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The first edition of this book, published in 1983, was written in a different 
world. Then, the computer generation of musical sound was a lusty but 
tiny infant. Commercial synthesizers were chiefly analog devices, costly 
and tricky. Digitally generated sound, now familiar through inexpensive 
digital keyboards, was limited by cost and capability. 

Today analog sound is obsolete. Audio technology is digital technol-
ogy. Digital keyboards are more common than pianos and are more suited 
to our limitations of space and money. Composers produce movie and 
television scores by digital means, without the intervention of instru-
mentalists. 

Musical sound is musical sound, whether it is generated by acoustical· 
instruments or by digital hardware, and musical sound is what this book is 
about. The Science of Musical Sound describes the physical and mathemat-
ical aspects of sound waves that underlie our experience of music as well as 
the psychoacoustics of musical sound- the relation of the physical aspects 
of sounds to their perceptual features. 

The historical and scientific basis of this book isn't all that different 
from the first edition, for science and sound don't change that rapidly. 
Technology does; new technology and new work have added to our 
knowledge, and I have sometimes amplified and sometimes corrected what 
I said in the first edition. There are other changes in the book. All chapters 
have been updated but the most heavily reworked are Chapter 1 on the 
role of computers in music, Chapter 12 dealing with sound reproduction, 
and Chapter 13 on synthesized sound and equipment for producing it. I 
have added an appendix on MIDI, that surprising standard through which 
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any commercial keyboard can operate any commercial digital synthesizer, 
and which in general allows interconnection of digital sound gear of 
various manufacturers. Andrew Schloss, who urged the republication of 
this book, suggested this addition and drafted the appendix. It was revised 
with his aid and that of David Jaffe. Further, David Zicarelli has supplied 
an appendix on MAX, a popular programming language widely used in the 
comrol of MIDI-compatible synthesizers. 

I have drastically revised, pruned, and added to a bibliographical 
appendix. I have cited books and pertinent recordings on compact discs 
both digital sound examples and of a very few examples of computer mustc 
that make important points. 

Sound examples are essential to our understanding of sound. Today, a 
fair amount of computer music has appeared on compact discs, through 
Wergo and other publishers. And, there are a few recordings of sound 
examples which ar:e referred to in the bibliography. Beyond this, 
commercial synthesizers are available, and many of these can be used tn 
producing the sine waves and combinations of sine waves described in 
various chapters. Thus, diligent readers can find sound examples on var-
ious discs or, better yet, synthesize them on their own. 

The preface to the first edition rold how I used the fifth Marconi 
International Fellowship award in preparing the first edition and of my 
gratitude to Gioia Marconi Braga, Marconi's daughter, for the opportunity 
the award honoring her father gave me. It told of my indebtedness to 
Jean-Claude Risser, to Elizabeth Cohen, and to many at Stanford's 
CCRMA (pronounced karma, the Center for Computer Research in Music 
and Acoustics) for their work in preparing sound examples. It told of 
people who, in my division at Bell Laborarories, had inspired my interest in 
sound-of E. E. David, Jr., and Max Mathews, whose early work, culmi-
nating in his Music V program, launched computer music to the world in 
1957. Today both Max Mathews and I are professors in the music depan-
ment of Stanford University, invired to join CCRMA by its director, John 
Chowning. His invention of fm synrhesis made possible the first reasonably 
priced digital keyboard (Yamaha's DX7). 

In the preface to the first edition I mentioned the happy month that I 
spent at Pierre Boulcz's IRCAM (Institute for Research and Coord ination 
of Acoustics and Music) in Paris in 1979. I acknowledged the help and 
inspiration of many: including the late Gerald Strang, Manfred Schroeder, 
and Earl Schubert, Jr. And of Gerard Piel, Linda Chaput, and ochers at 
Scientific American Library who had made the book possible. 

Several colleagues at CCRMA and elsewhere have been helpful in 
preparing this revised edition . I have already mentioned the contributions 
of Andrew Schloss, David Jaffe, and David Zicarelli. J have consul ted 

frequently with Earl Schubert. Jay Kadis, CCRMA's audio engineer, was 
very helpful in connection with Chapter 12, and so was James A. Moorer 
of Sonic Solutions. Above all, John Chowning, director, and Patte Wood, 
administrative director, have been essential to rhis book- as to everything 
else that happens at CCRMA. 

I also wish to thank Linda Chaput, president of W. H. Freeman, for 
making this new edition possible, and Christine Hastings and others at 
Freeman for their patient and diligent help in the revision of the manu-
script and in seeing it through to publication. 

john R. Pierce 
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This book is about musical sound. Perhaps we should say acous-
tics, a word that entered the English language in the seventeenth century, 
the century in which Galileo wrote about musical sound. 

Today papers in the] ournal of the Acoustical Society of America are 
divided into many categories, some of which have little relation to music, 
such as "Underwater Sound," or "Ultrasonics, Quantum Acoustics, and 
Physical Effects of Sound." "Music and Musical Instruments" is a cate-
gory, but much that is essential to an understanding of musical phenomena 
appears under "Psychological Acoustics" and "Physiological Acoustics." 
In today's world, knowledge has become so divided and extended that it 
sometimes seems hard to make sense of it. 

In the Greek and Roman worlds music, including whatever was 
known about musical acoustics, held a high place in science and philoso-
phy. In the liberal arts of the Middle Ages, music was a part of the higher 
quadrivium, along with arithmetic, geometry, and astronomy. The place of 
music in the liberal arts was above that of grammar, rhetoric, and logic, 
which constituted the lower trivium that dealt with words rather than 
numbers. 

As time passed, music's status became more complicated. The roman-
tics tended to associate music with the grandiose sentiments rather than 
the grand scientific insights of their age. Still, through the nineteenth 
century, scientists studied music and musical sound with insight as well as 
aesthetic appreciation. In 1862 Hermann von Helmholtz, physiologist, 
physicist, great scientist on a grand scale, published On the Sensations of 
Tone as a Physiological Basis for the Theory of Music. Not a word in the 
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title about acoustics, though we would say that the book is about musical 
acoustics and psychoacoustics and, in addition, about music in general. 

In this century some musicians have looked to science and technology 
for new directions in music without concentrating on the word acoustics. 
These have included Edgard Varese and Hermann Scherchen. This has not 
been the chief current of musical thought, nor has music been a part of the 
mainstream of science. The greatest influence of science on music has 
come through the development of means for recording and reproducing 
the sounds of music played on conventional musical instruments. The 
phonograph, with its later electronic advances, and radio revolutionized 
the role of music in our lives as radically as photography, motion pictures, 
and television have changed our world of visual experience. Today the 
computer and digital technology in general are working fantastic changes 
in the recording and transmission of sound, and in the generation of 
musical sounds. 

This book is indeed about acoustics- both the physical acoustics 
pertinent to the understanding of conventional musical instruments and 
the sounds they produce, and the psychoacoustics that helps us to under-
stand the perception of musical sounds. But it is about acoustics in relation 
to music and musical ideas. 

The changes that computers and their descendants will continue to 
work in music will come partly through fresh insights of musicians who 
work with new sounds. But computers have opened up new ways of 
analyzing and experimenting with sounds, and new ways of investigation 
the response of human beings to sound, including musical sounds. Today 
we know far more about sounds and their perception than we did in the 
pre-electronic era. And we will know more in the future. 

We can be sure from past experience that new sounds and new 
understanding of sound will affect the course of music profoundly. Better 
sounds have always produced different music. 

Musical instruments have improved greatly in range and quality in the 
past few centuries, and certainly up to the beginning of this century. In 
part, this improvement resulted from (1) the development of better, more 
easily playable instruments, especially brass instruments with valves and 
woodwinds with better key mechanisms; (2) the increasing skill of instru-
mentalists; and (3) an expansion of the range of musical sound, as com-
posers and performers developed and exploited new effects and new 
idioms. 

Whether or not we wish to call such change progress, it brought an 
expansion in the variety of orchestral sound. Think for a moment of the 
sounds of Bach, Mozart, Wagner, Debussy, and Stravinsky. As successive 
generations of composers expanded into new territories of concept, orga-
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Figure 1-1 K; ummhoms, a Renaissance 
group of double-reed instruments. 

nization and sound itself, the music that they produced was different in 
style and sound. They did not confront the past on its own ground. 

In our century, electronic sounds in general have had a profound 
effect on some nonelectronic music. When Edgard Varese wrote Deserts in 
1954 for taped sound and orchestra, he was proud that he had provided 
such continuity of sound quality that it is hard to detect transitions from 
tape to orchestra. Some of Krzysztof Penderecki's music of the 1960s for 
conventional orchestra deliberately imitates "electronic" sound quality, as 
does some orchestral writing of Yannis Xenakis a little earlier. In such 
works, written at a time before synthesized and computer-produced 
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Figure 1-2 A modern B-Aat bass clarinet. 

sounds escaped from their early "electronic" timbre, we hear the orchestra 
refining sounds whose somewhat harsh qualities many listeners found 
objectionable. 

T he influence of electronic music on some composers has been more 
subtle. Gyorgy Ligeti, who had worked with Karlheinz Stockhausen at the 
West German radio electronic studios in · Cologne from 1958 to 1960, 
abandoned the limited and difficult electronic means of tone production 
available at that time. Nevertheless his music for voices and conventional 
instruments shows that he is acutely aware of the subtle qualities of 
electronic sounds and of the musical value of the sophisticated control of 
sound quality. 

Sound, Music, and Computers 5 

Figure 1-3 Edgard Varese {left). 

Computers and Music 
When, in 1957, Max Mathews first used a digital computer to produce 
complex musical sounds, it seemed that this could have a liberating effect 
on composers. In principle, a compu ter can produce any sound. Its poten-
tial is limited only by the composer's imagination. But of this Milton 
Babbitt said, " It's like a grand piano in the hands of a group of savages. 
You know that wonderful sounds can come from it, but will they?" The 
computer will produce novel and fine music, but only through human skill 
and effort. 

Today the ubiquitous personal computer can be adapted to generate 
musical sounds. Inexpensive digital keyboards are more widespread than 
pianos, and a seemingly endless variety of commercial digital hardware is 
available for producing, modifying, and analyzing musical sounds. Com-
posers of many different styles of music are making themselves heard in 
homes, in concerts, and through TV and film scores. 

Does the future of musical sound lie in digital synthesis? Will the 
computer have any influence on other aspects of music, for example form 
or organization? Some have thought it might. 

In 1957 Lejarin A. Hiller, Jr., and his collaborator L. M. Isaacson took 
their inspiration from Johann Joseph Fux (1660- 1741), who codified rules 
to describe the stylistic practices of earlier contrapuntalists, most notably 
Palestrina. Hiller and Isaacson programmed a computer to make random 
choices constrained by some of Fux's rules for first-species counterpoint, 
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Figure 1-4 A page from the score of Krzysztof Penderecki's Polymorphia. 
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Figure 1-5 Milton Babbitt. 

which sets notes of three countermelodies against each note of the original 
melody. A little of this music, called the Iliac Suite, sounds pleasant, but it 
wanders, and so does the listener's attention. Traditionally, the rules of 
counterpoint are not intended to tell you what to do, but what not to do. 
The chance element used in generating the Iliac Suite provided some 
surprise but no overall sense of direction. 

A lack of musical purpose may be inherent in machine composition. 
Rules in music are not canned algorithms that we can use in making a 

Figure 1-6 Lejarin A. HiUer. 
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computer solve cut-and-dried problems over and over again. What, indeed, 
is the place of computers in music? 

Hiller and others have pursued the idea of the computer as a com-
poser, or at least, as a tool in manipulating musical material. I will say little 
about the computer as a composer's aid, for that is a subject unrelated to 
understanding and generating musical sounds. 

We may note, however, that some help that the composer needs can 
be and is supplied by a computer. One of the most useful tasks that a 
computer can do is to produce musical scores of high quality in a day when 
even clear hand copies of music have become excessively expensive. Leland 
Smith's pioneer SCORE program is now available for IBM (or IBM-com-
patible) personal computers. It produces scores of excellent, publishable 
quality. It is easy to make changes and to extract instrumental parts from a 
full orchestral score. T he input to SCORE is the computer keyboard. 
Many later programs have been developed for producing musical scores on 
both Macintosh and IBM computers, including Finale, Professional Com-
poser, and NoteWriter. Some allow playing on a pianolike keyboard 
input. 

The role of the computer in composition goes beyond the production 
of a neat final score. Computers are used to store and manipulate musical 
materials, including lists of notes or their equivalent. 

I think that the chief challenge of the computer lies in another 
direction, that of new sounds and their use. In the past, many composers 
have responded to the challenge of creating new tone colors. Harry Partch 
invented both a new scale and an entire orchestra of new instruments to 
play his music, but Partch's instruments were difficult to build and are not 
commercially available. In their search for new timbres, some composers 
have evoked strange sounds from conventional instruments. Perhaps the 
strangest was the sound of a violin burning on a New York stage, an event 
staged by Lamont Young and Charlotte Moorman. 

Two early-twentieth-century analog instruments, the Theremin and 
the Ondes Martenot, were recognized as unique musical resources by a 
number of composers who wrote idiomatically for them. We have noted 
that electronic analog (as opposed to digital) synthesizers appeared in the 
mid-twentieth century. They played an appreciable role in music through 
the 1960s. Robert Moog's analog synthesizers had a distinct musical im-
pact, for example, through Walter Carlos' Switched On Bach. 

Electronics was an essential part of musique concrete of Pierre 
Schaeffer and others at the Studio d'Essai of the French radio system. 
Analog synthesis was pursued in the West German radio studios at Co-
logne by Karlheinz Stockhausen and others. 

Analog electronics tended to be expensive and not to stay in adjust-
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Figure 1-7 Herbert A. Deutch, with the earliest prototype 
of the Moog synthesizer, which he helped invent. 

menr. Therefore, analog synthesis did not have a musical impact compara-
ble to that which digital synthesis has had. 

New Technology and Computer Music 
The computer offers a wide range of sounds, along with the means for 
controlling them very accurately. The challenge is how to master a con-
stantly changing medium of unlimited acoustic potential, and how to find 
aesthetic reasons for realizing these new capabilities. 

In the early days of computer music, composers encountered a num-
ber of problems. There were no instruments available. Composers had to 
create their own instruments as computer software. And they had to play 
them; no performers were available either. The composer had to supply all 
input through a typewriterlike keyboard. All these factors proved awkward 
in performances. Once a composition was completed, who wanted to sir in 
an auditorium and listen to music coming from loudspeakers? An audience 
could not even be sure when to clap unless the composition gave a clue, or 
unless the house lights came up. Was there an alternative to the concert? 
Only a few commercial recordings were made, and none had a wide 
distribution. 

Some of the troubles with concerts were overcome in various ways. 
One solution was to couple recorded sounds with projected images, as in 
Andy Moorer's Lions Are Growing, a setting of a poem by Richard Brauti-
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Figure 1-8 A working computer score for Andy Moorer's Lions are Growing. 
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gan. In this effective piece composed in 1978, a computer-processed voice 
speaks, sings one line of music and chords, and roars, accompanied by 
appropriate slides. This made computer music into a component of a 
multimedia event, like later digitally synthesized film and TV scores. 
Today, computer film and TV scores are no more and no less recorded and 
replayed than are scores played by musicians on conventional instruments. 

Another concert alternative has been to couple recorded synthesized 
sound with a singer or instrumentalist. This can be very successful, but it 
has not been the only resource. In this day of digital keyboards (Figure 
1-10), parts or all of a score of digital sound can be evoked using a 
conventional keyboard. Through the world-standard MIDI interface, a 
standard commercial keyboard can control commercial digital synthesis 
hardware. Or a keyboard player can supplement or interact with or control 
and modify the process of digital sound synthesis. 

Max Mathews's Radio Baton, a sort of computerized musical drum, 
offers another solution. In all modes of operation the player strikes or 

Figure 1-9 Max Mathews and his Radio Baton. Among other things, the 
Radio Baton enables the performer to beat out the rhythm, loudness, and 
sound balance of a piece whose notation is stored in computer memory. 
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strokes a surface with one or more drumsticks. The velocity of striking can 
control loudness; the position can control timbre in one direction and 
pitch in another. The successive pitches and durations can also be stored in 
the computer. Rate of striking or position of stroking can control tempo, 
and position of striking or stroking can change sound quality and instru-
mental balance. In this way the Radio Baton brings the performer into the 
realm of computer-generated sound, but the skills required are perhaps 
nearer to those of a conductor than of a traditional percussionist. A 
number of similar devices have appeared. 

Today, digital synthesis of sound is used by composers all over the 
world, in universities, in conservatories, in computer-music institutions, 
and in commercial music. The MIT press publishes a quarterly Computer 
Music journal. The worldwide Computer Music Association holds an 
annual International Computer Music Conference, as well as other meet-
ings, and issues a publication called ARRAY. There are commercial publi-
cations, including Keyboard and Electronic Musician. When I look back 
over more than thirty years to the time when Max Mathews generated the 
first computer music piece in 1957 I am struck by obstacles overcome and 
progress made. 

Figure 1-10 The Yamaha SY99, a late model digital keyboard. The earlier 
Yamaha DX7, which reached the market in 1983, was the first completely 
digital keyboard synthesizer, and the first such synthesizer that sold at an 
affordable price (around $2,000). Early "digital" keyboard devices sold for 
about ten times this price. The success of the DX7 was due partly to japanese 
persistence and ingenuity, partly to the use of special integrated circuit chips, 
and partly to the usc of fm (frequency modulation) synthesis, an invention of 
John Chowning. Now discontinued, the DX7 was a landmark that ushered in 
a new era. (Photo courtesy of Yamaha Corp. of America) 
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Many talented young composers use computers and digital synthesis 
hardware as experimental tools to study the intricacies of musical sounds. 
Some will produce digitally synthesized music. Others will compose music 
for conventional instruments. All will be influenced, all will learn many 
new and useful things. And so, I hope, will the reader of this book. 

Although this book discusses computers and the digital analysis and syn-
thesis of musical sounds, it is really about the well-known aspects of all 
aspects of musical sounds, about pitch, scales, consonance, harmony, and 
timbre, and about some less-known aspects of perception. We can't have a 
useful understanding of musical sounds without considering these aspects. 
We will starr with periodicity, pitch, and waves. 



Periodicity, Pitch, attd Waves 

A !though wind instruments have been known for nearly five 
thousand years, and harps for almost as long, sounds of a definite pitch are 
not necessary to music. The earliest musical instruments that archeologists 
have found in Egypt are clappers. Perhaps song accompanied their rhyth-
mic bear, but rhe music may have been largely rhythmical. A knowledge-
able friend of mine tells me that, in very primitive music, the chief interval 
used is the fifth (seven semitones), though sometimes an indefinite musical 
third (four semitones) is also used. 

Rhythm by itself can make music. In our time, Carlos Chavez com-
posed a toccata for percussion alone. A siren is heard in Edgard Van!se's 
Ionisation, but that fine work achieves its effect chiefly by rhythm and 
timbre (sound quality). 

Pitch and Periodicity 
What is pitch? Psychologists insist that pitch is a name for our subjective 
experience of periodic waveforms, rather than a physical property of the 
sound wave that reaches our ears. Loosely, we can use the word pitch to 
denote the shrillness of a sound. In this sense, the hissing sound s has a 
higher pitch than the shushing sound sh. In this chapter, pitch is consid-
ered to be a definite quality related to musical tones, such as those 
produced by the violin, the clarinet, the tuba, the piano, or the human 
voice. We hear such sounds as having definite pitches that correspond to 
particular notes of the musical scale. The present musical standard for 
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"concert pitch" is that the A above middle C sounds at 440 vibrations each 
second. More on pitch can be found on pages 36-37. 

Sounds that have a definite, unambiguous pitch are called periodic, 
because something happens over and over again at a constant rate. Galileo 
found by accident that he could produce a sound having definite pitch by 
scraping a brass plate with a sharp iron chisel. The tiny parallel and 
equidistant ridges left on the brass were a permanent witness to the 
vibrations of the screeching chisel that had engraved them. An old book on 
musical acoustics relates that Galileo also produced a pitched sound by 
rubbing a knife rapidly around the edge of a milled coin. You can try this 
by scratching the edge of a quarter with your fingernail. The sound 
produced as your nail encounters the ridges around the edge of the coin 
does have some pitch. The faster you scratch the coin, the higher the pitch. 

The siren provides a clear illustration of the periodicity related to 
musical pitch. The very siren that Varese used in Ionisation stood in his 
New York studio. When I turned the crank faster, the pitch of the sound 
that the siren produced rose. Why was this? In order to understand, we 
must examine the mechanism of the siren, which was invested by Charles 

p 

Figure 2-1 De Ia Tour's siren. 
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Cagniard de Ia Tour in 1819. Reduced to its essential parts, a siren consists 
of a rotating disk pierced by a number of equally spaced holes near its · 
circumference, and a nozzle that directs a jet of air through the holes as 
they pass, as shown in the diagram in Figure 2-2. Such a siren emits a puff 
of air each time a hole on the disk passes the nozzle. 

The graph in Figure 2-3 represents the succession of puffs of air from 
the siren. As time passes (moving from left to right), there are intervals 
when no air passes through a hole (the low, flat parts of the curve) and 
shorter intervals when puffs of air pass through a hole, shown by asterisks 
where the curve rises and falls. The succession of puffs of air that the siren 
produces is periodic: That is, successive puffs are produced at equal inter-
vals, T seconds apart. The time T between successive puffs is called the 
period. The number of puffs in a standard unit of time (usually one second) 
is the frequency. 

The periodic pulses of air that the siren emirs set up a periodic 
disturbance called a sound wave that travels through the air. When it 
reaches our ears, we hear this periodic wave as a sound with a definite 
musical pitch. When the siren produces 440 pulses per second, we hear the 
A above middle C (in concert pitch). If there are 220 pulses per second, the 
sound is an octave lower. If there are 880 pulses per second, the sound is 
an octave higher. Figure 2-4 shows the frequency of various notes of the 

Nozzle 

Figure 2-2 A simple siren. Compressed air from a nozzle passes through a 
circle of equally spaced holes in a rotating disk. As puffs of air pass through 
the holes, they excite a periodic vibration in the air. The number of puffs per 
second is the number of revolutions per second times the number of holes in 
the circle. This disk has 11 holes. If it revolves 40 rimes a second, it will 
produce 440 pulses a second, which corresponds to rhe pitch A above middle C. 
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* T * T * T * T * T * 
Figure 2-3 Periodic puffs of air produced by a siren. The time, T, between 
one puff and the next (indicated by asterisks) is called the period. 

piano keyboard, together with the ranges of pitch, or compasses, of several 
other musical instruments. 

Only sources of sound that are periodic have a clear, definite, unargu-
able pitch. In this chapter, and in several that follow, only periodic sounds 
and their pitches are considered, for such sounds form the basis of scales 
and traditional harmony. 

Frequency and Pitch 
We might think that the relation between frequency and musical pitch was 
discovered by means of the siren. The number of pulses of air that the siren 
produces in a second is the number of holes around the disk times the 
number of times that the disk revolves each second. We can drive the disk 
at a high speed by turning a crank attached to a train of gears. If we 
measure the number of times per second that we turn the crank, we can 
calculate the number of times per second that the disk rotates, and hence 
the frequency of the pulses at each pitch that the siren produces. 

In fact, the relation between frequency and pitch was discovered 
much more slowly and much less directly, long before the siren was 
invented. The pitch of musical sounds that we now know to be periodic 
was a central aspect of music long before frequency had been related 
clearly to pitch. Many early cultures used pitch in an orderly and effective 
way. Like other peoples, the Greeks must have noticed from the earliest 
times that plucked strings vibrate. Various Greek philosophers associated 
high notes with swift motion and low notes with slow motion, though they 
gave no exact relation of motion to pitch. The new discovery that the 
Greeks made and passed on to posterity is the wonderful numerical rela-
tion between the lengths of strings and musical intervals. This discovery is 
commonly attributed to Pythagoras (c. 500 B.c.) · 
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Figure 2-4 The pitch of periodic musical sounds is determined by their frequency, that is, by the number of periods per 
second. This diagram relates the notes of the musical scale, the positions of the keys of the piano, and the ranges of 
various musical instruments to the corresponding frequencies. Some periodic sounds have frequencies above or below the 
range of the piano keyboard. For such sounds, changes in frequency don't correspond to clear musical intervals, though 
the sensation of pitch does go up and down with frequency. Such sounds don't have a clear or useful musical pitch. 
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Figure 2-5 Greek vase painting of a 
citharist. The cithara was sacred to Apollo. 

Imagine a stretched wire of length L, as shown at the top of the first 
part of Figure 2-6. If the wire is plucked, it will emit a sound with a definite 
pitch, say, middle C. If the tension of the wire is kept constant, but the 
length is shortened by placing a solid wedge somewhere along the wire, the 
pitch of the plucked wire is higher. The figure shows the relation between 
the lengths of the plucked wire and the pitches produced. For example, if 
the wire is shortened to two-thirds of its original length, it will sound the 
note that is a fifth (seven semitones) above the original note. 

The Greeks had a rather mystical regard for number and proportion. 
They were gratified to find a relation between the ratios of the whole 
numbers and familiar musical intervals. They sought similar harmonious 
relations for the proportion of buildings. This was characteristic of their 
thought. Plato, for example, identified the five regular polyhedra (see 
Figure 2-7) with the four elements and the universe (tetrahedron, fire; 
cube, earth; octahedron, air; icosahedron, water; dodecahedron, the 
universe). 

To more modern minds the relation between the lengths of strings 
and musical intervals is empirical, and people sought some physical expla-
nation for it. From the Renaissance on, scientists wanted to get behind the 
regularities of complex phenomena and find their explanation in simple 
terms. In Dialogues Concerning Two New Sciences, published in 1636, 

Length 

t-------L--- ----1 

t----- (516)L ------i 

f-----(4 /S)L - ----l 

f--- --(3/4)L - - ---I 

f---- (2/3)L -----i 

1-(l /2)L ----i 
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Pitched 
length shown 

c 

E 

F 

G 

C' 

Interval a bove origina l length 
Number of 

N ame semitones 

Mino r third 3 

Major third 4 

Fourrh 5 

Fifth 7 

Octave 12 

Figure 2-6 A stretched wire vibrates with a particular frequency and gives a 
tone of a particular pitch. Here we assume this pitch to be middle C. If we 
keep the tension the same, but use a wedge to reduce the vibrating length to 
5/ 6 of the original length, the frequency increases by 6/5, and the pitch goes 
up a minor third, to E b (E-flat). Other fractional reductions in the length of 
the string result in other musical intervals: 4/5, major third, E; 3/4, fourth, F; 
2/ 3, fifth, G; 1/2, octave C. 

Galileo clearly explained the relation between pitch and the frequency of 
vibration of a string, but he wrote only of the relative numbers of vibra-
tions per second corresponding to various musical intervals. 

