FLEXIBILITY OF THE PRESSURE FUNCTION
TAMARA KUCHERENKO AND ANTHONY QUAS

ABSTRACT. We study the flexibility of the pressure function of a
continuous potential (observable) with respect to a parameter re-
garded as the inverse temperature. The points of non-differentiability
of this function are of particular interest in statistical physics, since
they correspond to phase transitions. It is well known that the
pressure function is convex, Lipschitz, and has an asymptote at in-
finity. We prove that in a setting of one-dimensional compact sym-
bolic systems these are the only restrictions. We present a method
to explicitly construct a continuous potential whose pressure func-
tion coincides with any prescribed convex Lipschitz asymptotically
linear function starting at a given positive value of the parameter.
In fact, we establish a multidimensional version of this result. As a
consequence, we obtain that for a continuous observable the phase
transitions can occur at a countable dense set of temperature val-
ues. We go further and show that one can vary the cardinality of
the set of ergodic equilibrium states as a function of the parameter
to be any number, finite or infinite.

1. OVERVIEW

Katok launched the flexibility program which has been described in a
nutshell as follows: “there should be no restrictions on the dynamical
characteristics apart from a few obvious ones”. Hence, the flexibil-
ity program is geared towards an understanding of the most general
constraints which define a common class of dynamical systems and
the building of tools to readily change all other dynamical specifica-
tions within those constraints. This is a novel direction in dynamics
which has been explicitly stated in [10]. At the same time however, the
core problems are clear and accessible to a rather broad community of
mathematicians working within the area and this has made the pro-
gram develop at a rapid pace. Although Katok originally formulated
the program for smooth dynamical systems, his perception is highly
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relevant for general topological dynamical systems on compact spaces.
In this note we apply it to the topological pressure functional in the
class of compact symbolic systems.

Within the last few years there has been a great deal of activity
around Katok’s ideas of flexibility. We briefly describe some of these
works. For conservative Anosov flows on three-dimensional manifolds
the basic flexibility problem involves realization of arbitrary pairs of
numbers as values for topological and metric entropy subject only to
the variational inequality. In [24] the authors consider smooth closed
Riemannian surfaces of negative curvature and show that all the possi-
ble values for the topological and metric (with respect to the Liouville
measure) entropies of the geodesic flow are realized within this class. In
situations where the relevant invariant measure varies with the dynam-
ics, one may be interested in the values of Lyapunov exponents. The
flexibility of Lyapunov exponents was proven for expanding maps on a
circle [22] and for Anosov area-preserving diffeomorphisms on tori [23].
Subsequently, the fundamental paper [10] outlines the program and
provides flexibility results for volume-preserving systems with respect
to the volume measure. These results have already been improved and
extended in [15].

There are also applications of the flexibility paradigm in settings
other than smooth flows on manifolds. The class of piecewise expand-
ing unimodal maps is considered in [3]. The authors show that the
only restrictions for the values of the topological and metric entropies
in this class are that both are positive and the topological entropy is at
most log 2. In [2] some maps arising in the study of Fuchsian groups
are analyzed and it is proven that all possible values of the entropy
are attained. Lastly, flexibility results are established for the values of
polynomial slow entropy for rigid transformations [6] and homeomor-
phisms on a continuum [47].

The path to obtaining the full range of allowable parameters opened
by Katok and then followed by others consists of starting from a map
whose dynamics is well understood and studying what happens under
perturbations. The main challenge of this approach is that the values
of dynamical invariants can be precisely calculated in only a handful
of cases. Moreover, there are not many methods available to perturb a
system in a controlled manner.

Establishing flexibility calls for versatile constructions in large fami-
lies to cover all possible values of dynamical quantities. This is precisely
the route we take to gain total control over one of the most important
objects in thermodynamic formalism. Our work asserts flexibility of
a whole pressure function, rather than of finite number of values for
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Lyapunov exponents or topological and metric entropies. In contrast
to the perturbation methods described above, we build a dynamical
system with the desired properties from the ground up. We remark
that the pressure function can, in turn, be applied to obtain informa-
tion about Lyapunov exponents, dimension, multifractal spectra, or
natural invariant measures. We refer to [5, 43, 44, 48] for details and
further references.

Our setting is one-dimensional compact symbolic systems. One of
the many reasons that symbolic systems are important is that they
serve as proxies for smooth systems. In many occasions it is more
straightforward to identify properties of symbolic systems, which then
can be transferred to smooth systems. We investigate the possible be-
havior of the topological pressure restricted to a linear span of a fixed
finite set of continuous potentials. The pressure is then viewed as a
function of the coefficients in the linear combinations of the poten-
tials. Such multivariable pressure functions play a fundamental role
in multifractal analysis, which studies level sets of asymptotically de-
fined quantities such as Birkhoff averages and local entropies. A nice
overview of the theory can be found in [9]. The pressure function is used
as the main tool to compute the dimension spectra of the simultaneous
level sets, see e.g. [8] and [17].

To be precise, let ¢ : X — R be a continuous potential associated
with a symbolic dynamical system (X, o) over a finite alphabet. The
topological pressure of ¢ can be defined via the Variational Principle
by

1) Pant) =sup {1 + [ o

where the supremum is taken over the set of all o-invariant probability
measures on X and h(u) denotes the measure-theoretic entropy of the
measure p. The measures which realize the above supremum are called
the equilibrium states of ¢. Classical manuscripts about the pressure
and equilibrium states are [12, 48, 54].

Fix m continuous potentials ¢y, ..., ¢y,. For (t1,...t,,) € R™ the mul-
tivariable pressure function is the map

(tl, ,tm) —> -R:op(t1¢1 + ...+ tmqu)

We now describe a few basic properties of this map. It is an imme-
diate consequence of the Variational Principle that the pressure func-
tion is Lipschitz and convex. The defining characteristic of a con-
vex function on R™ is that it has a supporting hyperplane at each
point of its graph. It follows from the description of the equilibrium
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states as tangent functionals to the pressure given by Walters [55] that

each such hyperplane arises as the graph of a function (t1,...,t,) —
h(p) + [(t1d1 + ... + tmdn,) dp for an equilibrium state p. The verti-
cal intercept (i.e. the value of the function evaluated at (0,...,0)) of

such a hyperplane is h(u). The entropies of all invariant probability
measures are bounded above by the topological entropy of the system
(X,0). Hence, if a real valued function of m variables is a pressure
function then it is convex, Lipschitz, and the vertical intercepts of its
supporting hyperplanes form a bounded set of nonnegative numbers.
We prove that these conditions are necessary and sufficient.

Theorem 1. Let a > 0 and let F(ty,...,t,) be a conver Lipschitz
function on (a,00)™ such that all the supporting hyperplanes to the
graph of F intersect the vertical azis in a closed interval [b, c] C [0, 00).
Then there exists a full shift on a finite alphabet and continuous poten-
tials @1, ..., om such that Pop(tir + ... + tm¢m) = F(t1, ... ty) for
all (t1,...,tm) € (a,00)™.

Our proof is explicit and constructive. For an arbitrary function F
satisfying these properties we build a set of m continuous potentials
whose pressure function coincides with F'. Theorem 1 falls in line with
Katok’s flexibility program. We identify the general constraints on the
pressure function and provide a tool to acquire any pressure function
within those constraints.

In the case when X is a transitive subshift of finite type and the
potentials ¢, ..., ¢y, are Holder the pressure function Py, (ti1¢1 + ... +
tm®m) is analytic. This fact goes back to the results of Bowen [12]
and Ruelle [48, 49]. Starting with an analytic function F(ti,...,t,)
we obtain from Theorem 1 a set of continuous potentials for which
the pressure function coincides with F. However, our potentials are
not Holder. This raises an interesting question of whether an analog
of Theorem 1 holds in the case when the potentials are required to be
Holder, i.e. whether any analytic convex function is a pressure function
for a set of Holder continuous potentials.

We briefly outline the ideas which go into the proof of Theorem 1.
For simplicity, we consider a one-parameter pressure function here, i.e.
m = 1. We start with a convex Lipschitz function F' : (o, 00) — R.
By convexity, for each point on the graph of F' there is at least one
supporting line and, by our assumption, it intercepts the vertical axis
in the interval [b,¢] C [0,00). Figure 1 below illustrates the setup. As
was mentioned before, a supporting line to the pressure function P(t¢)
at t must have vertical intercept h(u,) and slope [ ¢ du;, where i, is one
of the equilibrium states of the potential t¢. Our goal is to construct ¢
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such that F'(t) = P(t¢). The general idea is that the equilibrium states
of t¢ move among a sequence of disjointly supported subshifts when ¢
changes. Hence, we need to find a family of subshifts whose entropies

fill up the whole interval [b, c]. Good candidates for this purpose are
the [-shifts.

