpXq3d.

Proof. Part 1. We prove in both cases, n ě m and m ě n, that there exists an oper-
ator ΘK : Vpk,mqK Ñ Upk,mqK such that Vpk, nqK “ GraphpΘKq and }ΘK} ď θ˚.

For n ě m the existence of ΘK is a consequence of item 4 of lemma 2.4 taking
N˚ “ m.

For m ě n, let θ1 :“ θ˚p1´ θ˚q{Cε,d, then

DSVG e´nτ ď DSVG e´N˚τ ď θ1p1´ θ1q6
1´ e´τ

C4
ε,d

,

δpVpk,mq,Vpk, nqq ď θ1 ď θ˚p1´ θ˚qγpVpk,mq,Upk,mqq.

In particular, from item 1 of lemma A.25,

δpVpk,mq,Vpk, nqq ă γpVpk,mq,Upk,mqq,

δpVpk, nqK,Vpk,mqKq ă γpUpk,mqK,Vpk,mqKq,

Vpk, nqK “ GraphpΘKq, for some ΘK : Vpk,mqK Ñ Upk,mqK,

}ΘK} ď
δpVpk, nqK,Vpk,mqKq

γpUpk,mqK,Vpk,mqKq ´ δpVpk, nqK,Vpk,mqKq
ď θ˚.
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Part 2. We now prove the relative rate of expansion of pApk, nq. From lemma
A.26, one obtains with K1d “ ∆̄dpXq2d,

det
`“

xφipk, nq|e jpk,mqy
‰

i j

˘

ě pK1dq
´1C´2d

ε,d p1´ θ˚q
d.

As A˚pk, nqφ̃ipk ` n, nq “ σipk, nqφipk, nq, using equations (A.21) and (A.22), one
obtains

det
`“

xφipk, nq|e jpk,mqy
‰

i j

˘

“
det

`“

xφ̃ipk ` n, nq|Apk, nqe jpk,mqy
‰

i j

˘

śd
i“1 σipk, nq

,

ď ΣdpXq
}
Źd

i“1φ̃ipk ` n, nq} }Âpk, nq
Źd

i“1eipk,mq}
śd

i“1 σipk, nq
.

From proposition A.34, we have ΣdpXq ď ∆̄dpXqd. From the definition of the
projective norm (A.20), we have

}
Źd

i“1φ̃pk ` n, nq} ď Cd
ε,d and }

Źd
i“1e jpk,mq} ď Cd

ε,d. �

The next lemma gives a lower bound of the angle between the approximate
fast space pWk :“ pApk ´ N˚,N˚q pUpk ´ N˚,mq and the slow space qFk for m ě N˚.
This estimate is non trivial as pWk is defined using the operators pAk´nqně1 and qFk

is defined using the operators pAk`nqně0. Property (FI) forces the two spaces to be
complementary. It is the only place where (FI) is used.

Lemma 3.4 (First crucial step). Let θ˚ P p0, 1q, N˚ satisfy equation (5), k P Z,
and m ě N˚. Denote pWk :“ pApk ´ N˚,N˚q pUpk ´ N˚,mq. Then

γp pWk, qFkq ě pC´3
ε,d C´4d

ε,d K´1
d p1´ θ˚q

dD´1
FI e´N˚µ,

where Kd :“ ∆̄dpXq3d.

Proof. As qVpk, nq Ñ qFk in the co-Grassmannian topology, it is enough to bound
from below γp pWk, qVpk, nqq for large n ě m. We first show that pWk is the graph
of some operator pΓpk, nq : pUpk, nq Ñ qVpk, nq. We then give an upper bound for
}Id‘ pΓpk, nq}; or equivalently a lower bound for the angle γp pWk, qVpk, nqq. Let

w P pWk, w “ w1 ` w2, w1 P pUpk, nq and w2 P qVpk, nq.

On the one hand w “ pApk ´ N˚,N˚qu for some u P pUpk ´ N˚,mq. Then using
lemma 3.3 with Kd “ ∆̄dpXq3d and item 6 of theorem 3.1, one gets

}pApk, nqw} “ }pApk ´ N˚,N˚ ` nqu}

ě C´4d
ε,d K´1

d p1´ θ˚q
dśd

i“1σipk ´ N˚,N˚ ` nq }u},

}w} ď pCε,d
śd

i“1σipk ´ N˚,N˚q}u}.
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Thus

}pApk, nqw} ě pC´1
ε,d C´4d

ε,d K´1
d p1´ θ˚q

d
śd

i“1σipk ´ N˚,N˚ ` nq
śd

i“1σipk ´ N˚,N˚q
}w}.

On the other hand using items 6 and 8 of theorem 3.1,

}pApk, nqw1} ď pCε,d
“
śd

i“1σipk, nq
‰

}w1},

}pApk, nqw2} ď pCε,d
“
śd´1

i“1 σipk, nq
‰

σd`1pk, nq}w2},

}pApk, nqw} ď pCε,d
“
śd

i“1σipk, nq
‰

”

}w1} ` σd`1pk,nq
σdpk,nq

}w2}
ı

.

Property (FI) implies
śd

i“1σipk ´ N˚,N˚ ` nq
śd

i“1σipk ´ N˚,N˚q
śd

i“1σipk, nq
ě D´1

FI e´N˚µ.

Combining the two estimates of }pApk, nqw} and using property (SVG), one obtains,

}pId‘ pΓpk, nqqw1} “ }w} ď
pC2
ε,dC4d

ε,dKdp1´ θ˚q
´dDFI eN˚µ

“

1` DSVG e´nτ}pΓpk, nq}
‰

}w1}.

In particular }pΓpk, nq} is uniformly bounded from above. Using lemma A.24 and
item 9 of theorem 3.1

γp pW, qVpk, nqq ě
γp pUpk, nq, qVpk, nqq

}Id‘ pΓpk, nq}
ě

pC´1
ε,d

}Id‘ pΓpk, nq}

ě pC´3
ε,d C´4d

ε,d K´1
d p1´ θ˚q

dD´1
FI e´N˚µ

“

1` DSVG e´nτ}pΓpk, nq}
‰´1

.

We conclude by letting n Ñ `8. �

Similarly to lemma 3.3, we show that the largest expansion of pApk, nq restricted
to qFk is bounded from above by r

śd
i“1 σipk, nqse´nτ uniformly for n large enough,

@k P Z, @n ě N˚, }pApk, nq|qFk} ď constant
´

d
ź

i“1

σipk, nq
¯

e´nτ. (6)

Equation (6) together with equation (4) show that the cocycle pApk, nq satisfies prop-
erty (SVG) at index 1. Estimate (6) is the main reason to introduce the exterior
product. The simplest proof based on the original cocycle seems to require a com-
parison between the two ratios σdpk, nq{σ1pk, nq and σd`1pk, nq{σdpk, nq.
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Lemma 3.5. Let θ˚ P p0, 1q and N˚ satisfy equation (5). Then for every n ě N˚
and k P Z,

}pApk, nq|qFk} ď 2 pC2
ε,dC2d

ε,dKdθ˚p1` θ˚q
d´1

´

d
ź

i“1

σipk, nq
¯

e´pn´N˚qτ,

where Kd “ ∆̄dpXqd.

Proof. Let Fk “ GraphpΘKk pnqq
y and qFk “ GraphppΘkpnqq as in notations 3.2. We

first notice

DSVG e´nτ ď e´pn´N˚qτDSVG e´N˚τ ď θ1p1´ θ1q6
1´ e´τ

C4
ε,d

with θ1 :“ θ˚e´pn´N˚qτ. Substituting θ1 for θ˚ and n for N˚ in item 4 of lemma 2.4,
one obtains }ΘKk pnq} ď θ1. Then lemma A.42 and proposition A.34 imply

}pΘkpnq} ď C2d
ε,dKdθ

1p1` θ˚q
d´1.

Let w P qFk, w “ w1 ` w2, w2 P qVpk, nq and w1 “ pΘkpnqw2 P pUpk, nq. Then

}w2} ď }π
qVpk,nq| pUpk,nq}}w} ď pCε,d}w},

}pApk, nqw1} ď pCε,d
“
śd

i“1σipk, nq
‰

}pΘkpnq}}w2},

}pApk, nqw2} ď pCε,d σ1pk, nq ¨ ¨ ¨ σd´1pk, nqσd`1pk, nq}w2},

}pApk, nqw} ď pC2
ε,d

“
śd

i“1σipk, nq
‰

”

}pΘkpnq} `
σd`1pk,nq
σdpk,nq

ı

}w}.

We conclude using property (SVG),

σd`1pk, nq
σdpk, nq

ď DSVG e´nτ ď θ1 ď C2d
ε,dKdθ

1p1` θ˚q
d´1. �

We now change notation and rewrite the cocycle ppApk´nN˚,N˚qq`8n“1 as block
matrices along the following splitting. Notice the small circumflex for the new
notation. Define

• Â´n :“ pApk ´ nN˚,N˚q, @n ě 1,

• Û´n :“ pUpk ´ nN˚, nN˚q, V̂´n :“ qVpk ´ nN˚, nN˚q, @n ě 1,

• Û0 :“ pŨpk,N˚q, V̂0 :“ qṼpk,N˚q,

• Ê´n :“ pEk´nN˚ , F̂´n :“ pFk´nN˚ , @n ě 0,
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•
Źd X “ Û´n ‘ F̂´n, @n ě 0.

Notice that the first crucial step, lemma 3.4, implies that Û0 “ Â´1Û´1 and F̂0 are
indeed two complementary spaces. We consider the following block splitting

• p̂´n the projector onto Û´n parallel to F̂´n, @n ě 0,

• q̂´n the projector onto F̂´n parallel to Û´n, @n ě 0,

• Â´n :“
„

â´n 0
ĉ´n d̂´n



, @n ě 1

• â´n “ p´pn´1q ˝ pÂ´n|Û´nq : Û´n Ñ Û´pn´1q,

• ĉ´n “ q´pn´1q ˝ pÂ´n|Û´nq : Û´n Ñ F̂´pn´1q,

• d̂´n “ pÂ´n|F̂´nq : F̂´n Ñ F̂´pn´1q.