In Harmonic Universelle, also published in 1636, the French cleric, 
philosopher, and mathematician Marin Mersenne related pitch to the 
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Tetrahedron Cube Octahedron 

Icosahedron Dodecahedron 

Figure 2-7 The five regular polyhedra. 

actual number of vibrations per second. Like Galileo, with whose work he 
was familiar, Merscnnc knew how the frequency of vibration varies with 
the length of a stretched string (frequency is proportional to the reciprocal 
of the length*), with tension (it is proportional to the square root of the 
tension), and with mass per unit length (it is proportional to the reciprocal 
of the square root of mass per unit length). Putting all this together, we 
find 

v'tension 
frequency = k X -----;:======== 

length X .J mass per unit length 

But by what factor k must we multiply this product of quantities in order 
to get the actual number of -vibrations per second? Mersenne found the 
correct factor by counting the number of vibrations per second of long 
strings, including a hemp cord 90 feet long and 1lt2 inch in diameter, and a 
brass wire 138 feet long and 1/48 inch in diameter. ·l 

A r-,J_ \r k"' t 
*For any number n, the reciprocal is 1/ n. f 1 vJ. k ? 
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Figure 2-8 The monochord, used to relative 
lengths to pitch, as depicted in Mersenne's 
Harmoni Universelle. 

Not everyone immediately appreciated or accepted these ideas. Ac-
cording to Samuel Pepys's diary entry for August 8, 1666, Robert Hooke 
told him that "he is able to tell how many strokes a fly makes with her 
wings (those that hum in their flying) by the note that it answers to in 
musique during their flying." Pepys characterized this as "a little too much 
refined." Nevertheless, we now know that the periodic nature of musical 
sounds arises from the nature of waves, in air, water, and strings. 
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Figure 2-9 Portraits of Galileo, Mersenne, and Kepler. 

Sound Waves 
We have all seen the circles of ripples that move outward when a raindrop 
falls into a quiet pool, or when we drop a pebble into smooth water. In a 
similar way, a disturbance of the air moves out from the disturbing source. 
However, sound waves do not travel merely on a surface, but through the 
air in all directions. The air in a sound wave does not move bodily, as water 
flows in a stream, but only locally. One part of the air imparts motion to 
the air ahead, as might happen if, in a long line of closely spaced people, a 
person at the end gave a push to the one ahead, and that one, in turn, 
pushed the next. We can imagine a disturbance traveling to the head of the 
line without anyone taking a step forward. 

We experience sound in air, but we can't see sound waves. Furthermore, 
they pulsate so rapidly that we can't feel their individual pulsations, except 
perhaps in the lowest notes of a pipe organ. We can visibly represent the motion 
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Figure 2-10 Ripples on water. 

of the air in a sound wave with a contrivance made of a series of little weights 
connected by springs (see Figure 2-11 ). If we give a sharp blow to one end of this 
device, the weights down the line move forward and back in turn, and we see a 
wave travel along the series of weights and springs. The figure shows successive 
positions of the masses as a single wave, or pulse, travels to the right. This con-
trivance produces waves that, unlike sound waves, travel in only one dimen-
sion, a straight line. However, the springs and weights accurately represent the 
two properties of air that allow the propagation of sound waves- elasticity 
and mass. 

We are familiar with the elasticity of air from experience with auto-
mobile tires and bicycle pumps. When we compress air, it gets smaller and 
firs into a smaller volume. Conversely, air under pressure expands if it can, 
as we see when we blow into a toy balloon. That air has mass is evident in 
every breeze and strong enough to make visible objects move. Sailboats 
and the leaves of trees move in the wind because the moving air imparts to 
them some of its momentum, a property of moving things that have mass. 

A single sudden disturbance, such as the explosion of a firecracker, 
pushes the air next to the disturbing object. Because air has mass and 
elasticity, it resists and is compressed. The compressed air then expands 
again, pushing in all directions against the air around it. The surrounding 
air in turn becomes compressed, forming a shell of compressed air a little 
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Figure 2-11 A wave can travel along a sequence of weights connected by 
springs. Waves travel through air in a similar manner, for air has both mass 
and springiness, or elasticity. 

distance from the original disturbance. The expansion of the air in this 
shell creates yet another shell, farther out, and so on (see Figure 2-12). · 
Thus, we can think of a single sound wave as an expanding shell of . 
compression. Successive layers of air are compressed and decompressed as 
the wave moves outward from the source of disturbance, but each individ-
ual air molecule moves only a little distance out and back. A steadily 
vibrating object, such as a plucked string, starts an expanding shell of 
compression with each vibration. Thus, we can visualize the emitted tone 
as a series of expanding shells (see Figure 2-13). 

In Figure 2-11 and in actual sound waves, the movement of the. 
medium, whether springs and weights or air molecules, is back and forth · 
along the direction in which the wave itself travels. Such waves are longitu-
dinal. In contrast, waves in water are transverse: That is, most of the 
motion of the water is up and down, sideways to the direction of the 
visible wave. Plucked strings also exhibit transverse waves. 

The tension in a stretched string is a force that tends to straighten out 
bends in the string. Because of the tension, a stretched string, when pulled 
aside at one point, pulls back at that point. However, because it has mass 
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Figure sound wave excited by an exploding firecracker is a single 
expandtng sphencal shell of compression in the air. 

2-13 A .steadily vibrating object, such as a vibrating string, sends out a 
senes ?f expandmg shells of compression. If the object vibrates fast enough 
and wnh enough force, w.e can hear the succession of shells as a tone. 
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and, thus, inertia, it does not simply return to a straight line after it has 
been released, but moves on, to bend on the opposite side. H ere the force 
of tension acts in the opposite direction and pulls the string back again. 
Thus the tension and mass of the string act together ro keep it vibrating 
from side to side (see Figure 2-14). 

We can look at the way in which vibrating strings move from side to 
side in another way: We can consider the vibrations to consist of waves 
that travel along the string and are reflected at its ends. If we displace and 
release a string, we set up a wave that travels down the string to the end, 
where it is reflected as a sort of echo; then it starts back along the string in 
the other direction as a bend on the other side (see Figure 2-15). 

Under favorable conditions, waves in strings can be both seen and felt. 
Inside the glass of the New York State Theater at Lincoln Center 
hangs a sort of curtain made of separate strands of metal beads strung on 
wires or cords. During an intermission, I was standing on a walkway near 
the very top of these s trings of beads, and I idly plucked a string to see how 
a wave would travel down it. A noticeable transverse wave did indeed· 
travel down and then back up the string of beads. 

I wondered if I could observe such a wave at home. First, I fastened a 
heavy thread to a door knob and unwound several tens of feet . Then I 
plucked the string. The results were inconclusive: I couldn't be sure that I 

Figure 2-14 The force of tension (arrows) and the inertia of a plucked string 
keep the string vibrating back and forth. 
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Figure 2-15 A plucked string appears to widen into a curved ribbon whose 
curved edges narrow to a point at each end. However, the actual shape of the 
string at any moment is a straight line sharply bent at one point. These 
"snapshots" of the bend show it traveling as a transverse wave along the 
stretched string. In the last three snapshots, the wave has been reflected at the 
right end of the string, and the bend is moving leftward on the opposite side 
of the string. 

had observed waves, and the thread was a terrible mess when I had 
rewound it on the spool. I had better luck outside, with a nylon fishline. 
After tying one end to a tree, I unwound about sixty feet of line, stretched 
it lightly, and plucked the end that I held. I couldn't convince myself that I 
could see a wave, but I could certainly feel it as a series of jerks or pulses. 
The wave that I had set up traveled to the tree, was reflected there as an 
echo, and was reflected again at the spool that I held, traveling back and 
forth several times before dying out. I felt a little jerk each time the wave 
reached me. 

Whether waves travel longitudinally in air, or transverse along 
stretched strings or in water, they are reflected when they encounter a 
solid, immovable obstacle. (The reflection of waves is discussed in Appen-
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dix E.) A reflected wave is called an echo. How long does it take an echo to 
return? That depends on the distance and on the speed of the wave. In a 
stretched strin&, the velocity, v, of the waves, measured in meters per 
second, is given by 

In the equation, Tis the tension of the string, measured in newtons, and M 
is the mass per unit length of the string, measured in kilograms per meter. 
(Appendix C lists and comments on such units. Appendix D tells more 
about waves.) Movement of the waves is slower in a more massive string 
and faster in a string that is stretched more tightly. 

A violin dealer once came to Max Mathews for advice about choosing 
strings for a violin. He knew that a steel string required more tension to 
produce the same pitch as a gut string, but he didn't know how much 
more, and he feared that trying the steel strings might damage the violin. 
Mathews told him to estimate the increase in tension by weighing . the 
strings. If a steel string is more massive than a gut string, its tension must be 
increased in the same ratio to give the same frequency and pitch. 

The velocity of sound waves is not affected by changes in air pressure, 
because compressed air has both greater density, which slows down the 
waves, and greater elasticity (resistance to compression), which speeds up 
the waves. However, the velocity of sound waves does increase with a rise 
in temperature, because the elasticity of air results from the motion of its 
molecules, which move faster as the temperature is 

At room temperature (conventionally, 20 degrees Celsius or 68 de-
grees Fahrenheit), the velocity of sound is 344 meters per second, 1,128 
feet per second, or 769 miles per hour. This velocity was first measured, 
somewhat inaccurately, by Mersenne in about 1636. He measured the time 
interval between seeing the flash of a gun at a known distance and hearing 
the sound. A more satisfactory measurement was made later, in about 
1750, under the direction of the Academy of Sciences in Paris. Knowing 
the velocity of sound in air, if we count the seconds between seeing a flash 
of lightning and hearing the associated thunder, we can easily tell how far 
away the lightning struck. The distance in feet is about 1,000 times the 
number of seconds-about five seconds for a mile, or three seconds for a 
kilometer. 
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Echoes, Frequency, and Pitch 
Under certain circumstances, echoes demonstrate the relation between 
frequency and pitch. Perhaps the simplest way to hear this is to stand in 
front of a receding sequence of regularly spaced vertical surfaces. These 
could be a sequence of solid seats, as in a stadium, or the seats of a 
Greek-style theater (see Figure 2-16), or even a long flight of broad con-
crete steps. A handclap or any other sharp sound will be reflected from 
successively more distant surfaces, so that it returns as a series of echoes. 
What is the time interval between successive echoes? 

Suppose that the reflecting surfaces are spaced a distance W apart. In 
reflection from the next farther surface, the sound has to travel an added 
distance W to reach the surface and an added distance W to get back (see 
Figure 2-17). For an observer at the sound source, the time interval T 
between one echo and the next is two times W divided by the velocity v of 
sound: 

T=2W 
v 

Figure 2-16 Greek-style theater at the University of California, Berkeley. 



32 THE SCIENCE OF MUSICAL SOUND 

Figure 2-17 A single handclap in fro':lt of a receding sequence of steps or 
sears, as in a football stadium or a Greek theater, produces a periodic 
succession of echoes. If they are loud enough, they can be heard as a sound 
having a definite pitch. 

The frequency (, which is the number of echoes per second, is thus 

1 v f= - = -T 2W 

If the distance W between seats is 3 feet, the frequency would be 188 
echoes per second. This corresponds to a pitch of about the first G below 
middle C. For steps having a standard depth of 10 inches, the frequency 
would be 677 echoes per second, or a pitch between those of the second E 
and F above middle C. 

It is easier to hear successive echoes from two hard, parallel surfaces. I 
succeeded in hearing a sequence of echoes as I stood on a concrete 
walkway under a projecting canopy of the Drama Building of the Univer-
sity of California at Santa Cruz (see Figure 2-18). When I clapped my 
hands, I heard a distinct sequence of claps, or pulses, of decreasing inten-
sity. The overhang was about twenty feet above the concrete on which I 
stood so the reflections repeated with a frequency of about 28 per second. 
I didn't hear them as a pitch, but as a sequence of sharp sounds (see Figure 
2-19). The hall of our house is four feet wide; for someone standing in the 
middle of the hall, the reflections coming alternately from both walls 
would have a frequency of 

f= !!._ = 1128 
w 4 
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Figure 2-18 The overhang at the Drama Building, University of California at 
Santa Cruz. 

This calculation gives a frequency of 282 echoes per second-roughly, the 
C # (C-sharp) above middle C. I can't say that I actually hear this pitch when 
I clap my hands in that hall, but on occasion I have heard a tonelike flutter 
when I clapped my hands in some rooms and halls that had hard, uninter-
rupted parallel walls. 

Vibrations in Musical Instruments 
As we have seen, with each vibration of a stretched string, a transverse 
wave travels the length of the string twice-once in each direction. Thus 
the frequency, the number of vibrations per second, is given by 

v f= -2L 

Here L is the length of the freely vibrating string, and vis the velocity with 
which a transverse wave travels along the string. It has already been noted 
that this velocity is the square root of the ratio of the tension T to the mass 
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Figure 2-19 The echo from a handclap under a high overhang must travel up 
to the overhang and back, a distance approximately 2H, every time it returns 
to the observer. The echo from a handclap in the middle of a hallway must 
travel to the wall and back, a distance W, every time it returns. 

per unit length, M. Thus, the frequency of vibration of the stretched string 
of a musical instrument can also be written. 

(= JTj M 
2L 

All stringed instruments are tuned by adjusting the tension T of the strings. 
Thus, tightening a guitar string, for example, raises the pitch of the note 
that it produces, because an increase in T causes an increase in (. While 
playing the guitar, however, the musician continually changes the pitch of 
the strings by changing their length L. When a string is depressed on one 
side of a fret, the string does not vibrate on that side; the rest of the string, 
being shorter than the whole, then produces a higher note when it is 
plucked. Although the main change in pitch is caused by reducing the 
length of the string, the guitarist can also introduce minor variations into 
the sound of a vibrating string by wiggling the finger that holds the string 
down. This causes very slight fluctuations in T, and thus in (, so that the 
string does not produce a steady tone, but a vibrato. 

Each string of any instrument must be chosen carefully so that, at a 
reasonable tension, the string will produce a sound of the desired pitch and 
loudness. In a piano, the bass strings are heavily overwound to increase 
their mass, besides being longer than the treble strings. Because of the great 
mass of the bass strings, a wave travels along them slowly; because of their 
long length, it has to travel far. The massive bass strings also give a loud 
sound. In order to make higher notes comparably loud, two strings (also 

Periodicity, Pitch, and Waves 35 

overwound) are used per note in the midrange and three strings (plain) in 
the upper range. 

In wind instruments, the frequency is determined by the time it takes 
a sound wave in air to travel from one end of a rube to another. A pipe of 
length L that is open at both ends vibrates at a frequency 

v f=-2L 

A pipe closed at one end gives a sound one octave lower than an open pipe 
of the same length. In an organ, for example, an open 8-foot pipe has a 
frequency of about 70 vibrations per second, roughly two octaves below 
middle C. A 16-foot open pipe or an 8-foot pipe closed at one end would 
sound another octave lower. 

Organ pipes are arranged in ranks of pipes (also called stops or 
registers). A stop contains one pipe for each key of the keyboard and can 
be referred to by the length of its longest pipe. Thus all the pipes of a 
16-foot stop are twice as long as the corresponding pipes of an 8-foot stop, 
and all their pitches are an octave lower. 

The pipes of different stops differ not only in length but also in shape 
and composition, which gives them different timbres, or qualities of sound. 
Furthermore, two or more stops can be played simultaneously to give 
special timbres. Mutation stops are designed for just this purpose: the 
nazard, or 22h-foor stop, gives sounds pitched an octave and a fifth above 
those of an 8-foot stop; the tierce, or 1 3/s-foot stop, gives sounds pitched 
two octaves and a major third above those of an 8-foot stop; the larigot, or 
11h-foot srop, gives sounds pitched two octaves and a fifth above those of 
an 8-foot stop. By employing mutation stops together with 8-, 4-, or 2-foot 
stops, organists produce strange, juicy timbres that may sound to the 
uninitiated like a lot of wrong notes going along with the melody. 

We have seen in this chapter that the pitch of a sound depends on the 
frequency of the vibrations that produce it. In a siren, the frequency, and 
hence the pitch, of the sound depends on the number of holes that pass the 
nozzle each second. Echoes from a sequence of equally spaced surfaces can 
produce a tone whose frequency is determined by the number of echoes 
that reach the observer each second. In a vibrating string or a speaking 
organ pipe, the pitch is determined by how much time it takes a transverse 
wave or a sound wave to travel back and forth along the string or pipe. The 
next chapter explores ideas of frequency and periodicity in more detail. 
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A Note on Musical Pitch 

Pitch originated as a musical term and has become a psychological term 
used to designate a perceived quality of sound. 

In music, the pitch of musical sounds was perceived long before the 
physical basis for pitch was understood. One of the great musical {and 
psychological} discoveries is that for periodic musical sounds, such as those 
produced by the organ, strings, winds, and the human voice, pitch is tied 
unalterably to the periodicity or frequency with which the waveform of 
the sound repeats. • 

Periodic musical sounds are made up of many harmonically related 
frequency components, or partials, of frequencies {0 , 2{0 , 3{0 , 4{0 , and so 
forth. Such sounds have many perceived qualities besides pitch. One of 
rhese orher qualities is shrillness, or brightness. A sound with intense 
high-frequency partials is bright, or shrill. A sound in which low-frequency 
partials predominate is not bright, but dull. 

When you listen to periodic musical sounds on a stereo system, you 
can change the brightness by turning the tone comrol, but this doesn't 
change the pitch. The brightness depends on the relative intensities of 
partials of various frequencies. Turning the tone control can change the 
relations of the partials, but won't change the periodicity of the sound, 
which is the same as the fundamental, the frequency of the first partial, (0 .t 

Sounds that are not periodic musical sounds are nor as clear and 
distinguishable in pitch and brightness, but some of them can be granted 
pitch by a sort of musical courtesy. Among these are sine waves (pure 
tones}, the tones of bells, the clucking sound that we can make with the 
tongue and the roof of the mouth, the somewhat related sound of the 
Jew's harp, and the sound of a band of noise. 

Sine waves are peculiar in chat they consist of a single harmonic 
partial. The sense of pitch that they give is not as certain as that of other 
periodic sounds; it can differ a little with intensity, and between the two 
ears. For other periodic sounds, the sense of the octave is very strong, for 
the partials of a sound a' {that is, an octave above sound a} are all present 
in sound a.t The sense of the octave is not strong with sine waves. 

. ----------------
*There can be an ambiguity of an octave in the pitch of a periodic musical 
sound, because musicians (though rarely) report the pitch as being 
an octave away from where 1t falls according to its periodicity. 
tThe first parrial need nor be physically present in rhe sound wave, bur irs 
absence doesn't alrer the pitch. This psychological phenomenon will be 
discussed in Chapter 6. 
:j:lf a sound has frequency a, irs partials have frequencies 2a, 3a, 4a, and so 
forth. The octave of a has frequency 2a, which has panials 4a, 6a 8a and so 
forth. All frequencies in this latter series also occur in the first series. ' 
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Furthermore, because sine waves contain only one frequency component, 
their brightness is tied inextricably to their pitch. 

Musically trained people react to sine waves and their pitches much as 
they react to periodic musical sounds. Naive people may react differently. 
By asking naive subjects to relate frequency changes of sine waves to a 
halving of pitch, psychologists found a mel scale of pitch (for sine waves). 
In the mel scale there is no simple relation between frequency and pitch; 
nothing like the octave shows up. I think the mel scale is a scale of 
brightness, not of pitch. It might be possible to check this by using musical 
sounds whose brightness and pitch could be varied independently. 

The sounds of orchestral bells and of tuned bells are not periodic, 
and these sounds do not have all the properties of periodic musical 
sounds. One can play tunes with bells, and the pitches that are assigned to 
bells can be explained largely in terms of the frequencies of prominent, 
almost-harmonic partials. 

Clucking sounds and shush ing sounds (bands of noise} have a 
brightness, but no periodicity. Oddly, we can play a recognizable tune w ith 
these sounds, even though they cannot be heard as combining into chords 
or harmony. Apparently, in the absence of a clear pitch, brightness can 
suggest pitch. This seems natural. When we play a scale on a musical 
instrument, the brightness increases as we go up the scale. But the "pitch" 
of clucks or bands of noise is only a suggestion of pitch. It depends on the 
frequency at which the brightness spectrum peaks, and this {and therefore 
the "pitch") changes when we turn the tone control. 

Even periodic sounds can be constructed to give unusual pitch effects, 
bur such sounds are not produced by musical instruments. For periodic 
musical sounds, the pitch is tied firmly to their periodicity, the frequency 
of the first harmonic partial. The only mistake we can make in "confusing" 
pitch, a sensation, with periodicity, the numerical frequency of the 
fundamental, is that of offending psychologists. 
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W. have seen that sound waves travel from the source of sound 
to our ears as fluctuations in air pressure. Different sorts of fluctuations 
cause us to hear a wonderful variety of different and interesting sounds, 
sounds that we can identify and appreciate. Among these are musical 
sounds, in which the air pressure rises and falls almost periodically with 
time and which have a pitch that corresponds to the frequency of this 
nearly periodic rise and fall in air pressure. 

We can pick up the variation of sound pressure with a microphone, 
and we can use a cathode-ray oscilloscope to trace out the way that the 
sound pressure varies with time. Thus we can see the waveform of a sound 
wave. Is there a method that allows us to analyze sound waves and 
understand why the ear responds differently to different sounds? There is, 
indeed, and that is the subject of this chapter. 

Sine Waves 
Among the sounds used in the laboratory there is one, called a pure tone, 
or sine wave, in which the air pressure rises and falls sinusoidally with time. 
A mathematical explanation of sine waves is given on pages 61-63. 

A sine wave is simply a tone for which the air pressure varies sinusoi-
dally with time. It is a mathematical function that has unique and impor-
tant properties. We can represent any periodic variation of air pressure 
:>Ver time as a sum of sinusoidal components (as we will see later). Further-
note, in responding to various sounds, the mechanism of the ear partly 
;orts out sinusoidal components of different ranges of frequency. When 
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we listen to a musical sound, such as that of a voice or of a clarinet, 
different nerve fibers that go from the ear to the brain are excited by 
different ranges of the sinusoidal components. We can find these ranges by 
analysis of the sound wave. 

The shape of a sine wave is completely described by three attributes: 
amplitude, period, and phase. First, the amplitude represents the maximum 
displacement of the varying quantity from its average value. In Figure 3-1, 
the amplitude is h. In a sound wave, air pressure periodically rises to a high 
pressure (P) and falls to a low pressure (-P ), above and below the average 
air pressure. 

Second, the period, T, of a sine wave is the time between amplitude 
peaks, usually measured in seconds. The reciprocal of T, 1/T, therefore 
gives the number of peaks per second, which is the frequency, (, of the sine 
wave: 

(=1/T 

Frequencies used to be started as cycles per second, or cycles for short. 
Today the term hertz, honoring the physicist Heinrich Hertz (1857 -1894), 
is used to designate cycles per second. The abbreviation of hertz is Hz.* 
For example, a sine wave with a frequency of 440 Hz has a period given by 

*Often people use frequency to describe the rate of oscillation of complex 
waveforms that are made up of many sinusoidal components of different 
frequencies. In this book I try to use frequency and hertz only for sine waves, 
and periodicity for the number of cycles per second of complex waveforms. 
This may seem awkward, but it is unambiguous. 

Figure 3-1 A sine wave, or pure tone. 
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T = 1/440 = .0022727 seconds 

Similarly, a sine wave with a period of 1/1000 or 0.001 second will have a 
frequency of 

f = 1/0.001 = 1,000 Hz 

Third, a sine wave has a phase. The two sine waves shown in Figure 3-2 
have the same frequency and amplitude, but have different phases because 
they reach their amplitude peaks and cross the horizontal axis at different 
times. 

Why are pure tones, with their sinusoidal variation of air pressure, 
important for understanding musical sound? We almost never hear pure 
tones, except in the laboratory, or when we listen to a tuning fork that isn't 
struck too hard. Pure tones sound very uninteresting. When the pitch is 
low, they sound like the hum of a malfunctioning radio. Pure tones of 
higher pitch are steady but not bright or interesting whistles. Pure tones are 
also, in many ways, odd and unnatural sounds. In a reverberant room we 
can't sense the direction from which they come. Some people hear the 
pitch of a pure tone differently in the left and right ears; this is called 
diplacusis binauralis. Even for people with normal hearing, pure tones 

T/4 
r-'----1 

0 

T 

Figure 3-2 A sine wave is characterized completely by three quantities: its 
amplitude or extreme height, its period (the time between one peak and the 
next), and its phase, which we can take as the time when the wave crosses the 
axis when going upward. In this figure, the solid curve crosses the axis going 
upward at time t = 0. The dashed curve peaks at t = 0 and crosses the axis 
going upward at a time T /4 earlier (at t = - T j 4, in which T is the period of 
the wave). The solid curve is called a sine curve, and the dashed curve is called 
a cosi?!_e curve. A sine curve and a cosine curve differ only in their phases. 
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change pitch noticeably when they are made very loud; this effect is nearly 
absent for musical sounds. Finally, in the low range of pitch, below middle 
C, pure tones aren't nearly as loud as instrumental sounds of the same 
power and pitch. 

Happily, our ears encounter pure tones (that is, sine waves) only in 
acoustical laboratories, or sometimes as the output of inferior or ill-used 
electronic musical synthesizers. The importance of sine waves lies not in 
their characteristic sounds, but in their inextricable association with the 
systems that produce and process actual musical sounds, systems such as 
vibrating strings, or columns of air, or bells and gongs, or drumheads. 
These are, approximately at least, linear systems, and sine waves are the 
mathematical way in which the time variations of the vibrations of linear 
systems are expressed. 

We are all familiar with stereo amplifiers. Such amplifiers are linear. If 
you put one frequency in (via a radio tuner or CD player for example), you 
get only that frequency out, not other sounds. If you double the amplitude 
of the input signal, you double the amplitude of the output signal. These 
are more than mere characteristics of linear systems; a system is linear if 
these things are true. 

But if you put too intense a sine wave into the input of any actual 
amplifier, the sine wave will produce extraneous sounds in the output. The 
amplifier overloads, and you will hear frequencies in the output that 
weren't in the input. Further, . the amplitude of the output signal is no 
longer directly proportional to that of the input signal. Physical systems 
aren't exactly linear, whether they are amplifiers or the mechanical parts of 
the middle and inner ear that vibrate in accord with the sounds about us. 
But at small amplitudes, actual physical systems do behave in a linear 
fashion. 

This is true of strings that vibrate when struck or plucked, and of 
columns of air in organ pipes or horns, and of bells and gongs and 
drumheads. Sine waves also have a crucial relation to such vibrations. 
When such a resonant system is set in motion, the overall vibration is 
found to be made up of a host of different patterns of vibration called 
modes. The vibration of each mode varies sinusoidally with time. Or 
rather, the vibration functions as a decaying sine wave, a wave that loses 
some constant fraction of its amplitude in each short successive period of 
time (such decay is called Thus, at their very source, musical 
sounds are associated with sine waves- but with a collection of sine waves 
of many different frequencies. 

The French mathematician Francois Marie Charles Fourier (1772-
1837) invented a type of mathematical analysis by which it can be proved 
that any periodic wave, however it may have been generated, can be 
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represented as the sum of sine waves having the appropriate amplitude, 
frequency, and phase. Furthermore, the frequencies of the component 
waves are related in a simple way: They are all whole-number multiples of a 
single frequency, for example, (0 , 2(0 , 3(0 , and so on. 