C+

Z supporting lines
lolgt (each slope is fqbdut)

Entropies of S-shifts

b+

FiGUuRrE 1. This figure illustrates the proof of Theorem 1.

The origin of -shifts lies in the study of expansions of real numbers
in an arbitrary real base § > 1, which were introduced by Renyi [46].
Roughly speaking, the $-shift Xz consists of the sequences of the co-
efficients in the 8 expansions of reals in [0,1). The measure-theoretic
properties of (-shifts and their connection to these expansions were
initially studied in [42, 33, 30]. It was shown that {Xg; 5 > 1} is an
increasing family of shift-invariant closed sets with hyp(Xs) = log 8
and Xz has a unique measure of maximal entropy.

The entropies of [-shifts have the properties we need for our con-
struction. The next step would be to define the potential ¢ on each Xz
as the constant equal to the slope of the corresponding supporting line.
There is an obstacle, however: our subshifts Xg are nested. We avoid
it by introducing an additional “dimension” in the following way. We
take a product of each [-shift with a suitably chosen Sturmian shift.
Sturmian shifts are low complexity systems with a variety of combina-
torial properties useful for our analysis. They have been studied since
the birth of symbolic dynamics [41], but modern interest was sparked
by numerous applications in computer science [13, 16, 28, 51].

The low complexity of Sturmian shifts ensures that they do not con-
tribute to the entropy of the product. We let 3 run from e® to e°
and obtain a set of disjoint subshifts of an appropriate full shift which
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are products of [-shifts with Sturmian shifts and whose topological
entropies fill the interval [b, ¢| (recall Figure 1). We are in a position
to define the potential ¢ on each such subshift to be the slope of the
supporting line to F(t) which crosses the vertical axis at log /3.

After we make this careful arrangement on all the subshifts, we still
need to take care of all the other points in our full shift. The idea
is to make ¢ drop off sharply and force the equilibrium measures to
be supported on the products of S-shifts and Sturmian shifts. This is
the most challenging part of the proof. We accomplish this by using a
pin-sequence technique introduced in [4] to measurably split orbits of
symbolic dynamical systems into finite segments.

Our results have implications for occurrences of phase transitions. A
phase transition is observed when one follows an evolution of a system
depending on a continuous external parameter and a sharp change of
the behaviour of the system happens. Understanding the mechanism
of this phenomenon is a fundamental goal in statistical physics. To
achieve this, simplified mathematical models were proposed, the most
well known one being the Ising model [34, 21, 25, 50|, leading to the
development of thermodynamic formalism. In this setting, the quan-
tity h(u) + [ ¢ du represents the negative free energy of the system
in the state pu with respect to the observable ¢. Hence, the pressure
of ¢ is the minimum of free energies and the equilibrium states of ¢
characterize the equilibria of the system. The existence of more than
one equilibrium state corresponds to a phase transition.

One way to change the equilibrium state of the system is by adding
heat. The measure of temperature in thermodynamics is the abso-
lute temperature 7', which is always a positive number with the limit
T — 0% being absolute zero. Hence, a positive parameter ¢t = 1/T
(the inverse temperature of the system) is introduced and one studies
how the equilibrium states of t¢ change with ¢, identifying the values
of t for which the potential t¢ has more than one equilibrium state. A
classical result by Walters [55] is that non-differentiability of the pres-
sure function ¢t — P(t¢) at t, is equivalent to the potential ty¢ having
two equilibrium states with distinct entropies. Such points of non-
differentiability are called first-order phase transitions. Points where
the pressure function is differentiable, but not analytic, are termed
higher-order phase transitions. Although non-uniqueness of equilib-
rium states may not appear at such points, they still indicate a sharp
change in some property of the system.

For symbolic systems the first systematic study of a family of poten-
tials exhibiting a phase transition at some value t;, was done by Lopes
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in [37, 38, 39] building upon the previous work of Hofbauer [29]. Conse-
quently, phase transitions in thermodynamic formalism were examined
using various approaches, see e.g. [7, 14, 18, 20, 33, 36]. We note that
the main result of [36] deals with the shape of the pressure function
after the transitional value: an example is built on a subshift of finite
type where a phase transition occurs but the pressure is strictly convex.
Prior to that paper, in all known examples with phase transitions, the
pressure function was either flat after the transition, or there was at
least some interval where the pressure was flat [33].

Another aspect concerns the number and frequency of phase tran-
sitions. In [35] we construct a continuous potential on {0, 1}? whose
first-order phase transitions occur at any given increasing sequence.
Up to that point there were no examples in the literature of more than
two phase transitions in the compact symbolic setting. Note that the
convexity of the pressure implies that at most countably many points
of non-differentiability are possible. Although we see from [35] that
the case of infinitely many such points can indeed be realized for the
pressure, the requirement for them to form an increasing sequence is
actually quite restrictive. A convex function, in general, may have a
dense set of points where its derivative does not exist. The question
remained whether similar behavior is feasible for the pressure function.
As a consequence of our main result we see that the answer is yes. We
provide a method of obtaining continuous potentials whose phase tran-
sitions form any given countable set. In addition, the pressure function
between the phase transitions can be made strictly convex, whereas the
pressure in [35] is piecewise linear.

Finally we turn our attention to the type of phase transitions where
the pressure function is analytic, but uniqueness of equilibrium states
fails. The first example of a transitive system for which two equilibria
co-exist despite the analyticity of the pressure was given in 2015 by
Leplaideur [36]. His work made it clear that the hope for high regu-
larity of the pressure function to ensure uniqueness of the equilibrium
state was unfounded. We show that regularity of the pressure does
not impose any limitations on the behavior of the equilibria of the sys-
tem. At any smooth point of the pressure function the corresponding
potential may have any number of ergodic equilibrium states, finite or
infinite. Moreover, the cardinality of equilibrium states may change
drastically when the values of the parameter change. The next theo-
rem provides a flexible way of constructing systems of potentials with
varying cardinalities of the equilibrium measures.
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Theorem 2. Let f(t) be a strictly convex differentiable function on
(cv, 00) with support line intercepts lying in a bounded interval [b,c|] C
[0,00). Then for any ¢ € N and any upper semi-continuous function
N: (a,00) = {1,...,0,00}, there exists a full shift (X, o) and a poten-
tial function ¢ such that

o P(tp) = f(t) for allt € (a,00);
e the cardinality of the set of ergodic equilibrium states for t¢ is
exactly N(t).

This result contrasts sharply with the case of Holder potentials,
where the pressure function is analytic and the equilibrium state is
always unique. It also immediately provides examples of the types
found in [33, 35, 36].

The paper is organized as follows. In Sections 2, 3, and 4 we intro-
duce the terminology and prove preliminary lemmas concerning con-
vex functions, beta-shifts and Sturmian shifts respectively. Section 5
is devoted to the proof of Theorem 1. In Section 6 we examine the
one-parameter pressure function and establish a slight strengthening
of Theorem 1 in this case. Also, here we supply a procedure for build-
ing potentials with a given countable set of first-order phase transitions.
Lastly, Section 7 contains a discussion on the cardinality of equilibrium
states and the proof of Theorem 2.

2. CONVEX ANALYSIS

Suppose F' : (a,00)™ — R is a convex function of m variables.
A vector v € R™ is a subgradient of F at s € («a,00)™ if for all
t € (o,00)™ we have

F(t) > F(s)+v-(t—s).

Hence, v is a subgradient of F" at s if the affine function G(t) = F(s)+
v-(t—s) is a global underestimator of F'. The graph of G is a hyperplane
in R™*! which is called a supporting hyperplane of F at s. We refer
to G(0) as the wvertical axis intercept of the hyperplane, so that the
intercept is at F'(s) —v-s. Under the assumptions of Theorem 1 this
intercept must lie in the interval [b,c|. The set of all subgradients of
F at s is called the subdifferential of F' at s and is denoted by 0F(s).
Since F' is convex, for any s € (a,00)™ the set OF(s) is nonempty,
closed and convex. Moreover, OF(s) is a singleton if and only if F' is
differentiable at s.
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Let F' be as in Theorem 1. Denote by L the Lipschitz constant of
F. We define

(2) S=Cl| |J {(F(s)—v-sv):vedF(s)}

s€(a,00)™
Then S is a bounded subset of R™. In fact, S C [b,c] x [—L, L]™.