By the equivariance of the slow space Â´nF̂´n Ă F̂´pn´1q, we obtain

• Ân
´n :“ Â´1Â´2 ¨ ¨ ¨ Â´n “ pApk ´ nN˚, nN˚q,

• ân
´n :“ â´1â´2 ¨ ¨ ¨ â´n “ p̂0 ˝ ppApk ´ nN˚, nN˚q| pUpk ´ nN˚, nN˚qq,

• d̂n
´n :“ d̂´1d̂´2 ¨ ¨ ¨ d̂´n “ ppApk ´ nN˚, nN˚q|pFk´nN˚q.

Lemma 3.4 implies that Â´nÛ´n and F̂´pn´1q are complementary. In particular
â´n : Û´n Ñ Û´pn´1q is bijective. Define for n ě 1,

• Â´n´1Û´n´1 “ GraphpΓ̂´nq for some operator Γ̂´n : Û´n Ñ F̂´n, by
convention, Γ̂0 :“ 0,

• Ân
´nÛ´n “ GraphpΞ̂n

0q for some operator Ξ̂n
0 : Û0 Ñ F̂0. Notice that the

choice of Û0 implies Ξ̂1
0 “ 0.

Lemma 3.6. Let θ˚ P p0, 1q and N˚ satisfy equation (5). Then

@n ě 1, }q̂´n} ď pCε,dC2d
ε,dKdp1` θ˚q

d,

where Kd “ ∆̄dpXqd.

Proof. From notations 3.2 one obtains F̂´n “ GraphpΘ̂´nq for some operator
Θ̂´n :“ pΘk´nN˚pnN˚q : V̂´n Ñ Û´n. Moreover

q̂´n “ pId‘ Θ̂´nq ˝ πV̂´n|Û´n
,

}Θ̂´n} ď C2d
ε,dKdθ˚p1` θ˚q

d´1,

}q̂´n} ď pCε,dp1` }Θ̂´n}q ď Ĉε,dC2d
ε,dKdp1` θ˚q

d. �
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Lemma 3.7. Let θ˚ P p0, 1q and N˚ satisfy equation (5). Then

@n ě 1, }Γ̂´n} ď pC4
ε,dC6d

ε,dKdp1´ θ˚q
´2dDFI eN˚µ,

where Kd :“ ∆̄dpXq4d.

Proof. Since Γ̂´n “ q̂´npId‘ Γ̂´nq, we obtain using lemmas A.24, 3.6 and 3.4

}Γ̂´n} ď
}q̂´n}

γpÂ´n´1Û´n´1, F̂´nq
ď }q̂´n} pC3

ε,dC4d
ε,dK1dp1´ θ˚q

´dDFI eN˚µ,

with K1d “ ∆̄dpXq3d. �

We now show that the minimal gap between Ân
´nÛ´n and F̂0 is bounded from

below uniformly in n. Since Ân
´nÛ´n “ GraphpΞ̂n

0q for some Ξ̂n
0 : Û0 Ñ F̂0, it is

enough to bound from above }Id‘ Ξ̂n
0}. We show how to estimate }Id‘ Ξ̂n`1

0 } in

terms of }Id ‘ Ξ̂n
0}. Since Ân

´nÛ´n “
pŨpk, nN˚q Ñ Ê0, we obtain a bound from

below of γpÊ0, F̂0q.

Lemma 3.8 (Second crucial step). Let θ˚ P p0, 1q and N˚ satisfy

DSVG e´N˚τ ď
θ˚p1´ θ˚q

3d´1

2 pC7
ε,dC8d

ε,dKdDFI

p1´ θ˚q
7 1´ e´τ

C5
ε,d

, (7)

with Kd :“ ∆̄dpXq5d. Then for every n ě 1,

γpÂn
´nÛ´n, F̂0q ě

p1´ θ˚q
dD´1

FI

pC3
ε,dC4d

ε,dKd
e´N˚µ

n´2
ź

k“0

”

1` eN˚µe´kN˚τ
ı´1

.

Proof. Define

θ1 :“
θ˚p1´ θ˚q

3d´1

2 pC7
ε,dC8d

ε,dKdDFI

.

Notice that N˚ satisfies equation (5) with θ1 instead of θ˚

DSVG e´N˚τ ď θ1p1´ θ1q7
1´ e´τ

C5
ε,d

,

Part 1. We estimate the norms }pân
´nq

´1} and }d̂n
´n}. On the one hand, using

item 6 of theorem 3.1, one gets

pân
´nq

´1 “ pÂn
´n|Û´nq

´1 ˝ pId‘ Ξ̂n
0q,

}pân
´nq

´1} ď pCε,d
“

d
ź

i“1

σipk ´ nN˚, nN˚q
‰´1
}Id‘ Ξ̂n

0}.
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On the other hand, using lemma 3.5, one gets

}d̂n
´n} ď 2 pC2

ε,dC2d
ε,dK1dθ

1p1` θ1qd´1“
d
ź

i“1

σipk ´ nN˚, nN˚q
‰

e´pn´1qN˚τ,

with K1d “ ∆̄dpXqd.
Part 2. We bound from above }Id ‘ Ξ̂n`1

0 } in terms of }Id ‘ Ξ̂n
0}. Notice first

that Γ̂´n “ ĉ´n´1pâ´n´1q
´1. Moreover

Ân`1
´n´1 “

«

ân`1
´n´1 0

ĉn`1
´n´1 d̂n`1

´n´1

ff

“

„

ân
´n 0

ĉn
´n d̂n

´n

 „

â´n´1 0
ĉ´n´1 d̂´n´1



,

ĉn`1
´n´1 “ ĉn

´nâ´n´1 ` d̂n
´nĉ´n´1,

ĉn`1
´n´1pâ

n`1
´n´1q

´1 “ ĉn
´npâ

n
´nq

´1 ` d̂n
´nĉ´n´1pâ´n´1q

´1pân
´nq

´1.

Since Ξ̂n
0 “ ĉn

´npâ
n
´nq

´1, we obtain pId‘ Ξ̂n`1
0 q “ pId‘ Ξ̂n

0q ` d̂n
´nΓ̂´npân

´nq
´1,

}Id‘ Ξ̂n`1
0 } ď }Id‘ Ξ̂n

0}

´

1`
}d̂n
´n}}Γ̂´n}}pân

´nq
´1}

}Id‘ Ξ̂n
0}

¯

.

Using the estimates of part 1 and θ1 instead of θ˚ in lemma 3.7, we obtain

}d̂n
´n}}Γ̂´n}}pân

´nq
´1}

}Id‘ Ξ̂n
0}

ď 2 pC7
ε,dC8d

ε,dKdθ
1p1´ θ1q´3d`1DFI eN˚µe´pn´1qN˚τ

ď eN˚µe´pn´1qN˚τ.

Using }Id‘ Ξ̂1
0} “ 1, one obtains

}Id‘ Ξ̂n
0} ď

n´2
ź

k“0

”

1` eN˚µe´kN˚τ
ı´1

.

Using the bound from below in lemma 3.4 for γpÛ0, F̂0q and the comparison esti-
mate in lemma A.24, one gets

γpÂn
´nÛ´n, F̂0q ě

γpÛ0, F̂0q

}Id‘ Ξ̂n
0}
ě
p1´ θ˚q

dD´1
FI

pC3
ε,dC4d

ε,dKd
e´N˚µ

n´2
ź

k“0

”

1` eN˚µe´kN˚τ
ı´1

. �

We now explain how to choose θ˚ so that N˚ is the smallest possible. We
use the following lemma whose proof is left to the reader. We will choose later
α “ 3d ` 6.
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Lemma 3.9. Let α ą 1. Then

• θ˚ :“ 1
1`α “ arg maxtθp1´ θqα : 1 ă θ ă 1u,

• θ˚p1´ θ˚q
α ě θ˚p1´ αθ˚q “

1
pα`1q2 .

We estimate the infinite product in lemma 3.8 using the following lemma. We
will choose later ρ “ µ{τ and a “ e´N˚τ.

Lemma 3.10. Let a P p0, 1q and ρ ą 0. Then

`8
ź

n“0

“

1` an´ρ‰ ď exp
´1` a

1´ a

¯´1
a

¯ρpρ`2q{2
.

Proof. We choose n˚ such that n˚ ď ρ ă n˚ ` 1. We split the infinite product in
two parts. On the one hand

n
ź̊

n“0

“

1` an´ρ‰ “

n
ź̊

n“0

“

aρ´n ` 1
‰

´1
a

¯

řn˚
n“0 ρ´n

,

ď exp
´

n
ÿ̊

n“0

aρ´n
¯´1

a

¯pn˚`1qρ´n˚pn˚`1q{2
ď exp

´aρ´n˚

1´ a

¯´1
a

¯ρpρ`2q{2
.

On the other hand

ź

něn˚`1

“

1` an´ρ‰ ď exp
´

ÿ

něn˚`1

an´ρ
¯

ď exp
´an˚`1´ρ

1´ a

¯

.

Using the convexity of the function ρ P rn˚, n˚`1s ÞÑ an˚`1´ρ`aρ´n˚ , we obtain
an˚`1´ρ ` aρ´n˚ ď 1` a and conclude the proof. �

Assumption 3.11. Let θ˚ “ 1
3d`7 and N˚ satisfy

DSVG e´N˚τ ď θ˚p1´ θ˚q
3d`6 1´ e´τ

2 pC7
ε,dC8d`5

ε,d KdDFI

ă DSVG e´N˚τeτ, (8)

with Kd :“ ∆̄dpXq5d.