A Fourier representation of a complicated wave can require very many 
components, even an infinite number. However, to approximate a wave to 
a desired degree of accuracy, fewer components may be adequate. A 
deceptively simple-looking wave whose Fourier representation requires an 
infinite number of components is the square wave (see Figure 3-3). A 
square wave having amplitude 1 and frequency (0 can be represented as the 
sum of sine waves having frequencies (0 , 3{0 , 5{0 , 7{0 (and so on, indefi-
nitely), amplitudes 1, 1/3, 1/5, 1/7 (and so on, indefinitely), and the 
proper phases (see Figure 3-4). (If the number of components being added 
is finite, as it will be in any real amplifier, the resulting square wave will not 
have exactly sharp corners; that is, it will be somewhat distorted.) We 
should note that square waves are peculiar in being made up only of odd 
frequency components. Most periodic sound waves consist of both odd 
and even frequency components (although closed organ pipes and some 
wind instruments do have predominantly old frequency components). 

There are three different systems for naming the sinusoidal frequency 
components of a periodic sound, as shown in Table 3-1. Notice that the 
number of the harmonic or partial is the same as that of the relative 
frequency; for example, 5{0 is the fifth harmonic or the fifth partial. 
However, 5{0 , the fifth harmonic, is the fourth overtone, so it is important 
not to confuse these three terms. 

It is convenient to use the term harmonic to deal with strictly periodic 
sounds. However, some musical sounds (usually percussion) consist of 
frequencies that are not harmonic, that is, they are not integral multiples of 
the lowest frequency. For example, the frequencies of a "free" (lightly 
supported) vibrating rod or bar might be 
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Figure 3-3 A square wave. 
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Figure 3-4 . A. Three waves, of frequencies (0 , 3 (0 , and 5 fo. B. The wave that 
results from adding together the three waves in part A. They roughly 
approximate a square wave. C. The approximation to a square wave produced 
by adding together the first nineteen components in the same series as in part A. 

Table 3-1. Systems for Naming Frequency Components 

Frequency Harmonics Overtones Partials 

fo Fundamental Fundamental First partial 

2fo Second harmonic First overtone Second partial 

3fo Third harmonic Second overtone Third partial 

4fo Fourth harmonic Third overtone Fourth partial 
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Figure 3-5 The first twelve harmonies of C2 • The representations of the 
pitches of the seventh and eleventh harmonics are approximate. 

fo, 2.756f0 , 5.404f0 , 8.933f0 , etc. 

It would sound rather illogical to call the-se higher frequencies "nonhar-
monic harmonics," so instead they are called "nonharmonic partials." ltis 
also convenient that the numbering of the partials agrees with the numeri-
cal order of the frequency. The lowest frequency is always the first partial, 
the next higher frequency "is the second partial, and so on. 

In principle, a sum of sine waves can be used to represent any sound. 
If the sound is of finite duration, as actual musical sounds are, it cannot be 
exactly periodic over all time, as a Fourier series of harmonic partials 
implies. In representing exactly sounds of finite duration, we must include 
components of all frequencies by using a Fourier integral. 

Let us also consider "noisy" sounds, such as the hiss of escaping air or 
the sh or s sounds of speech. Such sounds can be represented as the sum of 
sine waves that have slightly different frequencies. If you sound the sh 
twice, the waveforms won't look exactly alike. The power of the sound in 
any narrow range of frequencies will be about the same, but the amplitudes 
and phases of the individual frequency components won't be identical. 
Nevertheless, the two sh sounds will sound just the same; we will hear 
them as being the same. 

Trying to represent actual sounds as sums of true sine waves, which 
persist from the infinite past to the infinite future, is . a mathematical 
artifice. Consider the (nearly) periodic sounds produced br musical instru-
ments. A sum of harmonically related sine waves doesn't correctly repre-
sent such a sound, because the sound starts, persists a while, and dies away. 

In practice, we use the ideas of sine waves and their frequencies and 
amplitudes to characterize musical sounds, and other sounds as well. The 
measurements we really make are those suitable for our purposes, and are 
as accurate as they need be. They are similar in concept to Fourier series 
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Figure 3-6 Hermann von. Helmholtz. 

and Fourier integrals but aren't quite the same. Let us consider how we 
actually think of and analyze sounds. 

Resonance 
In this book On the Sensation of Tone as a Physiological Basis for the 
Theory of Music (1877), the great nineteenth-century scientist Hermann 
von Helmholtz (1821-1894) made extensive use of the representation of 
musical sounds as sums of sine waves. In his experimental work, he 
analyzed sounds by means of resonators that respond strongly to sinusoidal 
components near a particular resonant frequency. This will be our ap-
proach to the properties of musical sounds, both in analysis and synthesis. 

In the nineteenth century the only available resonators were the 
Helmholtz resonators that Helmholtz himself devised. These were usually 
hollow glass spheres that had two short tubular necks, diametrically oppo-
site one another. One opening was put to the ear, the other directed at the 
source of a periodic sound. If the sound contained a harmonic whose 
frequency was equal to or close to the resonant frequency ofthe cavity of 
the resonator, the resonator would amplify the harmonic, so that it could 
be heard separately. The sound in the resonator would also persist even 
after the source of periodic sound had suddenly been turned off. By using a 
succession of such resonators, Helmholtz could search out and estimate 
the strengths of the harmonics of a periodic sound. He could also find the 
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Figure 3-7 A Helmholtz resonator. 

frequencies of nonharmonic partials, such as those of bells and gongs (see 
Chapter 13). 

We can use a piano to experience something of what Helmholtz did. 
Hold the .damper or sustaining pedal (the "loud" pedal") down (this lifts 
the felt dampers off the strings), and whistle near the strings. After you 
stop whistling, you will hear a ghostly persistence of the note that you have 
whistled. This dies away with time. The piano strings act as resonators. 
Those that can vibrate at the frequencies of the whistled note do so; those 
that can't, don't. 

A taut piano string can vibrate at more than one frequency. The 
lowest, or fundamental, mode of oscillation was described in Chapter 2 
(see Figure 2-14). These vibrations can be regarded as sine waves traveling 
along the string with a constant velocity v, and being reflected repeatedly 
at the ends of the string. If L is the length of the string, and if the 
wavelength (distance between peaks of the sine waves) is 2L, we get the 
pattern of vibration shown in part A of Figure 3-8, in which the resonant 
frequency (0 is 

The next three resonant frequencies, 2(0 , 3(0 , 4(0 , have the patterns or 
modes of vibration shown in parts B, C, and D, respectively. 

Plucking or striking a stretched string excites many of these vibrations 
and produces a complex sound wave made up of many harmonics. The 
length, mass, and tension of the string determine the periodicity and pitch 
of the sound that is produced, but do not determine the exact waveform. 
The relative strengths of the various harmonics depend on whether we 
pluck or strike a string, and on where along its length we pluck or strike it. 
We can hear the difference in the sound quality or timbre. For example, 
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Wavelength = 2L, = (0 = v /2L 

B 

Wavelength = L, frequency = 2(0 = vi L 

c 

Wavelength = (2/3)L, frequency = 3(0 = 3vi2L 

D 

Wavelength= (1/2)L, frequency= 4(0 = 2v/L 

Figure 3-8 A vibrating string can have several resonant modes, which 
correspond to standing waves of different wavelengths and frequencies. These 
are the natural harmonics of the string. Parts A through D show the wavelength 
and frequency of the first four harmonics. 

the plucked string of a harpsichord sounds quite different from the struck 
string of a piano. When we excite a string by bowing it, we get a persistent 
sound of yet another character, even though the resonances of the string 
may be the same. ' 

Physical resonators are used in some musical instruments. The vertical 
metal tubes under the wooden bars of xylophones and marimbas, and the 
bamboo tubes under the brass bars of gamelan instruments, act as resona-
tors that intensify and prolong certain of the partials generated by striking 
the bars, specifically, the partials that correspond to pitches of the scale. 
Many European baroque instruments, such as the viola d'amore, the viola 
bastarda, and the baryton, made use of resonators called sympathetic 
strings. These affected the relative intensities of the partials produced by 
bowing a string, and emitted a sustained tone even after bowing was 
stopped or fingering was altered., 
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Figure 3-9 Gamelan. 

Figure 3-10 Jazz trumpeters Howard 
McGee (right) and Miles Davis; 
McGee's embouchure is relaxed; he is 
playing a relatively low note . 
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The long tubes of brass instruments resonate at harmonically related 
frequencies. Which frequency is excited when the instrument is played 
depends on how the player constricts his or her lips. The tubular structures 
of woodwind instruments are resonators whose resonant frequencies are 
controlled by opening or closing various holes. 

Resonances also have a noticeable effect on the timbre of musical 
sounds. The vocal tract has several resonances that emphasize various 
ranges of frequency in the sound produced by the vibration of the vocal 
folds. By changing the shape of the vocal tract, we change the frequencies 
of these resonances, or formants, which determine what vowel sound we 
produce. Table 3-2 gives the first three resonance or formant frequencies 
for some vowel sounds. The resonances of the soundboard of the violin 
greatly affect its timbre. Figure 3-12 shows, as a function of frequency, the 
ratio of the sound radiated by a good violin to the motion of the bridge 
caused by bowing the string. The rising and falling curve reduces the 
intensities of some partials and increases those of others. The suppression 
of some partials is important for the musical quality of the violin tone. In 
poor violins, the sound is harsh; a curve like that shown here does not rise 
and fall so markedly. 

Conventional musical instruments use mechanical or acoustical reso-
nators in producing musical sounds. When analyzing a sound, we pick the 

Figure 3-11 Jazz trumpeter Woody Shaw: his tense embouchure shows that 
he is playing a relatively high note. 
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Table 3-2. The First Three Formants of Selected Vowels 

Cycles per Second per Vowel 
Formant 
number Heed Hid Head Had Hod Hawd Hood Who'd 

1 200 400 600 800 700 400 300 200 
2 2,300 2,100 1,900 1,800 1,200 1,000 800 800 
3 3,200 2,700 2,600 2,400 2,300 2,200 2,100 2,050 

sound up with a microphone and determine its frequency content elec-
tronically. Early analyzing devices made use of electric circuits called 
filters. A filter can be described by a curve that shows how the ratio of 
output amplitude to input amplitude varies with frequency (see Figure 
3-13). 

Present-day devices for frequency analysis make use of digital tech-
niques. In a digital spectrum analyzer, the Fourier spectra of short sections 
of the sound wave are computed by a specialized digital computer and 
displayed on a televisionlike screen. Or the analysis can be made by a 
computer with a sound-processing board. The curve on the screen shows 
intensity as height, and frequency as distance to the right (as shown in 
Figure 3-14). The curve in this figure has one peak or line, representing a 

10 

Frequency (thousands of Hz) 

Figure 3-12 The body of a violin resonates more at some frequencies than at 
others. This is a plot of the intensity of the sound wave produced by exciting 
the bridge of a famous Guarneri violin with a sinusoidal source of constant 
amplitude and increasing frequency. 
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Figure 3-13 A resonator or electronic filter 
responds only to a narrow range of frequencies. 
In this curve the ratio of output amplitude to 
input amplitude is plotted against the frequency 
of the input wave. The output peaks the 
resonant frequency, fr· 

Figure 3-14 A digital spectrum analyzer displays a graph of intensity against 
frequency on a cathode-ray tube. (Photo of HP 8594A portable spectrum 
analyzer courtesy of Hewlett-Packard, Signal Analysis Division, Rohnert Park, 
California) 
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single frequency. The line spectrum of a musical sound has many sharp 
peaks, each corresponding to a single partial or frequency component. 

In a musical sound, the intensity of the various partials can change 
with time. This can be depicted by a perspective drawing, as in Figure 3-15, 
which shows a sound having six harmonic partials. With the onset of the 
sound, the intensity of each partial rises to a peak; as the sound dies away, 
the intensity falls. The higher partials have a lower peak intensity than do 
the lower partials. As will be .seen, such a representation isn't mathemati-
cally accurate, because an actual sine wave can't change intensity with 
time; it goes on at the same intensity forever. 

The perspective drawing in Figure 3-16 is made up of a sequence of 
line spectra of a tom-tom. We see that the many frequency peaks are not 
truly separate, as in an ideal line spectrum. 

We can understand why we cannot represent both frequency and time 
precisely if we consider another sound-analyzing device called a sonograph 
or sound spectrograph, which produces sonograms. Frequency is displayed 
vertically, and time is displayed horizontally; intensity is indicated by the 
darkness of the shading. The sonograms in Figure 3-17 are those of a 
human voice. · 

The broad horizontal bands in both sonograms represent the resonant 
frequencies of the vocal tract, or formants. Such resonances change rela-

2(o 
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Figure 3-15 A perspective drawing of a sound in which the intensities of the 
six harmonics shown rise and fall with time. 
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Figure 3-16 Depiction of how the spectrum of the sound of a tom-tom 
changes with time after the tom-tom is struck. 

0 

tively slowly with time as we speak. However, the upper and lower sono-
grams differ in detail. In the upper sonogram we see horizontal striations. 
They represent the individual harmonic partials of the voice, and their 
frequency separation is equal to the pitch frequency. In the lower sono-
gram we see vertical striations, separated by a time equal to the period, T, 
of the vibration of the vocal folds (the pitch frequency is 1/T); but we 
don't see any horizontal striations. The upper sonogram was made with a 
narrow-band filter, which can sort out individual harmonics. However, 
such a filter cannot respond to rapid changes of sound pressure, so we 
don't see vertical striations corresponding to individual pitch periods. The 
lower sonogram was made with a broader-band filter, which responds to 
several harmonics at once; hence we do not see horizontal striations 
corresponding to individual harmonics, but we do see vertical striations 
corresponding to individual pitch periods. 

Using filters to analyze sound means that, if we depict frequency in 
fine detail, we can't depict time in fine or, if we depict time in fine 
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Figure 3-17 Sonograms of a human voice, saying the vowel a in "had." 
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detail, we can't depict frequency in fine detail. This is why Figure 3-15 is 
only qualitatively (not quantitatively) correct, for it seems to show both 
frequency and time very accurately. · 

Sonograms are usually used to get an approximate idea of how ampli-
tude or power varies with frequency and time. However, if we take 
successive spectra of properly overlapping portions of a waveform in the 
right way we can reconstruct the waveform from the successive spectra . 

. This is easier if in taking the successive spectra we compute the phases of 
the sinusoidal components as well as their amplitudes. 

A device that is built or programmed for such analysis into successive 
spectra and resynthesis into the original waveform is called a phase vo-
coder. Besides being used in studying musical sounds, phase vocoders are 
used to alter sounds in useful ways by modifying the spectral representa-
tion before resynthesis. Phase vocoders can be used to shift the pitch of 
sounds, or to stretch them out or compress them in time, or both at once. 

Although no musical sound is truly periodic in persisting unchanged 
forever, most musical sounds are nearly periodic. They can be approxi-
mated very closely by a fairly small number of sinelike waves whose 
amplitudes rise and fall slowly with time, and whose frequencies are nearly 
harmonically related; so they can be represented by a succession of chang-
ing line spectra. The vibration of a piano string dies away slowly; in its line 
spectrum, the peaks that represent the various harmonics decrease in 
height as the intensity of the sound decreases. Bells and gongs (see Chapter 
13) do not produce periodic sounds, but they do have line spectra that 
decrease in amplitude gradually as the sound dies away. 

Suppose we measure the spectrum of a sound and get a smooth curve 
rather than a series of spikes, as in Figure 3-18. Such a sound can be 

(p 

Figure 3-18 Spectrogram of a noise that is made up of an infinite number of 
sinusoidal frequency components whose phases are random and therefore 
don't peak at the same time. Instead, they give the bell-curve distribution 
familiar from statistics. A noise with a spectrum like this one will give a sense 
of pitch at the frequency {p, at which the spectrogram peaks. 
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represented, not by a finite number of frequency components, but by a 
continuous distribution of partials throughout a range of frequencies. You 
can make such a sound by whispering a vowel. The frequency (or frequen-
cies) at which the spectrum peaks depends on the resonance (or reso-
nances) of the vocal tract. If you whisper an e, you will get a "high-
pitched" sound; if you whisper a u, you will get a "low-pitched" sound. 
This is because the resonances of the vocal tract occur at higher frequen-
cies for an e than for a u. In a whispered e, the resonances emphasize 
high-frequency components in the breathy sound. In a whispered u, the 
resonances emphasize lower-frequency components. 

Noise and Pitch 
Noise can be narrow-band or. that is, the peak, or hump, in 
the spectrum can be narrow or broad. If the spectrum has no peak, so that 
all frequencies within a range are present equally, the noise is called white 
noise. This is the even, breathy, faintly frying sound that you get on some 
noisy telephone connections, or when you turn the volume control of an 
AM radio up when it is not tuned to a station. 

If we gradually narrow the width of a spectral peak such as that shown 
in Figure 3-18, we will get a more and more pronounced sense of pitch, 
which corresponds to the frequency (fp) of the peak. When the peak 
becomes very narrow, the noise ceases to sound noisy. Instead, it sounds 
like a sine wave that wavers randomly in amplitude, but only a little in 
frequency (see Figure 3-19). Max Mathews (in an early computer piece 
called The Second Law) and others have produced computer music that 
uses noise of various bandwidths, both narrow-band tonelike noise and 
broader-band shushing noise. 

Sounds that have a continuous spectrum are not necessarily noises. If 
the phases of all the sinusoidal frequency components are equal, so that 

Figure 3-19 The waveform of a narrow band of noise, a sinelike wave whose 
amplitude varies randomly with time, but whose frequency is nearly constant. 
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they are peak at the same instant, or if the phases change slowly and 
smoothly as the frequency changes, we get a single pulse rather than a 
chaotic, persistent noise. 

Part A of Figure 3-20 shows a short pulse or burst of pressure that 
would sound like a click, and part B shows that the sinusoidal components 
of which it is composed span a broad range of frequencies, from zero on 
up. Part C shows a pulse that has a broader rise and fall of amplitude. It 
will be more thumplike than clicklike, and part D shows that its spectrum 
spans a narrower range of frequencies. In general, the shorter the pulse of 
sound, the broader the range of frequencies. Roughly, the width of the 
frequency range or band (B) is inversely proportional to the duration (D) of 
the sound in seconds: 

B = 1/D 

Most short sounds aren't simple rises and falls in pressure like those in 
this figure. When we strike a block of wood, we get a sort of click, but the 
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Figure 3-20 The spectrum of a single pulse of air pressure is not a line 
spectrum, but a continuous spectrum made up of components of a continuous 
range of frequencies. If the pulse is short (part A), the spectrum is broad (part 
B), and the pulse sounds like a click. If the pulse is longer (part C), the 
spectrum is narrower (part D), and the pulse sounds like a thump. 
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pressure tends to oscillate up and down for a short time. Similarly, when 
. we strike a bass drum, we get a sort of thump, but the drumhead oscillates 
for a short time. The bandwidth, or range of frequencies, of such sounds is 
still proportional to the duration of the sound, but the peak of the 
spectrum is at the frequency with which the struck object oscillates: the 
larger the object, the lower this frequency of oscillation, and the duller 
the sound. For example, in part A of Figure 3-21, we have a short section 
of a waveform, two cycles long, and in part C a longer section, four cycles 
long, twice the duration. Such short sections of sine waves give a sense of 
whether the sound is "dull" or "bright."· In parts Band D, the peak of the 
spectrum is at the frequency of (0 of the sine wave, but the spectrum of the 
longer, four-cycle section is half as wide as the spectrum of the short, 
two-cycle section. 

When a sine wave is turned off or on abruptly, as shown in Figure 
3-21, this excites resonant devices of many frequencies. Indeed, we hear a 
click when the wave is turned on or off abruptly. Anyone who listens to 
the output of an audio oscillator, and makes and breaks the connection 
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Figure 3-21 A short section of a sine wave of frequency (0 , as in part A, has 
a broad spectrum centered on the frequency (0 , as .in part B. A longer section 
of the same sine wave, as in part C, has a narrower spectrum, as in part D, still 
centered on the frequency (0 • When the sine wave is turned on abruptly, as 
shown in parts A and C, we hear a click. 
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with the speaker by flipping a switch, will hear such a click. We can get the 
effect of hearing a short pure tone or sine wave without a click by 
increasing and decreasing the intensity gradually, as shown in Figure 3-22. 
If the slowly rising and falling sine wave has a total of about 40 or more 
complete cycles, it sounds like a short burst of tone without a click. If it 
has 4 cycles or fewer it sounds like a click without a clear pitch, though, 
like a noise, it can sound "high" or "low," or "bright" or "dull," depend-
ing on the frequency of the sine wave. For intermediate numbers of cycles, 
we hear both a click and a pitch. The click part of the sensation becomes 
more prominent as the number of cycles is reduced, and the sensation of 
clear pitch fades into just "high" or "low," or "bright" or "dull." The 
appearance of the click occurs at a somewhat smaller number of cycles for 
sounds heard in a reverberant room than for sounds heard through 
headphones. 

The practical result here is that we can add "slowly changing sine 
waves" to produce periodic, pitched sounds of finite duration. Mathema-
tically, such a "slowly changing sine wave" is not a sine wave at all, but it 
approximates many of the properties of a sine wave. Both instruments for 
measuring and the human ear respond to such a "slowly changing sine 
wave" as if it were a pure tone that changes slowly in amplitude, frequency, 
or phase. However, if we change sine waves too fast, we will hear a click or 
the twang of a plucked string. 

Figure 3-22 If a sine wave is turned on and off slowly, we don't hear a click. 
(Mathematically, this is not a sine wave but, for practical purposes, it so 11nds 
like one.) ·. 
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On the screen of a spectrum analyzer, a pure tone of slowly increasing 
amplitude appears as a line or peak of increasing height, and the corre-
sponding sound grows louder and louder without changing pitch (much). If 
we change the frequency of a sine wave gradually, the line on the spec-
trum-analyzer display moves to the left or right, and we hear a fall or rise in 
pitch. A periodic change in frequency (a vibrato) is heard as a periodic 
change in pitch if it is slow, and the line on the spectrum-analyzer display 
jiggles back and forth. Above a vibrato rate of about six per second, we can 
no longer hear vibrato as a change in frequency; rather, vibrato gives an 
entirely new and pleasant quality to a musical sound. 

All that I have said about a single slowly changing sine wave also 
applies to sums of slowly changing sine waves. Musical tones which are 
combinations of harmonically related sine waves, each of which changes 
slowly in amplitude or frequency, are heard as tones of changing loudness 
or pitch. In the chapters that follow, many sounds will be described as 
combinations of sine waves, or partials, even though the amplitudes and 
frequencies of the partials change with time. 
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A Note on Sine Waves 

A sine wave is not just any wiggly curve that rises and falls with time; it is 
a precise mathematical function that can be described very simply. The 
crank illustrated in part A of Figure 3-23 turns with a constant speed, 
making one revolution every T seconds. The height of the crank at any 
particular time is shown as h. We can draw a sine wave by plotting the 
height of the crank against time. 

To begin to do this, as shown in B of the figure, place equally 
spaced points around the circumference of a circle. The figure shows eight 
points, numbered from 0 to 7. For each successive point, starting with 0, 
measure the height of the point above or below the horizontal axis line 
through the center of the circle. Plot the successive heights of points 0, 1, 
2, 3, and so forth, as in part C, at successive equally spaced distances 
along the horizontal line; then connect these points with a smooth curve 
to draw the sine wave. If you use more equally spaced points around the 
circle, you can draw the sine wave more accurately, as in part D. 

Mathematically, the relation between h (or amplitude) and time t is 
written h = sin wt, in which w is a constant, equal to 2n rimes the 
frequency (, and f = l j T, T being the period. The higher the frequency 
(that is, the shorter the period), the more times the sine wave goes up and · 
down each second. 

There is another type of sine wave, the cosine, which is simply a sine 
wave with a different phase. The cosine of wt is written h = cos wt. The 
cosine reaches its peak a quarter of a period (T / 4) before the sine does. 
The cosine is traced out by the height of the dashed crank in part A of 
Figure 3-23, which is at right angles to the solid crank, and is shown as the 
dashed curve in part C. To draw the cosine we simply start at point 2 
instead of point 0, and plot successively the heights of points 2, 3, 4, 5, 6, 
and 'so forth. 

This simple "mechanical" picture can tell us all we need to know 
about sine waves. Those who like mathematical puzzles can work out all 
sorts of interesting, useful, and important relations, such as 

(sin wt) 2 + (cos wt) 2 = 1 

A particularly interesting and important relation is 

(sin pt)(sin wt) = (1/z) [cos (w- p)t- cos(w + p)tJ 

Here we can think of the sine wave sin pt as controlling the intensity or. 
amplitude of the sine wave sin wt. What can we discover from this simple 
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Figure 3-23 A. The height, h, of the handle of a crank that rotates at a 
constant speed varies sinusoidally with time. B. Equally spaced points around 
the circumference of a circle. C. When the points in part B are translated to a 
graph in which the steady passage of time is represented as movement to the 
right, they outline a sine wave. D. A smooth sine wave would be produced if 
every point on the circle were translated to the graph. 
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relation? First, we see that the product of two sine waves is simply two 
sine waves (since cosine waves are just sine waves that peak at different 
times, that is, have different phases). The average value of the product of 
two sine waves is zero, because the · average value of each of the two sine 
waves is zero. If the sine waves have exactly the same frequency, one of 
the two components on the right is the cosine of zero, which is equal to 
one. ln mathematically representing a function of time as a sum of sine 
waves, we make use of this property. 

We can deduce another important result from this last formula. 
Imagine that p is very small compared with w, say, p = 1 and w = 100. 
Then the factor sin pt will cause the amplitude of the oscillation sin wt to 
vary slowly with time. Our formula tells us that 

(sin t) (sin 100{) = (1/z) (cos 99t)- (1h) (cos lOlt) 

That is, a slowly varying sine wave doesn't have only one frequency; 
mathematically it is made up of two or more frequencies, but these 
frequency components are very near the nominal frequency of the rapidly 
varying sine wave. This· is very important, for when we turn a sine wave 
on or off, we still think of it as having the same frequency that it would if 
it persisted forever. In practice, to our sense of hearing, this is true as long 
as we turn the sine wave on and off slowly enough to avoid getting a click. 



Scales and Beat..,... ... ----- -----

At one time or another many of us have heard a piano tuner 
working on a piano. We have heard him or her strike an octave and then 
use a tuning wrench (or key) to tighten or loosen a string. How does a 
tuner know when the octave is tuned just right? The slight difference, the 
beat between the two notes disappears. What is this beat that guides the 
tuner? 

Figure 4-1 shows the sum of two sine waves of slightly different 
frequencies (parts A and B). This sum looks like a single sine wave whose 
amplitude increases and decreases slowly with time (part C), and that is 
what it sounds like. The two sinusoidal components seem to merge into a 
single throbbing or beating sound (part D). If we make the sine waves more 
and more nearly equal in frequency, the beat between them becomes 
slower and slower. When the sine waves have equal frequencies, the beat 
disappears, and we hear a tone of constant amplitude. 