Lemma 3. Let F' be as in Theorem 1 and let the set S be as defined
above. For each t € (o, 00)™,
F(t)= sup (h+v-t¢).
(h,v)ES
Proof. If s € (a,00)™ and v € OF(s) then for any t € (a,00)™,
F(t) > h+ v -t where h = F(s) — v-s. By continuity, the same
inequality holds for any (h,v) € S, so that

F(t) > sup (h+v-t).
(h,v)ES

Conversely, given t € (o, 00)™, let v € 9F(t) and h = F(t) —v -t so
that (h,v) € S. Now

Fit)=h+v-t< sup (h+v-t),
(h,v)€ES

establishing the reverse inequality. O

3. BETA-SHIFTS

The S-shifts, which emerged from the notion of base  representation
of real numbers [46], were first systematically studied as dynamical
systems by Parry in [42]. For a fixed § > 1 every real r € [0, 1] has a

[-expansion
o
r= Z Tnﬁ_n7
n=1

where r,, are from the set {0,1,...,|3]}. Here, and throughout the
text, |.| denotes the floor function, i.e. |3] is the largest integer not
exceeding . The coefficients r, of the S-expansion of r are defined
using the f-transformation Ts(r) = fr (mod 1); r, = LﬂTB"_l(r)J.
Consider the set of all sequences of the coefficients in S-expansions of
real numbers in [0, 1). In the case where 3 is an integer, our convention
is to include the point (8000...). The -shift Xz is defined to be the
closure of the extension of this set to two sided sequences. Hence,
Xp is a subshift of {0,...,|3]}? with shift map o. Renyi [46] gave
a description of Xz in terms of the S-expansion of 1. Precisely, we
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define the maximal word w” by w? = LBTE’I(l)j. The sequence
(rn)22, corresponds to a f-expansion of some r € [0,1) if and only if
for all j € N the word ¢/(ry7y...) is smaller than w?® according to the
lexicographical order.

It is well known that the topological entropy of Xz is log 8 (the proof
can be found in [46, 33, 53]). In addition, results of Hofbauer [31] and
Walters [53] show that [-shifts are intrinsically ergodic. The unique
measure of maximal entropy of Xz is weak-mixing [42] and Bernoulli
[52].

We need some facts about the language of a [§-shift. As usual, let
L, (Xp) denote the set of words of length n forming sub-words of ele-
ments of Xz and let £(X3) = J,, £,(X3) be the language of Xz. Some
of the calculations in the next lemma may also be found in Walters’
book [54, page 178].

Lemma 4. Let 8 > 1 and let Xp denote the B-shift. Then

n /8 n
B < 16 (Xs)| < 8"

Proof. Fix > 1 and let N,, = |£,,(X3)|. Since Xz has entropy log 3,
sub-multiplicativity of N,, implies that N, > §".

For the opposite inequality let w” be the maximal word for Xz. It
follows from the description of Xz above that an arbitrary element of
L(Xp) is a concatenation of sub-prefires of w”, where a sub-prefix is
a word u of some length k such that u; = wf fore=1,...,k—1
and uy, < wf followed by a (possibly empty) initial segment of w”. In
particular, an element of £, (Xp) is either the length n prefix of w”, or
it is a sub-prefix of some length j < n followed by an arbitrary element
of £,,_;(X3). Finally, we observe that there are wf sub-prefixes of w?
of length j. Hence we see

N, =1+ zn: w! No_j,

Jj=1

where N is taken to be 1. Write p, = w}] /3" (so that the p,’s sum to
1); and m,, = max;<, N;/3’. Dividing the above equation through by
5", we obtain

n
mp, S ﬁ_n + ijmn—l S 6_n + My—1.
j=1

Therefore, m,, < z;io B = %, so that N,, < %5" as required. [
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The following strengthening of the nesting property of §-shifts is one
of the ingredients in the proof of the main theorem. Although it can
be found in the literature (see e.g. [33]), we give a short proof here for
the sake of completeness.

Lemma 5. Let § > 1. Then

() Xo = X5
B'>pB

Proof. Let 3 and n be fixed. By definition of w?, T5(1) < (wf+1)/ﬁ for
j=0,...,n—=1. For §' > B, it is straightforward to see T3 (1) > T3(1)
provided T}, (1) < (w? +1)/8 fori =0,...,j— 1. Since the condition
Tg,(l) < (wf + 1)/’ is satisfied on a small interval to the right of 3,

we see that for any n € N, there exists an interval [, 5+ §,) on which

B _

w; =

wf/ for 7 =0,...,n— 1. The conclusion follows. O

4. STURMIAN SHIFTS

Sturmian shifts were introduced by Morse and Hedlund in [41] as
symbolic coding of geodesic trajectories on a flat torus. This makes
them one of the earliest general classes of shift spaces studied in dy-
namics. The most interesting property of these shifts is, undoubtedly,
their low complexity. A non-periodic Sturmian shift not only has zero
entropy, it has the smallest growth rate of blocks possible for infinite
shift spaces [19]. In addition, Sturmian shifts are minimal [27] and
uniquely ergodic [11].

While Sturmian words are generally based on the alphabet {0,1},
we allow Sturmian words with alphabet {|v], [v]} for any 7. We recall
that |v] is the largest integer not exceeding -y, while [v| denotes the
smallest integer greater than or equal to ~, and frac(y) = [v] — |7]
is the fractional part of 7. Given v € R, we first form the sequence
(4)72 oo by ¥ = (i +1)y] — [iv], with symbols [7] and [y]. The
Sturmian space Y, is the orbit closure of 37, that is Cl({o"(y"): n €
Z}). A Sturmian word with slope v is an element of £(Y,). A Sturmian
word is an element of |, . £(Y5).

Our terminology comes from the following geometric interpretation
of a Sturmian sequence, which we illustrate in Figure 2. For v € R we
draw a line with slope v through the origin on a square grid. Moving
from left to right we record the number of times our line intercepts the
horizontal grid lines in each strip between two consecutive vertical grid
lines. These numbers form the corresponding sequence 7. Hence, we
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can “read off” the Sturmian word y” from the graph of the line with
slope 7.

slope v = 1.58
L—/yW — 122.121...
2
1 1 0
0
R
1 0~ | |
0 slope v = 0.27

y" =...01001.00010...

FIGURE 2. Geometric interpretation of Sturmian words.

In the next lemma we characterize the elements of £,(Y,) and Y,
using a vertical axis intercept of the line with slope ~.

Lemma 6. Let v € R be fized. A word yy . ..yn—1 belongs to L, (Y,) if
and only if there exists a € [0,1) such thaty; = |(i+1)y+a| — [iv+a]
fori=0,...,n—1. In particular if yo . .. yo—1 belongs to L,(Y,), then
Yo + ..+ Yn—1 18 either [ny] or [ny].
A sequence (y;)2_.. belongs to Y., if and only if
(a) there ezists a € [0,1) such that y; = |y(i + 1) +a] — |vi + a]
for each i € Z; or
(b) there exists a € (0,1] such that y; = [v(i+ 1) +a] — [vi + a
for each i € 7.

Clearly if a + iy ¢ Z for all i, then the two sequences described in
the lemma are equal.

Proof. 1f ~ is rational, y” is periodic and there is nothing to prove so
we suppose 7 is irrational.

We first establish the characterization of words. If there exists a such
that y; = |y(i+ 1) +a] — |vi+a] for i =0,...,n — 1, then let k be
such that a < frac(kvy) < a + min{1 — frac(a + vi): 0 < i < n} (such
a k exists since the multiples of v are dense modulo 1). One can then
check y; =y, for i = 0,...,n — 1. The converse is immediate. Now
if y is of this form, yo + ...+ y,—1 = |a + ny| — |a], which is either
|ny| or [ny] as required.

We then establish the characterization of Y,. First suppose y =
limy,_, 0™ y". By refining the subsequence if necessary, we may assume
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that we are in one of the two cases (i) frac(ny7y) is a non-increasing
sequence converging to some a € [0,1); or (ii) frac(ngy) is a strictly
increasing sequence converging to some a € (0,1]. For case (i), we
note that |-| is right continuous, so that for each i, |(ny +i+ 1)y —
|(nk +1)y] = [(i4+1)y+a] — iy +a], establishing (a). In the second
case, the fact that frac(nyy) is strictly increasing implies that each
ng only appears once, so that |ng| — oo. It follows that for any 4,
L + i+ 1)) = [(ne +4)v] = [ + i+ 1)y] = [(ng +4)7] for all
sufficiently large &k (the only integer multiple of 7 is 0). Then since ||
is left continuous, a similar argument to the one above ensures that y
satisfies (b).

For the converse, if y satisfies (a), then let (n;) be chosen so that
frac(nyy) decreases to a. Then o™y converges to y. Similarly, if
y satisfies (b), then choosing (ny) such that frac(ngy) increases to a
ensures o™ky7 converges to y. 0

The weight of a Sturmian word yo...y;—11s yo+ ... +y;j—1. We need
the following crude bound on the number of Sturmian words of a given
weight with a fixed length.

Lemma 7. For any j and n, there are at most j(j+1) Sturmian words
of length 7 and weight n.