Proof of theorem 1.2, item 1. Using the estimate

p1´ θ˚q
d ě 1´

d
3d ` 7

“
2d ` 7
3d ` 7

ě
2
3
,
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the second crucial step 3.8, lemma 3.10 with

a :“ e´N˚τ, ρ :“
µ

τ
, e´N˚µ “ aρ,

we obtain for every n ě 0,

γpÂn
´nÛ´n, F̂0q ě

2
3
pC´3
ε,d C´4d

ε,d K´1
d D´1

FI exp
´

´
1` a
1´ a

¯

aρpρ`4q{2

with Kd “ ∆̄dpXq5d. Using a ď 1
2θ˚, we obtain

1` a
1´ a

ď
6d ` 15
6d ` 13

ď
15
13
,

2
3

exp
´

´
1` a
1´ a

¯

ě
1
5
,

γpÂn
´nÛ´n, F̂0q ě

aρpρ`4q{2

5 pC3
ε,dC4d

ε,dKdDFI

. (9)

Using a ě
p3d ` 7q´2

2 pC7
ε,dC8d`5

ε,d KdDFI

1´ e´τ

DSVG eτ
, we obtain

γpÂn
´nÛ´n, F̂0q ě

1

5 pC3
ε,dC4d

ε,dKdDFI

”

p3d ` 7q´2

2 pC7
ε,dC8d`5

ε,d KdDFI

1´ e´τ

DSVG eτ

ı

ρpρ`4q
2
.

We conclude by using Ân
´nÛ´n Ñ Ê0 and the comparison between the minimal

gaps, γpE0, F0q ě γpÊ0, F̂0q{K1d where the constant K1d “ ∆̄2pXq4d∆̄dpXq3d is
given by lemma A.40. �

4 Proof of items 2 and 3 of theorem 1.2

We first show that property (FI) is related to a super-multiplicative sequence (10)
p fmpkqqmě0. We use the notion of Jacobian of index d, introduced in definition in
A.30 and denoted by ΣdpAq. Proposition A.32 implies,

d
ź

i“1

σipAq ď ΣdpAq “
d
ź

i“1

σ2i pAq ď Kd

d
ź

i“1

σipAq

where Kd “ ∆̄dpXq2d2
. In the Hilbert case Kd “ 1 and ΣdpAq “

śd
i“1 σipAq.

Proposition A.34 shows that the Jacobian is sub-multiplicative,

@k P Z, @m1,m2 ě 0, Σdpk,m1 ` m2q ď Σdpk,m1qΣdpk ` m1,m2q,
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where Σdpk, nq :“ ΣdpApk, nqq. We define for every k P Z and m ě 0,

fmpkq :“ inf
ně0

Σdpk ´ m,m` nq
Σdpk ´ m,mqΣdpk, nq

. (10)

We have obviously fmpkq ď KdpXq´1 ď 1. We show in the following lemma
that fmpkq is super-multiplicative and that the ratio appearing in property (FI) is
comparable to fmpkq.

Lemma 4.1. For every k P Z,

1. @m1,m2 ě 0, fm1`m2pkq ě fm1pkq fm2pk ´ m1q and fmpkq ď 1,

2. K´2
d inf

ně0

d
ź

i“1

σipk ´ m,m` nq
σipk ´ m,mqσipk, nq

ď fmpkq ď Kd inf
ně0

d
ź

i“1

σipk ´ m,m` nq
σipk ´ m,mqσipk, nq

,

3. @m, n ě 0,
d
ź

i“1

σipk ´ m,m` nq
σipk ´ m,mqσipk, nq

ď K2
d ,

with Kd “ ∆̄dpXq2d2
,

Proof of item 1. As Σdpk´m1´m2,m1`m2q ď Σdpk´m1´m2,m2qΣdpk´m1,m1q,

Σdpk ´ m1 ´ m2,m1 ` m2 ` nq
Σdpk ´ m1 ´ m2,m1 ` m2qΣdpk, nq

ě
Σdpk ´ m1 ´ m2,m1 ` m2 ` nq

Σdpk ´ m1 ´ m2,m2qΣdpk ´ m1,m1 ` nq
Σdpk ´ m1,m1 ` nq

Σdpk ´ m1,m1qΣdpk, nq
.

The first quotient is bounded from below by fm2pk ´ m1q, the second by fm1pkq.
Proof of item 2 and 3. The proof follows the comparison between Σdpk, nq and

śd
i“1 σipk, nq. �

In the following lemma we estimate a bound from below of fmpkq from partial
information on fmN˚pkq.

Lemma 4.2. Let N˚ ě 1, α ě 1, and pAkqkPZ be a sequence of operators satisfying
property (FI). Then for every k P Z,

inf
mě1

fmpkq ě K´1
d D´2

FI e´p1`αqN˚µ inf
mě1, něαN˚

Σdpk ´ mN˚,mN˚ ` nq
Σdpk ´ mN˚,mN˚qΣdpk, nq

,

where Kd “ ∆̄dpXq8d2
.
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Proof. We claim for every m ě 1,

fmN˚pkq ě K´1
d D´1

FI e´αN˚µ inf
něαN˚

Σdpk ´ mN˚,mN˚ ` nq
Σdpk ´ mN˚,mN˚qΣdpk, nq

.

It is enough to bound from below in the definition of fmN˚pkq,

inf
1ďnďαN˚

Σdpk ´ mN˚,mN˚ ` nq
Σdpk ´ mN˚,mN˚q.Σdpk, nq

Consider 1 ď n ď αN˚ and choose p such that αN˚ ď p. Then

Σdpk ´ mN˚,mN˚ ` nqΣdpk ` n, p´ nq ě Σdpk ´ mN˚,mN˚ ` pq.

Dividing by Σdpk´mN˚,mN˚qΣdpk, nq and rewriting in a different way, we obtain

Σdpk ´ mN˚,mN˚ ` nq
Σdpk ´ mN˚,mN˚qΣdpk, nq

ě

” Σdpk ´ mN˚,mN˚ ` pq
Σdpk ´ mN˚,mN˚qΣdpk, pq

ı ” Σdpk ` n´ n, pq
Σdpk ` n´ n, nqΣdpk ` n, p´ nq

ı

.

The second bracket is bounded from below using property (FI) by

fk`npnq ě K1d
´1D´1

FI e´nµ ě K1d
´1D´1

FI e´αN˚µ,

where K1d “ ∆̄dpXq4d2
is obtained from lemma 4.1. The claim is proved. We

conclude by using the super-multiplicative property

@0 ď n ď N˚, fmN˚`npkq ě fmN˚pkq fnpk ` mN˚q ě fmN˚pkqK
1
d
´1D´1

FI e´N˚µ. �

Proof of theorem 1.2, item 2. Step 1. We use lemma A.44 to bound from below the
ratio in property (FI) by the angle between the fast and slow local spaces,

@m, n ě 0,
d
ź

i“1

σipk ´ m,m` nq
σipk ´ m,mqσipk, nq

ě pC´3
ε,d γp

pŨpk,mq, qVpk, nqq.

Step 2. We show for every n ě p1` ρpρ`4q
2 qN˚ and m ě 1,

δpqVpk, nq, qFkq ď
5

2p3d ` 7q
γp pŨpk,mN˚q, qFkq.
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From the definition of N˚ in assumption 3.11, we obtain

DSVG e´nτ ď θ1p1´ θ1q6
1´ e´τ

C4
ε,d

, θ1 :“ θ˚e´pn´N˚qτ p1´ θ˚q
3d

2 pC7
ε,dC8d`1

ε,d KdDFI

with Kd :“ ∆̄dpXq5d. From notations 3.2 and lemma 2.4 and A.42,

FKk “ GraphpΘkpnqKq for some ΘkpnqK : Vpk, nqK Ñ Upk, nqK,
qFk “ GraphppΘkpnqq for some pΘkpnq : qVpk, nq Ñ pUpk, nq,

}ΘkpnqK} ď θ1, }pΘkpnq} ď C2d
ε,dK1dθ

1p1` θ1qd´1.

with K1d :“ ∆̄dpXqd. Using p1` θ1q ď p1´ θ˚q
´1 and lemma A.25, we obtain

δpqVpk, nq, qFkq ď }pΘkpnq} ď θ˚p1´ θ˚q
2d`1e´pn´N˚qτ

K1d
2 pC7

ε,dC6d`1
ε,d KdDFI

,

ď
p3d ` 7q´1

2
K1d

`

e´N˚τ
˘ρpρ`4q{2

pC7
ε,dC6d`1

ε,d KdDFI

.

On the other hand, using equation (9),

γp pŨpk,mN˚q, qFkq ě
1
5

`

e´N˚τ
˘ρpρ`4q{2

Ĉ3
ε,dC4d

ε,dKdDFI

and using the bound K1d ď Cε,d, we conclude the proof of the claim,

δpqVpk, nq, qFkq ď
5

2p3d ` 7q
γp pŨpk,mN˚q, qFkq.

Step 3. We conclude the proof of item 2 of theorem 1.2. Equations (A.16) imply

γp pŨpk,mN˚q, qVpk, nqq ě
γp pŨpk,mN˚q, qFkq ´ δpqVpk, nq, qFkq

1` δpqVpk, nq, qFkq
,

ě
6d ` 9
6d ` 19

γp pŨpk,mN˚q, qFkq ě
3
5γp

pŨpk,mN˚q, qFkq.

Using lemma 4.2 with α “ 1` ρpρ`4q
2 , one gets

inf
mě1

fmpkq ě
3
5

inf
mě1

γp pŨpk,mN˚q, qFkq

`

e´N˚µ
˘2`ρpρ`4q{2

pC3
ε,dK2d D2

FI

,
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where K2d “ ∆̄dpXq8d2
. Using

µ “ τρ, ∆̄dpXq8d2`5d ď C2
ε,d,

ρpρ` 4q
2

` ρ
´

2`
ρpρ` 4q

2

¯

“ 1
2ρpρ

2 ` 5ρ` 8q,

and item 2 of lemma 4.1, one obtains

inf
mě0,ně0

d
ź

i“1

σipk ´ m,m` nq
σipk ´ m,mqσipk, nq

ě

3

25 pC6
ε,dC6d

ε,dD3
FI

”

p3d ` 7q´2

2 pC7
ε,dC8d`5

ε,d KdDFI

1´ e´τ

DSVG eτ

ıρpρ2`5ρ`8q{2
. �

Proof of theorem 1.2, item 3. We assume n ě p1 ` ρpρ`4q
2 qN˚ and write the as-

sumptions 3.11 on θ˚, N˚ in the form

DSVG e´nτ ď θ1p1´ θ1q6
1´ e´τ

C4
ε,d

, θ1 “
θ˚p1´ θ˚q

3d

2 pC7
ε,dC8d`1

ε,d KdDFI

e´pn´N˚qτ

with Kd :“ ∆̄dpXq5d. Notice that 1
2θ˚p1´ θ˚q

3d ď 1
20 .