What beat does the piano tuner listen for in tuning an octave? A single 
note on a piano has many harmonics, and its second harmonic is an octave 
higher than its fundamental tone. In tuning an octave, the piano tuner 
listens for beats between pairs of harmonics, as, the second harmonic of 
the lower tone and the fundamental of the upper tone, or the fourth 
harmonic of the lower tone and the second harmonic of the .upper tone. 
For true harmonics, all such beats slow to zero for the same tuning. 

Actually, piano strings have a little stiffness, which adds to the effect 
of tension in keeping the strings straight. As a result, the higher partials 
have frequencies that are a little greater than integer multiples of the 
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Figure 4-1 The phenomenon of beats. The amplitudes of the two sine waves 
in parts A and B, whose frequencies are very close to one another, add up to 
give the wave in part C, which looks very much like a sine wave of slowly 
varying amplitude. 

Figure continued on following page. 
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D 

Figure 4-1 (Continued) The photograph of an oscilloscope screen in part D 
shows the beat between tones of 4,000 and 4,100 Hz. When the frequency 
difference is small, it sounds like a sine wave or pure tone whose intensity 
rises and falls slowly with time. As the frequencies of the sine waves are made 
more and more nearly equal, the rate at which the amplitude rises and falls 
(the frequency of the beat, or the beat frequency) gets slower and slower until, 
when the frequencies are equal, the beat disappears. 

fundamental frequency (0 ; that is, they are slightly larger than 2(0 , 3(0 , 4(0 , 

5(0 , and so forth. 
When octaves in a piano are tuned by the method of eliminating 

beats, the octaves will therefore be stretched a very little; that is, they will 
have frequency ratios slightly greater than 2. Pianos are often tuned with 
slightly stretched octaves, sometimes because of the stiffness of the strings, 
sometimes because the pianist prefers the brighter timbre that results. In 
this discussion, we will ignore the stiffness of piano strings and other 
practical realities, and assume that all musical tones have partials that are 
exactly harmonic, that is, that are integer multiples of the frequency of the 
first partial. 

Frequency Ratios 
Intervals other than octaves can also be tuned by means of beats. To see 
how, consider the piano keyboard shown in Figure 4-2. We go up a 
semitone when we go from any key (white or black) to the next key (black 
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c D E F G A B c 

Figure 4-2 The white keys of the piano give the seven notes of the C-major 
diatonic scale. 

or white). Certain intervals are called consonant intervals, because musi-
cians and listeners consider pitches separated by these intervals to be 
pleasing when sounded together. These intervals are given in Table 4-1, 
which shows both the ideal frequency ratio between the two notes and the 
number of semi tones of difference between them on the piano keyboard. 

Figure 4-3 shows the harmonics of a C with a frequency (0 and the G 
above it, which has a frequency (3 / 2)(0 • We see that the third harmonic of 
C has the same frequency, 3{0 , as the second harmonic of G. If the C and G 

Table 4-1 Consonant Intervals. f}ttl);·t 
1.1 

Ideal 
Name of Notes (in Key Frequency Number of 
interval of C Major) Ratio Semi tones 

Octave C-C 2 12 
Fifth C-G 3/ 2 7 
Fourth C-F 4/ 3 5 
Major third C-E 5/ 4 4 
Minor third E-G 6/ 5 3 
Major sixth C-A 5/ 3 9 

Minor sixth E-C 8/ 5 8 

( 
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Figure 4-3 The frequencies of two pitches (such as C and G) that are an 
interval of a fifth apart are always in the ratio of 100: 150. Their harmonics 
will be in the same ratio; so the second, fourth, and so forth, harmonics of G 
will coincide with the third, sixth, and forth, harmonics of C. 

are a little mistuned, these harmonics will produce an audible beat when 
the two notes are struck together. By tuning G so that it doesn't beat with 
C, we can assure that the fundamental frequency of G is just 312 that of C, 
in musical terms a perfect fifth. 

A little thought will show that other pitches can be tuned in this way 
as well. A fourth has a frequency ratio of 413, so the third harmonic ofF 
should have the same frequency as the fourth harmonic of C (which is C", 
two octaves above the first C).* A major third has a frequency ratio of 514, 
so the fourth harmonic of E should have the same frequency as the fifth 
harmonic of C. A minor third has a frequency ratio 615, so the fifth 
harmonic of E should have the same frequency as the sixth harmonic of C 
(a G). 

A friend of mine once tried to tune his piano a·ccording to such 
relations, thinking· that by later adjustments he could get to the equal-tem-
pered scale, to which a piano is really tuned. He underestimated the 
difficulty. Piano tuners have a systematic method of tuning, in which they 
tune the intervals within a single octave to have prescribed numbers of 
beats per second. Once they have tuned these twelve notes, they tune all 
the other notes in octaves above and below by the method of octaves, with 
no beats. This isn't what my friend did. 

Here ·we come to the dilemma of the diatonic, or major, scale, 
represented by the white keys of the piano. Is there a sensible explanation 
for this scale, which is used in so many cultures? There is an explanation, 
but you must judge for yourself how sensible it is. 

*The primes are used to flag relativeyositions of notes. As we start up, we 
have the notes C, D, E, F, G, A, B; m the next octave up the notes are C' D' 
E', F', G', A', B'; in the next, C", D", and so forth. This convention helps ' 
keep track of which C we are talking about as we jump up and down the 
octaves in a discussion of harmonics, say. This designation is relative, not 
absolute; any note we choose can be the starting point for the primes in a 
given discussion. 
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First, we should observe that notes or tones an octave apart sound 
very similar. In primitive cultures, men and women sing in octaves without 
realizing that they are singing different notes. With some timbres, it is not 
uncommon to make an error of an octave in judging pitch. The psycholo-
gist Roger Shepard has likened the similarity of octaves to points on an 
ascending spiral. As shown in Figure 4-4, the notes C, D, E, F, G, A, B 
repeat again and again around the spiral as we go up the scale. But C' an 
octave up always lies close (in perception) to Can octave below, and so it is 
for all the other notes of the scale. 

With this in mind, consider Figure 4-5, which shows notes in the bass 
and treble clefs. In part I, we see the first six harmonics of the C an octave 
below middle C.* They are, successively, C, (middle) C', G', C", E", and 
G". The intervals between these successive notes are consonant intervals. 
They are the octave (C to C' ), the fifth (C' to G' ), the fourth (G' to C" ), 
the major third (C" to E" ), and the minor third (E" to G" ). 

So far we have only three of the seven pitches of the C-major diatonic 
scale, C (the tonic), E (the mediant), and G (the dominant). A plausible way 
in which to get one more note is to drop down a fifth from C", as shown in 
part II of the figure. This gives us F' (the subdominant); the frequency ratio 
ofF' to C' is 413. 

In going from C" to E" to G", as in part I, we go up first by a major 
third (a frequency ratio of 5 I 4 ), then by a minor third (a frequency ratio of 
6 I 5), and so arrive at an overall frequency ratio between G and C of 312. 

*It is called "middle C" because it is written on the line in the middle, 
between the treble and bass clefs. 

Figure 4-4 The notes of the diatonic scale as 
points along an ascending spiral. Here all Cs 
are close together and hence alike; all Ds are 
close together and hence, alike; and so on. 
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Figure 4-5 The successive harmonics of a note C give us the notes C', G', 
C", E", and G", and include the intervals of the octave, the fourth, the major 
third, and the minor third. In any octave, if we go up a major third from G', 
we get B', and if we go up a minor third from B, we get D". If we go down 
from C" by a fifth we get F', and if we go up a maj.or third and then a minor 
third from F' we get, successively, A' and C". We have now derived all the 
pitches of the diatonic scale. In the notation shown, C' is middle C. 

The fourth, or subdominant (F in the C major scale), plays an impor-
tant part in Western music. It seems reasonable to go up from F' in the 

. same pattern, first by a major third, then by a minor third, as in part II, thus 
basing a major triad on F'. This give us A' (the submedian) and brings us 
back to C". Here A' is a minor third below C", that is (6/5) A' = C" and, 
because C" = 2C', the frequency ratio of A' to C' is 5/ 3. 

The fifth, or dominant (G in the C major scale), plays an even more 
important role in Western music. Let us also base a major triad on G', 
again going up by a major third, then by a minor third, as shown in part III. 
This gives us the seventh, or leading tone, B', and the supertonic, D". 

We now have all seven pitches of the diatonic scale in just intonation 
in the key of C; C, being the first note of the scale, is the tonic. 

Equal-Tempered Tuning 
Musical intervals with frequency ratios given by the ratio of integers, such 
as 3/2 (fifth) and 5/4 (major third), are the basis of the diatonic scale. Such 
musical intervals are, of course, important in music itself. Let us concen-
trate on the black notes in the short passage of music shown in Figure 4-6. 
They are C, A, D', G, C. Let us designate the frequency of Cas {0 • In going 
up to A, we go to a frequency of (5/3) (0 • The interval from A up to D' is a 
fourth, with a frequency ratio of 4 /3; so when we arrive at D', the 
frequency should be 4/3 that of A, which is 5/3 times {0 , or (4.3) (5/3) 
{0 = (20/9) {0 • We now go down a fifth to G, which should give us a 
frequency of (2/3) (20/9) {0 = (40/27) {0 • We now go down another fifth 
to C, which should give us (2/3) (40/27) {0 = (80/81) {0 • But we started 
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Figure 4-6 Consider the black notes in this series of chords. They proceed 
from C to A to D' and back down to G to C, or by intervals of a sixth up, a 
fourth up, a fifth down, and a fifth down. If these were perfect interval>, in 
which the frequency ratio of the sixth is 5/ 3, of the fourth is 4/ 3, and of the 
fifth is 3/ 2, we would not get back to the same pitch from which we started. 

out by setting the frequency of C equal to {0 , and we haven't gotten back 
there! 

This short passage of music shows that no fixed scale of pitches can 
accommodate all upward and downward motions of pitch by ideal musical 
intervals, that is, musical intervals with frequency ratios given by the ratios 
of small integers. A number of failures to return to the initial pitch after 
such sequences of ideal intervals have been noted and named. They are 
shown in Table 4-2 . 

The comma of Pythagoras is of particular interest. If we go up repeat-
edly by the interval of a perfect fifth (3 : 2 = 1.5) we will reach octaves of 

Table 4-2 Final "Error" in Sequences of Ideal Intervals That Almost 
return to Initial Pitch. 

Name 

Comma of 
Didymos, or 

comma 

Schisma 

Ratio of 
Difference 

81/80 

Difference 
in Cents 

21.5 cents 

32,805/ 32,768 2.0 cents 
· n 

Motions of Pitch 

Up four fifths, 
down two 
octaves, down 

A/,, -:r- l ' 
ll., (' ::>J . . "'') l J 3 o;;;; .1-.Jl /..f•t( ,, 

23.5 cents 

one major third 
Up eight 6fths, 
up one major 
third, down five 
octaves 

Comma of 
Pythagoras 

Dies is 128/ 125 

Up twelve fifths, 
down seven 
octaves 

41.0 cents Up one octave, 
down three 
major thirds 

( 
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all the white and black keys of the piano keyboard-almost. If we go up 
repeatedly in a ratio close to that of a perfect fifth, a ratio approximately 
1.4983, we do reach the octaves of all black and white keys, and we can get 
the pitches of all other keys by subsequently going down or up by octaves. 
This may be thought of as the source of equal-tempered tuning. 

In a very real sense, perfect intervals, whose frequency ratios are the 
ratios of small integers, are the very foundation of music. These intervals 
derive from the harmonics present in musical tones. They are important to 
the ear. Yet they cannot be exactly realized in all the intervals of any one 
scale, any one system of tuning. The history of Western music is also the 
history of the attempts to resolve these discrepancies. 

In discussing departures of intervals of a scale from ideal intervals, the 
cent is very useful. The cent is a hundredth of a semitone, or 1/1,200 of an 
octave. The frequency ratio of the cent is the 1/1,200 power (the 1,200 root) 
of 2, or 1.00057779. If we multiply 1,200 of this decimal number together 
(that is, if we raise it to the 1,200 power), we get 2, the frequency ratio of 
the octave. If we raise the number to the 100 power, we get the frequency 
ratio of the equal-temperament semitone, 1.059463. 

Table 4-3 shows the intervals of the diatonic scale in cents for equal-
tempered tuning, for Pythagorean tuning (which is designed to give perfect 
fifths), and for just tuning. Table 4-4 shows the "error" in these compro-
mise tunings relative to the ideal ratios. 

Some musicians love just temperament dearly. For example; Harry 
Partch built many strange instruments whose sounds were as wonderful as 
their names, and which were often of somewhat uncertain pitch. He had a 

Table 4-3 The Intervals of Differently Tempered Scales, Measured 
in Cents. 

Note Equal-tempered Pythagorean Just 

c 0 0 0 
D 200 204 204 

E 400 408 386 
F 500 498 498 
G 700 702 702 

A 900 906 884 

B 1,100 1,088 
c 1,200 1,200 1,200 

) J J J J j ) J ) 

Scales and Beats G 
Table 4-4 Errors in Tempered Scales Relative to Ideal Ratios. 

Equal-tempered Pythagorean Just 
Interval Name Error Error Error 

C-E Major third +15 +22 0 
D-F Minor third -16 -22 -22 

C-F Fourth +2 0 0 
C-G Fifth -2 0 0 
C-A Sixth +16 +22 0 
D-A Fifth -2 0 -22 

harmonium justly tuned in the key of C. It sounded excellent in C, but 
dreadful when played in any other key. ,1 

Let us consider just temperament closely. Figure 4-l{shows that in just 
temperament the musical interval of a fifth from D to A is in error by 22 
cents; that is why we are able to get back to C in just temperament, but at a 
considerable cost. This 2l:,-ce!J& error is 6 cents larger than any error in 
equal temperament. 

Furthermore, in equal temperament we have dealt very simply with 
the problem of sharps and flats. Ideally, in the interval of the minor sixth, 
A b (A-flat) should have a frequency ratio of 1.6 to be a perfect major third 
from the C above it. In order to make the interval E- G# (G-sharp) a just 
major third, G# should have a frequency ratio 25/16 = 1.5625. In our 
equal-tempered scale, both Ab and G# are represented by the same black 
key on the piano, and by a frequency ratio of 1.5874. 

There are flats and sharps in diatonic scales in which the tonic or first 
note is not C. A fifth above Cis G, the first note of a closely related key, G 
major. G major has six notes in common with C major. (The key of G 
major employs F# instead of F.) A fifth above G is D. The scale starting on 
D has two sharps, C# and F#, and has only five notes in common with the C 
scale. 

Going up through a cycle of successive fifths on the piano, we reach 
all keys, white and black, and on each we can build a scale. Or we can start 
down from C by an interval of a fifth, to reach F. The scale in which F is 
the first note, or tonic, has six notes in common with the C scale;.in F, Bb 
is used instead of B. 

Johann Sebastian Bach was one of the first strong advocates of a 
tuning such that the intervals, though slightly "in error," are tolerable in all 
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keys. Bach's Well-Tempered Clavier includes pieces in all keys. With equal-
tempered tuning, all are equally in tune (or out of tune). 

It is often argued that equal temperament can be offensive to musi-
cians with keen ears. During the nineteenth century instruments with 
complex, almost unplayable keyboards were devised in order to allow the 
production of close approximations to ideal intervals; some are discussed 
in Helmholtz's book. But such keyboards cannot cure the inevitable wan-
dering in pitch when one goes up and down by ideal intervals only. 

It is comparatively easy to hear in sustained chords that the thirds of 
equal temperament are "out of tune," because they are slighdy higher than 
just tuning. However, experiments by Max Mathews show that some 
people like major triads with out-of-tune thirds; they sound "brighter." 
Good musicians can distinguish equal temperament from just tuning in 
listening to the successive notes of a scale. But the tuning of the piano is 
acceptable to most, and violinists in orchestras ordinarily seem to approxi-
mate just intervals no more closely than the piano does. 

Sometimes just intervals are important, as in some passages in early 
choral music, and in barbershop quartets. Good singers will sing just 
intervals in such passages, and maintain the initial key through using unjust 
intervals where these are acceptable. 

Tonal Centers of Scales 
There is one other important characteristic of a scale. On what pitch does 
it start? 

The diatonic Cmajor scale, represented by the white keys of the 
piano, consists of seven notes, or eight if we span a whole octave. Within 
the octave of the major scale, five of the intervals are whole tones (two 
semitones), and two (the third and the seventh) are semitones. The succes-
sion of intervals that we will encounter in going up the scale depends on 
what note we choose as the beginning of the scale. Sharps or flats (called 
chromatics) are added to preserve the sequence of whole tones and semi-
tones, since this sequence defines the major scale. 

Classical Greek music was based on a mathematically derived scale 
made up of tetrachords, groups of four pitches spanning a 
perfect fourth. The two middle pitches of each tetrachord could be chro-
matically altered; the unaltered version was referred to as diatonic. The 
entire collection of tetrachords, plus one added pitch at the bottom, 
formed a single two-octave scale. It probably always had as its center tone 
the A below middle C. 

The (unrelated) medieval Church modes (sometimes erroneously re-
ferred to as the "Greek" modes) were based on ascending diatonic octaves. 
The tonic center of a mode is always the lowest pitch in the octave. The 

ccc-cccccc (('(((( 

Scales and Beats 7 5 

modes were codified in a process begun by Pope Gregory I in an attempt to 
standardize the great number of chants that had accumulated in early 
Christian liturgy (hence the name Gregorian chant). The Church modes 
flourished from about 800 to about 1500. 

Although the Church modes largely fell into disuse in about the 
seventeenth century, two of them- which we now call the major and 
minor modes or scales-survived and became the tonal basis of Western 
European music. Some modern composers have written works or parts of 
works in a neomodal style. Various other types of chromatically altered 
scales are the basis of certain types of European folk music, most notably 
Eastern Europe and gypsy music. 

If we start at C on the piano and play the white keys to C', we play a 
major scale, in which the pattern of whole tones (1) and semitones (1h) is 1, 
1, 1h, 1, 1, 1, lh. 

If we start at A and play the white keys to A', we play a minor scale, in 
which the interval pattern is 1, 1h, 1, 1, 1h, 1, 1. There are two other 
variants on the minor scale as well, in which the last three intervals in the 
pattern can be 1, 1, 112, or even 1/z, 11/z, 1h produced by using (in the key 
of A minor) F#, or G#, or both, instead of F and G. 

We may observe that the major scale (think of the scale that starts on 
C) has major triads on the tonic, the fifth, and the fourth, all important 
tones of the scale. In the first minor scale mentioned (think of the white 
keys starting on A) the triads on the tonic, the fifth, and the fourth are all 
minor triads, a sort of complement of the case of the major scale. 

In this book, the central concern is with the science of musical sound. 
This chapter has noted that the musical intervals produced by instruments 
can be tuned by listening for beats between the harmonics of two notes 
that are sounded simultaneously. We. have seen that one cannot choose the 
frequencies of a seven-tone (or twelve-tone) scale in such a way that the 
ratios of the frequencies of the notes of the intervals are ratios of integers. 
We have seen that equal-tempered tuning, based on semitones of fre-
quency ratio 1.059463, gives excellent approximations to ideal intervals, 
and that these approximations are the same for scales in all keys. 

When we venture beyond the matters of intervals and tuning to 
discuss modes, we are wandering a little beyond the science of musical 
sound into the territory of music itself. This we cannot wholly avoid. But 
we will concern ourselves only with the two surviving modes: the major 
scale, because it is important to Rameau's ideas concerning harmony; and 
the minor scale, because it is hard to avoid. 
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Melody is characteristic of almost all music. Strangely, so is the 
diatonic scale (or some subset of it), with intervals based on frequencies in 
the integer ratios 2/ 1,3/ 2,4/ 3,5/ 4,6/ 5, and so on. No doubt, musicians 
of many ages and cultures have plucked strings simultaneously and tuned 
their instruments by observing beats, as piano tuners do today. However, 
sounding notes together in what we conceive of as harmony is peculiar to 
Western music. 

The notes of one instrument or several can be sounded together for a 
variety of purposes. In giving instructions for the representation of cannon 
shots in his piece Les Caracteres de Ia guerre, written in 1724, Francois 
Dandrieu recommended that the harpsichordist "strike the lowest notes 
on the keyboard with the entire length of the hand." By 1800, another 
French composer recommended striking the lowest three octaves with the 
flats of both hands in his rendition of the sound of a cannon. 

Whatever we think of as the essence of harmony, it does not lie in 
such sounds, or in the near-tone clusters of Percy Grainger, or in the tone 
clusters of Henry Cowell, or even in the haunting reminiscence of church 
bells that Charles lves evokes in his Concord Sonata by instructing the 
pianist to strike simultaneously many black keys, softly, with a bar of 
wood (see Figure 5-1). 

We think of harmony as notes that are sounded together smoothly 
and sweetly, or as rough-sounding or dissonant combinations of notes, full 
of tension, that miraculously resolve into a succeeding consonant chord . 
Beyond this, we think of well-known (and sometimes well-worn) progres-
sions from chord to chord that serve as phrases or words of music. We 
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Figure 5-l Page from score of Charles lves's Concord Sonata, showing 
instructions for playing black keys with a stick. 
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think of modulation, . the shifting from key to key, which is sometimes 
forthright, sometimes elusive or ambiguous. · 

About the harmonic language of music this book has little to say. Our 
concern will be chiefly with the consonance or dissonance one experiences 
when two, three, or more notes are sounded together. It is these experi-
ences of consonance and dissonance that underlie the evolution of the 
musical theory of harmony. 

Consonance, Dissonance, and the Critical Bandwidth 
Of consonance; dissonance, and chords, there can· be several views. One 
view might be that we are culturally conditioned to regard certain combi-
nations of pitches as consonant, others as dissonant. However, composers 
of our century present us with an extraordinary range of combinations of 
notes, and with some rules for making such combinations. Can conso-
nance and dissonance spring from nothing more than rules and customs? 
As will be seen, in a sense they can. 

I believe, however, that to look at concepts of consonance and 
dissonance as arising from rules is to look at things the wrong way round. 
Rather, I am sure that the rules and customs are based on experiences of 
consonance and dissonance that are inherent in normal hearing. Of course, 
musical training and sophistication will color the subjective experience. 
The trained ear hears much in harmony that escapes the musically un-
trained. Sometimes the trained ear hears things that aren't there, for a 
musical friend of mine hears G# and Ab as different on the piano. All this 
we will consider later. 

Let us return to the piano tuner of Chapter 4._ Beats and "roughness" 
are phenomena that are crucial to consonance and harmony. We are 
already acquainted with beats. We know that the piano tuner tunes inter-
vals for the absence of beats, or else for the number of beats per second 
necessary for the equal-tempered scale. In the nineteenth century, Helm-
holtz tried to explain consonance and harmony entirely in terms of beats. 
He thought that intervals were consonant if there were no (or few) beats 
between their partials. To explain dissonant intervals, he proposed that 
partials of different tones were so close together in frequency that the 
beating between them was perceived as dissonance. 

The work of Rainier Plomp and of others at the Institute for Percep-
tion Research (IPO), which Jan Schouten founded in the Netherlands, has 
shown that this is too simple a view. Slow beats do not give a sense of 
dissonance, but merely a rising and falling of amplitude. Further, as we 
gradually separate the frequencies of two sine waves or "pure tones," we 
hear a disagreeable roughness even when the frequencies are so far apart 
that we no longer distinguish beats. The range of frequencies in which we 
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hear beats or roughness is called the critical bandwidth and is shown in 
Figure 5-2. 

The critical bandwidth is an important experimental fact of hearing. 
To some degree, in listening to sounds we can tune in on a narrow band of 
frequencies, much as we tune in to a radio channel. When frequency 
components are separated by more than a critical bandwidth, we can hear 
them separately (this ·is called hearing out). But frequency components that 
lie within a critical bandwidth interact, and give us sensations of beats, 
roughness, or noise. 

The critical bandwidth is important in the perception of loudness, in 
the perception that a sound is noise, and in the masking or hiding of one 
sound by another. In essence, the critical bandwidth results from the way 
that the ear resolves frequencies. At low and moderate sound levels, 
frequency components lying farther apart than a critical bandwidth send 
signals to the brain over separate nerve fibers, but frequency components 
lying within a critical bandwidth send a mixed signal over the same fibers. 

The graph in Figure 5-3 shows the relation between critical bandwidth 
and consonance for two pure tones in another way. We can see from it 
that the maximum dissonance occurs at about a quarter of a critical 
bandwidth. With greater frequency separations, consonance also increases 
and becomes almost perfect for all separations greater than a critical , 
bandwidth. 7 

In order to know what frequency intervals between pure tones are 
consonant, we must know how the critical bandwidth varies with fre-

Smooth sensation 

I<'- Critical 
bandwidth 

fo 

r 
Smooth sensation 

Figure 5-2 Pure tones (sine waves) that are close enough together in frequency 
give rise to audible beats. Even when the frequencies of such tones are too far 
apart for us to distinguish beats, we can still hear a certain "roughness." If the 
frequencies differ still more, we hear each ·tone separately and smoothly. 
Imagine one pure tone to have a frequency {0 and another to have an adjustable 
frequency f. As we vary f from much below fo to much above {0 we pass from 
smooth to rough to beats to rough to smooth again, as shown. The range of 
frequencies within which we hear roughness or beats is called the critical 
bandwidth. 
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Figure 5·3 Plomp's curve representing the consonance of two pure tones 
sounded together as a function of their frequency separation (expressed as a 
fraction of their critical bandwidth). The tones are consonant if the frequency 
separation is so small that we hear slow beats, and consonant if the frequency 
separation is a critical bandwidth or greater, so that we hear the tones 
separately. The consonance and dissonance scales are chosen arbitrarily, to give 
consonance increasing from 0 to 1 (maximum) upward on the left, and, 
conversely, dissonance increasing from 0 to 1 downward on the right. The 
horizontal scale at the bottom represents frequency separation in fractions of a 
critical bandwidth. While this curve is derived from experimental data, its 
accuracy is not high. 

quency. This is shown in Figure 5-4. Vertically it shows, for a critical 
bandwidth, the difference between the two frequencies that lie at its edges, 
( 1 and (2 • Horizontally the graph shows the average value of two frequen-
cies, that is, ((1 + (2 )/2. 

We see that, for most of the frequency range shown, the critical 
bandwidth lies between a minor third and a whole tone. For frequencies 
below 440 Hz (the A above middle C), the critical bandwidth is larger. 
Thus we might expect that, in order to be consonant, notes of low , 
frequencies that are sounded together would have to be more widely 
separated than notes of high frequencies that are sounded together. In-
deed, in piano music the notes of the chords in the bass are commonly 
more widely separated than the notes of the chords in the treble. However, 
for many musical sounds lower frequencies cannot be very important to 
consonance, since we hear mostly the higher partials. This is partly because 
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Figure 5-4 The width of a critical bandwidth as a function of frequency. 
Above a frequency of 500 Hz the critical bandwidth is roughly proportional to 
frequency. The frequency differences for three intervals are shown. A good 
approximation is that, if two pure tones are separated by a minor third or 
more, they will sound consonant together. 

a good deal of the energy is in the higher partials (almost all when we listen 
to a transistor radio), and partly because the ear is more sensitive to higher 
frequencies than to lower frequencies. 