Proof. By Lemma 6, a Sturmian word is parameterized by an intercept
a and a slope v. To satisfy the constraint on the weight, we require
0<a<landn <a+jy <n+1. That is, one is looking for a straight
line joining a point (0,a) to a point (j,n + b) with 0 < a,b < 1. Such
lines all lie within the parallelogram y — %z € [0,1), z € [0, j]. We refer
the reader to the sketch in Figure 3.

y=yr+a
n+lir-----r-mmmme oo

FiGure 3. This figure illustrates the proof of Lemma 7.
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For each ¢ in 0,..., 7, there is precisely one integer lattice point
in that vertical line within the closure of the parallelogram, namely
(2, [%2]); or two points (i, i) and (i, % + 1) if %4 is an integer. Given
a Sturmian sequence Yo . ..y;—1 of weight n, let a and v satisfy

(3) yi=|(+Dy+al —|iv+a| fori=0,...,5—1.

One may then reduce a keeping (3) satisfied until the line y = a + yx
first hits one of the lattice points, (i, k) say, with i € {0,1,...,7}. One
may then rewrite the equation of the line as y = k+~(x — i), and then
reduce v until the line hits another lattice point in the parallelogram.
The Sturmian word is determined by ¢ together with the z-coordinate
of the second lattice point. There are (j + 1) x j such choices, so at
most j(j + 1) Sturmian words of length j and weight n. O

We now describe the points appearing in the closure of the union of
the sets of all Sturmian words over a range of .

Lemma 8. Let Y, denote the Sturmian sequence space with slope v as
above. Suppose (Y™),en is a sequence of real numbers and (y™ ) ey is
a sequence of points with y™ € Y, . Suppose further that y™ =y,
Then the sequence ¥™ is convergent to some v € R. Eithery € Y,; or
v 1is rational and y is an aperiodic sequence that is the concatenation
of two periodic semi-infinite words.

Proof. Let £ € N. Since y™ — 3, there exists an ngy such that for
all n > ng, the terms of y™ in coordinates —¢ to ¢ — 1 agree with
those of y. Hence for n,n’ > ny the words y(_"g) . yéﬁ)l and y(_”l;) .. .yéfll)
have the same weight, which must lie simultaneously in the intervals
(207 — 1,204 4+ 1) and (26y™) — 1,204 4+ 1) by Lemma 6. It
follows that [y(™ —~")| < 1. Since ¢ is arbitrary, we see that (7)) is
Cauchy. Let v be the limit of (y™).

Passing to a subsequence, we may assume that a™” — a. Each
y™ may be expressed either in the form (a) or (b) of Lemma 6 with
parameters a™ and v™. We may further assume that either each
term of the subsequence is expressed in the form (a); or each term is
expressed in the form (b). Note that for those i € Z where a + i is
not an integer, the sequences [a™ +iv(™ | and [a(™ +iv(™] eventually
stabilize to |a + iy] and [a + i7y] respectively.

We deal first with the case where - is irrational. In this case, there
is at most one ig € Z such that a +igy € Z. If there is no such iy, then

la™ 4 iy™ | — |a +iv] for each i and a similar statement is true for

the ceilings. It follows that y; = lim y§”) =la+(i+1)y] —|lat+iv] =

[a+ (i+1)y] — [a+iv] for each i.
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If there exists 7o such that a + igy € 7Z, then we consider three
cases: (i) a™ +igy™ = a + iy infinitely often; (ii) we can pass to a
subsequence such that a™ +iyy(™ is strictly increasing; (iii) we can pass
to a subsequence such that a(™ 4 iyy(™ is strictly decreasing. In case
(i), along the subsequence where a™ +iyy™ = a+igy, |a™ +iy™ | —
la+iv] for all i and [a™ +iy™] — [a+ivy] for all 4, so that y € Y.
In case (ii), along the subsequence, |a™ +iy™ | — [a + ivy] — 1 for
all i and [a™ +iv(™7 — [a+iv]. In case (iii), along the subsequence
la™ +iy™ | = |a+ivy] for all i and [a™ +iy™M] = |a 44y + 1 for
all ¢. In all cases, we see y € Y,.

Now suppose that 7 is rational, say v = §. If infinitely many ~()
are equal to 7 then, since Y, is a finite set, we see that one element
of Y., appears infinitely often in the sequence y™ so that sequence is
the limit and y € Y,. Otherwise, we may take a sequence so that ™
converges strictly monotonically to v and a™ converges to a limit a.
If a+1ivy ¢ Z for each i (or equivalently a+iy ¢ Z fori =0,...,q¢—1),
then the argument given above in the irrational case shows y € Y.

In the remaining case, there exists ig € {0,...,¢ — 1} such that
a + iy is an integer for each i € ig + ¢Z (and a + iy is not an integer
for other i’s). We may then pass to a further subsequence so that the
sequence j™ = (a™ —a)/(y —~™) is monotonic. If v is increasing,
a™ + iy™ < a 44y when i > ;™ and a™ + iy™ > a 4 iy when
i < 7™ the situation is reversed if v™ is decreasing.

For the remainder of the proof, we focus on the case where v is
increasing. If j™ — —oo, then for each i € Z, [a™ +iy™] — [a+iv]
and |a™ + iy™ ]| — [a +iy] — 1. Hence we see that whether the
sequence y(™ is expressed in form (a) or form (b), y; = [a+ (i +1)7] —
[a + iy] for all i € Z. Similarly if ™ — oo, then for each i € Z,
la™ +iy™ | — |a +iy] and [a™ + iy™] — [a + iy] + 1, so that
yi=la+(i+1)v] - la+iv].

We now consider the case 7™ — j*. We have

lim [a® 4 @) = § L4 F 7 it < j"ori @ io+4Z;

n—s00 la+~i] —1 ifi> j* and i € ig + ¢Z.
and

lim [a™ 4 ™) = Jat ”7 ?f Z - j or ! Q "o h 9z

n—sco [a+~i] +1 ifi<j*andi € ig+ qZ.

If j* € io + g2, then [a®™ + ;"] converges to one of [a +j°] and
la +v5*] — 1; and [a™ + ~(j*] converges to one of [a + vj*] and
[a+~5"] + 1.
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Hence y, the difference sequence of one of (limn_>Oo La(") + 7(”)iJ)i
or (lim7HC><> [a™ 4+ 'y(”)ﬂ)i, is the concatenation of two semi-infinite
periodic words, as claimed. In the case where v is decreasing, an
almost identical argument applies. O

5. MAIN THEOREM
We present the proof of Theorem 1. Let the alphabet of the shift be

A=H{0,1... €]} x{[b],...,Jel} x{|—-L]|,...,[L]}™
and let o denote the shift map on A%. We construct the potential
functions as follows. For each vector v = (79,71, .- .,7m) € S let

Zy=Xewo XYy XY, X... XY,

Ym?

where Xy is the [-shift with parameter § = €% and for k =0,...,m
Y, is the Sturmian system with angle 7 (so the alphabet of X is
{0,1,...,[e™]} and the alphabet of Y, is {|y&], [7x]}). In particular,
Z, C A% For z = (x,1°,...,y™) € A” the projections of z onto each
coordinate are defined by 7,(2) = z and m(2) =%, k=0,...,m.

Let £,(Z) denote the collection of n-words in Z,. For z € A%, we
set jy(2) = max{l: z_q_1)... 21 € Ly-1(Z,)}, where j,(2) is taken
to be 0 if zg & Lo(Zy). For v = (70,71, .-, Ym) € Sand k=1,...,m
we define

Py (2) =T = 052,
where ¢, is given by
c+2L+14+9logy
jmin{a, 1}
with 6 = §; + 2L and d, = 0. Notice that (J;) form a decreasing
sequence, converging to 0.

If d(z, 2') < 27! then the two words Z_(-1---%-1 and z’_(l_l) 2
are equal. Either both lie in L£o;_1(7y), in which case |¢g ~(2) — ¢~ (2')| <
d; or neither do, in which case ¢y (2) = ¢r~(2’). Hence we have shown
that for each k& = 1,...,m the family {¢r~: v € S} is uniformly
equicontinuous. The potentials ¢, on A? are then defined by

4) =

or(2) = sup ¢p(2).
~ES

The uniform equicontinuity ensures that each ¢ is continuous.

The proof of the theorem splits into two parts. First, we restrict our
considerations to the set Z = [J g Z,. On this set we show that the
potentials ¢4, ..., ¢, have the property we are looking for. Namely, for
given values of parameters t;, > « the pressure of t1¢py + ... + t,,Om,
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when restricted to Cl(Z), coincides with the value of F(ti,...,tn).
Afterwards, we demonstrate that the values of ¢, outside of the set Z
do not contribute to the pressure.