Part 1. We first estimate γpEk,Vpk, nqq by γpEk, Fkq. Equation (A.16) gives,

γpEk,Vpk, nqq ě
γpEk, Fkq ´ δpVpk, nq, Fkq

1` δpVpk, nq, Fkq
.

Item 1 of lemma 2.4 and pn´ N˚qτ ě
ρpρ`4q

2 N˚τ gives

δpVpk, nq, Fkq ď θ1 ď 1
20
pC´7
ε,d C´8d´1

ε,d K´1
d D´1

FI pe
´N˚τqρpρ`4q{2.

By taking n Ñ `8 in equation (9) and by using lemma A.40, one obtains,

γpEk, Fkq ě K1d
´1
γppEk, qFkq ě 5´1

pC´3
ε,d C´4d

ε,d K1d
´1K´1

d D´1
FI pe

´N˚τqρpρ`4q{2.

where K1d “ ∆̄2pXq4d∆̄dpXq3d. As K1dKd “ ∆̄2pXq4d∆̄dpXq8d ď Cε,d, we have,

δpVpk, nq, Fkq ď θ1 ď 1
4γpEk, Fkq, γpEk,Vpk, nqq ě 3

5γpEk, Fkq.
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Using item 4 of theorem A.35, we have for every w P Ek,

}Apk, nqw} ě |xφ̃|Apk, nqwy|, p@φ̃ P Ṽpk ` n, nqK, }φ̃} “ 1q

}Apk, nq˚φ̃} ě C´1
ε,dσdpk, nq}, (item 2 of theorem 2.2)

}Apk, nqw} ě x
Apk, nq˚φ̃
}Apk, nq˚φ̃}

|wy}Apk, nq˚φ̃},

ě supt|xφ|wy| : φ P Vpk, nqK, }φ} “ 1uC´1
ε,dσdpk, nq

ě γpEk,Vpk, nqqC´1
ε,dσdpk, nq}w}, (equation (A.12))

ě 3
5γpEk, FkqC´1

ε,dσdpk, nq}w}.

Part 2. We estimate γpFk, Ũpk, nqq by γpFk, Ekq. Using equation (A.16) and
item 1 of lemma 2.7, we have

γpFk, Ũpk, nqq ě
γpFk, Ekq ´ δpŨpk, nq, Ekq

1` δpŨpk, nq, Ekq

δpŨpk, nq, Ekq ď θ1 ď 1
4γpEk, Fkq ď

1
2γpFk, Ekq

γpFk, Ũpk, nqq ě 1
3γpFk, Ekq.

Let w P Fk, w “ u ` v where u P Upk, nq and v P Vpk, nq. Then }v} ď Cε,d}w}
thanks to item 3 of theorem 2.2,

Apk, nqw “ ũ` ṽ, ũ P Ũpk ` n, nq, ṽ P Ṽpk ` n, nq,

}ṽ} ď Cε,dσd`1pk, nq}v} ď C2
ε,dσd`1pk, nq}w},

}ṽ} ě }Apk, nqw} γpFk`n, Ũpk ` n, nqq.

Hence
}Apk, nqw} ď 3C2

ε,dγpFk`n, Ek`nq
´1σd`1pk, nq}w}. �

Appendices
The purpose of this appendix is to clarify the notion of approximate singular value
decomposition of a bounded operator in a Banach space. We need two precise the-
orems A.35 and A.43. The first theorem is usually stated for compact selfadjoint
operators in an Hilbert space (see [12]). In Hilbert spaces, for non compact opera-
tors, we did not find good references, although the results are certainly known by
the specialists. In Banach spaces, we are not aware of any statements as in A.35
and A.43. Nevertheless quite similar ideas may be found in [1] and [8].
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A Basic results in Banach spaces

Let pX, } ¨ }q be a real Banach space. We do not assume X to be reflexive. We
call X˚ the topological dual space and denote by xη|uy the duality between η P X˚

and u P X. If X is an Hilbert space we identify X˚ “ X and the duality x¨|¨y with
the scalar product. If U is a closed (vector) subspace of X, U becomes a Banach
space with the induced norm, U˚ denotes the corresponding dual space, and UK

denotes the annihilator of U, the subspace of linear forms of X˚ vanishing on U.
Conversely if H Ă X˚ is a subspace, the pre-annihilator of H is the subspace
Hy :“ tu P X : xη|uy “ 0, @η P Hu. Write BpXq for the space of bounded
linear operators on X. If pY, } ¨ }q is another Banach space, write BpX,Yq for the
space of bounded linear operators from X to Y . If U Ă X is a closed subspace of
X, we denote by A|U the restriction to U of A P BpX,Yq. We say that a splitting
X “ U ‘ V of two closed subspaces is topological if the projector πU|V onto U
parallel to V (or equivalently πV|U) is a bounded operator. For a Bounded operator
A P BpX,Yq, we call A˚ P BpY˚, X˚q the dual operator.

A.1 Auerbach basis and distortion

The purpose of this section is to clarify the notion of a distortion of a Banach norm
with respect to the best euclidean norm. We use the notion of Auerbach bases as
a substitute for orthonormal bases. We begin by recalling the notion of Auerbach
families.

Definition A.1. Let X be a Banach space, and d ě 1.

• A family of vectors pu1, . . . , udq in X is said to be Auerbach if

@ j “ 1, . . . , d, }u j} “ 1 and distpu j, spanpuk : k , jqq “ 1.

• If pu1, . . . , udq are linearly independent in X, a dual family is any family
of linear forms pη1, . . . , ηdq of X˚ satisfying xηi|u jy “ δi j. Similarly if
pη1, . . . , ηdq are linearly independent in X˚, a predual family is any family
of vectors pu1, . . . , udq of X satisfying xηi|u jy “ δi j.

If dimpXq “ d, dual bases and predual families do always exist and they are
unique. We show in the following lemma that Auerbach families can be character-
ized by the existence of normalized dual families.

Lemma A.2. Let X be a Banach space, and d ě 1.

1. A family of vectors pu1, . . . , udq of X is Auerbach if and only if }u j} “ 1 for
every j “ 1, . . . , d and there exists a dual family pη1, . . . , ηdq of X˚ satisfying
}ηi} “ 1 for every j “ 1, . . . , d.
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2. Suppose dimpXq “ d. A family of linear forms pη1, . . . , ηdq of X˚ is an Auer-
bach basis if and only if }ηi} “ 1 and its unique predual family pu1, . . . , udq

of X satisfies }u j} “ 1 for every j “ 1, . . . , d.

If dimpXq “ `8, an Auerbach family in X˚ does not admit in general a pre-
dual Auerbach family. We will show in lemma A.11 that such predual families do
exist if we relax a little the notion of Auerbach family. If X is an Hilbert space of
finite dimension, an Auerbach family is an orthonormal family, and two families of
vectors pu1, . . . , udq and pη1, . . . , ηdq are dual to each other if and only if they are
equal.

The following lemma shows that Auerbach families exist in any Banach space.
We will see that this notion is a key tool for the notion of singular values of bounded
operators.

Lemma A.3. Let X,Y be Banach spaces, dimpXq “ d ě 1, A P BpX,Yq injective,
and X̃ “ AX. Let pu1, . . . , udq be vectors of X and pη̃1, . . . , η̃dq be linear forms of
X̃˚ realizing the supremum in

ΣdpAq :“ sup
 

det
`

rxη̃i|Au jys1ďi, jďd
˘

: η̃i P X̃˚, u j P X, }η̃i} “ }u j} “ 1
(

.

Let ηi be a Hahn-Banach extension to Y of η̃i with }ηi} “ 1. Then pu1, . . . , udq is
an Auerbach family of X, pη1, . . . , ηdq is an Auerbach family of Y˚, and

ΣdpAq “ sup
 

det
`

rxζi|Au jys1ďi, jďd
˘

: ζi P Y˚, u j P X, }ζi} “ }u j} “ 1
(

.

Notice in the previous lemma that, in the case X “ Y and A “ Id, pη1, . . . , ηdq

and pu1, . . . , udq are not a priori dual to each other. We call the particular constant
ΣdpAq appearing in lemma A.3 when A “ Id, the projective distortion

ΣdpXq :“ sup
 

det
`

rxηi|u jys1ďi, jďd
˘

: ηi P X˚, u j P X, }ηi} “ }u j} “ 1
(

. (A.1)

The name “projective distortion” is related to the notion of projective norm intro-
duced in (A.20) and the estimate of the distortion of the canonical duality (A.21)
and (A.22).

A Banach norm introduces a distortion in the volume of unit balls of finite-
dimensional subspaces. This distortion may depend on the dimension of the sub-
space. In order to obtain optimal estimates when X is actually an Hilbert space, we
introduce a notion of volume distortion that turn out to be trivial for Hilbert spaces.

Definition A.4. Let X be a Banach space and d ě 1. The volume distortion is

∆dpXq :“ sup
! }

řd
j“1 λ ju j}

`
řd

j“1 |λ j|
2
˘1{2

: u is an Auerbach family and λ , 0
)

(A.2)
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where the supremum is realized over every u “ pu1, . . . , udq Auerbach family of X
and every non-zero λ “ pλ1, . . . , λdq P R

d. If X is a Hilbert space ∆dpXq “ 1. In
general we have 1 ď ∆dpXq ď

?
d. In order to simplify the estimates, we will use

instead a simplified volume distortion

∆̄dpXq :“ maxp∆dpXq,∆dpX˚q,∆dpX˚˚q. (A.3)

Although we do not intend to compute this constant for different Banach spa-
ces, we give an exact estimate of ∆dpXq for X “ `

p
d the space Rd endowed with the

norm }x}p “
`
řd

n“1 |xn|
p
˘1{p, x “ px1, . . . , xdq, with natural change for p “ `8.

Recall that the Banach-Mazur distance between two isomorphic spaces X and Y is
the number

dBMpX,Yq :“ inft}T}}T´1}, T : X Ñ Y linear bounded isomorphismu.