A good rule of thumb is that pure tones less than a minor third apart 
are dissonant, but tones a minor third or more apart are consonant· so for ' ' pure sine tones, any interval greater than a minor third will be judged as 
consonant, however odd the ratio of frequencies. of course, this isn't 
so for musical tones, such as piano tones, which have many harmonic 
partials. And musicians tend to judge the consonance or dissonance of 
pairs of sinusoidal tones by first recognizing the musical interval, and then 
calling the pair of tones consonant or dissonant on the basis of their past 
experience with pairs of nonsinusoidal tones and on the basis of what they 
have been taught. 

Figure 5-5 shows the result of a calculation of the relative dissonance 
(or consonance) acco.rding to Plomp for two complex tones, each of which 
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Figure 5-5 If we know the critical bandwidth, which depends on frequency, 
and use the curve in Figure 5-3, we can calculate the consonance of a pair of 
tones, each having six harmonic partials, as a function of the frequency 
separation of their fundamentals. The curve in this figure is based on such a 
calculation. The frequency of the fundamental of the lower tone is fixed at 
250 Hz, and that for the upper tone varies from a little below 250 Hz to a 
little above 500 Hz (an octave above 250 Hz). The ratios above the peaks of 
consonance show the frequency ratios of the traditionally consonant intervals: 
1/ 1, unison; 6/5, minor third, 5/4, major third; 4/3, fourth; 3/ 2, fifth; 5/3, 
sixth; 2/1, octave. 

consists of a fundamental frequency and six harmonic partials. Here we see 
peaks of consonance at the familiar musical intervals. Whether or not the 
result represents exactly what we hear, it exhibits features characteristic of 
harmonic relations. The consonance of the octave is the easiest to explain. 

If we designate the fundamental of the lower tone as {0 , the partials of 
the lower note of the octave are (0 , 2(0 ,_3(0 , 4(0 , 5(0 , and 6(0 , and those of 
the upper note are 2{0 , 4{0 , 6(0 , 8(0 , 10(0 , and 12(0 ; so the partials either 
coincide or are well separated. 

Next to the octave, the fifth is the most nearly consonant interval, 
traditionally and as shown in Figure 5-5. Figure 5-6 indicates why this is so. 
In this figure horizontal distance is a measure of frequency separation in 
octaves; that is, frequency components with ratios of 2 to 1 are one octave 
apart. The six harmonics of the lower tone are shown as short vertical lines 
above the axis, labeled 1 through 6. The six harmonic partials of the upper 
tone, a fifth or .58 octave above the lower tone, are shown as short vertical 
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Figure 5-6 The proximity of the partials for the two tones in Figure 5-5, 
each with six harmonic partials, separated in frequency by the musical interval 
of a fifth. This interval is consonant because most of the partials of the two 
tones either coincide or are separated by more than a minor third. The third 
and sixth partials of the lower tone (shown above the horizontal line) coincide 
with the second and fourth partials of the upper tone (shown below the 
horizontal line). 

lines below the horizontal line, labeled 1 through 6. Note that two partials 
of the upper and lower tones coincide. Most others are separated by more 
than a quarter of an octave. The third partial of the upper tone falls 
between the fifth partial of the lower tone (.15 of an octave away) and the 
fourth partial of the lower tone (.17 of an octave away). Thus the smallest 
separation of any two partials when two tones (each with six harmonic 
partials) a fifth apart are sounded together is about a whole tone (.17 
octave). This is only a semitone less than a minor third (.25 octave). 

We may note that the separation between the fifth and sixth partials 
of each tone is .26 octave, just greater than a critical bandwidth. If more 
partials are included in an individual tone, the higher partials will be less 
than a quarter of an octave apart, and the tone will have a sort of internal 
dissonance. We hear this as the buzzy quality of crude, electronically 
produced sounds, such as square waves and sawtooth waves. We also hear 
it in the jangly quality of the harpsichord. The distinction between conso-
nant and dissonant intervals is somewhat muddied for pairs of internally 
dissonant tones. 

We could make diagrams like that in Figure 5-6 for other intervals, 
such as the minor and major thirds, the fourth, and the sixth. In each case 
we would find some coinciding partials, and some partials closer (measured 
in fractions of an octave) than any in the diagram shown. But for dissonant 
intervals, such as a half tone, a whole tone, a tritone (an augmented fourth, 
or six semitones), or a seventh, many partials would lie much closer 
together than a quarter octave; sounded together, notes separated by these 
intervals sound rough and dissonant. 
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Perception of Consonance and Dissonance 
The foregoing may seem to imply that we have found the root of conso-
nance and harmony in the avoidance of partials that lie too close together 
in frequency. If partials are too close, they will beat or sound rough. For 
tones made up of many (say, six) harmonic partials, we can avoid serious 
beats or roughness by sounding together notes whose fundamental fre-
quencies have integer ratios, such as 3/2 (fifth), 5/3 (sixth), 4/3 (fourth), 
5 / 4 (major third), or 6/ 5 (minor third). Have we indeed found the unas-
sailable basis of consonance? Perhaps. 

For a pair of sine waves, naive listeners will judge any interval greater 
than a critical bandwidth as consonant; this is true even for the seventh, 
and even for intervals with irrational ratios of frequencies. However, 
trained musicians will dutifully identify thirds, fourths, fifths, and sixths, 
and report them as consonant, but will report sevenths as dissonant. 

For complex tones made up of many partials, some musicians give 
strange judgments. I have heard one characterize an isolated deceptive 
cadence, shown at the right in Figure 5-7, as dissonant. Both final chords in 
the authentic cadence (left) and the deceptive cadence (right) are conso-
nant, but the final chord in the deceptive cadence sounds unexpected and 
"wrong," as you can hear by playing it on the piano. 

Much simple music closes with a cadence from the dominant seventh 
to the tonic (see Figure 5-8). The dominant seventh is an acoustically 
dissonant chord. Is this why the cadence is effective and identifiable? 
Perhaps historically. Producing sounds with computer, Max Mathews and 
I carefully deleted all partials closer than a quarter octave in both chords, 
rendering the dominant seventh chord consonant, and the tonic chord 
somewhat more consonant than 'is "natural." A trained musician identified 
the chords properly, even though the dominant seventh was no longer 
acoustically dissonant. The clue was most likely the half step from F to E, -7 in addition to the half step from the leading tone (B) to C. 
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Figure 5-7 An authentic cadence (left) and a deceptive cadence (right), which 
ends on a chord of the sixth (submediant) instead of on a tonic chord. The 
final chord of the deceptive cadence is consonant, but the progression sounds 
odd and not final. 
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Figure 5-8 A cadence that goes from the 
dominant seventh, an acoustically dissonant 
chord, to the tonic, a consonant chord. 
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Figure 5-9 This score is the beginning of Stabat Mater by Palestrina, cited by 
Helmholtz. The passage is consonant, but, to Helmholtz, the succession of 
"chords" seemed odd because they did not clearly establish a key. 
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.. \ . l"- half step from F to E, in addition to the half step from the leading tone (B) 
to C. 

Nonetheless, we will see in the next chapter that beats, or lack of 
beat, does play a crucial role in musical perception. If either the diatonic 
scale or the harmonic partials essential to it is slightly tampered with, 
overall musical or consonant effect is destroyed. 

How we "hear" musical sounds depends partly on cultural bias and 
musical training. But it is clear there is a basis for consonance and disso-
nance in the very nature of human hearing, since the critical bandwidth is 
related to the way that the auditory nerves transmit messages to the brain. 
Nevertheless, harmony consists of more than an avoidance of dissonance. 

· We can see this from Helmholtz's remarks about the beginning of Pales-
trina's eight-part Stabat Mater (Figure 5-9). Of this passage, which is 
certainly consonant, Helmholtz says: · 

Here, at the commencement of a piece, just where we should require a 
steady characterization of the key, we find a series of chords in the most 
varied keys, from A major to F major, apparently thrown together at 
haphazard, contrary to all rules of modulation. What person ignorant of 
ecclesiastical modes could guess the tonic of the piece from this com-
mencement? As such we find D at the end of the first strophe, and the 
sharpening of C to c# in the first chord also points to D. The principal 
melody, too, which is given in the tenor, shows from the commence-
ment that D is the tonic. But we do not get a minor chord of D till the 
eighth bar, whereas a modern composer would have been forced to 
introduce it in the first good place in the first bar. 

Helmholtz then observes how different the system of Church modes 
was from our system of major and minor keys. Someone who is unfamiliar 
with sixteenth-century polyphony might try to interpret this music as D 
major or D minor or in some other key. 

We will explore the ideas of consonance and harmony further in 
Chapter 6. 
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For many years I was convinced that the work of Helmholtz, as 
augmented by Plomp, had established the physical and psychophysical 
basis of both consonance and harmony. Things seemed so simple. Sounds 
were consonant when no (or few) frequency components (partials) fell 
within the same critical bandwidth. This concept explains both the tradi-
tionally consonant intervals, such as the octave and the fifth 1 and the 
traditionally dissonant intervals, such as the second or the seve11th. 

In conventional counterpoint of any number of voices, a dissonance 
occurs only when any one voice "offends" against any other. Likewise, in 
chords consonant byconventional standards of harmony, all the intervals 
among notes meet Helmholtz's criteria to some degree. Thus I considered 
harmony an outgrowth of counterpoint. 

A Synthetic Scale 
Influenced by the ideas of Helmholtz and Plomp, in 1966 I proposed to 
expand the effects of musical harmony by synthesizing an entirely new 
scale. This scale. consisted 
as shown in line B of Figure 6-1. The frequency ratio between any two 
successive notes in this scale is 1.0905; so the frequency ratio between the 
first and the third notes of the scale is 1.1892, which is the ratio for an 
equal-tempered minor third. 

In effect, I had used C, Eb, Gb, and A as notes of my scale, and then 
had added a new note 1.5 semitones above each of these notes . 
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Octaves ---?> 
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Figure 6-1 Frequencies in this illustration are measured in octaves, not in 
Hertz. Thus, the frequency of octave 2 is twice the frequency of octave 1, and 
the frequency of octave 3 is four times that of octave 1. The vertical bars 
along horizontal line A show the fundamental frequencies (first partials) of the 
notes of the equal-tempered chromatic (twelve-tone) scale. The vertical bars 
along line B show the frequencies of the first partials of the eight-tone scale 
that I used in the Eight-Tone Canon. The vertical bars along line C show the 
frequencies of the first six partials of an "odd" note, the first note in the 
eight-tone scale. The vertical bars along line D show the first six partials of an 
"even" note in the eight-tone scale. All partials of an even or of an odd pitch 
are one-fourth of an octave apart. Partials of odd pitch coincide; partials of 
even pitch coincide. But the partials of an even note and an odd note are only 
an eighth of an octave apart, a very dissonant interval. 

Not only did I devise a new scale, but for it I synthesized new tones in 
which all partials except the octave partials were nonharmonic. In fact, the 
partials of each tone were simply the frequencies of every other higher note 
in the scale; so all partials were an (equal-tempered) minor third apart, as 
shown in lines C'and D of Figure 6-1. To a musician, the tones and their 
partials sounded like diminished seventh chords. To me, they sounded 
rather fruity but not dissonant, in accordance with the theories considered 
in Chapter 5. 

Which of these new tones are consonant when sounded together? 
Suppose that we distinguish the notes of my scale as odd and even; that is, 
the first, third, fifth, and seventh notes are odd, and the second, fourth, 
sixth, and eighth notes are even. The first six partials of an odd note are 
shown in line C of Figure 6-1; the first six partials of an even note are 
shown in line D. Successive odd notes are a quarter of an octave (a minor 
third) apart; so are successive even notes. This is the same interval as that 
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between the partials in the tones that I synthesized. But adjacent odd and 
even notes in the scale are an eighth of an octave apart. An examination of 
the figure above and a little reflection will show that the laws of conso-
nance for this scale and the tones used with it are very simple. When any 
two odd notes are sounded together, all partials of the two tones that are 
sounded coincide with one another, or miss completely- the higher note 
has no partial that coincides with the lowest partial of the lower note. The 
same is true for two even notes. Hence any pair of odd notes, or any pair of 
even notes, will be just as consonant as the tones themselves. However, if 
we sound an odd note and an even note together, those two notes and 
some of their partials will lie an eighth of an octave apart. An eighth of an 
octave is less than a critical bandwidth; so odd notes sounded with even 
notes should sound very dissonant. Indeed, I found that they did. 

Thus, for this eight-tone scale, the laws of consonance and, I thought, 
of harmony were extremely simple. Any and all odd notes go together; any 
and all even notes go together; odd and even notes sounded together result 
in dissonance. 

To illustrate all this, I composed a four-voice Eight-Tone Canon, 
which was included in a Decca record, The Voice of the Computer (DL 
71080), now out of print. In this canon I attempted to use transitions from 
dissonance to consonance in a "musically effective" way. I thought that 
the piece sounded pretty good, but in writing contrapuntally I had really 
evaded a test of harmony as we commonly understand it. 

Stretched OctCJves and Partials 
In 1979 I had an opportunity to spend a month in Paris at Pierre Boulez's 
IRCAM (Institute for Research and Coordination of Acoustics and 
Music). Emboldened by the ideas of Helmholtz and my Eight-Tone Canon, 
I resolved to attempt what seemed a crucial experiment, one that Frank H. 
Slaymaker had performed in part in 1970. This experiment involved the 
playing of conventional chords and music with "stretched" octaves, or 
pseudo-octaves, synthesized electronically. This concept of stretching is 
illustrated in Figure 6-2. 

Suppose that, instead of the normal octave, with a frequency ratio of 
2, we use a pseudo-octave whose ratio of frequencies is 2.4. Suppose that 
we also stretch, in a consistent way, the intervals between all frequency 
components of all partials of all notes that are sounded. A single tone in 
this system will no longer have harmonic partials (as in part A of the figure). 
Rather, it will have nonharmonic partials, whose frequencies are not in-
teger multiples of the frequency of the first partial (as in part B). The 
successive (equal-tempered) semitones of the stretched chromatic scale will 
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· Figure 6-2 Frequency in hertz is measured from left to right. The vertical 
bars along the upper horizontal line (A) show the frequencies of the harmonic 
partials of a "normal" tone whose fundamental is (0 • The vertical bars along 
the lower horizontal line (B) show the frequencies of the nonharmonic partials 
of a uniformly "stretched" tone in which the pseudo-octave has a frequency of 
2.4 (0 , rather than the frequency 2 {0 of a true octave. Note that the spacing 
between successive harmonic partials is always the same, but spacing between 
successive stretched bars increases with increasing frequency of the partials. 

have frequency ratios of 1.0757, instead of 1.0594 as in the usual chro-
matic scale. 

The result of this stretching of both the scale and the partials of the 
tones used with the scale. is very simple. Suppose that we play the same 
music twice, first as normal (that is, unstretched and with harmonic par-
tials) and then with stretched and with stretched partials. If any two 
partials of two notes coincide in frequency in the unstretched version of 
the music, they will coincide also in the stretched version. Partials that 
don't coincide in frequency in the normal music will be a little farther 
apart, and hence a little more consonant, in the stretched version than in 
the normal version. Therefore, according to Helmholtz and Plomp's 
theories, any combination of notes that is consonant in the normal music 
will be consonant, or a little more consonant, in the stretched music. 

What did the stretched music sound like? We played a stretched 
version of Old Hundredth in four-part, note-against-note harmony for 
Pierre Boulez. He said that the only structure he could discern was the two 
fermatas (somewhat longer notes) at the middle and end of the piece. All 
familiar harmonic effects had vanished, and he apparently discerned no 
melody. 

Those who heard the unstretched version first (we used both Old 
Hundredth and the Coventry Carol) could recognize the melody, and 
perhaps distinguish the lowest voice, whose first partial was the lowest 
frequency present. However, it was hard, if not impossible, to follow the 
inner voices. 

One of the most striking harmonic effects is the "finality" or "clos-
ing" quality of the cadence, a progression from the dominant chord (such 
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as B- D- G in C major) to the tonic chord (C- E- G), in which we go from 
the leading tone (the seventh, or B) to the tonic, C. Such a progression 
sounds like "The End" to anyone familiar with Western music. In the 
stretched harmony, musicians could not tell a cadence from an "antica-
dence" that went from the tonic to the dominant! Furthermore, they could 
not tell an authentic cadence from a deceptive cadence that ended on the 
chord of the sixth (C-E-A) rather than on the tonic. Neither seemed 
more final; both seemed equally strange and equally consonant (or 
dissonant). 

Some experiments carried out at about the same time at Stanford by 
Elizabeth Cohen as a part of her doctoral work shed light on this. Among 
other things, she asked people to what degree a stretched tone seemed to 
be fused with its partials. That is, did they hear a stretched tone as a single 
sound, or simply as a collection of different frequency components? She 
found that, when the octave was stretched more than about 5 percent, the 
partials were not heard as a single tone of a particular timbre. Rather, 
listeners heard the collection of stretched partials as distinguishable tones 
of different frequencies. The higher-frequency partials were not individu-
ally distinct, but stood apart from the lower frequencies as a group. 

This was something of a surprise to me, for many sounds with non-
harmonic partials, such as the sounds of bells, gongs, drums, or knocking 
on wood, are heard as distinct, identifiable timbres. In part, such natural 
sounds are "held together" by a common variation of different frequency 
components over time, such as a sharp attack and concurrent decay in 
amplitude, or, in the case of musical sounds, common small variations in 
the amplitudes or pitches of different frequency components (a common 
vibrato). The ear does not analyze these sounds into separate components;;---
yet that is just what our hearing did to the computer-produced tones with 
considerably stretched partials. The ear simply refused to hear such a 
collection of independently produced, unvarying partials as a distinct tone 
with a single pitch and a single distinctive quality. Instead, the ear picked 
these stretched tones to pieces. 

This, I think, accounted for the confused impression made by four-
part harmony with stretched chords. Because the ear could not identify the 
tones as single sounds, several tones sounded together were heard, not as a 
chord, either consonant or dissonant, but rather as a sort of mush of 
sound. That is why Boulez could hear no structure in a stretched Old 
Hundredth, even though all the mathematical structure present in the 
normal version was present in the stretched version, and, by the rules of 
Helmholtz and Plomp, consonance and dissonance were preserved. 

In 1987, IPO issued a wonderful disc by Houtsma, Rossing, and 
Wagenaars entitled Auditory Demonstrations. Tracks 58 through 61 illus-
trate the effects of a moderate stretching (octave of 2.1 rather than 2.0) of 
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scale frequencies andjor partial spacings. Part of a Bach chorale is played 
with synthesized tones. When neither scale nor partial frequencies are 
stretched, we hear the intended harmonic effects. When the scale is un-
stretched but the partial frequencies are stretched, the music sounds awful. 
Clearly, melodic intervals in the ratios of small whole numbers are in 
themselves insufficient to give Western harmonic effects. Further, when 
the scale is stretched but the partial frequencies are unstretched, again the 
music sounds awful. The harmonic effect does not lie simply in tones with 
harmonic partials. But when both the scale intervals and the partial fre-
quencies are stretched a little, the music sounds slightly odd but good. 

As we have already noted, when both scale intervals and partial 
spacings are stretched by the same small amount, partials associated with 
different pitches that fell on or near one another for unstretched intervals 
will fall on or near one another for stretched intervals and partials. If the 
stretching is small enough, something of the harmony is preserved. 

This demonstration appears to show that the coincidence of near-co-
incidence of partials we find for normal (harmonic partials) musical sounds 
and for consonant intervals (with frequency ratios in the ratio of small 
integers) is a necessary condition for Western harmonic effects-in Bach 
at least. When this coincidence or near-coincidence is preserved, harmonic 
effect is preserved, even with small deviations from the ratios of small 
integers in scale intervals and in frequencies of partials. 

Whatever the case may be, for Western ears there appears to be 
something musically magical about harmonic partials and the diatonic 
scale. 

_ ... --...... ... ---'--·, 

Pitch l 
. -----· the Pii!IIps laboratory in Eindhoven, Holland, shortly after 
World War II, Jan Schouten, an ingenious physicist, showed me a fascinat-
ing experiment. He had constructed a sort of optical siren (Figure 6-4) by 
means of which he could produce sounds with various waveforms. Using 
this, he produced sounds with harmonically related partials of frequencies 
( 0 , 2(0 , 3(0 , 4(0 , and so forth. Then, by proper adjustments, he could cancel 
out the fundamental frequency fo. I could hear this fundamental frequency 
come and go, but the pitch of the sound did not change at all. In some way, 
my ear inferred the proper pitch from the harmonics, each separated from 
the next by the frequency (0 of the fundamental. 

Schouten's optical siren made use of a rotating disc with radial, 
narrow, equally spaced transparent slits. When these swept past a single 
stationary radial transparent slit they let through periodic pulses of light. 
These were translated into electric pulses by a photoelectric cell. The 
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Figure 6-3 Jan Schouten. 

rotating transparent slits also swept past a transparent region shaped so as 
to produce a continuous sine wave from a second photoelectric cell as the 
radial transparent slits swept by. The phase of this sine wave could be 
shifted by rotating the sine-wave-producing region about the axis of rota-
tion. The amplitude of the sine wave could be controlled by a gain control. 
Thus, the phase and amplitude of the sine wave could be adjusted so as to 
cancel the fundamental frequency of the sequence of pulses produced as 
the radial transparent slits swept past the stationary radial transparent slit. 

I later found that Schouten had published an account of this work in 
1938, and in a paper published in 1940 he gave the name residue pitch to 
the pitch correctly heard in the absence of the fundamental frequency. 
This pitch has since been called periodicity pitch or virtual pitch, a term 
introduced by Ernst Terhardt. 

Schouten's observation should not surprise anyone who has listened 
to a pocket transistor radio. The speaker of such a radio is so small that the 
fundamental frequencies of all the lower tones are too weak to be audible; 
yet we hear the proper pitches, however tinny the music may sound. 
Perhaps the best name for what we hear is simply musical pitch. 
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Figure 6-4 Diagram of Schouten's wave siren, 

Had Helmholtz not created, or perpetuated, a myth that the pitch of a 
musical sound is conveyed by the presence of the fundamental frequency, 
Schouten's result have seemed less surprising. For musical tones of 
very high pitch, such as those of the glockenspiel, the higher-frequency 
partials or overtones don't contribute much to loudness; the chief musical 
impression, timbre as well as pitch, is derived from the fundamental. For 
tones toward the low end of the piano keyboard, the case is quite differ-
ent. The omission of the component of fundamental frequency has an 

. inappreciable effect on the pitch or the timbre. The same is true for the 
second partial, the second harmonic. The third harmonic has some effect 
on timbre. Clearly, toward the low end of the piano keyboard musical 
pitch is conveyed by salient harmonics or partials, not by the fundamental. 

This is consistent the procedure of tuning pianos and organs. In 
the tuning process, the twelve tones of a central octave are tuned by an 
adjustment of beats between tones of consonant intervals. Then the upper 
and lower registers are tuned by octaves, that is, by beats between har-
monics of the lower tone and the fundamental and harmonics of a tone an 
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octave higher. In the higher tone there is no frequency component for the 
fundamental component of the tone an octave lower to beat with. 

At the high end of the range of musical pitch as defined by the piano 
keyboard, the lowest or fundamental frequency component is all-impor-
tant to musical pitch. At the low end of the keyboard, the fundamental 

·frequency component is unimportant to pitch, and to timbre as well. At 
the middle of the keyboard (around middle C) the omission of the funda-
mental changes the timbre (making the tone brighter) but does not change 
the pitch. In the mid-keyboard range, either the lowest partial, the funda-
mental, or the higher partials can convey pitch. 

Psychoacousticians have studied the residue or virtual pitch, or musi-
cal pitch for a wide variety of combinations of sinusoids, and some of the 
results are curious. 

When a few partials have equal spacings but are not exactly harmonics 
(integer multiples) of any lower frequency, the virtual pitch is some fre-
quency of which the partials are approximately harmonics. Thus, the 
frequencies 820, 1020, and 1220 Hz can be heard as the fourth, fifth, and 
sixth harmonics of 204Hz (816, 1020, and 1224Hz); a pitch of about 204 
Hz will be heard when these frequencies are sounded together. 

Orderly collections of sinusoids do not always produce a virtual pitch 
equal to that of the missing fundamental. Sinusoids that are exclusively 
odd-numbered harmonics of a missing fundamental do not produce the 
pitch of that fundamental. But the seventh, ninth, and eleventh harmonics 
of 16Hz, that is, 112, 144, and 176Hz, are approximately the fourth, fifth, 
and sixth harmonics of 28.8 Hz (115.2, 144, and 172.8 Hz). They produce 
a pitch of about 28.8 Hz when sounded together. 

Successive harmonics may or may not be heard as a virtual pitch of the 
missing fundamental. In generating combinations of sine waves with a 
Yamaha DX7, I observed that toward the low end of the piano keyboard, 
three sinusoids with the frequencies of C, E, and G sound like a single tone 
with a pitch two octaves below C, of which they are the fourth, fifth, and 
sixth harmonics. But toward the center of the keyboard, C, E, and G 
sounded together sound like a major triad, with C the lowest tone. How-

still near the center of the keyboard, if we add G to C and C', the 
pttch drops an octave below C, a pitch of which C, G, and C' are the 
second, 'third, and fourth harmonics. 

Nonetheless, the ear has a strong tendency to ascribe a single pitch to 
a collection of tones whose frequencies are integer multiples of a common 
frequency, even though that frequency itself and some of its integer multi-
ples are absent. Furthermore, we can have a sense of pitch and unity of 
sound even when the frequency intervals between successive higher partials 
are not exactly equal. This is how we ascribe a pitch to bells. This pitch is 
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not the frequency of the lowest . partial (the hum tone), but rather an 
average of the frequency separations between some higher partials of the 
sound of the bell. 

Rameau and the Fundamental Bass 
In his Traite de f harmonie (Treatise on Harmony), first published in 1722, 
Jean-Philippe Rameau attributed the distinct character of a major triad to a 
fundamental bass (basse fundamentale). What is this fundamental bass? 