We start by describing the behavior of the potentials ¢, ..., ¢ on
Z.

Lemma 9. Let v = (Y0,...,7m) € S. If z € Z, then ¢p(z) = vy, for
each k=1,...,m.

Proof. Let v = (Y0, ..,7m) € S and let z = (z,¢°,...,y™) € Z,. Fix
1 < k < m. From the definition, we see ¢y ~(2) = V& — 0oo = Y& We
will show that for any 4" = (77, ...,7,,) € S we have ¢y (2) < Y.

If v, < 7, then ¢r~(2) < 7 < W If v, > 7k, then we set
J=1[1/(" —)]. Since z € Z,, we know that y* € Y., and hence by
Lemma 6 there exists a € [0,1) such that y¥ = [(i+ 1)y +a]| —|ive+a]
for each i = —j,...,j — 1. In particular, y*, +. ..+ ¢y} | = [jy+a] —
|—jvk + a], so that y*; + ...+ 95 | € (2jy — 1,2j7 + 1) and this
holds for any y* ;... yF | € Loj(Y,,).

If the block y*,...y; | were also in Ly;(Y,,), then similar to the
argument above we would have yﬁj +...+ yf_l € (297 — 1,257+ 1).
However, by the choice of j, 25y, — 1 < 2j7v, + 1, so that £,;(Y,,) and
L;(Y,,) are disjoint. It follows that z_;...z; 1 ¢ L£3;(Z,) and hence
Jy(2) <5

Using the facts that j = [1/(y, — )] and vk, v, € [—L, L] when
~,v" € S we obtain

‘ 1 14+, — 1+ 2L
Sy [t L e H
e — Vk Ve — Tk Ye — Vi
Therefore,
,  1+4+2L

Pry (2) = — 0js(z) < Ve — 05 <V — < V-

We now turn our attention to the invariant measures on 7.

Lemma 10. Let Z = U'yES Z as above. Then any ergodic invariant
measure supported on Cl(Z) is supported on Z. for some v € S.

Proof. We first describe points of Cl(Z). Let z € CI(Z). Then Z is the
limit of a sequence of points z(n), where each z(n) belongs to some
Zoymy with y(n) € S. Write z(n) = (z(n),y°(n),...,y™(n)) and z =
(z,9°,...,y™). Since y*(n) — ¥*, it follows from Lemma 8 that ~y;(n)
converges to some limit for each k = 0,...,m. Let 4 = lim,,_, v(n),
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so that 4 € S. By Lemma 8, for each 0 < k < m, 4* belongs either to
Y5, , or is the (non-periodic) concatenation of two semi-infinite periodic
words.

We claim that z € X5. To see this, first notice that since z(n) €
Z~n), We have z(n) € X ,om. For any > vy there is ng € N such that
Yo(n) < B for n > ng. It follows that z(n) € X.s for all n > ng and
hence z € X_5. Since 3 > g is arbitrary, z lies in ﬂ/3>70 Xes = Xewo
by Lemma 5.

Let C denote the (countable) collection of non-periodic concate-
nations of two semi-infinite periodic points with symbols in the set
{min([b], |—L]),...,max([c],[L])}. We have shown that any point
of CI(Z) either lies in some Z, with v € S or one of its Sturmian
coordinates lies in C.

Let p be an ergodic invariant measure supported on Cl(Z). Suppose
for a contradiction that p is supported on Cl(Z) \ Z. Then for pu-
ae. z = (z,9°,...,y™), there exists a 0 < k < m such that y* € C.
Since p is ergodic, there exists a k such that for y-a.e. (z,3°, ...,y™),
y* € C. In particular, the projection of i onto the kth Sturmian factor
is supported on a countable set. But this is a contradiction as countable
sets of aperiodic words do not support any finite invariant measures.
Hence p is supported on Z.

It is left to show that p is supported on some Z,. Fix k € {0,...,m}
and consider the projection map fi(2) = y& where z = (2,¢°,...,y™) €
Z. Since p is ergodic and f is continuous, there is v, € R such that

N-1

1 )

N E flo'z) =, for p-almost all z € Z.
i=0

Suppose that z € Z, for some 7" € S and satisfies the above. Then
an application of Lemma 6 gives

N-1
1 f(aiz):y§+--'+yéﬂvfl:LN%Q‘FGJ
N — N N

for some a € [0,1). Hence, v, = v, and p is supported on Z, with

Y=Yy, Ym)- O

Corollary 11. Let t = (t1,...,t,) € (o,00)™ and p be an ergodic
shift-invariant measure supported on Cl(Z). Then
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Further there exists an ergodic measure pg supported on Z such that

Proof. Let p be as in the statement of the corollary. Note that by
Lemma 10, p is supported on Z, for some v = (Yo, ...,%m) € S. Then
h(p) < hiop(Zy) = hiop(Xerw) + haop(Yag) + -+ - 4 hiop(Y5,,) = 70 and
[ ¢ dp =~ by Lemma 9, so that

h(p) + /(t1¢1 +o ) dp <o+t + - Y-

Since ¥ = (Y0, .- .,7m) € S, the last term is bounded by F(ty,...,t,)
by Lemma 3, proving the inequality in the statement.

For the equality in the statement, let v = (vy,...,v,,) be any sub-
gradient of F' at t = (t1,...,tn). Weset v, = vg for k = 1,...,m
and 79 = F(t) —v-t. Then v = (70,...,7m) € S. Let 14 be the
measure on Z, that is the product of the measure of maximal entropy
on the f-shift X, and m + 1 Sturmian measures supported on each
of the components Y, ,..., Y,  respectively and let p; be an ergodic
component. Since pu; projects in the first factor onto the measure of
maximal entropy on X, we see h() > . On the other hand, since
pe is supported on Z,, we see h(ut) < hiop(Zy) = Yo.

Each potential ¢y takes the value 7, on the support of juy, so that

h(ﬂt)+/t1¢1+-~+tm¢mdut270—|—t1’yl+...—|—tm7m
=Ft)—v-t+v-t

= F(t)
as required. O
Hence we have shown that for each (¢y,...,t,) € (a,00)™,
F<t17 v 7tm) = sup {h(lu’) + /(t1¢+ St tm¢m) dﬁb} )
o

where 1 runs over all ergodic invariant measures supported on Cl(Z).
Recall that in the Variational Principle, the pressure is attained if the
supremum is taken only over ergodic invariant measures. In order
to complete the proof of the theorem it suffices to show that for all
(t1,...,tm) € (a,00)™ and for each ergodic shift-invariant measure
on A% such that p(C1(2)¢) # 0, one has

(5) h() + /(t1¢1 bbb dp < (b t).
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To see this, we use a technique introduced by Antonioli in [4] of
pinning sequences. This is part of a more general set of ideas described
in the notes [45] on “Coupling and Splicing”.

The pinning space is a closed subshift Q of AZ x {0,1}Z defined by
the following conditions. Let (u,v) € A% x {0,1}%. Then (u,v) € Q if
and only if

(1) ifi < jand v;4q = ... = v; =0, then u;...u; € £(Z); (Note:
there is no requirement that v; = 0).
(2) ifi <jand v; =v; =1, then w; ... u; € L(Z).
We denote the shift map on 2 by & to distinguish it from the shift o
on AZ. We refer to v in the pair (u,v) € Q as a pinning sequence for
u € A%,

Clearly if u € Z, then (u,0) € Q, where 0 is the sequence of all 0’s.
For a fixed u € A%, the set of v such that (u,v) € Q corresponds to
the set of all greedy partitions of u into words in £(Z): each such word
corresponds to a maximal string in v of the form 10...0.

In case u € A%\ Z, one may obtain a pinning sequence v such that
(u,v) € Q by a limit of greedy algorithms as follows: for each n, let

kY = —n and let k') be the smallest integer greater than k™ such
that w, o) ... u,m & L(Z) (where the sequence terminates if there is no
i 41

such k;l(i)l) Then define a sequence (v™) by

o1 if j e {k™ i >0}
I 0 otherwise.

Any subsequential limit v of the v(™ sequences satisfies (u,v) € Q. In
particular, A% is a factor of the shift on € by the projection onto the
first coordinate.

Given an ergodic invariant measure j on A%, we now build a suitable
lift to Q. Denote by 6,, the Dirac measure supported on the point p. If
1 is supported on Z, then clearly i = 1 x 8¢ is a suitable lift. If not,
let u be a generic point of A% for u, and let v be its pinning sequence so
that (u,v) € Q. We then let 7 be a subsequential limit of the sequence
%(S(uﬂ,) + ...+ 8sn-1(u))- By the p-genericity of u, the projection of v
onto the A% coordinate is p. Since 7 may fail to be ergodic, we consider
the ergodic components of 7. By ergodicity of u, almost every ergodic
component of 7 is supported on §2 and projects onto pu. We let i be
any such ergodic component and call i a lift of u to €.