Proposition A.5. For every p P r1, 2s, ∆dp`
p
dq “ dBMp`

p
d , `

2
dq “ d|

1
p´

1
2 |. Hence

lim
pÑ2´

∆dp`
p
dq “ 1.

If U Ă X is a subspace of X, then ∆dpUq ď ∆dpXq. We have for instance
∆dpXq ď ∆dpX˚˚q. By extending any Auerbach family pη1, . . . , ηdq of U˚ by
Hahn-Banach while keeping }ηi} “ 1, we still obtain an Auerbach family in X˚

and thus ∆dpU˚q ď ∆dpX˚q. We show in the following lemma that ∆dpXq and
∆dpX˚q admit equivalent definitions in the case dimpXq “ d.

Lemma A.6. Let be d ě 1 and X be a Banach space of dimension d. Then

1. ∆dpX˚q “ sup
!

`
řd

i“1 |λ j|
2
˘1{2

}
řd

j“1 λ ju j}
: u is an Auerbach basis of X, λ , 0u

)

,

2. ∆dpXq “ sup
!

`
řd

i“1 |λi|
2
˘1{2

}
řd

i“1 λiηi}
: η is an Auerbach basis of X˚, λ , 0

)

,

3. ∆dpXq “ ∆dpX˚˚q.

In particular we obtain an “explicit” bound between the Banach norm and the
Euclidean norm either in U or in U˚.

Corollary A.7. Let d ě 1 and X be a Banach space of dimension d.

1. If pu1, . . . , udq is an Auerbach basis of X, then

@λ P Rd,
1

∆dpX˚q

´

d
ÿ

j“1

|λ j|
2
¯1{2

ď
›

›

d
ÿ

j“1

λ ju j
›

› ď ∆dpXq
´

d
ÿ

j“1

|λ j|
2
¯1{2

.
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2. If pη1, . . . , ηdq is an Auerbach basis of X˚, then

@λ P Rd,
1

∆dpXq

´

d
ÿ

i“1

|λi|
2
¯1{2

ď
›

›

d
ÿ

i“1

λiηi
›

› ď ∆dpX˚q
´

d
ÿ

i“1

|λi|
2
¯1{2

.

Every subspace U Ă X of finite dimension d admits a topological complement
(a closed subspace V such that X “ U‘V). For instance, if pu1, . . . , udq is an Auer-
bach basis of U, if pη1, . . . , ηdq is an Auerbach basis in U˚ dual to pu1, . . ., udq,
that has been extended to X by Hahn-Banach as linear forms of norm one, then
pη1, . . . , ηdq is again an Auerbach family in X˚, and V “

Şd
i“1 kerpηiq is a topo-

logical complement to U where the projector πU|V onto U parallel to V is given
by

πU|Vpwq “
d
ÿ

i“1

xηi|wyui, @w P X. (A.4)

Notice that if pu1, . . . , udq and pη1, . . . , ηdq are dual to each other but not necessarily
Auerbach, then in addition to (A.4), we have,

πV|U “ Id´ πU|V “ πd ˝ ¨ ¨ ¨ ˝ π1, where

πkpwq “ w´ xηk|wyuk, @w P X.
(A.5)

Definition A.8. Let X be a Banach space, d ě 1, and X “ U‘V be a splitting such
that dimpUq “ d. We say that the splitting is orthogonal if there exist Auerbach
families pu1, . . . , udq of X and pη1, . . . , ηdq of X˚ dual to each other such that

U “ spanpu1, . . . , udq and V “
d
č

i“1

kerpηiq “ spanpη1, . . . , ηdq
y.

If X is a Hilbert space, we recover the usual notion of orthogonal complements.
In particular the two projectors πV|U and πU|V have norm one. In general if X is a
Banach space, the norm of the projectors is not any more one. We give two results
giving the bound of the norm of these projectors in terms of the volume distortion.
We use the simplified volume distortion given in (A.3).

Lemma A.9. Let X be a Banach space, u P X, η P X˚, such that xη|uy “ 1, and
}η} “ 1. Let U “ spanpuq, V “ kerpηq, and Kd :“ ∆̄2pXq3. Then

}πU|V} “ }u}, and }πV|U} ď Kd}u}.

For any dimension, we obtain the following bound.
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Lemma A.10. Let X be a Banach space, d ě 1, dimpUq “ d, and X “ U ‘ V be
an orthogonal splitting. Let Kd :“ ∆̄2pXq4∆̄dpXq2. Then

@u P U, @v P V,
1

Kd

b

}u}2 ` }v}2 ď }u` v} ď Kd

b

}u}2 ` }v}2

In particular }πU|V} ď Kd and }πV|U} ď Kd.

We are now able to extend item 2 of lemma A.2 to Banach spaces of infinite
dimension.

Lemma A.11. Let X be a Banach space and d ě 1. Let be Kd :“ ∆̄2pXq3d. Then
for every Auerbach family pη1, . . . , ηdq of X˚, for every ε ą 0, there exist a predual
family pu1, . . . , udq in X satisfying

1 ď distpuk, spanpul : l , kqq and }uk} ď p1` εqKd, @k “ 1, . . . , d.

If X is a Hilbert space, ε “ 0, Kd “ 1 and pu1, . . . , udq “ pη1, . . . , ηdq.

The previous result suggests the following definition.

Definition A.12. Let X be a Banach space, d ě 1 and C ě 1. A family of vectors
pu1, . . . , udq is said to be a C-Auerbach family if

C´1 ď distpuk, spanpul : l , kqq and }uk} ď C, @k “ 1, . . . , d.

A splitting X “ U‘V where dimpUq “ d, is said to be C-orthogonal if there exist
C-Auerbach families pu1, . . . , udq of X and pη1, . . . , ηdq of X˚ dual to each other
such that U “ spanpu1, . . . , udq and V “ spanpη1, . . . , ηdq

y.

Lemma A.11 shows that, if V is a subspace of X of codimension d, and ε ą 0,
then there exists U such that X “ U ‘ V is a p1` εqKd-orthogonal splitting.

If X is a Hilbert space, a 1-Auerbach family corresponds to an orthonormal
family, a C-Auerbach family represents a distorted orthonormal family. We give in
the following lemma several equivalent characterizations of C-Auerbach bases in
the case X is a finite dimensional Hilbert space.

Lemma A.13. Let P “ rPi, js1ďi, jďd be a real matrix and C ě 1. Rd is equipped
with the standard euclidean norm } ¨ }2. The following 3 conditions are equivalent.

1. The column vectors ÝÑC j :“ pPi, jq
d
i“1 form a C-Auerbach basis.

2. The singular values of P satisfy C ě σ1 ě ¨ ¨ ¨ ě σd ě 1{C.
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3. For every pλ1, . . . , λdq P R
d,

1
C

´

d
ÿ

j“1

|λ j|
2
¯1{2

ď
›

›

d
ÿ

j“1

λ j
ÝÑC j
›

›

2 ď C
´

d
ÿ

j“1

|λ j|
2
¯1{2

.

In particular, since the singular values of P and P˚ coincide, the 3 conditions are
also equivalent to

4. The row vectors ÝÑRi :“ pPi, jq
d
j“1 form a C-Auerbach basis.

5. For every pλ1, . . . , λdq P R
d,

1
C

´

d
ÿ

i“1

|λi|
2
¯1{2

ď
›

›

d
ÿ

i“1

λi
ÝÑRi
›

›

2 ď C
´

d
ÿ

i“1

|λi|
2
¯1{2

.

If X is a Banach space, many previous results involving Auerbach families
can be extended to C-Auerbach families. The volume distortion of a C-Auerbach
family can be expressed using the volume distortion defined in A.4.

Lemma A.14. Let X be a Banach space, d ě 1, and C ě 1. Define Kd :“ ∆̄dpXq2.
If pe1, . . . , edq is a C-Auerbach family, then for every pλ1, . . . , λdq P R

d,

1
CKd

´

d
ÿ

j“1

|λ j|
2
¯1{2

ď
›

›

d
ÿ

j“1

λ je j
›

› ď CKd

´

d
ÿ

j“1

|λ j|
2
¯1{2

We extend lemma A.10 to C-Auerbach families.

Lemma A.15. Let X be a Banach space, d ě 1 and C ě 1. Let X “ U ‘ V be a
C-orthogonal splitting with dimpUq “ d. Define Kd :“ ∆̄2pXq4∆̄dpXq4. Then

@u P U, @v P V,
1

C2Kd

b

}u}2 ` }v}2 ď }u` v} ď C2Kd

b

}u}2 ` }v}2.

We also extend lemma A.2 to C-Auerbach families.

Lemma A.16. Let X be a Banach space, C ě 1, d ě 1, and Kd :“ ∆̄2pXq3d∆̄dpXq2.

• If pu1, . . . , udq is a C-Auerbach family of X, then there exists a C-Auerbach
family pη1, . . . , ηdq of X˚ dual to pu1, . . . , udq.

• If pη1, . . . , ηdq is a C-Auerbach family of X˚. Then for every ε ą 0, there
exists a CKdp1` εq-Auerbach family of X predual to pη1, . . . , ηdq.

• If U is a subspace of dimension d, pη̃1, . . . , η̃dq is a C-Auerbach basis of U˚

and pη1, . . . , ηdq is some Hahn-Banach extension such that }η̃i} “ }ηi}, then
pη1, . . . , ηdq is again a C-Auerbach family and there exists a C-Auerbach
basis pu1, . . . , udq in U predual to pη1, . . . , ηdq.
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A.2 Grassmannian, gaps, and graphs

The geometry of Grassmannian spaces is a well studied object in the case of Hilbert
spaces. For Banach spaces, the notion of angle is not canonically well-defined
and several equivalent definition could be used. The d-dimensional Grassmannian
space is the set, Grasspd, Xq, of all subspaces of X of dimension d ě 1. The
d-dimensional coGrassmannian space is the set, coGrasspd, Xq, of all closed sub-
spaces of X of codimension d. We denote by S X the unit sphere of X. We first
recall two estimates (see also Kato [10], chapter 4, section 2.3); for every closed
non trivial subspace N of X,

distpu,Nq “ suptxφ|uy : φ P NK, }φ} “ 1u, @u P X,

distpφ,NKq “ suptxφ|uy : u P N, }u} “ 1u, @φ P X˚.
(A.6)

Definition A.17. Let X be a Banach space and M,N be two closed non-trivial
subspaces of X. The maximal gap between M and N is

δpM,Nq :“ sup
 

distpu,Nq : u P M, }u} “ 1
(

, (A.7)

“ sup
 

xφ|uy : u P M, φ P NK, }u} “ }φ} “ 1
(

.