A major triad is a chord made up of a note of fundamental frequency 
(0 ; the major third above it, which has a fundamental frequency (5/ 4) (0 ; 

and the fifth above it, which has a frequency (3/ 2) (0 ; for example, 
C-E-G. As Figure 6-5 shows, the harmonics of C have frequencies 

Frequency--;;.. 
0 fo 2fo 3fo 4fo Sfo 6fo 7fo Bfo 9(., 

c 

E I l I I I" 

G I I I 

T JJ 1 I I I I 
fo = fo/ 4 

Figure 6-5 In this figure, the vertical bars along the horizontal line C indicate 
the frequencies of the first six harmonic partials of C; those along line E show 
the frequencies of the first six partials of E; and those along line G show the 
first six partials of G. Together, C, E, and G form a major triad. The 
frequencies of partials of all three pitches are shown together along line T. All 

. the partials of all the pitches of the triad are integer multiples of a frequency 
fb = fa/4 . 
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The harmonics of E have frequencies 

(5/ 4)(0 , 2(5/ 4)(0 , 3(5/4)(0 , 4(5/4)(0 , 5(5/4)(0 , 6(5/ 4)(0 

The harmonics of G have frequencies 

(3 / 2)(0 , 2(3/2)(0 , 3(3/ 2)(0 , 4(3/2)(0 , 5(3/ 2)(0 , 6(3/ 2)(0 

We see that all the partials of the notes present in the chord are integer 
multiples of the frequency . 

fb = (1/4)fo · 

We can therefore write the harmonics of C as 

the harmonics of E as 

and the harmonics of G as 

In the bottom row of the figure, the vertical bars indicate the frequencies 
of the first six partials of C, E, and G. Some of these coincide. Further-
more, many successive partials of fb are present in this triad. The frequen-
cies 4fb, Sfb, and 6fb are successive harmonics of fb· So are 15fb (the third 
harmonic of E) and 16{b (the fourth harmonic of C), as well as 24fb (the 
sixth harmonic of C) and 25 fb (the fifth harmonic of E). In listening to this 
triad, should we not therefore hear a pitch two octaves below C, the root 
of the chord, corresponding to fb = (0 / 4? 

Rameau could have heard this fundamental bass, two octaves below 
the root of the chord, when he listened to major chords. However, he 
regarded notes an octave apart as essentially identical. He therefore as-
sumed as the fundamental bass the actual lowest note, or the root, of the 
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chord (in our case, C) when it is arranged in thirds- rather than the C two 
octaves below. 

Rameau's inevitable conclusion was that what we now call 
various inversions of a chord are the same chord because they have the 
same fundamental bass. That is, E-G-C and G-C-E are the first and 
second inversions of C-E-G, and we regard them, as Rameau did, as 
essentially the same chord. Before Rameau, they were named differently 
and regarded as distinct chords. Rameau thus drastically reduced the 
number of "different" chords that a musician had to learn. 

If the distinct character of major chords lies in their having a funda-
mental bass, so that the partials of all notes present in the chord are integer 
multiples of this fundamental-bass frequency, then we can easily under-
stand the lack of harmonic effect in sufficiently stretched chords. When 
we stretch a chord, the partials of the stretched tones of which it is 
composed are not integer multiples of any one frequency. If we stretch the 
scale and the tones enough, we destroy the fundamental bass. The ear 
hears nothing to characterize the collection of stretched notes. Indeed, as 
we· have seen, there is nothing that enables the ear to attribute a distinct 
pitch to the stretched tones with which we try to make up a stretched 
musical chord. 

Although greatly stretched tones seem to be vague collections of 
sinusoidal components rather than fused sounds with distinct pitches, if 
we play a stretched scale of stretched tones, we do get a sense of rising 
pitch. Melody is more rugged than harmony. Melodies played in a 
stretched scale with stretched partials are easily recognizable. It is only 
harmony that is confused or lost altogether when the stretching is extreme. 

As we have seen, Helmholtz correctly explained the basis of acoustical 
consonance. Plomp elaborated on his work, discovering that when too 
many partials lie within a critical bandwidth, a sound will be rough or 
dissonant, whatever other qualities it may have. This concept adequately 
explains many things, including the fact that, although melodies played on 
a carillon sound acceptable, harmony on a carillon sounds discordant: 
When "consonant" chords are played on a traditional carillon, many 
nonharmonic partials lie close together in frequency. 

In Chapter 5 we noted that single notes as well as chords can have a 
dissonant character: the jangly sound of a note played on a harpsichord, or 
the buzzy quality of an electronically generated sawtooth wave or square 
wave. But there is more to harmony than this sort of consonance and 
dissonance. 

Indeed, there is more to harmony than major triads. Rameau himself 
had trouble explaining minor triads, which cannot be derived from par-
tials. Before about 1500 the final chord nearly always consisted of the root, 
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Figure 6-6 Carillon of the church of. Notre-Dame at Anvers (Antwerp). 
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fifth, and octave-without a third, whether major or minor, as they were 
considered dissonant. Thirds gradually began to be regarded as consonant 
in the fourteenth century, but not consonant enough to appear in the final 
chord. Around 1500 the third began to be permitted in the final chord. 
The major third was preferred because it was regarded as more consonant 
than the minor third, and so was used in the ;final chord even when the rest 
of the piece was in the minor key. In this context, it was known as the 
"Picardy third." 

The major triad and its fundamental bass, which was first recognized 
by Rameau, is a sort of scaffolding on which Western European composers 
built very elaborate structures of harmony. The major triads on the tonic, 
the dominant, and the subdominant (C, G, and F, for example) contain all 
the notes of the scale, as discussed in Chapter 4. Sounded in succession, 
these three chords indicate the key unambiguously. 

As the sole resources of harmony, these three chords would be dull. If 
we add another third, we can get the dominant seventh (G- B- D- F), a 
most useful chord. The notes of a diminished seventh (B- D- F- Ab) are 
the same in four different keys; so this chord, which has an ambiguous and 
unstable character, is useful for modulating from one of these keys to 
another. A few extra notes will make any major or minor chord sound 
lusher or jazzier, or may lend it an intriguing touch of some other chord or 
some other key. Likewise, a chord can be rendered provocatively ambigu-
ous by the omission of some of its notes. 

We have seen that although conventional harmonic effect is preserved 
in tones and scales stretched a little, with greater stretching the tones 
themselves fall to pieces, and harmonic effect is lost. It appears ; that 
approximately harmonic partials, and scales embodying frequency ratios 
that approximate the ratios of small integers, are essential to harmony. 
Does this rule out scales other than the diatonic scale? 

There has been a good deal of experimenting with scales. In his fine 
piece Stria (1977), John Chowning used partial spacings and pseudo-
octaves in the ratio of the Golden Mean (approximately .618). 

Later, I proposed a scale for use with tones having odd harmonic 
partials only. A tritave with a 3:1 frequency ratio (the ratio of the fre-
quency to the lowest overtone, the third harmonic, to the frequency of the 
fundamental) is used instead of the octave. The analog of a major tetrad 
has the frequency ratios 3 : 5 : 7: 9. A nine-tone scale containing six 
"major" triads and six "minor" triads can be chosen from a thirteen-tone 
"chromatic" scale with equal intervals in the ratio of 1V3. The triads do 
sound chordlike. A few composers have produced attractive pieces using 
this scale, and singers have learned to sing and transpose in it. It appears to 
"work" with tones having successive harmonic partials as well as with 
tones having odd harmonic partials only. 
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Digital synthesis invites further experimentation with this and with 
other scales. Yet it remains possible that musical sounds with harmonic or 
nearly harmonic partials- that is, musical sounds that are periodic or 
nearly periodic- together with the diatonic scale with its diatonic har-
mony, are best adapted to human perception. We may note that both the 
spectrum of a periodic sound with successive harmonic partials and the 
diatonic scale involve the ratios of small integers, such as 2: 1, 3:2, 4: 3, 
5:4, and 6:5. 
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/ magine standing outdoors on a quiet evening with your eyes 
closed. What is that faint rustling sound down and to the right? Some small 
creature must be causing it. The susurrou-s sound above is the wind 
whispering among the dry leaves. In the distance we sense the approach of 

· a rickety motorbike along the roughish road. It passes us with a rattle of 
decrepitude, departing on a slightly falling note. All of this, and more, we 
sense through two smooth, pencil-sized holes in our heads. And the 
wonderful sounds of music also reach our brains through the mechanism 
of the ears and the neural pathways from ear to brain. 

In vision, two perspective views of the external world are imaged on 
the retinas. In hearing there is no such direct physical representation of 
external space. Yet, somehow, sound can give us a vivid impression of the 
world outside, of the saw biting through the wood, of the violin bow 
wakening the string-with a scratching noise if the player is a novice. 

·Let us begin our explication of what is known about hearing with 
ears. 

Figure 7-1 shows the outer, middle, and inner ear. The visible outer 
ear, on the side of the head, is called the pinna (and the two ears are the 
pinnae). For many years, students of hearing thought that the pinna wasn't 

· very important. In 1967 an independent scientist named Wayne Batteau 
showed that it is. 

If you fold your ears over, or fill the convolutions with wax or 
modeling clay, and with your eyes closed listen to a nearby, high-pitched 
sound, such as the jingling of keys on a ring, you will find that you cannot 
judge the height of the sound, that is, tell whether such a sound is in front 
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Figure 7-1 The outer ear, the middle ear, and the inner ear. The outer and 
middle ears are air filled; the inner ear is filled with various fluids. The loops 
at the upper left of the inner ear are the semicircular canals, which have to do 
with balance, not hearing. The cochlea is the snail-like organ at the right of 
the inner ear. 

of you, above at an angle, or directly overhead. Because of our pinnae, the 
sensitivity of the ear to very high-frequency sounds changes markedly with 
both the direction of the sound source and the frequency of the sound. 
Somehow, this enables us to judge the height of the sound source. 

The pinna channels sound waves to the auditory canal, or meatus, 
which is about 2.7 centimeters (1 inch) long. At the inner end is the ear 
drum, or tympanic membrane. The auditory canal acts as a rather broad-
band resonator, with a resonant frequency of about 2,700 Hz. Together 
with characteristics of the middle and inner ear, this broad resonance helps 
determine the frequency at which our hearing is most acute, which is about 
3,400 Hz. 

The eardrum divides the ou.ter ear (the pinna and auditory canal) from 
the middle ear, which consists of three tiny bones. As the eardrum vibrates 
in · response to sound waves, the bones convey these vibrations to a third 
portion of the ear, the inner ear. Figure 7-2 shows the bones of the middle 
ear. Their names are the hammer (malleus, which looks more like a club), 
the anvil (incus, which looks rather like a tooth), and the stirrup (stapes, 
which really does look like a stirrup). These bones, which are Rexibly 
connected together, convey the eardrum's vibration to a membrane cover-
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Oval 
window 

Figure 7-2 The three tiny bones of the middle ear convey vibrations from the 
eardrum to a membrane covering the oval window of the inner ear. 

ing an opening called the oval window, which separates the air-filled 
middle ear from the fluid-filled inner ear. 

In the inner ear the vibrations of sounds are sorted into overlapping 
ranges of frequencies. Then vibrations corresponding to different ranges of 
frequencies are converted into electric impulses that travel along different 
nerve fibers to the brain by means of a complicated, interlinked system of 
nerve pathways (see Figure 7-3). A good deal is known about the anatomy 
of these neural pathways to the brain and the "way stations" at which they 
are interconnected. Through animal experimentation, something is known 
of their function. 

Because the vibrations of sound are sorted out into different, overlap-
ping ranges of frequency, a sine wave, or a sinusoidal component of a 
complicated sound, will send nerve impulses toward the brain over a 
particular nerve pathway. Along the way, the response to one sound may 
interact with responses to others. But a distinct tonotopic mapping (ton for 
tone, topic for place or locality) of excitation of nerves, in response the 
frequency of the sound heard, is preserved all the way up to the audttory 
cortex of the brain. 

At each way station a band of firing neurons depicts a spectral analysis 
of the sound that caused the firing. If an animal hears a sequence of sine 
waves of increasing frequencies, the maximum responses at the way sta-
tions will shift in position in an orderly way, and across the surface of the 
auditory cortex also. 

As we travel up the nerve pathways and to the auditory cortex, the 
tonotopic response will follow changes in the sounds heard more and more 
sluggishly, until at the cortex itself the response changes roughly at the rate 
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Figure 7-3 Neural pathways from the hair cells in the cochlea to the 
cortex, a part of the surface of the brain. Pathways from both left and nght 
ears are interconnected at various "way stations." A good deal is known about 
the pathways and their interconnections, but less about the functioning of this 
complex system. 

of the successive sounds of speech or the successive tones of music. 
Presumably, we make various uses of the spectral features, the frequency 
patterns of sounds, and these uses, quick or tardy, are made at different 
levels in the auditory system. 

At the very lowest level, where the nerves from the two ears first come 
together, the response can follow several thousand changes a second. It is 
here tha.t the comparison is made that enables us to sense the direction 
from which the sound comes by comparing time of arrival at the two ears. 
At the auditory cortex the slow response seems suitable to disentangling 
the successive sounds of spoken language. 

Way stations must provide many complicated responses to complex, 
changing sounds, ·but our knowledge of these is limited. 

The inner ear is important to our sense of balance as well as our 
hearing. Its bony case contains three semicircular canals, which do not take 
a direct part in hearing, but enable us to sense the attitude of the head, and 
hence of the body. Here we are interested in the auditory part of the inner 
ear. 

The auditory part of the inner e.ar that is important to hearing has two 
functions: spectral analysis, or the sorting out of different ranges of fre-
quency, and the excitation of nerves. Spectral analysis is carried out in the 
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cochlea, a spiral, tapered tube like the inside of a snail shell. The function 
of the cochlea illustrates things that we have already learned in connection 
with resonance, filters, and spectral analysis. 

The cochlea is shown on the right in Figure 7-1. The spiral tube of the 
cochlea makes two aod a half turns and is about 3 em (1.2 inches) long. It 
is about 0.9 em (0.4 inch) in diameter at the beginning (basal) end, and 
about 0.3 em (0.2 inch) in diameter at the far or apical end. 

In order t? be more easily understood, the cochlea is customarily 
drawn as a stratght, tapered tube, that is, unrolled (as in Figure 7-4). The 

cross .section of the cochlea is shown at the right in the figure. W 
mdtcates the width of the basilar membrane. This springy membrane is 
shown arched downward, as it would be if the pressure in the fluid above 
was greater than the pressure in the fluid below. 

The width, W, and the stiffness of the basilar membrane vary from the 
left (basal) end to the right (apical) end. The membrane is widest and laxest 
at the right end, narrowest and stiffest at the left end. 

The longitudinal, or end-to-end, section of the unrolled cochlea is 
shown at the left in the figure. The basilar membrane does not extend all 
the way to the closed, apical end (on the right). Fluid above the basilar 
membrane can flow into the space under the membrane through an open-
ing called the helicotrema. " 

At the basal end (at the left) are two windows in the bone that 
surrounds the tube of the cochlea. These are covered with thin, flexible 

!he upper opening is called the oval window. The stirrup (see 
Ftgure 7-2) Is connected to the membrane covering the oval window. 
:When a sound wave causes the stirrup to move in, it pushes the membrane 
m and causes the fluid in the upper part of the cochlea to move to the 
right; when the sound wave causes the stirrup to move out, it pulls the 

Oval window 

Round window 
Fluid 

Basal end of cochlea Apical end of c6chlea 

Figure 7-4 The cochlea "unrolled" and shown as a straight tapeced tube. The 
cross section (at the right) is simplified to a circle with rigid inner projections 
that support the springy basilar membrane, whose width increases along the 
length of cochlea, from the basal to the apical end. The longitudinal (end 
to end) section of the unrolled cochlea is shown at the left. 
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membrane out and causes the fluid in' the upper part of the cochlea to 
move left. 

The membrane that covers the round window below the basilar 
membrane isn't connected to anything. This membrane flexes in and out in 
accord with the pressure of the fluid under the basilar membrane. 

If we pushed the oval window in slowly, fluid above the basilar 
membrane would flow to the right, pass through the helicotrema, flow to 
the left under the basilar membrane, and push the membrane over the 
round window out. Figure 7-4 shows the membrane over the oval window 
pushed in (by the stirrup) and the membrane over the round window 
pushed out by the motion of the fluid through the helicotrema. Actually, a 
sound wave causes the stirrup to move rapidly right and left, thus increas-
ing and decreasing the pressure in the fluid above the basilar membrane. 
This causes a wave to travel along the membrane, through the cochlea 
from left to right. We can best visualize this wave as a traveling up-and-
down motion of the basilar membrane. ' 

Let us assume that the stirrup moves left and right sinusoidally with a 
particular frequency fin response to some sinusoidal sound or sinusoidal 
component of a sound. The speed with which the wave travels to the right 
along the basilar membrane depends on the frequency f. It also depends on 
the mass per unit length of the fluid above and below the membrane on 
the mass per unit length of the membrane, and on the stiffness ot' the 
membrane. The cross section of the cochlea and the width mass and 
stiffness vary along the cochlea. A mathematical analysis the 
speed of travel of a wave along the cochlea varies with distance. How the 
speed varies with distance depends on the frequency of the wave. 

For any particular frequency, the speed of travel of the wave decreases 
in going from the left, basal end to the right, apical end. For each particular 
frequency the speed falls to zero at some place along the cochlea. Just to 
the left of that place the oscillation caused by the wave is greatest. 
. . The motion of a wave along the cochlea from left to right is indicated 
111 the upper part of Figure 7-5. Parts A, B, and C show the same wave as it 

to the right. The dashed lines show the envelope of the wave, that 
1s, the greatest movement of the basilar membrane up or down at each 
point as the wave travels past that point. 

Parts D through G of Figure 7-5 show the envelopes of four different 
waves along the basilar membrane for four different frequencies. We see 
that for low frequencies the place of greatest motion is closer to the apical 
end of the cochlea; for high frequencies the greatest motion is closer to the 
basal end. That is, the greatest vibration of the basilar membrane in 
response to a sinusoidal sound occurs at a particular place along it that 
depends on the frequency of that sound. The vibrations of the basilar 
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Figure 7-5 Waves traveling along the basilar membrane from left to right: A, 
B, and C show the same wave as it moves toward the right; D, E, F, and G 
show the envelopes for waves of four different frequencies. The drawings in 
this figure are adapted from the work of Nobel laureate Georg von Bekesy, 
who made measurements on the cochleas of cadavers. Subsequent work on 
living animals has shown that the response of the basilar !Ilembrane is narrower 
and falls off very sharply to the right (toward the apical end). Bekesy's drawings 
are used today chiefly because no other simple, cogent illustrations are available. 

membrane excite electric pulses in nerve fibers that end on hair cells at this 
place on the basilar membrane (see Figure 7-6). 

The reader may have seen by now that the frequency-dependent place 
at which the motion of the basilar membrane is greatest provides a means 
for sensing the frequency content of a sound wave; and hence, the pitch 
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7-6 The basilar membrane and the structures surrounding it. As the 
basilar membrane moves, the hair cells send electric impulses along nerve fibers 
to the brain. · 

(and the timbre as well). Sine waves of different frequencies send messages 
to the brain along different nerve fibers; so the brain may judge the pitch of 
a wave by "knowing" which particular fibers carry the message to the 
brain. This is called the place theory of pitch perception, first put forth by 
Hermann von Helmholtz. 

There is something more, however. A sharp pulse (a click) sounds just 
the same whether the pulse is a brief increase in pressure that pushes the 
eardrum in, or a brief decrease in pressure that pulls the eardrum out. 
When pulses or clicks follow one another in rapid succession, the ear can 
sense the rate at which the pulses arrive (if it is not too fast) and can infer a 
pitch from this rate. 

As James L. Flanagan and Newman Guttman showed in 1960, se-
quences of pulses can be constructed for which the clue to pitch conveyed 
by the pulse rate conflicts with the spectral information we would get 
through a frequency analysis of the pulse trains. If the pulse rate predomi-
nates we infer one pitch; if the frequency analysis by the ear predominates, 
we infer a different pitch. If both pulse rate and frequency analysis are 
effective, there can be a pitch ambiguity, or there may be no clear pitch. 

Consider the two pulse trains shown in Figure 7-7. The pulse rate is 
the same for both pulse sequence A and pulse sequence B. In A all pulses 
are positive, and the period (of repetition) is the time interval between 
pulses. In B the pulses are alternately positive and negative, and the period 
of repetition is twice the time interval between pulses. This means that the 
fundamental frequency of A, which is shown as a sine wave, is twice the 
fundamental frequency of B, also shown as a sine wave. 
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Figure 7-7 Two different pulse trains of In part A, successive 
represent sharp increases of air pressure. In part B, alternate pulses are posttive 
and negative, that is, represent sharp increases and decreases of air pressure. At 
100 pulses per second, both pulse trains sound the same pitch, but at 100 
pulses per second, B sounds an octave lower than pulse train A. 

What do we hear when we compare two such pulse trains? When the 
pulse rate is low enough, say, 100 pulses a second, pulse train B will sound 
like pulse train A for the same number of pulses per second, despite the 
fact that the fundamental frequency of B is only half that of A. But if the 
pulse rate of A is higher, say, 200 pulses a second, pulse train B sounds 
most like pulse train A when the two fundamental frequencies are the 
same, that is, when pulse train B has 400 pulses per second. The "match" is 
clearly of fundamental frequencies rather than of the number of pulses per 
second. At intermediate pulse rates time clues and frequency cues conflict, 
and pulse train B doesn't sound like A for any pulse rate. 

How is it that at 100 pulses per second the ear doesn' t make any 
effective frequency analysis of the pulse sequences? The ear can't. What-
ever happens in the mechanism of hearing as a result of one pulse has died 
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away before the next pulse comes along. At low rates the ear has no way. of 
comparing the signs of successive pulses, and he'nce, no way of deducmg 
either the fundamental frequency of the train of pulses or what harmonics 
of the fundamental frequency are present. 

The response of the mechanism of hearing at low frequencies is more 
sluggish, and dies out more slowly, than the response to higher frequencies. 
Suppose that we filter out the lower harmonics of pulse patterns A B, 
that is, those salient partials that most strongly convey the sense of pitch of 

·musical tones. If we do this, the response to pulse rate rather than funda-
mental frequency can be pushed up to higher rates. Through such filtering 
the pulses are turned into short bursts of tone, of sinelike oscillation. 

When pitch can be inferred from either repetition rate or spectrum, 
the clue given by spectrum tends to dominate. It seems that the first six or 
so partials give a very clear sense of musical pitch. When only high har-
monics are present the tone tends to be buzzy and unmusical, and the 
sensation of musical pitch can be weak. . 

, We have seen that there can be a conflict between time information 
and spectral information, with spectral information at 
tively moderate rates. But other experiments show that time mformatwn ts 
preserved in nerve pathways at high rates. Suppose that we send a sine wave 
of constant frequency to one ear, and send the other ear a sine wave of the 
same frequency but of different phase. The sound that we hear will seem 
to be inside the head, but closer to the ear in which the sine wave peaks 
first. This effect persists for frequencies as high as 1,000 to 1,500 Hz. 
When · a sine wave of one frequency goes to one ear and a sine wave of a 
slightly different frequency goes to the other ear, most of us hear 
beats. These persist up to frequencies of 1,300 to 1,500 Hz. Ammal 
experiments in which electric nerve impulses are observed by o.f very 
fine electrodes inserted into individual nerve fibers show that ttme mfor-
mation is present for frequencies up to 4,000 to l!z, but js not 
clear that animals actually use such high-frequency time mformatwn. 

It is clear that both time and place (of maximum motion of the basilar 
membrane) are available to us in judging periodic sounds. For nonperiodic 
sounds, we must rely on place information only. When we hiss by blowing 
air past our tongues, we can produce a sound of lower or higher pitch by 
moving the tongue back or forward. A hissing sound is not periodic, and 

. any sense of pitchiness or brightness of a nonperiodic hiss must be judged 
by the place or places of vibration along the basilar membrane. 

. · The place mechanism is also important in perceiving the timbre or 
, quality of sounds. Suppose that in singing the same pitch we sing succes-
sively the vowel u as in blue and the vowel e as in he. We hear the pitch of 
. the two vowels as identical, and this pitch agrees with the frequency of the 



.) 

112 THE SCIENCE OF MUSICAL SOUND 

first partial of the note sung. However, e sounds shriller than u. And we 
can distinguish vowels in pitchless, whispered speech. 

We distinguish between vowel sounds by means of certain fonnants, 
or frequency regions of high energy with particularly strong overtones. 
These formants are centered on the resonant frequencies of the vocal tract 
and are changed by changes in the shape of the tract, depending on what 
vowels we utter. The frequencies of the formants all lie above the first 
partial of the sound we utter. The formants do not change frequency as we 
change the pitch with which we speak or sing a vowel. (This isn't quite true 
for sopranos; the timbre, or quality, of the sound changes when they sing 
high pitches, because they are singing above the formant range for a given 
vowel.) We must perceive the formant frequencies, and hence distinguish 
among vowels, by means of the place mechanism of the ear. 

It is by means of the place mechanism that we distinguish the various 
frequency components in _a sound. The critical bandwidth discussed in 
Chapter 6 should correspond to the "frequency range" along the basilar 
membrane that a single sine wave excites strongly. If a second sine wave of 
different frequency is to be perceived distinctly and independently, the 
excitation caused by a second sine wave should lie in a nonoverlapping 
region along the basilar membrane. That is, the second sine wave should be 
separated from the first by a critical bandwidth or more. The location of 
place of excitation of a sine wave along the basilar membrane, as in the 
judgment pitch, is a different matter. 
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Figure 7-8 In a nineteenth-century experiment, it was found that vowel 
sounds would consistently impose the same pattern on the flame seen in the 
revolving mirrored drum regardless of the pitch level at which they were sung. 
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Figure 7-9 The world's smallest 
violin is quite shrill. 

When we turn a sine wave on suddenly, at first the excitation along 
the basilar membrane is only roughly around the place corresponding to 
the wave's frequency. After some tens of cycles, a stable pattern of excita-
tion develops. The amplitude of this stable excitation pattern falls very 
rapidly to zero as we move toward the apical end of the membrane. For 
musical tones made up of many harmonic partials, this should happen for 
the first six partials. The establishment of such sharp discontinuities might 
be the means through which the ear "measures" the places of the lower, 
salient harmonic partials that are essential to the sensation of musical 
pitch. 

Georg von Bekesy, who received a Nobel Prize for his work on the ear 
and hearing, made experiments with cochleas excised from human ca-
davers. He found the envelopes of the displacement of the basilar mem-
brane in response to a sine wave to be rather broad, a shown in Figure 7-5. 
Later experiments he made with living animals indicated narrower enve-
lopes, which broaden quickly after the animal dies. It appears that in the 
living cochlea some mechanism adds coherent energy to the oscillations set 
up on the basilar membrane and makes the frequency analysis shatper than 
it would otherwise be. 

What we do know is that, in judging the periodicity and quality of 
sounds, the ear supplies the brain with two types of information. One type 
is information about time of occurrence and rate of repetition. Small 
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Figure 8-1 The intensity of sound or noise is measured with a sound-level 
meter (bottom). The meter does not ordinarily add the power of all frequenc: 
components of the sound and measure the sum. Rather, it "weights" the 
powers of different frequency components before adding. Weighting curve A 
(top) is commonly used, because the reading so obtained is closely related to 
loudness to the human ear for sounds of moderate intensity. Sound levels 
measured using the A setting (and weighting) of a sound-level meter are ofter 
quoted as dBA, as, for example, a noise level of 40 dBA. To measure the 
actual power of a sound, we would use the C weighting. The B weighting lie 
between A and C and would be appropriate for quite intense sounds. 
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Table 8-2 Noise Levels for Various Sources and Locations. 