If 41 is an ergodic invariant measure supported on A%\ C1(Z), there
is a word w ¢ L(Z) such that p([w]) > 0. By ergodicity u-a.e. wu
contains infinitely many copies of the word w, so that if (u,v) € Q,
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then over each occurrence of w in wu, there is at least one pin (1 in
the corresponding pinning sequence, v). By the greedy property, a
single 1 in v, together with u determines all subsequent terms of v. It
follows that there are at most |w| different v’s such that (u,v) € Q. In
particular, the projection map from the pinning space to AZ is ji-almost
surely finite-to-one. It follows that h(fz) = h(p). Since i projects to p,
we see immediately that [ fowdn = [ fdu for any Borel function f
on A% where 7 is the projection of € onto the first coordinate, A%.

Let P = {(u,v) € Q: vy = 1} and let ¢p(u,v) = ¢p(u) for k =
1,...,m. It follows from the above that to prove (5) it suffices to show
that for any (t1,...,%,) € (o, 00)™, and any ergodic measure fi on {2
such that g(P) > 0,

(6) h(fi) + /(t1<b1 +o At Om) dii < F(ty, ... ty).

Let f1 be an ergodic measure on 2 such that i(P) > 0. Let 7p(u,v) =
min{i > 1 : ¢'(u,v) € P} be the first return time to P. Let op
denote the induced map of & on P with invariant measure jip(-) =
i(- N P)/i(P), ie. ap(u,v) =" (u,v). By Abramov’s formula [1]
the relation between the entropy of the measure i on (€2,5) and the
entropy of the induced measure fip on (P,dp) is

1
h(fip) = —=h(7).
(fr) fi(P) )
We introduce three countable partitions of P. Let Q = {Q1,...} be
the partition of P according to the return time to P. Here

Q; ={(u,v) € P : mp(u,v) = j}.

We let R to be a subpartition of Q according to the weights in each
of the Sturmian components. Precisely, given (u,v) € @); we write out
the components of u so that (u,v) = (z,4°,...,y™,v). For each j € N
and a tuple n = (ng,...,n,) € Z™ we define

Rin = {(z,9°,...,y™v) € Qj : y@—}—...—i—y;?_l =ny for k=0,...,m}.

We denote by N; the set of tuples n for which the set R; ,, is not empty.
Then R is the partition {R;,: j € N, n € N,}. Finally, let P denote
the partition of P in which each @), is refined into cylinder sets of length
J. In particular, P is a generating partition under op; the partitions
Q, R and P are successive refinements. We introduce the notation

(7) qj = ip(Q;) and 71jn = fip(Rjn).
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We have a set of equalities which will be extensively used in what
follows:

(8) an‘ =1
(9) Y rin=gq

nenN;
(10) > jgi=1/a(P) (Kac's lemma)
j=1

First, we establish a connection between the elements of the partition
R and subshifts forming 7.

Lemma 12. Suppose (u,v) € R;,, with n = (ng,...,ny,) and let v =
mo(u) and y* = mp(u) for k = 0,...,m so that u = (z,y°,...,y™).
Then there is vy € S such that for each k =0,...,m, v € (""Tfl, "’“TH),
Zo.. -Tj—1 € ﬁj(Xe’yo) and yg c. yé?—l € ‘CJ(Y:Yk)

Proof. Let (u,v) € Rjn, v = my(u) and y* = 7 (u) for k =0,1,...,m.
Since u € L£;(Z), it follows that u € £;(Z) for some v = (y0,...,%m) €
S. This implies that xo...2;_1 € £;(Xeo) and yf...y5, € L;(Ys,)
for 0 < k < m. It remains to show that v, € ("’“Tfl,"’“TH) where
n=(ng,...,Nm).

Since (z,4°,...,y™ v) € R;, for each k = 0,...,m we have n, =
Yo + .- +y}_,. On the other hand, yi ...y, € £;(V,,) implies by
Lemma 6 that |jye] < ng < [j7] so that for each 0 < k < m,
Jvk € (ng — 1,ng + 1) as required. d

Next we obtain an upper bound on the entropy of the measure i on
Q) via the entropy of the corresponding induced measure jip. We use
the notation introduced in (7).

Lemma 13. Suppose [i is an ergodic invariant measure on ) such that
@(P) > 0. Then

h(ip) < c+6+ 2L+2)m+ (B3m+6)> glogj+ > > norjm.

j=1 j=1 neN;

Proof. We use the simple bound h(jip) < H,(P), where Hy,(P) is
the entropy of the partition P with respect to the measure jip. We
then estimate Hj, (P) using conditional entropy:

Hip(P) = Hp(Q) + Hip (RIQ) + Hiap(Pp|R).
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We have Hj,(Q) = Z;’il —gjlog q;, which we separate into two
parts as

o0

Y —giloggi=— > glogg;— Y g;logg;.

Jj=1 qj<1/52 q;>1/52
The first term is at most 2 — >0, &
e =2 52

the fact that —tlogt is increasing on |0, e] and bounded above by % on
[0,1]). The second term is bounded above by 2 Z;’;l ¢;log j, so that

log (which we obtained using

Hpp(Q) <3+2 ZQJ‘ log j.
j=1
We now turn to H;,(R|Q), which is given by

(RN Q (R neQ)
(RIQ) = ap(Q il — ) :
tm10) = 3 @) (- X E L
We bound the term in parentheses by the logarithm of the number of
elements in R into which the set () is partitioned. Recall that Q =
{Qj}jen and each Q; = U,,en, Rjm- Ifn = (no, ..., nm) € Nj then R;p,
is not empty and hence by Lemma 12 there is v = (79,...,7m) € S
such that |jy] < ng < [jw] for each K = 0,...,m. Since S C
b, ¢] x [=L, L]™, there are at most [c]j-(2[L]+ 1)™j™ tuples m in N;.
Now using (7), (8) and the fact that log[c] < ¢ we obtain

H;,.(R|Q) < qulog [](2[L] + 1)™j™*)

< qu(c—I— (2L + 1)m + (m + 1) log j)

=1

=c+ 2L+ )m+(m+1)) _glogj
j=1

Finally, we estimate Hj,(P|R). Similar to the above, we use a
crude bound via the number of j-cylinders forming each R;, € R.
Recall that each element of P is a cylinder set generated by an element
of L(Z). We separately estimate the number of projections of those
words forming R;,, onto each coordinate. Suppose (u,v) € R;,. Write

n=(ng,...,Nm), = m(u) and y* = mx(u) for 0 < k < m.
There are at most j(j + 1) < 252 choices for y} .. .y;il by Lemma 7,
since each such Sturmian word must have the same weight ny. By
Lemma 12, and using the fact that Xz C Xg if f < [, we see
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Zo...Tj—1 € X, me+1si. By Lemma 4, the number of such choices of
To...Tj—1 1s at most

e(no-‘rl)/j €n0+1 _ 1 S
emo+1)/i — 1 1 — e—(ro+1)/j
1
n +1
< —1_671/] 0 <]e e

using the fact that 1/(1 — e~1/79) < ej.
Multiplying the estimates, we see that the number of j-cylinders
making up each R;,, is at most (252)™ ! je?e™. Therefore,

;Lp P’R Z ,UP log 2m+lj2m+3626n0)
ReR

— Z Z rin((m+1)log2 + 2+ (2m + 3)log j + ng)

Jj=1 neN;

Z (m+3)+ (2m + 3) qulogj—i—ZZnorjn

Jj=1 neN;

=m+3+(2m+3) Zq]10g3+z Znoﬁm

j=1 neN;

where we used (9) in the second line and (8) in the third. Combining
the above estimates we establish that

Hyp(P) < e+ 64+ 2L+2)m+ (3m+6) > qgilogj+ Y Y norjm.
j=1 j=1 neN;
O

_ Lastly, we estimate [ ¢ dp for 0 < k < m. We define a version of
¢ on the induced system by

7p(u,v)—1
¢k u,v) Z Pr(o
1=0
so that [ ¢f diip = f o d 1 f ¢ du. We continue using the

notation from (7)

Lemma 14. Suppose [i is an ergodic invariant measure on € such that
@(P) > 0. Then for k=1,...,m we have

/¢k dUP<3+Zanrjn Z]CIJ 5

Jj=1 neN;
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where 6; is defined as in (4).