We also define another equivalent distance

dpM,Nq :“ sup
 

distpu, S Nq : u P M, }u} “ 1
(

, (A.8)

and observe that d satisfies the triangle inequality and the estimate

δpM,Nq ď dpM,Nq ď 2δpM,Nq. (A.9)

The notion of maximal gap between subspaces δpM,Nq was introduced by Go-
hberg and Marcus [6], (see also Kato [10], chapter 4, section 2.1), under the name
opening or aperture. We use mainly δpM,Nq in two cases: either for dimpMq “
dimpNq ă `8 or for codim pMq “ codim pNq ă `8. We recall the duality
identity (see equation (2.19) in Kato [10], chapter 4, section 2.3)

δpM,Nq “ δpNK,MKq, @M,N closed subspace of X. (A.10)

In general the maximal gap is not symmetric, but for finite-dimensional subspaces
of equal dimension we have (see [9], Lemma 213)

dim M “ dim N ă `8 ñ δpM,Nq ď
δpN,Mq

1´ δpN,Mq
. (A.11)

We use another estimate which enables us to recover the standard estimate in the
Hilbert case.
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Lemma A.18. Let X be a Banach space and d ě 1. Define

K2 :“ minp2,∆2pXq2∆2pX˚q2q.

For every subspaces M,N of X, if dim M “ dim N “ d, then

δpM,Nq ď K2δpN,Mq.

In particular, if X is a Hilbert space, δpM,Nq “ δpN,Mq.

For complementary subspaces we use another notion called the minimal gap
(see Kato [10], chapter 4, section 4.1).

Definition A.19. Let X be a Banach space and M,N be two closed non trivial
subspaces of X. Theminimal gap is

γpM,Nq :“ inf
 

distpu,Nq : u P M, }u} “ 1
(

. (A.12)

A similar notion has been introduced in [4]

KpM,Nq :“ inf
 

}u´ v} : u P M, v P N, }u} “ }v} “ 1
(

. (A.13)

The second definition is more symmetric and equivalent to the first one

γpM,Nq ď KpM,Nq ď 2γpM,Nq. (A.14)

The notion of minimal gap is equivalent to the notion of minimal angle θpM,Nq
that is used in Gohberg and Krein [7] (chapter VI, section 5.1) where

θpM,Nq :“ arcsin γpM,Nq, θ P r0, π{2s,

We use mainly the notion of minimal gap for complementary subspaces X “ M‘N
where M and N are closed. The norm of the projector onto M parallel to N is not
necessarily bounded. Whether it is bounded or not, we have (see equation (4.7) in
Kato [10], chapter 4, section 4.1),

X “ M ‘ N ñ γpM,Nq “ }πM|N}
´1. (A.15)

Notice that lemma A.15 shows that, if the splitting X “ M‘N, with dimpMq “ d,
is C-orthogonal, then γpM,Nq ě 1{pC2Kdq. If X is an Hilbert space, γpM,MKq “

1. If two closed subspaces N and N1 are complementary with respect to the same
M, X “ M ‘ N “ M ‘ N1, then their minimal gaps are comparable (see equation
(4.34) in Kato [10], chapter 4, section 4.5) provided δpN,N1q is small enough

γpM,N1q ě
γpM,Nq ´ δpN1,Nq

1` δpN1,Nq
, γpN1,Mq ě

γpN,Mq ´ δpN,N1q
1` δpN,N1q

. (A.16)
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The duality identity (A.10) is also valid for the minimal gap (see equation (4.14)
Kato [10], chapter 4, section 4.2)

X “ M ‘ N ñ γpNK,MKq “ γpM,Nq. (A.17)

The minimal gap can also be computed using duality between subspaces of
complementary dimension. Let M Ă X, Ξ Ă X˚, such that dimpMq “ d and
dimpΞq “ d. Define

xΞ|My :“ sup
 

detprxξi|u jys1ďi, jďdq : ξi P Ξ, u j P M, }ξi} “ }u j} “ 1
(

. (A.18)

Notice that

ΣdpXq “ suptxΞ|My : M Ă X, Ξ Ă X˚, dimpMq “ dimpΞq “ du.

Lemma A.20. Let X be a Banach space, d ě 1, M and N be two closed subspaces
such that X “ M ‘ N and dim M “ d. Define Kd :“ ∆̄dpXq2d and K1d :“
∆̄2pXq3d2

∆̄dpXq2d. Then

pK1dq
´1γpM,Nqd ď xNK|My ď Kd γpM,Nq.

The topology on the Grassmannian space Grasspd, Xq and coGrassmannian
space coGrasspd, Xq is given by a fundamental system of open neighborhoods.

Definition A.21. Let X be a Banach space and V0 be a subspace of X of finite
dimension or codimension. The basic neighborhood complementary to V0 is the
subset

NpV0q “ tU Ă X : U is a closed subspace and X “ U ‘ V0 is topologicalu.

The set tNpV0q : codim pV0q “ du defines a topology of Grasspd, Xq; similarly
the set tNpU0q : dimpU0q “ du defines a topology of coGrasspd, Xq.

Each basic neighborhood is modeled on a Banach space. The following con-
struction shows that NpU0q is bijectively mapped to BpV0,U0q.

Definition A.22. Let X “ U0 ‘ V0 be a topological splitting of closed subspaces.

1. If Θ P BpV0,U0q, the graph of Θ is the closed subspace

GraphpΘq :“ tv` Θv : v P V0u P NpU0q.

2. Conversely every V P NpU0q is the graph of some operator Θ P BpV0,U0q.
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Notice that V P NpU0q if and only if VK “ GraphpΘKq P NpUK0 q for some
ΘK P BpVK0 ,U

K
0 q.

Lemma A.23. Let X be a Banach space, d ě 1, and X “ U0 ‘ V0 be a splitting
of closed subspaces of X where dimpU0q “ d. Assume U0 “ spanpu1, . . . , udq and
V0 “ spanpη1, . . . , ηdq

y. Let V P NpU0q, Θ P BpV0,U0q such that V “ GraphpΘq,
and ΘK P BpVK0 ,U

K
0 q such that VK “ GraphpΘKq. Then

• @v P V, Θpvq “ ´
řd

i“1xΘ
Kηi|vyui,

• ΘK “ ´π˚V0|U0
˝ Θ˚ ˝ ρ˚U0

where ρU0 : U0 Ñ X is the canonical injection.

In the following lemma, we show that the norm of Id‘Θ and the minimal gap
γpU,V0q are inverse proportional. We interpret

Id‘ Θ : U0 Ñ U “ GraphpΘq, Θ P BpU0,V0q, (A.19)

as an isomorphism between U0 and U and call it the canonical isomorphism be-
tween U0 and U parallel to V0. Notice that pId‘ Θq´1 “ pπU0|V0 |Uq.

Lemma A.24. Let X be a Banach space and X “ U0‘V0 be a topological splitting
of X of subspaces of finite dimension or codimension. Then for every U P NpV0q

and Θ P BpU0,V0q such that U “ GraphpΘq,

γpU0,V0q ď γpU,V0q}Id‘ Θ} ď 1.

The following lemma shows that the maximal gap between two subspaces U
and U 1 of NpV0q sufficiently close to some fixed U0 P NpV0q is equivalent to the
distance }Θ´ Θ1}.

Lemma A.25. Let X be a Banach space, X “ U0‘V0 be a topological direct sum
of subspaces of X of finite dimension or codimension. For every Θ,Θ1 P BpU0,V0q

define U :“ GraphpΘq and U 1 :“ GraphpΘ1q. Then

1. if δpU,U0q ă γpV0,U0q, then }Θ} ď
δpU,U0q

γpV0,U0q ´ δpU,U0q
,

2. if δpU,U0q ă γpV0,U0q and δpU 1,Uq ă γpV0,Uq, then

}Θ1 ´ Θ} ď

” γpV0,U0q

γpV0,U0q ´ δpU,U0q

ı δpU 1,Uq
γpV0,Uq ´ δpU 1,Uq

,
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3. δpU0,Uq ď }Θ},
”

1`
δpU,U0q

γpV0,U0q

ı´1
δpU,U 1q ď }Θ´ Θ1}.

Let X “ U0 ‘ V0 “ U ‘ V be two splittings of X by closed subspaces where
dimpU0q “ d and dimpUq “ d. Assume U0 P NpVq or U P NpV0q. The fol-
lowing lemma shows that the minimal gap γpU0,Vq or γpU,V0q can be measured
by a d-dimensional determinant adapted to pVK,U0q or pVK0 ,Uq that are both of
dimension d.

Lemma A.26. Let X be a Banach space, d ě 1, C0 ě 1, and X “ U0 ‘ V0 be
a C0-orthogonal splitting with dim U0 “ d. Let pe1, . . . , edq and pφ1, . . . , φdq be
C0-Auerbach bases dual to each other generating U0 and VK0 . Let Kd :“ ∆̄dpXq2d.

1. Let ΘK P BpVK0 ,U
K
0 q, }Θ

K} ď 1, V “ GraphpΘKqy and pψ1, . . . , ψdq be a
C-Auerbach basis of VK. Then

pC0CqdxVK|U0y ě
ˇ

ˇ detprxψi|e jysi jq
ˇ

ˇ ě
1

Kd

´1´ }ΘK}
C0C

¯d
.

2. Let Θ P BpU0,V0q, }Θ} ď 1, U “ GraphpΘq and p f1, . . . , fdq be a C-
Auerbach basis of U. Then

pC0CqdxVK0 |Uy ě
ˇ

ˇ detprxφi| f jysi jq
ˇ

ˇ ě
1

Kd

´1´ }Θ}
C0C

¯d
.

A.3 Singular values decomposition

The notion of singular values for operators in Banach spaces is not canonically
well-defined. Our starting definition is the following.