Source or Description of Noise 

Threshold of pain 

Hammer blows on a steel plate (2 ft) 

Riveter (35 ft} 

Factories and shops 

Busy street traffic 

Ordinary conversation (3 ft) 

Railroad station 

Airport terminal 

Stadiums 

Large office 

Factory office 

Large store 

Medium store 

Restaurant and dining rooms 

Medium office 

Automobile at 50 mph 

Garage 

Small store 

Hotel 

Apartment 

Home in large city 

Home in the country 

Motion picture theater, empty 

Auditorium, empty 

Concert hall, empty 

Church, empty 

Classroom, empty 

Broadcast studio, no audience 

For full, add 
5 to 15 dB 

Noise Level (dBA) 

130 
114 

97 
50-75 

68 
65 

55-65 
55-65 

55 
60-65 
60-63 
50-60 
45-60 
45-55 
45-55 
45- 50 

55 
45-55 

42 
42 
40 
30 

25- 35 
25- 35 
25-35 

30 

30 

20- 25 
(Continued) 
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Table 8-2 Noise Levels for Various Sources and Locations. (Continued) 

Source or Description of Noise 

Television studio, no audience 

Television, studio, audience 

Sound motion-picture stage 
Recording studio 

Average whisper 
Quiet whisper (3 ft) 
Threshold of hearing 

Noise Level (dBA) 

25-35 

30-40 

20-35 

20-30 

15-20 

10-15 

0-5 

comparison, the sound level of conversational speech ranges from 40 to 70 
dB (a range of 30 dB, or a thousand times). 

Table 8-3 gives the peak sound powers in watts for various musical 
instruments. It also gives the sound level at 3 meters from each instrument 
in open space, calculated by assuming that the sound travels equally in all 
directions, with no reflections. In an enclosed room, the sound level at a 
distance of 3 meters would be appreciably higher because of reflections 
from the walls. 

If the sound of a musical instrument is not reflected or interrupted, its 
intensity drops 6 dB (that is, to a fourth of its value) every time we double 

Table 8-3 Peak Sound Powers for Various Instruments, and Their 
Sound Level at a Distance of 3 Meters in the Open. 

Peak Power Decibels Above 
Instrument (watts) Reference 

Clarinet 0.05 86 

Bass viol 0.16 92 
Piano 0.27 94 
Trumpet 0.31 94 

Trombone 6.0 107 
Bass drum 25.0 113 
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the distance from it. If the sound level is 90 dB at 3 meters from the 
instrument, it will be 84 dB at 6 meters, 78 dB at 12 meters, and 72 dB at 
24 meters. 

Sound Intensity and Loudness Level 
As long as we stick to sound power or intensity, things are straightforward. 
We merely have to remember that sound level expresses the measured 
intensity relative to a reference intensity that is near the threshold of 
audibility, and that the ratio of intensities is expressed in decibels rather 
than as "times." 

We have all observed that people differ in their hearing, as in other 
matters. Some have very acute hearing; some are quite deaf. The United 
States Public Health Service made an extensive survey of the threshold of 
hearing of many individual people; that is, of the level of sound at which 
they could just hear sinusoidal sounds of various frequencies. The results 
are shown in Figure 8-2. 
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Figure 8-2 Curves showing threshold of hearing at various frequencies for a 
group of Americans: 1 percent of the group can hear any sound with an 
intensity above the 1 percent curve; 5 percent of the group can hear any sound 
with an intensity above the 5 percent curve; and so on. 
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In this figure, frequency of a steady tone is plotted from left to right, 
and sound intensity in decibels is plotted upward. The flat top curve shows 
the level of feeling, the intensity level above which sound hurts. We see 
that this is about 120 dB for all frequencies. 

Each lower curve is designated by a percentage: 1 percent, 50 percent, 
ninety-nine percent. The 1 percent curve means that 1 percent of the 
subjects tested could hear a sound of a particular frequency whose inten-
sity lay above the curve. For example, at 1,000 Hz, 1 percent of all 
individuals in the group tested could hear a pure tone whose intensity level 
was above 3 dB. 

Clearly, how loud a sound is depends on who is listening. A sound 
that is inaudible to one person may be 10 or 20 dB above the lowest 
audible level for another. 

Figure 8-2 tells us something else. Our ability to detect a sinusoidal 
sound, and sometimes the loudness of the sound, depends on its fre-
quency, as well as on its intensity (power density). 

All of us judge a particular sound as being louder if its intensity is 
increased. However, we can't discuss quantitatively the loudness of sounds 
for all people; so we must single out a group of persons, those with good or 
acute hearing, who are a minority among us. 

For this group, loudness judged for sine waves is related to intensity 
and frequency by the curves shown in Figure 8-3. The curve at the bottom 
is for the threshold of hearing, the intensity level at which a sound of a 
particular frequency can just be heard. The other curves are equal loudness 
curves. That is, if two sinusoidal sounds of different frequencies have 
intensity levels lying on the same curve, they will sound equally loud. 

We should note at once that the upper curves dip down less than the 
lower curves. For very loud sounds, the intensity level required to produce 
a given loudness doesn't change much with frequency. For very weak 
sounds it a lot. Equivalently, the loudness of a weak sound of a 
given intensity changes greatly as we vary its frequency; the loudness of a 
strong sound doesn't change much as we vary its frequency. 

A consequence of this fact is that, as we turn the volume control of a 
stereo, the relative loudness of sounds of various frequencies changes. 
Some stereos have internal networks provided to compensate for t,his; 
mine has a switch labeled loudness contour. This is to be used when the 
sound produced by the speakers is less intense that the sound of the 
original music. When the loudness contour switch is on, the amplification 
is boosted at low and high frequencies to compensate for the dip in the 
low-intensity constant-loudness curves shown in the lower figure on the 
preceding page. 

The equal-loudness curves in the figure are labeled in numbers of 
phons-20 phons, 40 phons, and so on. These curves can also be called 
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Figure 8-3 Constant-loudness curves for persons with acute hearing. All 
sinusoidal sounds whose levels lie on a single curve (an isophon) are equally 
loud. A particular loudness-level curve is designated as a loudness level of 
some number of phons. The number of phons is equal to the number of 
decibels only at the frequency 1,000 Hz. 

isophons. A phon measures loudness level. The number of phons (of any 
particular equal-loudness contour) is merely the sound pressure level in 
decibels of an equally loud tone at 1,000 Hz. In other words, only at the 
frequency of 1,000 Hz does the number of phons equal the number of 
decibels- 30 phons = 30 dB, 60 phons = 60 dB, and so on. For all other 
frequencies, the relationship of phons to decibels has to be arrived at by 
experiment. 

Loudness 
Loudness itself is measured in sones. A sound with a loudness of 20 sones 
sounds twice as loud as a sound with a loudness of 10 sones. A sound with 
a loudness of 50 sones sounds twice as loud as a sound with a loudness of 
25 sones. To measure phons relative to sones, we ask a person to turn up 
the intensity level of a sinusoidal sound until he or she hears the sound as 
being twice as loud. Surprisingly, we get consistent results. 
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made possible more quantitative and subtler experiments. In our own time 
the computer and other digital technology have made easy what was 
difficult ·or impossible with earlier electronic means. They have done 
something more: We can now transcend all the limitations of early sound 
sources. We can imitate the sounds of fine instruments. We can go beyond 
them. Our understanding of musical effects has increased, and so has our 
ability to produce them. 

As I noted in the first chapter of this book, an increased capability to 
generate, experiment with, and understand sounds, new and old, has led 
some enterprising composers to pay more attention to the subtle qualities 
of the sounds used in their compositions. This seems to me to be a healthy 
alternative to excessive concern with formal structure, or to a search for 
"spontaneit.y" based on some form o( improvisation. 

Both rules and spontaneity have their place in music, but deep under-
standing and careful work are essential, too. However much we may wish 

· that we could have heard the improvisations of Bach, Mozart, or Debussy, 
it seems likely that their best music is the music that they left us. 

The genius of the past can be a weight upon the present. Perhaps by 
using new resources and new understanding, music can avoid being 
crushed by it. Scientists are not crushed by Newton and Einstein, for they 
have experimental resources, knowledge, and understanding that Newton 
and Einstein lacked. Whatever its "absolute" value, new science is new and 
worthy when it succeeds in going successfully beyond the old. 

May it not be so with ne.w music? But to succeed, new music must 
really be heard in the sense that its composers intended, must be under-
stood, must hold the interest of and move the listener. Here an under-
standing and exploration of the science of musical sounds can help. The 
rest only talent or genius can supply. 

Appendix A Terminology 

When scientists and engineers deal with well-defined, measurable ?hysical 
properties, they use only unambiguous, well-defined terms, such as time, 
measured with a watch, mass, measured with a balance, or length, measured 
with a meterstick. This helps us grasp their intended meaning. 

Many legitimate physical terms aren't nearly so simple. They can't be 
explained in a few words. Understanding them and using them properly 
results only from long exposure to experience or experiment, until the 
terms and their place in physics become familiar and, indeed, commonplace. 

Efforts to "define" words briefly in terms of other words aren 't very · 
helpful. In both everyday life and science (if not in philosophy), we learn to 
use words understandably by protracted experience with things and by 
communicating with others. In this book I have tried to use words 
understandably, but it is difficult to eliminate every vestige of ambiguity. 

In music we deal with many difficult qualities. They would not be 
made less difficult if I were to depart from the common words used by 
musicians, to invent a jargon, or to import one from psychology. I believe 
that the chief difficulties lie in the facts and experiences themselves, not in 
the words we use about them. I believe that the best "definitions" of the 
words that I use are in the text, explicitly or implicitly. Nonetheless, this 
brief discussion of terminology may prove useful to the reader. 

Strictly, a sound is what we hear when a sound wave going. through 
the air strikes our ears. A sound wave acts as what psychologists c<1ll a 
stimulus. Our response to the stimulus is the "sound" that we hear. By this 
definition, if no one is listening (or if only deaf persons are present), then 
there is no sound, but only a sound wave in the air. 

The word note can designate either a mark on a musical staff or the 
sound produced, which we hear when someone "plays a note." Some try 
to avoid. c.onfusion by using the word tone for the sound produced when 
someone "plays a note." 

A tone is a musical sound, one that can be heard as having a pitch. 
We can apply " tone" to the sound of a bell, but not to the sound of a 
drum. Musical sound waves are periodic fluctuations of air pressure. A 
pure tone is a sinusoidal sound wave. (One can also speak of the good tone 
of a violin, violinist, or pianist, but in this book I try not to use tone in 
that sense.) 

Pitch is a quality that we hear in some sounds. Happily, for real 
periodic sounds the pitch that we hear is tied firmly to the periodicity, or 
frequency, of the sound wave. At concert pitch, A above middle C has a 
frequency of 440 Hz (vibrations per second). I therefore think it proper to 
designate pitch quantitatively by specifying frequency. 

Loudness is how low a sound sounds. It is related in a compli.cated 
way to the intensity of a sound. Intensity is measured in watts per square 
meter, a good, solid physical quantity. 
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Timbre is a quality that a sound has in addition to pitch and loudness. 
Sounds that don't have a clear pitch, such as those of drums and blocks, 
can differ in timbre. We can use many common words to distinguish 
timbres: shrill, warm, harsh, dull, percussive. Such words describe real, 
consistent differences in our responses to musical sounds and in the sound 
waves, but it is no simple matter to pin these differences down. 

Is it differences in timbre that distinguish good from bad violin 
playing? Physicists rightly assert that a piano emits the same sound whether 
an expert player strikes a _key or a weight falls on it; yet some pianists 
obviously have a "good tone" and others don't. I don't know how to 
explain this difference, and you won't necessarily get help by asking a 
pianist who has a "good tone." She (or he) can produce the effect, but 
will probably not be able to tell you in words how she does it. " Make it 
sing," Claude Shannon's clarinet teacher told him. Shannon knew what 
was wanted, if not how to do it. 
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Appendix B Mathematical N oration 

I have tried either to avoid mathematics in the text or to make it as simple 
as possible. Some mathematical expressions are necessary in conveying 
quantitative relations. For example, 

ml 
means m times I. Clearly, this won't work for numbers, for we would not 
know whether 

27 

was two times seven or twenty-seven. Hence, when we want to indicate 
the multiplication of numbers, we enclose them in parentheses. Thus 

(2)(7) 

is 2 multiplied by 7. We can do this, if we wish, in multiplying quantities 
represented by letters, 

(m)(/) = ml 
but nothing is gained by including the parentheses. 

The expression 
t3 

is the third power oft (or the.cube of t). The meaning is 

t3 = ttt = (t)(t)(t) 

The exponent, 3, tells how many t's to multiply together. A negative 
exponent indicates division rather than multiplication. Thus, 

t-3 = 1jt3 = (1/t)(1/t)(1/t) 

Let's consider a numerical example of powers. In an equal-tempered scale 
the frequency ratio of a semitone is 

(2) 1112 = 1.059468 

Sometimes a very large number is written in the following way: 

5.4 X 105 = (5.4)(10)(10)(10)(10)(10) 
= 540,000 

We could write 5.4 X 10 5 as 

but for some reason we don't. A very small number can likewise be 
written as 

6.2 X = 6.2(1 / 10)(1/10){1/ 10)(1/ 10) 
= 0.00062 
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As a review, 

ml/ t 2 

is the product of m and I divided by t2• 

The square root of a quantity, say, x, is such that 

(.Jx)(.Jx) =X 

Thus, 

rx = 2 

and 

( ,14 )( ,14) = (2)(2) = 4 

We encounter decibels, abbreviated, dB, in several chapters. Decibels 
provide a way of expressing ratios of powers. If P1 and P2 are two powers 
(commonly measured in watts), P2 is greater than P1 by 

10 log10 (PdP1 ) dB 

The logarithm to the base 10 of a number can be looked up in a table or 
obtained by using a "mathematical" hand calculator. Table B-1 gives the 
flavor of logarithms. 

Table B-1 Logarithms and decibels. 

Power ratio R Amplitude ratio (.JR.) 10 log10 R 

.0001 .01 -40 dB 

.001 .0316 -30 dB 

.01 .1 - 20 dB 

.1 .316 -10 dB 

1 0 dB 

10 3.16 10 dB 

100 10 20 dB 

1,000 31.6 30 dB 

10,000 100 40 dB 

2 1.4 3 dB 

1/ 2 .71 -3 dB 
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Appendix c Physical Quantities and Units 

The MKS, or meter-kilogram-second, system of units is used in this book. 
The units in which quantities ·are measured are: 

mass, m 
distance, l 
time, t 
force, F 
power, P 
intensity, I 
energy, E 

kilogram 
meters 
seconds 
newtons 
watts 
watts per square meter 
joules 

The pull (or "acceleration") of gravity at the earth's surface, which is 9.80 
meters per second per second, produces a force of 9.80 newtons on a 
mass of one kilogram. Force is mass times acceleration. 

A force of one newton pushing something a distance of one meter 
requires an expenditure of one joule of energy. 

The number of watts is equal to the number of joules of energy 
expended per second. 

In MKS units, pressure is measured in newtons per square meter. One 
newton per square meter is called a pascal. 
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Appendix D Mathematics and Waves 

Chapter 2 correctly describes the propagation of waves along a string or 
through the air as a traveling disturbance. Such a disturbance involves 
continual changes in momentum (mass times velocity) caused by a force. 
The force may be associated with the bending of a stretched string or the 
compression of air. Continual changes in the force occur because the . 
stretched string is bent as the wave travels along, or because the a1r IS 

compressed when the velocity associated with the wave is lower ahead 
than it is behind. 

The propagation and properties of both transverse and longitudinal 
waves can be demonstrated by simple but rather tedious mathematical 
analysis (reasoning). One result of such mathematics is the discovery that 
waves behave in a very simple fashion only for small amplitudes; that is, 
when the stretched string along which a wave travels isn't bent too sharply 
or when a sound wave traveling through the air raises or lowers the 
pressure only by a small fraction. The behavior of such small-amplitude . 
waves is linear. In essence, this means that when two waves are present m 
the same medium (string, air), they don't interact with one another. Each 
goes its own way as if the other weren't present. The total motion 
(displacement, velocity, or pressure) is simply the sum of the motions 
associated with the two (or more) waves. 

.) 

We will not attempt a conventional mathematical analysis of waves 
here. Instead, we will assume that we are dealing only with small-amplitude 
linear waves. We will then ask, How can the velocity of the waves, the 
power carried by them, and other properties be expressed in terms of 
various physical properties? We do this by a seeming magic called 
dimensional analysis. 

All physical quantities- including force, velocity, and momentum-
have a dimension that is expressed in terms of the dimensions of time, 
mass, and length. Actual time measured in seconds is designated here by 
the italic letter t, whereas the dimension of time is designated by the 
boldface letter t, and similarly for mass, length, and any other physical 
quantity and its dimension. The three fundamental physical quantities and 
their dimensions are given in Table D-1. Let us illustrate the dimensions of 
some common physical quantities. What is the. dimension f of frequency 
or periodicity in time? Frequency is the number of something per second. 
Number is dimensionless, and so the dimension of frequency is simply 

t = 1/t (D-1) 

What about velocity? Velocity is distance per unit time. The dimension of 
distance is I, and the dimension of time is t, so p, the dimension of 
velocity, is given by 

p = ljt (D-2) 
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Table D-1 Symbols for Physical Quantities and Their Dimensions 

Physical 
Quantity 

Time 

Mass 
Length 

Symbol for 
Physical 
Quantity 

t 

m 

Symbol for 
Dimension of 

Physical 
Quantity 

m 

Acceleration is change in velocity with time. Numerically, it is the amount 
that velocity changes in a unit of time. Dimensionally, the dimension a of 
acceleration is given by 

d = vjt = IjtZ (D-3) 

We now come to a physical law, not a matter of definition. This law was 
·first stated by Newton. It is that, numerically, force is equal to mass times 
acceleration. Thus, the dimension F of force is 

F = mljtl 

Energy (or work) can be defined as force times distance. Thus, the 
dimension of energy, E, is 

E = mP j t 2 

(D-4) 

(D-5) 

· Let us take a look at equation D-5. We note from equation D-2 that the 
dimension of velocity is Ijt. Thus, the dimension of energy can also be written 

E =mv 2 (D-6) 

Dimensionally, this is correct. But the numerically correct expression for 
kinetic energy, or the energy of mass in motion, is 

E = (1/2)mv 2 (D-7) 

Here E is actual energy, not the dimension of energy, m is actual mass, 
and vis actual velocity. Dimensionally, equations D-6 and D-7 are in 
accord. The numerical factor (1 / 2) is a number, and has no dimension. 
Finding the dimension of energy by dimensional analysis has led us to an 
expression for kinetic energy that is correct in everything except a 
multiplying numerical factor. 

Let us keep what we have learned in mind, and see how we can use 
dimensional analysis in connection with waves. 

As an example, what is the expression for the velocity v of a transverse 
wave traveling along a string of mass M kilograms per meter, a string that 
is stretched with a tension or force of T newtons? 
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First, what are the dimensions of M and 1? M is mass per unit length; 
so the dimension of M is 

M=m/1 

The tension T is simply a force, which has dimensions ml/ t 2, so the 
dimension of T is 

T = m!jt 2 

(D-8) 

(D-9) 

The dimension of the velocity v of the wave must be l j t. We can see that 
this will be true if the expression for the velocity is 

v = .JT/ M (D-10) 

We verify this by writing for the dimensions of .Jy I M, 

.JTjM = 
= Fjt 2 

= ljt =v (D-11) 

Actually, equation D-10 is the numerically correct expression for the 
velocity of a wave traveling along a stretched string; The numerical factor 
turns out to be unity, but we couldn't know this from dimensional analysis. 

Let us turn to something that is very important about plane waves 
traveling through air, that is, the intensity I, which is the power density 
measured in watts per square meter. 

We noted earlier that energy or work can be defined as force times 
distance. Power is energy per unit time; so power will have the dimensions 
of force times (ljt), or force times velocity. Intensity lis power per square 
meter; so intensity will have the dimensions of force times velocity divided 
by /2; Hence, the dimension 1 of intensity is given by 

I= F(ljt)/F = F/lt = mjt 3 (D-12) 

But in plane waves in air we are concerned not with force F, but with 
force per square meter, or pressure, p. The dimension p of pressure is 

p=Fj P (D-13) 

From these last two relations we see that the dimension I of intensity is 

I= p(1/ t) (D-14) 

Here p is the dimension of pressure, and 1/t is the dimension of velocity. 
We may easily conclude that if pis the fluctuating pressure associated 
with a sound wave and u is the fluctuating velocity associated with a 
sound wave, the intensity of the wave will be 

I= pu (D-15) 

This is not only dimensionally correct, but also numerically correct, and 
we could have arrived at it more directly. 
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In a small-amplitude linear sound wave, the pressure p will be some 
constant, which we will call K, times the velocity fluctuation u: 

p =Ku (D-16) 

Thus, by using equation D-16, we can express intensity I in terms of either 
p or u: 

I= Ku2 

I= (1 / K)p 2 

(D-17) 

(D-18) 

K is called the characteristic impedance or wave impedance foe a plane 
sound wave. But how are we to find an expression for K? The dimension 
of K is 

K = ljv 2 = 1(1/ t )2 

Hence, from equations D-19 and D-12, 

K =m/Ft= (m/P)(Ijt) 

(D-19) 

(D-20) 

The first factor on the far right of equation D-19 has the dimensions of 
mass density, which we will call D. The second factor has the dimensions 
of velocity. Can it be that 

K=Dv (D-21) 

in which D is the density of the air and v is the velocity of sound? It can 
be and it is, equation D-21 is numerically correct. This is very plausible, 
for from equations D-21 and D-17 we can write 

(D-22) 

Du2 is proportional to the kinetic energy per cubic meter of the air 
moving at a velocity u, and in some sense this energy is transported through 
the air at a rate v. The kinetic energy is only half the energy transported; 
there is an equal amount of potential energy associated with the 
compression of the air by the sound wave. 

We can also express the'· intensity .of the sound wave in terms of the 
pressure p as 

For air at 20oC, 

D = 1.2174 kilograms per square meter 

v = 344 meters per second 

I = 0.002388 p2 

(D-23) 

(D-24) 

We should note that for a fluctuating pressure, the average intensity is 
g1ven by the average value of p2 divided by Dv. For a sinusoidal variation 
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of pressure with time, the average value of p2. is half the square of the 
peak pressure (That is, the "top" of the sine wave). 

In Chapter 7 the reference level of intensity is given ·as 10-12 watt per 
square meter. The usual reference level is a pressure of 0.00002 pascal (a 
pascal is a pressure of one newton per square meter). If we calculate I for 
this pressure using (024), we get 

I = 0.955 X 10-12 watt per square meter 

This is so close to the 10-12 watt per square meter (only 0.2 dB different) 
that I chose to use the round number 10-12 watt per square meter in 
Chapter 8. 

In Chapter 8 I commented on the sensitivity of the ear, and said that 
" theoretically" we should just be able to hear a 1-watt, 3,500-Hz sound 
source at a distance of 564 kilometers (352. miles). If a sound has a power 
of W watts and travels out equally in all directions, so that at a distance L 
the power passes evenly through a sphere of area 4 nU, the intensity I at 
a distance L must be 

I= W/ 4nU (D-25) 

If we let W = 1 and L = 564,000 meters, we get from equation D-22 just 
about 10-12. watt per square meter, which is about the threshold of hearing. 

Let us turn to the velocity with which a sound wave travels through 
air. This velocity does not vary with pressure, but it does vary with 
temperature. The pressure of air is caused by the velocity of air molecules. 
Jhe square of this velocity is proportional to the temperature in kelvins, 
that is, in degrees measured with respect to absolute zero; that is, 0 kelvin 
is -273 degrees Celsius (centigrade). 

It is dimensionally plausible that the velocity of a sound wave should 
be proportional to the velocity of the molecules of the air through which 
the wave travels, and this turns out to be so. The velocity of a sound 
wave at a temperature T can thus be expressed as 

v = vk ../T / Tk (D-26) 

in which vk is the velocity of the sound wave at a temperature of Tk 
kelvins. If we take the velocity of the sound wave to be 344 meters per 
second at a temperature of 20 degrees Celsius (centigrade), then at a 
temperature T kelvins, 

v = 344 .jy / 293 

v = 20.1 ..ft (D-27) 

The velocity of sound varies with humidity as well as with temperature. 
The velocity of the molecules of a gas varies with the mass of the molecules 
as well as with the temperature: the lighter the molecules, the greater their 
velocity. Molecules of water vapor are less massive than molecules of dry 
air, and so the velocity of sound increases with increasing humidity. 
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Wind instruments are provided with tuning adjustments to compensate 
for effects of temperatu:e and humidity on pitch. The pitch of a pipe 
?rgan mexorably changes wtth temperature and humidity, and other 
mstruments must accommodate this. 

) ) ) ) ) ) ) ) ) ) ) 



( ( ( ( ( ( ( ( ( ( ( ( ( 

Appendix E Reflection of Waves 

t 
u 

In order to understand the reflection of sound waves, we must take into 
account the fact that such waves consist both of an increase or decrease in 
the pressure of the air, designated by p, and of a forward or backward 
velocity of the air, designated by u. As noted in Appendix D, these two 
components of the wave go hand in hand. In a wave that travels from left 
to right, 

p =Ku 
in which K is a constant. 

Figure E-1 shows graphically the pressure p and the velocity v.. of a 
"square" wave traveling to the right. Part A depicts a wave in which the 
pressure p is positive. The associated velocity u is positive; that is, it 
represents motion of the air to the right," in the direction in which the 
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Figure E-1 For a "square" sound wave traveling to the right, the pressure p 
and the velocity of the air u are plotted against distance. When the pressure is 
greater than average, the pressure difference p is positive and lies above the 
axis, the horizontal line marked 0. When u lies above the axis, the velocity is 
to the right; when u is negative (plotted below the axis), the velocity is to the 
left. ·For a wave traveling to the right, the pressure p and the velocity u have 
the same sign; that is, if one lies above the axis, both do. When p is positive, 
u is positive, as shown in part A. When p is negative, u is negative, as shown 
in part B. 
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wave travels. In part B, the pressure p is negative, and is represented as 
lying below the axis, the horizontal line marked 0. This merely means that 
the total pressure of the air is less than the average air pressure. The 
velocity u is also negative (motion of the air to the left), and this is shown 
as a velocity lying below the axis. 

Figure E-2 shows p and u for a square wave traveling to the left. Why 
do the graphs of waves traveling to the right look so different from those 
of waves traveling to the left? A wave can travel to either right or left. 
Shouldn't the picture be much the same in either case? The difference arises 
because in both cases we measure a velocity as positive (above the 
horizontal axis) if it is directed toward the right, regardless of whether the 
wave travels to the left or to the right. In any sound wave, if the 
pressure p is positive, the velocity of the air, u is in the direction in which 
the wave travels; if the pressure p is negative, the velocity of the air is 
directed opposite to the direction of travel of the wave. Thus, in the 
graphs of a wave traveling to the left, the pressure p is positive and the 
velocity u is negative, that is, to the left, the direction in which the wave 
travels. 