Proof. We fix 1 < k < m and estimate ¢F (u,v) for (u,v) € Rj . From
the construction of R;, we know that ug...u; € L£(Z). It follows that
whenever v = (Y9, ...,vm) € S

gbk,'y(o-iu) S Yk — 5j
foreachi=0,...,7 — 1.
On the other hand, using Lemma 12 we can find 4/ € S such that
Up...uj—1 € Lj(Zy) and 7, € (”’“—fl, ”’“—H> Consider any other v =

J j
(Y0, - -+, Ym) € S. We have the following possibilities for the location of

vk with respect to y,: i is less than 7, + %; vk is in one of the intervals
[V + 2.7, + 727) where £ € {2,...,j}; or v is at least 7, + 2.

2 5 o
If v¢ < 7;, + 5 then we see that v, < ™ + 4 since v, € (nkj ’ nkj» )

Therefore,

Pry(0'u) < — 05 < % + ? = 0j.

Now suppose that v € [7,; + %,7,2 + %) for some ¢ € {2,...,j}.
We claim that £,(Y,,) and £,(Y,,) are disjoint. To see this, note that
any element of £,(Y,,) has weight at least |{v;] while any element
of L,(Y,) has weight at most [{y;]. Since 7, > v, + 2. it follows
that ¢y, > (v, + 2, so that [lyg| > [€v;]. Tt follows that ¢y ~(c'u) <
Ve — 61 for each i = 0,...,j — 1. Using that v, € [v; + 2,7}, + 725)

and that (% — 6j> is an increasing sequence we obtain
i 2 ne+1 2
Prry(o'u) <y —0m1 <Y+ —— — 01 < i + - — ;.
(-1 Jj J
Finally, let 7, > =, + 2. Since in this case [{y, + a] > |y}, + /| for
all a,a’ € [0,1) we see that yF ¢ £,(Y,,) for i =0,...,5 — 1. Hence,

, ng +1
O (0'u) < — 0o < 2L+ — 0o < kj — 0y,

since dg — 2L > &; > §; be definition.
We have shown that for all v € S, for all (u,v) € R,;, and all
i=0,...,7 —1 we have ¢p~(c'u) < et % — 0. Hence, ¢p(o'u) =

SUP., 5 Oy (0'u) < =+ % — 6; and

7j—1
< ; N 3 )
gka(u’v) = Zgbk(o'lu) <7 (7k + ; — 5]) =n;+3 —j5j.
=0
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Now integrating and applying (9), we see

/¢kp diip < > (g +3 = j6)jir(Ryn)

j=1 neN;
oo (o]
=3 + E E nijm, — E ij5j,
j=1 nen; j=1
as required. O

We are now ready to establish (5). Fix the values of the parameters
(t1, .. tm) € (a,00)™. Suppose p is an ergodic o-invariant measure
on A% whose support is not contained in Cl(Z). Then its lift j is
an ergodic g-invariant measure on 2 such that fi(P) > 0 and we can
induce on P. Combining the estimates in Lemma 13 and Lemma 14,
we see that

(11)
h(jip) + / (t10] + - + tm®},) ditp

<c+6+(Q2L+2m+ (Bm+6)Y glogi+ Y > noria

j=1 j=1 ’H,GN]'

=+ Z Z (tlnl + ... +tmnm)7’j7n =+ (tl 4+ ... +tm) (3 — Z]q](sj) .
7j=1

j=1 neEN;

We estimate the terms containing r;,, first. Let j € N and let n =
(no, ..., ) € N;. Since the set R,,, is not empty, by Lemma 12 for
each such j and n we can find some v = (79, ..., 7m) € S satisfying
ng < jye + 1 for Kk =0,...,m. Therefore,

no+ting + ..oty < Jj(o+ bt te) F LA+ .

Since v € S, Lemma 3 implies that yo+t171+. . .+t < F(t1, ... tm)-
Writing ¢ = (¢4, ..., t,,) and using (9) we get

Z (TLO —|— tl’l’Ll .. —I— tmTLm)T‘j;n S Z (jF(t) —|— 1 —I— tl —|— e + tm)rj,n

neN; neN;
=[F@t)+ 1+t + ... +tnlg.
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Recall from (8) and (10) that }-.q; = 1 and }_,jq; = %P). Hence,
summing over j gives

S o+ ting A tann)rin < GFE) + 1+t + .+ by

j=1 nen; j=1

PO 4 4t

= — 1 Ce m-

ji(P)

Substituting the bound we just obtained for the terms containing 7;
into (11) and applying > ¢; = 1 in the last line we get

h(fip) + / (o] + ...+ tmol) diip

< (c+2L+9)m+9qujlogj+(t1+...+tm) (4—quj5j>
j=1
F(

j=1
t)
+ =

fi(P)

- _ , F(t)

:qu[(c+2L+9)m+9mlog]—(tl—l—...+tm)(j5j—4)}+m.
j=1
Since

2L +9+9logy
j5j>c+ + 9+ og]_i_4
a

and t; + ... + t,, > ma we observe that the bracketed expression is
negative. This gives

h(p) + / (MG + . + D) diip < L2 Tm) (“/;t = tm)

As mentioned above h(u) = h(f); Abramov’s formula then implies
that h(p) = a(P)h(fip). Also, [ ¢ dp = fu(P) [ ¢ diip so that

D)+ [0+ ) i < 1),

as required. This completes the proof of Theorem 1.

Remark 15. Note that allowing o to be zero in the statement of the
theorem makes it false. Any pressure function on a full shift ¥ inter-
cepts the vertical axis at hyop(X). Hence, if the value of F at the origin
is not equal to the logarithm of an integer greater than 1, F' cannot be a
pressure function on [0,00)™ for any full shift. However, for any o > 0
we can still match F to a pressure function on (o, 00)™.
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6. ONE-PARAMETER PRESSURE FUNCTION

Of particular interest is a one-parameter pressure function t — P(t¢)
since then ¢ can be interpreted as the inverse temperature of the sys-
tem. It follows immediately from the variational principle that the
pressure function is convex, Lipschitz and asymptotically linear at in-
finity. As a consequence of Theorem 1 we see that these are the only
restrictions. Furthermore, in the one-parameter situation boundedness
of the vertical axis intercepts of the supporting lines implies both the
Lipschitz condition and the existence of a slant asymptote. Indeed, we
have

Lemma 16. Let o > 0 and let f(t) be a convexr function on (a,o0)
such that the support lines to f at each t € («,00) have vertical axis
intercepts in a closed interval [b,c] C [0,00). Then f(t) is Lipschitz.

Proof. We first show that the derivatives are uniformly bounded above.
Note that for a single-variable function f its subdifferential at ¢ €
(e, 00) is the interval 9f(t) = [f'(¢t7), f'(t1)], where f'(¢7) and f'(¢tT)
denote the left and right derivatives of f at ¢ respectively. As in the
multi-variable case, the subdifferential of f is characterized by the prop-
erty that v € 9f(t) if and only if f(t)+v(s—t) < f(s) forall s € (o, 00).
Given t € (a,00) and v € 9f(t), the intercept of the sub-tangent line
with slope v is F'(t) — vt, which is the intercept of the sub-tangent line
U(s) = f(t) + v(s — t) with the vertical axis.

Fix f > a. Let t € (a,00) be arbitrary and let v € Jf(t). Let
L € [b, c] be the corresponding intercept. Then f(8) > t+vf > b+ vp.
It follows that v < (f(5) — b)/fB, giving a uniform upper bound on
derivatives of f.

For a lower bound on the derivatives, consider a sub-tangent line at
t with the slope v and intercept ¢, so that f(¢) = ¢+ vt. In particular,
we see v > (f(t) —c)/t. Since 0f(s) < 0f(t) whenever s < ¢, it suffices
to show that lim,_,,+ 0f(s) is finite. By convexity, f(a™') exists and is
at least f(5) — u(f8 — o) where u € 9f(f), so that f(a™) € (—o0, c0].
Hence the inequality above shows that df(a™) > (f(a™) —¢)/« giving
the required lower bound. 0

Corollary 17. Let a > 0 and let f(t) be a convex function on (o, o)
such that the support lines to f at each t € («, 00) have vertical axis
intercepts in a closed interval [b,c] C [0,00). Then there exists a
full shift on a finite alphabet and a continuous potential ¢ such that

Piop(tp) = f(t) for allt € (a, 00).

Proof. Note that f(t) is Lipschitz by the above lemma and then apply
Theorem 1 with m = 1. 0
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We point out that contrary to the one-parameter situation, the multi-
parameter pressure function is no longer asymptotically linear. Fur-
thermore, in higher dimensions the fact that the intercepts are bounded
does not imply that the convex function is Lipschitz. We give an ex-
ample to illustrate this.

Example 18. This is an example of a convex non-Lipschitz function
F such that the set of vertical-axis intercepts of all the support planes
to the graph of F is bounded.