Definition A.27. Let X,Y be Banach spaces, A P BpX,Yq, and d ě 1. We define
the singular value of A of index d by

σdpAq :“ sup
dimpUq“d

inf
!

}Aw}
}w}

: w P Uzt0u
)

,

where the supremum is realized over every subspace U of X of dimension d.

We recall some elementary properties.

Lemma A.28. Let X,Y be Banach spaces, A P BpX,Yq, and d ě 1. Then

1. σdpAq ě σd`1pAq,

2. σdpABq ď }A}σdpBq, σdpABq ď σdpAq}B},
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3. σdpAq ą 0 and σd`1pAq “ 0 ðñ codim pkerpAqq “ d.

Another definition could be used instead of σdpAq. It coincides with the first
one when X and Y are Hilbert spaces.

Definition A.29. Let A P BpX,Yq. For every d ě 1, define

σ1dpAq :“ inf
codim pVq“d´1

sup
!

}Aw}
}w}

: w P Vzt0u
)

,

where the infimum is realized over every closed subspace V of codimension d´ 1.

It will be convenient to introduce a third notion of singular values using the
notion of Jacobian.

Definition A.30. Let A P BpX,Yq. The Jacobian of A of index d is defined by,

ΣdpAq :“ sup
 

det
`

rxζi|Au jys1ďi, jďd
˘

: ζi P Y˚, u j P X, }ζi} “ }u j} “ 1
(

,

By convention Σ0pAq “ 1. Notice that, if dimpUq “ d,

ΣdpA|Uq “ 0 ô dimpAUq ă d ô A is not injective on U.

We may choose in the previous definition η̃i P ImpAq
˚

and take ζi an extension
of η̃i to Y˚ by the Hahn-Banach theorem. If U is a closed subspace of X, we define
the Jacobian of A restricted to U of index d, denoted ΣdpA|Uq, to be the Jacobian
of A|U P BpU,Yq. If U has finite dimension and A|U is injective, the supremum is
attained by vectors u j P U and linear forms η̃i P Ũ˚, Ũ “ AU, of norm one. Both
pu1, . . . , udq and pη̃1, . . . , η̃dq are Auerbach bases by lemma A.3.

The third definition of singular values is based on the notion of Jacobian.

Definition A.31. Let A P BpX,Yq, define (assuming by convention Σ0pAq “ 1),

σ2dpAq :“
ΣdpAq

Σd´1pAq
if Σd´1pAq , 0, σ2dpAq “ 0 if Σd´1pAq “ 0.

If U is a closed subspace of X, we define similarly σ2dpA|Uq of the restriction of
pA|Uq P BpU,Yq.

The three definitionsσdpAq,σ1dpAq andσ2dpAq are comparable in Banach spaces,
and equal in Hilbert spaces.

Proposition A.32. Let X, Y be Banach spaces, d ě 1, and Kd :“ r∆dpY˚q∆dpXqsd.
Then for every A P BpX,Yq,

σdpAq ď σ1dpAq ď σ2dpAq ď Kd σdpAq.
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It may not be true that the singular values of A and A˚ coincide. On the other
hand the Jacobian admits a very symmetric definition using the identity

xη̃|Auy “ xA˚η̃|uy, @u P X, @η̃ P Y˚.

Proposition A.32 and the following proposition shows that σdpAq and σdpA˚q
are comparable modulo a constant depending only on the Banach norm of X. This
constant is 1 for Hilbert spaces.

Proposition A.33. Let X,Y be Banach spaces, A P BpX,Yq, d ě 1, and Kd :“
maxp∆̄dpXq, ∆̄dpYqq2d. Then

1. ΣdpAq “ ΣdpA˚q,

2. K´1
d σdpAq ď σdpA˚q ď KdσdpAq.

The following lemma shows that the projective distortion ΣdpXq, equation (A.1),
may not be equal to one and that the Jacobian may not be multiplicative. This
anomaly disappears when the spaces are Hilbert.

Proposition A.34. Let X,Y,Z be Banach spaces, A P BpX,Yq, B P BpY,Zq, d ě 1,
and Kd :“ ∆̄dpXqd. Then

1. 1 ď ΣdpXq ď Kd,

2. ΣdpBAq ď ΣdpBqΣdpAq,

3. if U is a subspace of dimension d, ΣdpB|AUqΣdpA|Uq ď ΣdpXqΣdpBAq.

In the case X,Y are Hilbert spaces, the previous inequalities are equalities.

The following theorem is the main result of this appendix. The existence of sin-
gular vectors depends on a small parameter ε ą 0 that can be as small as we want.
We do not assume that the operators are compact nor asymptotically compact, and
there is thus no reason to find true eigenvectors even in Hilbert spaces. The param-
eter ε measures the discrepancy between a true and an approximate eigenvector.
The estimates depend moreover in Banach spaces on the volume distortion intro-
duced in the definition A.4. Although the following result is certainly well known
to specialists, we did not find a good reference adapted to our needs.

Theorem A.35 (Approximate singular value decomposition). Let X,Y be Banach
spaces, A P BpX,Yq, and d ě 1. Assume σdpAq ą 0 and choose ε ą 0. Define

∆d “ maxp∆̄dpXq, ∆̄dpYqq, Cε,dpX,Yq :“ p1` εq∆6d2`15d`4
d ∆3d2`4d`4

2 .

Then A admits an approximate singular value decomposition of index d and dis-
tortion Cε,d “ Cε,dpX,Yq, defined in the following way:
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• there exist two Cε,d-orthogonal splittings X “ U ‘ V, Y “ Ũ ‘ Ṽ,

• there exist Cε,d-Auerbach bases, pe1, . . . , edq of U and pφ1, . . . , φdq of VK

dual to each over, such that U “ spanpe1, . . . , edq and V “ spanpφ1, . . . , φdq
y,

• there exist Cε,d-Auerbach bases, pẽ1, . . . , ẽdq of Ũ and pφ̃1, . . . , φ̃dq of ṼK

dual to each over, such that Ũ “ spanpẽ1, . . . , ẽdq and Ṽ “ spanpφ̃1, . . . , φ̃dq
y,

satisfying the following properties, for every i “ 1, . . . , d,

1. AU “ Ũ, AV Ă Ṽ, A˚ṼK “ VK, A˚ŨK Ă UK, dimpUq “ dimpŨq “ d,

2. Aei “ σipAqẽi, A˚φ̃i “ σipAqφi,

3. C´1
ε,dσipAq ď σipA|Uq ď σipAq,

4. C´1
ε,dσipAq ď σipA˚|ṼKq ď σipAq,

5. σd`1pAq ď }A|V} ď Cε,d σd`1pAq

6. σd`1pAq ď }A˚|ŨK} ď Cε,d σd`1pAq,

7. γpU,Vq, γpV,Uq, γpŨ, Ṽq, γpṼ , Ũq ě C´1
ε,d .

If X is a Hilbert space, one may choose Cε,d “ 1`ε. If X,Y are of finite dimension,
one may choose ε “ 0. If X,Y are Hilbert spaces of finite dimension, one may
choose V “ UK, Ṽ “ ŨK, Cε,d “ 1, ei “ φi, ẽi “ φ̃i, pe1, . . . , edq and pẽ1, . . . , ẽdq

are orthonormal bases.

A.4 Exterior product

The algebraic exterior product
Źd X is defined canonically of the following proce-

dure. We first consider the space of almost null functions of Xd Ñ R,

F :“
!

ÿ

wPXd

λwδw : λw P R, cardtw : λw , 0u ă `8
)

where δw : Xd Ñ R is the Dirac function at w P Xd. We next consider the subspace
G of F defined by

G :“ span
!

δpλw1`µw11,w2,...,wdq ´ λδpw1,w2,...,wdq ´ µδpw11,w2,...,wdq,

δpw1,...,wi´1,w1i ,w
1
i`1,wi`2,...,xdq ` δpw1,...,wi´1,w1i`1,w

1
i ,wi`2,...,wdq :

1 ď i ď d ´ 1, w1, . . . ,wd,w11, . . . ,w
1
d P Xd, λ, µ P R

)

.
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The algebraic exterior product the vector space of equivalent classes
ŹdX :“ F{G “ tw` G : w P Fu

We define the canonical injection Xd Ñ
Źd X into the quotient space by

pw1, . . . ,wdq P Xd ÞÑ w1 ^ . . .^ wd :“ δpw1,...,wdq ` G P
ŹdX

It is then easy to check that
Źd X is spanned by simple vectors, vectors of the form

w1 ^ . . . ^ wd. The canonical map pw1, . . . ,wdq ÞÑ w1 ^ . . . ^ wd is multilinear
alternating, and its image generates

Źd X. Moreover
Źd X satisfies the universal

property: every multilinear and alternating function f : Xd Ñ Y , where Y is
any vector space, factorizes uniquely through a linear map F :

Źd X Ñ Y by
Fpw1 ^ . . .^ wdq “ f pw1, . . . ,wdq.

Several norms may be chosen for the exterior product. In the case where X
is a Banach space, we choose the projective norm defined in the following way.
Every w P

Źd X is a finite sum of vectors of the form wα
1 ^ . . . ^ wα

d where α is
an index. As this representation is not unique, we introduce the projective norm of
}w} defined by

}w} :“ inf
 

ÿ

α

śd
i“1}w

α
i } : w “

ř

α wα
1 ^ . . .^ wα

d

(

. (A.20)

It is easy to check that } ¨ } is a genuine norm: w , 0 ñ }w} , 0. In the case X
is a Hilbert space, we choose instead the Euclidean norm associated to the scalar
product defined by extending by bilinearity to

Źd X ˆ
Źd X

xw1 ^ . . .^ wd|w11 ^ . . .^ w1dy :“ detprxwi|w1jys1ďi, jďdq.

The projective norm and the Euclidean norm are not equal in general when X is a
Hilbert space. We call the completion of the algebraic exterior product with respect
to the chosen norm, the normed exterior product, and we denote it by

Źd X. We
point out that

Źd
pX˚q denotes the normed exterior product of X˚ and not the dual

of
Źd X. If X is a Hilbert space, X˚ “ X and

Źd
pX˚q “

Źd X “ p
Źd Xq˚.