Proof. For (t1,t3) € (0,00)?%, set

F(ti,ty) = sup (t1s — tas?).
$€[0,00)

Notice that for a fixed s, t;5 — tys? is a linear function of (¢, %) so that
F is convex. For fixed (¢1,1s) € (0,00)?,

12 t\?
t18 —tos? = 1 —ty [ 5 — —
1 2 1, 2( 2752)7

so that F(t1,t) = %. Since F(t1,t2) is the supremum of a collection
of linear functions of (¢1,t3), it is convex. Since each of the linear
functions in the collection has intercept 0, the collection of intercepts
is bounded. However F' clearly fails to be Lipschitz. (l

We finish this section with an application of our result to describe
feasible occurrences of first-order phase transitions. Let o > 0 and let
(z;) be an arbitrary (possibly finite) sequence of terms in (a, 00). Let
S = {z;}. We define a function ¢ as follows. First let g: (o, 00) — R
be given by

Then define
t
ft)=3 —l—/ g(s)ds.
0

Notice that since o/(2/2}) are summable, g is continuous everywhere
except on S, where it jumps upwards, guaranteeing that f is differen-
tiable precisely on (o, 00) \ S.

We claim that f satisfies the hypotheses of Corollary 17. The vertical
axis intercept of the support line at ¢t € («, 00) (or the support line with
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the largest gradient if ¢t € ) is given by

f()—tg()—3—/ (9(t) — g(s)) ds
_3/ 3 29‘2@5

J 2
{j: s<z;<t} J

«
>3 — ——d
29 /0 Z 2 max(a, s)? °

/ ds

max(«, s)

—3—/ —ds—/ —ds>1.
0

The theorem shows that we are able to construct a potential ¢ whose
pressure function has an arbitrary countable collection of first order
phase transitions.

7. CARDINALITY OF EQUILIBRIUM STATES

In this section, we briefly outline a strategy for showing that not only
is one free to specify the pressure function, but there is also a lot of
freedom in controlling the cardinality of the set of ergodic equilibrium
states. In particular, we prove Theorem 2.

In the proof of Theorem 1, for each function F': (a, 00)™ — R satisfy-
ing the conditions of the theorem, we constructed a full shift and a fam-
ily of potentials (¢;)7, such that F(t1,...,ty) = P(tip1+ ...+ tmdm)
for each t € (a,00)™. It is natural to ask about the cardinality of
the set of equilibrium states for these t1¢1 + ... + t,,¢,. The proof
establishes that the ergodic equilibrium states for t1¢; +. .. +t,,¢,, are
precisely the measures of maximal entropy supported on the Z, such
that v € 0F(t).

For instance, if t is not a point of differentiability for F', then there
are multiple (uncountably many) ergodic equilibrium states for ¢;¢; +

..+ tmdm. For t that are differentiability points of F', there is exactly
one element «y of OF (t). However the space Z, = Xewo X Y, X ... XY,
may still support uncountably many measures of maximal entropy if
there is a rational relationship between 7o, 71, . . ., Vm (more specifically,
if there exists a non-trivial integer combination of irrational v;’s taking
an integer value).

For one-parameter pressure functions we can modify our construction
slightly and obtain uniqueness of the equilibrium states everywhere
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except for the points of non-differentiability. The main difference is
that instead of parameterizing by the supporting hyperplanes, S, we
can parameterize simply by the intercept of the support line with the
vertical axis. It is necessary to use a single Sturmian component rather
than the two Sturmian components in order to avoid possible rational
dependencies between gammas as described above.

When m = 1 in Theorem 1 we have Z, = X0 xY,, XY, . We express
7 as a function of vy, which makes the factor Y, redundant. Recall
from Section 3 that X, has a unique measure of maximal entropy
which is weak-mixing and Bernoulli. Also Y, is uniquely ergodic, so
that X0 x Y,, supports a unique measure of maximal entropy [26].
This measure is then the only equilibrium state of ¢¢ in the case when
the pressure function is differentiable at ¢ and v, is the vertical intercept
of its tangent line at .

To make the above precise, we fix a convex function f(t) on («a, c0)
such that the support lines to f at each ¢ € (a, 00) have vertical axis
intercepts in a closed interval [b, ¢] C [0,00). For 7y € [b, ¢] we define he
function

s(y) =sup{v: y+tv < f(t) for t € (a,00)}.
We show that the function s(y) is non-increasing and Lipschitz with
Lipschitz constant +. Let v < 4/ and let v be such that o/ +tv < f(t)
for all t € (a,00), then v+ tv < f(t) for all ¢t € (a,00), so that
s(y) > s(v). Next, observe that if v+ tv < f(¢) for all t € (a, 00),
then ~" + t(v — %) < y+tv < f(t) for all t € (a,00), so that
s(7) > v — 22 and |s(v) — s(7)| < @ as required.

«

It is easy to verify that for each t € (o, 00)

f(t) = sup (v +s()1).
velbie]
Hence, we let the alphabet A = {0,1,..., [e]} x {[b], ..., [c]} and for
z € AZ define

¢'y(z) = 3(7) - (SjA,(z) and ¢(Z) = sup ¢'y(z)>
YE(b,e]
where j,(z) and §; () are as in (4) with Z, = X, x Y,. The uniform
equicontinuity of the family {¢.,: v € [b, ¢|} ensures that ¢ is continu-
ous.

We still need to confirm that ¢(z) = s(y) whenever z = (z,y) € Z,,.
Since s(7y) is non-decreasing, ¢, < s(vy) for v/ < . For v > ~ we
choose j = [1/(y —+')] and by looking at the weight of the word
Y—j---yj—1 conclude that it is not in Ly;(Y]). It follows that ¢, (2) <
s(7') —6;. Since j <

’Ylj’)(/:' and s(7) is Lipschitz with constant é, we see
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that

1 _A)
-|—.c < Y=
o a

¢y (2) < 5(v) =85 < s(7') —

The rest is a verbatim repetition of the proof of Theorem 1 with
v = and m = 0. The only minor adjustment is in Lemma 14, where
the integral estimate becomes

/¢Pdﬂp< +Zmn8§ Z]qg

The reason is that the value of the potential ¢ on each R;, is approx-
imately s(?), which follows from Lemma 12 and the fact that s(7y) is
Lipschitz.

We have established the initial construction where the potential t¢
has a unique equilibrium state for each t where f(t) is differentiable.
Now we are in position to add equilibrium states to t¢ at various points
t € (a,00) as we see fit. The key idea is to replace the sets Z, which
support the equilibrium states for t¢ by

Zy =X x Y, x D,

where D, is a decoration factor. Suppose for ¢t € («, 00) we would like
the potential t¢ to have precisely N (t) ergodic equilibrium states. Then
we impose the following conditions on the family {D., : v € [b, ¢] }:

(i) for v € Of(t) the subshift Z, supports exactly N(t) ergodic
measures of maximal entropy;
(H) ht0P<C1(U'y€[b,c] D’Y)) = OJ
(iii) For any v € (b, ¢), any invariant measure supported on the set

Mexo C1( U etycnio Z ) is supported on Z,.

Condition (ii) gives an additional term in Lemma 13, which has to be
compensated for in the definition of ;. The fact that the additional
factor has zero topological entropy ensures that 9, still converges to 0.
Condition (iii) is a mild extension of Lemma 10 to this context.

Theorem 2 is an application of our technique, which illustrates the
flexibility of cardinalities of equilibrium measures. Note that the first
implication of the statement of the theorem follows from Corollary 17.
To prove the second implication, we parameterize by the intercept of
the tangent line with the vertical axis as outline above: for each in-
tercept, 7, the line v + s(y)t is tangent to f(t). We let the point of
tangency be 7(7). The function 7 is a homeomorphism from (b, ¢), the
interior of the set of intercepts, to (o, 00).
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We use the following choices:
H {i: 1 <i < N(7(y))} if N(7(v)) is finite;
T (Ui V) if N(r(7)) = oo,

As we pointed out before, X,y x Y, supports a unique measure of
maximal entropy. If N(7(v)) = k, then D, consists of k fixed points,
so that it is evident that Z, supports exactly k ergodic measures of
maximal entropy. If N(7(7)) = oo, then D, supports uncountably
many ergodic measures of maximal entropy, and so does Z,. This
establishes condition (i).

Condition (ii) follows from a theorem of Mignosi [40]; or from Lemma
7. (Lemma 7 implies that the number of words of length n is at most
(In+ 1)n(n +1)).

To establish condition (iii), notice that the upper semi-continuity of
N(t) ensures that for all ~,

(12) Na( U py)=n,

e>0 [ —7l<e

In particular, if i is an ergodic measure supported on Z := Cl( U ZV),
by Lemma 10, the projection of p on its first two factors is supported
on some X X Y,. By (12), the only points in Z projecting to X x Y,
are points in Z,. This completes the proof of Theorem 2.
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