We define a canonical duality between
Źd
pX˚q and

Źd X by extending by
linearity for every θi P X˚ and w j P X,

xθ1 ^ . . .^ θd|w1 ^ . . .^ wdy :“ det
`

rxθi|w jys1ďi, jďd
˘

. (A.21)

We notice that the canonical linear map
Źd
pX˚q Ñ p

Źd Xq˚ is injective but may
have a norm ΣdpXq greater than one (see A.34 for a bound from above of ΣdpXq),

@θ P
Źd
pX˚q, @w P

ŹdX, |xθ|wy| ď ΣdpXq}θ}}w},

@w j P X, sup
}θi}“1

x
Źd

i“1θi|
Źd

j“1w jy ě }
Źd

j“1w j}.
(A.22)
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In particular, for every Auerbach family pu1, . . . , udq of X,

ΣdpXq´1 ď }u1 ^ . . .^ ud} ď 1. (A.23)

Let pu1, . . . , udq be a linearly independent family of X, U “ spanpu1, . . . , udq,
and 1 ď r ď d. For every sequence I “ pi1, . . . , irq of r ordered elements in
t1, . . . , du, we denote uI :“ ui1 ^ . . .^ uir . Then tuIuI is a basis of

Źr X spanning
Źr U. The following lemma gives an estimate on the volume distortion of this
basis in

Źr X.

Lemma A.36. Let X be a Banach space, 1 ď r ď d, pu1, . . . , udq be a C-Auerbach
family of X dual to a C-Auerbach family pη1, . . . , ηdq of X˚. Then tuIuI and tηIuI

are a CrΣrpXq-Auerbach families dual to each other of
Źr X and

Źr X˚ respec-
tively.

Let 0 ď r ď d. We denote by pw,w1q P
Źr Xˆ

Źd´r X ÞÑ w^w1 P
Źd X the

canonical bilinear map extending

pw1 ^ . . .^ wrq ^ pwr`1 ^ . . .^ wdq “ w1 ^ . . .^ wd.

Lemma A.37. If X is a Banach space and } ¨ } is the projective norm, or if X is a
Hilbert space and } ¨ } is the Euclidean norm, then for every 0 ď r ď d

@w P
ŹrX, @w1 P

Źd´rX, }w^ w1} ď }w}}w1}.

The following lemma extends the volume distortion estimate of lemma A.36.

Lemma A.38. Let X be a Banach space, d ě 1, C ě 1, X “ U ‘ V be a C-
orthogonal splitting of closed subspaces with dimpUq “ d. Let pu1, . . . , udq and
pη1, . . . , ηdq be C-Auerbach bases dual to each other spanning U and VK. Let
V 1 Ă V be a subspace of V of dimension d1 ě 0 and X1 :“ U ‘ V 1. Define

Kd :“ ΣdpXq∆̄pd`d1
d q
p
ŹdXq2 max

0ďrďd1

´

ΣrpXq∆̄pd1r q
p
ŹrXq2

¯

∆̄2pXq8d∆̄dpXq8d.

Then every w P
Źd X1 admits a unique decomposition w “

ř

I uI ^ vI where the
summation is realized over every ordered sequence I “ pi1, . . . , irq of t1, . . . , du,
uI “ ui1 ^ ¨ ¨ ¨ ^ uir , vI P

Źd´r V 1 is any vector, and 0 ď r ď d. Moreover

C´2dK´1
d

`

ÿ

I

}vI}
2˘1{2

ď }w} ď C2dKd
`

ÿ

I

}vI}
2˘1{2

.

Non-zero simple vectors in
Źd X are in one-to-one correspondence with sub-

spaces of X of dimension d. We introduce the following notations to clarify this
correspondence.
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Definition A.39. Let X be a vector space and d ě 1.

1. If U is a subspace of X of dimension d, we call

pU :“ spant
Źd

i“1wi : @ i, wi P Uu Ă
ŹdX.

2. If V is a subspace of codimension d, we call

qV :“ spant
Źd

i“1wi : D i, wi P V, @i, wi P Xu Ă
ŹdX.

Then dimp pUq “ 1 and codim pqVq “ 1.

If X “ U ‘ V with dimpUq “ d, then
Źd X “ pU ‘ qV . If pη1, . . . , ηdq are linearly

independent and V “ spanpη1, . . . , ηdq
y, then qV is the kernel of a simple linear

form of
Źd X,

qV “ tw P
ŹdX : xη1 ^ . . .^ ηd|wy “ 0u “ spanp

Źd
i“1ηiq

y.

The following lemma compares the angle between U and V and the angle be-
tween pU and qV . Using equation (A.15), we also obtain a comparison between
}πU|V} and }π

pU|qV}, (see (A.4) for the definition of πU|V ).

Lemma A.40. Let X be a Banach space, d ě 1, X “ U‘V be a splitting of closed
subspaces with dimpUq “ d and Kd :“ ∆̄2pXq4∆̄dpXq3. Then

Źd X “ pU ‘ qV and

K´d
d γp pU, qVq ď γpU,Vq ď Kdγp pU, qVq1{d,

K´1
d }π

pU|qV}
1{d ď }πU|V} ď Kd

d}π pU|qV}.

In the case the splitting X “ U ‘ V is C-orthogonal, using lemma A.9, the
norm of the two projectors admits a simpler estimate.

Lemma A.41. Let X be a Banach space, d ě 1, C ě 1, X “ U ‘ V be a C-
orthogonal splitting with dim U “ d and Kd :“ ∆̄2p

Źd Xq3. Then

}π
pU|qV} ď ΣdpXqC2d, and }π

qV| pU} ď ΣdpXqKdC2d.

Angles between subspaces can also be measured by the norm of some graphs
over a reference splitting as in lemma A.24. Consider a splitting X “ U0‘V0 with
dimpU0q “ d and a subspace V P NpU0q. Then V “ GraphpΘq for some operator
Θ P BpV0,U0q or equivalently, as explained in lemma A.23, VK “ GraphpΘKq for
some ΘK P BpVK0 ,U

K
0 q. Lemma A.40 implies

ŹdX “ pU0 ‘ qV0 “ pU0 ‘ qV ,

and in particular qV P NpÛ0q is equal to the graph of some pΘ P BpqV0, pU0q. The
following lemma gives an estimate of }pΘ} with respect to }ΘK}.
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Lemma A.42. Let X be a Banach space, d ě 1, C ě 1, and X “ U0 ‘ V0 be
a C-orthogonal splitting of closed subspaces with dimpU0q “ d. Let pu1, . . . , udq

and pη1, . . . , ηdq be C-Auerbach families in X and X˚ respectively, dual to each
over, such that U0 “ spanpu1, . . . , udq and V0 “ spanpη1, . . . , ηdq

y.
Let ΘK P BpVK0 ,U

K
0 q and V “ GraphpΘKqy. Then

• qV “ spanp
Źd

i“1pId‘ ΘKqηiq
y “ GraphppΘq for some pΘ P BpqV0, pU0q,

• @w P qV0, pΘpwq “ ´x
Źd

i“1pηi ` ΘKηiq|wy
Źd

i“1ui,

• }pΘ} ď C2dΣdpXq}ΘK}p1` }ΘK}qd´1.

The next theorem shows that the approximate singular value decomposition of
index d of a bounded operator A P BpX,Yq admits a particular form when the
operator is considered in the exterior product. Let

pA :“
ŹdA P Bp

ŹdX,
ŹdYq.

Theorem A.43. Let X,Y be Banach spaces, d ě 1, ε ą 0, and A P BpX,Yq
satisfying σdpAq ą 0. Let X “ U ‘ V and Y “ Ũ ‘ Ṽ, be the approximate
singular value decomposition of index d and distortion Cε,d given in theorem A.35.
Let

pCε,d :“ C17d
ε,d ΣdpXqp∆̄p2d

d q
p
ŹdXqq2 max

0ďrďd

´

ΣrpXqp∆̄pdrqp
ŹrXqq2

¯

∆̄2pXq24d∆̄dpXq28d.

Then

1. p
Źd

i“1eiq and p
Źd

i“1φiq are pCε,d-orthogonal bases dual to each over,

pU “ spanp
Źd

i“1eiq, qV “ spanp
Źd

i“1φiq
y,

2. p
Źd

i“1ẽiq and p
Źd

i“1φ̃iq are pCε,d-orthogonal bases dual to each over,

pŨ “ spanp
Źd

i“1ẽiq,
qṼ “ spanp

Źd
i“1φ̃iq

y,

3.
ŹdX “ pU ‘ qV,

ŹdY “ pŨ ‘ qṼ, dimp pUq “ dimp pŨq “ 1,

4. pA pU “ pŨ, pAqV Ă qṼ, pA˚qṼK “ qVK, pA˚ pŨK Ă pUK,

5. pC´1
ε,d

śd
i“1 σipAq ď }pA| pU} ď }pA} ď pCε,d

śd
i“1 σipAq,

6. pC´1
ε,d

śd
i“1 σipAq ď }pA˚|qṼK} ď }pA˚} ď pCε,d

śd
i“1 σipAq,
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7. σ2ppAq ď }pA|qV} ď pCε,d σ1pAq ¨ ¨ ¨ σd´1pAqσd`1pAq,

8. σ2ppAq ď }pA˚| qŨK} ď pCε,d σ1pAq ¨ ¨ ¨ σd´1pAqσd`1pAq,

9. γp pU, qVq ě pC´1
ε,d , γpqV , pUq ě pC´1

ε,d .

In the following lemma we consider a product BA of two operators and the
relative position of the approximate singular value decomposition of A and B.

Lemma A.44. Let X,Y,Z be three Banach spaces, A P BpX,Yq, B P BpY,Zq,
d ě 1, and ε ą 0. Assume σdpAq ą 0 and σdpBq ą 0. Let

ŹdX “ pUA ‘ qVA,
ŹdY “ pŨA ‘

qṼA “ pUB ‘ qVB,
ŹdZ “ pŨB ‘

qṼB,

be the two approximate singular value decompositions of index 1 and distortion
pCε,d of pA and pB obtained in theorem A.43. Then

d
ź

i“1

σipBAq
σipAqσipBq

ě pC´3
ε,d γp

pŨA, qVBq.
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