Graphs such as these are very useful for understanding the reAection 
. of waves. Figure E-3 illust»!'ates successive stages in the reflection of a wave 
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Figure E-2 For a wave traveling to the left, the pressure p and the velocity u 
have opposite signs. When the pressure is positive (as in part A), the velocity is 
negative. When the pressure is negative (as in part B), the velocity is positive. 
This is so because a positive velocity is generally depicted as a veloci-ty to the 
right. Thus in part A the pressure is positive, and the velocity is in the same 
direction as that in which the wave travels, that is, to the left, shown as a 
negative velocity. 
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A 

B 

c 

D 

Figure E-3 The reflection of a sound 
wave from a solid wall, represented by 
the vertical line to the right. Pressure is 
represented by a solid line, and velocity 
by a dashed line. Part A represents a 
wave traveling to the right, toward the 
wall; part D, a wave traveling to the left, 
away from the wall; parts B and C, the 
wave in the process of reflection. The 
complicated curves of pressure and 
velocity in parts B and C are simply 
combinations of the pressures and 
velocities of waves traveling to the right 
(the incident wave) and to the left (the 
reflected wave). The velocities of these 
two waves must be such that at the wall 
the sum of the velocities is zero, for the 
air can't move at the wall. This simple 
condition determines the velocity, and 
hence the pressure, of the reflected wave. 

from a wall, represented by the vertical line at the right. In this figure, 
pressure p is represented by a solid line and velocity u by a dashed line. In 
part A, we see the. pressure and velocity of an incident wave approaching 
from the left. Both are positive, as is proper for a wave traveling to the 
right. In part D, the wave has been reflected from the wall. The pressure is 
positive and the velocity is negative, as is properfor a wave traveling to 
the left. · 

What of the pressure and velocity during the process of reflection, as 
shown in parts B and C? Here the pressure near the wall is twice as great 
as that of the incoming wave, and the velocity near the wall is zero. Can 
we explain this complex behavior? 

The behavior is actually very simple. During the process of reflection 
we have overlapping waves, one traveling to the right and the other to the 
left. The pressure and veloCities shown in parts C and D are the sums of 
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the pressures and velocities of these two waves: The pressures add, but the 
velocities, being in opposite directions and therefore having opposite signs, 
cancel each other out. 

We see that, in reflection from a solid obstacle, the pressure of a 
sound wave is reversed. When a sound wave travels through a tube, we 
can have another sort of reflection. If the end of the tube is open, there 
can be no (or very little) pressure at the end of the tube, but we can have 
a velocity u at the end of the tube. 

Imagine a sound wave traveling through a narrow tube, such as an 
organ pipe. When it reaches an open end, it will be almost completely 
reflected. But, after reflection at an open end, the air velocity u will be 
unchanged and the sign of the pressure p will be reversed. If the pressure 
p is positive before reflection, it will be negative after reflection. 

In relating the length of a pipe to pitch, we must take into account 
the nature of the reflections at its ends. Figure E-4 illustrates successive 
reflections in an organ pipe open at both ends (left) and in a pipe open at 
one end and closed at the other (right). 

Open pipe Closed pipe 

,<E------L---71 

t = 0 
n) 

Initial wave 
. n) 

t = Llv <E-- After first reflection 0 
0 

t = 2Liv 0 After second reflection ---7 

0 
t=3Liv After third reflection <E--

0 
t=4Liv After fourth reflection n 
Figure E-4 The pressure of a wave after successive reflections at the ends of 
an open organ pipe (open at both ends, left) and a closed organ pipe (open at 
one end, closed at the other, right). In the open pipe, after two reflections the 
pressure is back where it started, and the pitch frequency is vj2L Hz. In the 
closed pipe, the pressure is back where it started only after four reflections, 
and the pitch frequency is v j4L Hz. For the same pitch, open organ pipes 
must be twice as long as a closed pipe. 
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In reflection from an open end, the pressure p changes sign on 
reflection, but, in reflection from a closed end, the sign of the pressure p 
remains the same after reflection. For an open pipe, we see that after a time, 

2L/v 
the wave has undergone two reflections and is the same as at the start. 
However, for a closed pipe the wave must undergo four reflections before 
it is the same as at the beginning, and this takes time. 

4L/v 
Thus the pitch frequency f of an open organ pipe is 

(= v/2L Hz (E-1) 

whereas the pitch frequency f of a pipe closed at one end and open at the 
other is 

(= v/4L Hz (E-2) 

Here v is the velocity of sound and L is the length of the pipe. 
In stringed musical instruments, both ends of the string are rendered 

immovable. Hence, at the ends of the string, the transverse velocity is 
always zero. All reflections are the same, and the pitch frequency is always 

(= v/2L Hz 

But, in this case, v is the velocity with which a transverse wave travels 
along the string. As noted in Appendix D, this velocity is higher the 
greater the tension, and lower the greater the mass of the string. 

(E-3) 
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Appendix F Digital Generation of Sound 

Initially, the digital generation of musical sound was accomplished on 
general-purpose computers through special software. The generation of 
one second of sound commonly took several tens of seconds of computer 
time. 

Today a host of digital synthesizers that run in real time are available. 
In their organization and function these draw on techniques first 
developed in software, such as Max Mathews's Music V, described in 
more detail in his 1969 book, The Technology of Compwter Music. Music 
V and other software programs derived from it are still used in digital 
sound synthesis and in the processing of natural sounds. It seems 
appropriate to use Music V in explaining the capabilities and problems of 
digital synthesis. 

How is it possible for a computer to generate sounds? The sampling 
theorem gives us a clue. Consider any waveform made up of frequency 
components whose frequencies are less than B. That is, consider any 
sound wave those frequency components lie in the bandwidth between 
zero and B. Any such waveform or sound wave can be represented exactly 
by the amplitudes of 2B samples per second. These samples are mere!y the 
amplitudes of the waveform at sampling times spaced 1/2B apart in time. 
Part A of Figure F-2 represents a waveform. In part B, the amplitudes at 
times 1/2B are shown as vertical bars drawn from the horizontal axis 
(which represents zero amplitude) to the curve of these bars. The successive 
heights can be represented by 2B numbers each second. These numbers 
describe the required samples from which the waveform can be 
reconstructed. Part C is an exact replica of the waveform in part A. This 
replica can be obtained by passing short electric pulses of the heights given 
in part B and described by the numbers that express these heights, through 
a low-pass filter of bandwidth B. 

In high-quality computer-generated sound, it is customary to use 
44,100 samples per second to represent a waveform. This allows us to 
produce frequencies up to 22,050 Hz. Because of technological limitations, 
the frequency range of bandwidth actually attained is 20,000 Hz. 

The samples in part B of Figure F-1 are shown as lines of various 
heights, and the succession of sample heights stands for a succession of 
numbers. A computer can't produce every exact number, for most numbers 
can be represented only by an infinite number of digits to the right of the 
decimal point. A computer can produce a set of numbers such as 00 (0), 
01 (1), 05 (5), 27, 44, 99-all of which are examples of the 100 possible 
two-digit numbers starting with 00 and ending with 99. 

The internal organization of computers is such that they use only two 
binary digits, 0 and 1, and represent numbers in terms of them. 
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A I 1128 I 1/2B I 1/2B I 112B I 1/2B I 112B I l/2B I 

B 

Figure F-1 A waveform of bandwidth B can be represented exactly by 2B 
samples a second, taken at time intervals (1/2B). In part A, the samples are 
represented by the lengths of vertical lines drawn from the horizontal line to 
the curve representing the waveform. The sample amplitudes may be described 
by numbers. In part B, the sample amplitudes are represented by very short 
electric pulses whose heights correspond to the sample amplitudes. In part C, 
the original waveform is recovered by low-pass filtering of the sequence of 
pulses shown in part B. 

The successive digits of common or decimal numbers are interpreted 
by means of powers of 10. Thus, 257 means 

7 X 10° + 5 X 101 + 7 X 102 

=7 X 1 + 5 X 10 + 7 X 100 

The binary number 1001 means 

1 X 2° + 0 X 21 + 0 X 22 + 1 X 23 

=1Xl+OX2+0X4+1X8 

In decimal notation, the binary number 1001 is 9. 
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In good computer-produced sounds, 16 binary digits are used to 
represent the samples. This enables us to represent 65,536 different sample 
amplitudes. In effect, half of these binary numbers are used to represent 
positive sample amplitudes, and half are used to represent negative sample 
amplitudes. 

If we use 16 binary digits to represent the largest possible sine wave, 
the signal-to-noise ratio of the sine wave so produced will be about 98 dB. 

Suppose that we choose 44,100 sample amplitudes a second. We then 
produce a sequence of 44,100 short electric pulses a second, such that the 
amplitude of each is equal to the sample amplitude. We then pass this 
train of pulses through a low-pass filter to eliminate any frequency 
components above 22,050 Hz. Because we are free to choose the numbers 
that give the sample amplitudes in any way that we wish, we can by this 
means produce any possible sound wave whose bandwidth is 22,050 Hz or 
less, at least with the accuracy indicated. This is good enough for high-
quality musical sounds. 

This is too much freedom of choice to be of any use. In Music V, 
Mathews found a way to program a computer to produce a wide variety 
of musically useful sounds. Indeed, subsequent .experience seems to 

.indicate that Music V can be used to produce sounds as elaborate as we 
wish, including the sound of a singing voice and even speech sounds. 

How is this done in Music V? We have all heard of the idea of a 
computer simulating some sort of mechanical or electrical device. The 
·easiest way for noncomputer people to understand Music V is to think of 
it as making the computer simulate the operation of several fundamental 
electronic devices that are connected together in various ways. These 
fundamental devices are shown in Figure F-2. 

One important device is the oscillator, represented in part A. This has 
an output and two inputs. The number going into input 11 specifies the 
amplitude of the output wave; the number going into 12 specifies the 
frequency of the output wave. Each oscillator is programmed to produce a 
particular waveform Fn, which may be a sine wave, a square wave, or 
some other wave. 

The adder shown in part B is essential. The output of the adder is the 
sum of the two inputs, 11 and 12. We may use the adder to add the 
outputs of two sinusoidal oscillators to get the sum of two partials. Or we 
may use the adder to add a small sinusoidal vibrato to the number that 
specifies the average frequency of the oscillator. 

The output of the multiplier shown in part C is the product of the 
two input numbers 11 and 12. The multiplier may be used in several ways: 
to multiply by some chosen number the amplitudes of all outputs 
produced by an oscillator, so that we can use one number as a volume 
control; or to change the frequency of an oscillator by a constant factor, 
thus transposing any notes played. 

The final device (part D) is an output device that stores the sequence 
of numbers that represent the samples of the waveform produced. This 
storage may be accomplished in the computer memory, on disk, or on tape . 
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11 12 11 12 

Output Outpu t 

A B 

11 12 11 
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c D 

Figure F-2 The four devices that Music V "simulates." Part A represents an 
oscillator Fn whose frequency is controlled by input number 12 and whose 
output amplitude is controlled by input number Il; part B, an adder whose 
output number is the sum of the two input numbers I1 and 12; part C, a 
multiplier whose output number is the sum of the input numbers 11 and 12; 
and part D, an output device to store a sequence of numbers that represent 
sample amplitudes. 

Figure F-3 shows how to program an instrument and play two notes. 
This instrument makes use of two oscillators. Oscillator F2 produces the 
" squarish" waveform shown in part C. Oscillator Fl produces a single 
time-varying output that rises from zero and falls to zero again, as shown 
in part B. This output determines how the amplitude of the output of 
oscillator F2 rises and falls with time. Thus, the amplitude and duration of 
the note produced by F2 are controlled by the input numbers PS and P6. 
The frequency of the note is controlled by input P7. 

The program for "creating" the instrument and for playing the two 
notes shown in part D is given in lines 1 through 10 of the figure. In this 
program, lines 1 through 5 define the instrument shown in part A. Line 6 

A B 
F1 

P5 P6 P7 

c 
F2 

- ] 

cc-rr (' 

491 511 
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D 

J = 60 

1 J 

E 

1 INS 0 1 ; 
2 OSC P5 P6 B2 F1 P30 ; 
3 OSC B2 P7 B2 F2 P29 ; 
4 OUT B2 B1 ; 
5 END ; 
6 GEN 0 1 1 0 0 .99 20 .99 491 0 511 ; 
7 GEN 0 I 2 0 0 .99 50 .99 205 - .99 

306 - .99 46 1 0 5 11 ; 
8 NOT 0 1 2 1000 .0 128 6.70 ; 
9 NOT 2 1 1 1000 .0256 8.44 ; 

10 TER 3; 

Figure F-3 A simple instrument, and the program that causes it to play the 
two notes shown in part D. The instrument consists of an oscillator, F1 , that 
produces the envelope (part B) of the output of oscillator F2. The waveform 
of oscillator F2 is shown in part C. Lines 1 through 5 describe the instrument; 
lines 6 and 7 describe the envelope and waveform; and lines 8 through 10 play 
the notes. 

defines the time function (part B) that oscillator Fl produces. Line 7 
defines the waveform (part C) that oscillator F2 produces. Lines 8 and 9 
cause the instrument to play the two notes shown in part D. 

In line 8, the 0 following NOT says to start this note at a time zero. 
The 1 that follows says that the note is to be played by instrument 
number 1 (defined in lines 1 through 4). The 1000 that follows specifies 
the amplitude of the output. The following number, .0128, is, in fact, the 
input number P6 of part A. When this number times the number of 
successive samples is equal to 511, the output of oscillator Fl will have 
risen from zero and fallen to zero again, as shown in part B and line 6. 
The first note is two seconds long, and it is assumed in the example that 
there are 20,000 samples per second. The entry for P6 in line 8 is .0128. 
We note that 

(.0128)(2)(20,000) = 512 

which is close enough. 
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The last number in line 8 is the input P7, and this specifies frequency. 
According to part C and line 7, one complete cycle happens when P7 
times the number of samples equals 511. Hence, the number of cycles per 
second, or Hz, is P7 times 20,000, so that the frequency is 

(6.70)(20,000)/(511) = 262 Hz 

This is indeed the frequency of middle C. 
The NOT Jines of the figure are a very primitive way of playing a 

very primitive instrument. The next-to-last number, P6, depends on note 
duration. Surely the computer can compute this for us! Indeed, it can and 
does. If we wish, we can enter the frequency instead of P7, and the 
computer can compute the required P7. Or we can enter the name of the 
note and its octave number, or the octave number and a number of 
semitones. We can have much more complicated instruments that make it 
possible to have vibrato, to sweep the frequency smoothly with time, to 
do a host of things. 

Let us just take it for granted that we can do anything we want with 
Music V. What do we want to do? 

There are several methods of sound synthesis. The most direct is to 
add together a lot of sinusoidal partials whose amplitudes rise and fall 
somewhat differently for the duration of the note. This is called additive 
synthesis. It is very powerful but somewhat slow, because each sinusoidal 
partial must be computed separately. 

In the early days of sound synthesis, the oscillators of Music V were 
programmed to produce geometrically simple waveforms, such as those 
shown in Figure F-4. This was economical, but the sounds produced were 
limited and inflexible in quality, and not very good. 

In his book The Technology of Computer Music, Mathews describes 
an instrument whose waveform varies with amplitude (see Figure F-5). 
Such an instrument has features that ordinary musical instruments have: 
The quality of the tone changes as the intensity of the tone is increased; 
louder tones have more partials than weaker tones. Figure F-6 illustrates 
what can be accomplished with an instrument of this sort. Curve A is a 
plot of the nonlinear relation between the output amplitude and the input 

c-\ 1\. 1\. Square J 

/\ A /\ A A A / Sawtooth 
waveform 

Figure F-4 Two simple waveforms that can be produced by using Music V. 
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P5 P7 P6 P7 

B2 

1 INS 0 4 ; 
2 OSC P5 P7 B2 F3 P30 ; 
3 OSC 1'6 P7 B3 F4 P29 ; 
4 AD2 B2 B3 B2 ; 
5 MLT B2 Vl B3 ; 
6 AD2 B2 V2 B3 ; 
7 MLT P8 V3 B4 ; 
8 OSC B4 V4 B4 F5 P28 ; 
9 AD2 P8 B4 B4 ; 

10 AD2 B4 V5 B5 ; 
11 OSC B3 B5 B5 F2 V7 ; 
12 OSC B2 B4 F1 V8 ; 
13 MLT B2 B4 B4 ; 
14 MLT B4 V6 B4 ; 
15 OUT B4 Bl; 
16 END ; 

Digital Generation of Sound 245 

Vl V2(1) P8 V3 (.01 ) V4 (. 2) 

B.3 

F1 

Fb 
F2 rv 

Figure F-5 A more complicated instrument, whose waveform depends on the 
amplitude, and on the program that defines it. 
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& 
" 0 

Input amplitude 

B Output waveform 
for weak 
sine wave jnput 

Output waveform 
for strong 
sine wave input 

Figure F-6 A waveform that changes with amplitude can be produced by 
using a sine wave as an input to a device with the input-output characteristic 
shown in part A. If the input is a sine wave of small amplitude, the output will 
be almost sinusoidal, as shown in part B. If the input is a sine wave of larger 
amplitude, the output will be peaked waveform, as shown in part C; this has 
many harmonic partials. 

amplitude. Waveform B shows the output waveform when the input is a 
weak sine wave; the output waveform is almost sinusoidal and has chiefly 
one partial. As shown in part C, the output for a strong sinusoidal input is 
peaked, and has many harmonic sinusoidal partials. The stronger the input, 
the stronger the higher partials. Composers Marc Lebrun and Daniel 
Lafitte have used this means to obtain rich tones whose timbres change 
with amplitude. 

John Chowning invented another method, which easily produces rich, 
brassy sounds, called fm (frequency modulation) synthesis (see Chapter 13). 
It is done, in effect, by putting a sinusoidal vibrato on a sinusoidal 
oscillator, but the vibrato has the same frequency as the oscillator. In part 
A of Figure F-7, the amplitude of the output is plotted against a sort of 
pseudotime t', which governs the rate of generation of samples. Curve B 
shows the effect of the vibrato on the rate of change of t' with actual 
time t. At points p, t' changes rapidly with t; at points v, t' changes slowly 
with t. The resulting output waveform is shown in part C. The peaks rise 
and fall rapidly; the valleys fall and rise slowly. The resulting waveform has 

. many high-frequency harmonics. Moreover, the intensities of these high-
frequency partials can be increased by increasing the amount of frequency 
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Amount of 
frequency 
variation 
or vibrata 

Figure F-7 Chowning's fm synthesis. In part A is a sine wave whose amplitude 
is a function of a variable t'. Part B shows the rate at which t' changes with 
time, t. This rate has a sinusoidal variation with time, a sort of vibrato. In part 
C, the waveform of part A is plotted, not against t', but against actual time t. 
The waveform is peaked and has many harmonic partials. By gradually 
increasing the amount by which t' varies with time, we can gradually increase 
the strengths of the higher partials. 

modulation (vibrato). If we gradually increase the amount of frequency 
modulation during the playing of a note, the intensities of the higher 
partials gradually increase. This is characteristic of trumpet tones. Of 
course, the amplitude of the sine wave that is frequency modulated in this 
way should rise and fall during the playing of the note. 

Other interesting effects can be obtained by frequency modulating 
with a frequency that is an integer multiple of the oscillator frequency, or 
with a frequency that is not quite equal to the frequency of the oscillator. 
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Appendix G The MIDI Standard 

In the early days of computer music, a few centers exchanged software 
and modified it. Music V and its derivatives offered a standard of sorts, 
but actual programs were different for different machines. So were formats 
for inputting data, and means for converting digits into sound. 

These software synthesis programs enabled the user. to generate new 
ihstruments with new sound qualities and new control parameters. A 
strong emphasis on sound itself was built into such programs. In contrast, 
MIDI (Music Instrument Digital Interface) is fundamentally keyboard 
oriented. It provides a way to play notes, and it provides ways to operate 
whatever controls a synthesizer may have. 

As various keyboard synthesizers began to appear, users wanted them 
to be connected and communicate with each other. There was strong 
motivation for an industry-wide standard. 

MIDI was the response to this need, and it is the most important 
standard in computer music today. It came about through initial discussions 
among several synthesizer manufacturers in 1981. In 1983 an official 
description, called the MIDI 1.0 "Detailed Specification" was released. 

The design of MIDI reflects its early concept as a keyboard standard. 
But MIDI proved to be adaptable to many functions, to the control of a 
host of synthesizer functions, and to the control of synthesizers by means 
other than keyboard: by simulated wind and string instruments, by 
sequencers or computers, or by devices such as Max Mathews's Radio Baton. 

In essence, MIDI is both a hardware standard and a protocol for 
communication between devices, whether they are synthesizers, computers, 
sequencers, drum machines, or any device that is designed to receive 
and/or respond to MIDI commands. 

MIDI commands can be used to turn a tone on (a separate command 
is needed to turn the tone off), to change the tuning or timbre, and for 
many other purposes, some of them system exclusive, that is, pertaining to 
the equipment of a particular manufacturer. 

The MIDI physical connection is simple and inexpensive. Connectors 
on devices are standardized; they are five-pin DIN female connectors, with 
pins 1 and 3 not used. Pins 4 and 5 transmit the MIDI signal. Pin 2 
connects to a wire in the cable that is wrapped around the others and 
shields them; it is connected to ground. 

Nearly all synthesizers and studio gear have MIDI connections built 
in. There are three possible connections: MIDI In, MIDI Out, and MIDI 
Thru, the last providing an exact copy of what MIDI In receives. By 
means of MIDI Thru a number of devices can be connected together in a 
daisy-chain fashion. Or you can· use a splitter that provides several MIDI 
Outs from one MIDI In. 
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It is not so easy to control a MIDI device from more than one MIDI 
source- for example, to control a synthesizer from both a sequencer and 
a keyboard. A special "merge box" can be used that will preserve the 
integrity of each MIDI source. Many computer-based sequencers and many 
control devices have a merge function that will combine MIDI information 
from sequencer and keyboard so that a ·merge box is not needed. 

Computers may or may not have MIDI connections bpilt in, but the 
MIDI interfaces built for personal computers are quite inexpensive. They 
plug into the serial port(s) of the computer. 

The MIDI signal is bit serial, a 5-milliampere current loop, 
opto-isolated, running at 31.25 kBaud (31.25 thousand bits a second). It is 
asynchronous, that is, a byte or burst of digits can be sent at any time, but 
always at the 31.25 kBaud rate. 

Given the hardware, let us examine the protocol for MIDI commands. 
Each MIDI command consists of a Start bit (to alert the receiver), 

eight data bits, and a Stop bit, a total of ten bits per serial byte; so the 
transmission time per byte is 0.00032 seconds. The device to be controlled 
discards the Start and Stop bits and interprets the remaining eight-bit 
message byte. There are two kinds of bytes: 

Status Bytes-any byte starting with a 1 

Data Bytes-any byte starting with a 0 

This leaves seven bits per byte for Status or Data. 
A MIDI message or command usually consists of a Status Byte, to tell 

what function is addressed, for example, Program Change (choose a 
timbre. "Big Brass," "Heavenly Choir," and so on), Note On (start playing 
a note) or Note Off (stop playing a note). Such Status Bytes will be 
followed by zero or more Data Bytes telling, for example, which timbre to 
choose, or what note to play and how loudly (with what Key Velocity) to 
play it. A Note On followed by data saying that the key velocity is zero is 
equivalent to a Note Off. 

Control Change can be used to add nuance to a sound, as vibrato, 
tremolo, sustain pedal, soft pedal. 

After Touch provides a way to control the sound after it has been 
initiated. 

Pitch Bend w:ll alter the pitches of all sounding notes on a given channel. 
In early keyboard synthesizers, all notes were played with the same 

timbre. In good present-day synthesis, one synthesizer can be configured 
to respond to several different MIDI channels simultaneously, with 
different timbres and different expressive effects on different channels. 
MIDI provides for sixteen control channels. A given synthesizer can be set 
to operate in one of four Channel Modes: 
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MODE 1: Omni On, Poly. Receive on all channels, can play more than 
· one note at a time. "Goof proof" for beginners. 
MODE 2: Omni On, Mono. Receive on all channels, but play only one 

note at a time, as with the older monophonic synthesizers. 
MODE 3: Omni Off, Poly. Receive only on specified MIDI channels, 

each of which can play a different timbre and more than one 
note at a time. Typical for use with sequencers. This has be-
come the most common mode. 

MODE 4: Omni Off, Mono. Receive only on specific channel. Typi-
cally, you would use this mode with a guitar controller; you 
would have one MIDI channel for each string of the guitar. 
This gives the ability to add individual expression in each 
channel. 

When the Mode has been chosen, you must still play notes. Channel 
Voice Messages consist of a status byte followed by one or more data 
bytes. They affect only those (Omni Off) synthesizers that are set to 
receive on specified channel(s) by a Channel Mode message. Channel Voice 
message$ are basically everything you play on the keyboard, for example, 
which key is pressed and which key is released, which are Note On and 
Note Off, respectively. Some Channel Voice Messages encode the note 
number as well as channel, and some are "channel-wide" (these do not 
encode note number). 

System Messages (not encoded with channel number) can be received 
regardless of MIDI Channel Mode set. These commands control the whole 
MIDI system, for example, to synchronizing a sequencer and a drum 
machine, start and stop performance, and other uses. 

These are some examples of System Message· commands: 

System Common-Status byte followed by zero or more data bytes. 
Examples are: MIDI Song Position Pointer (location in a sequence) 
and MIDI Song Selection (sequence number). · 

System Real Time-A single status byte. These commands are used 
to start, stop, continue, and synchronize sequencers or drum machines. 

System Exclusive-A status byte, followed by Manufacturers ID, 
followed by any number of data bytes, followed by EOX (End of 
Exclusive status) byte. 

System Exclusive commands are specific to each machine. The 
"trapdoor" of MIDI, System Exclusive commands let you do "bulk 
dumps" of synthesizer parameters, or even of samples of digital audio. (It 
is not immediately obvious that MIDI can be used to transfer sounds!) 

Several important additions have been made to the original MIDI 
standard. First, the Sample Dump Standard (SDS), adopted in 1986, allows 
a more convenient way to upload or download sound files from 
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computers. This is a non-real-time process, but still useful for creating, 
preparing, and editing sounds on a host computer to be used in a sampler. 

Another supplement to MIDI is MIDI Time Code (MTC). This adds 
an absolute time reference to the standard. The basic idea is to encode 
SMPTE code (Society of Motion Picture and Television Engineers) 
synchronization standard) over MIDI. Synchronization has become 
extremely important in video post-production now that using a sequencer 
or computer to control synthesizers by MIDI has become a major activity. 

It is important to realize that MIDI commands have no sense of time 
at all. When a MIDI command goes over a wire, it is executed as soon as 
it arrives at its destination . There is no intrinsic way to "save" a MIDI 
message, to be executed later. Saving MIDI messages is done by sequencers 
or computers that form a part of the system and schedule the MIDI events. 

Although the abbreviation MIDI implies some form of digital music, 
it is significant that no mention is made in the specifications of what will 
actually make the sound. It could be a MIDI-enabled acoustic piano, or a 
MIDI-controlled carillon, calliope, drum set, merry-go-round, or rocket 
launcher. That is to Sf!y, the sound-producing apparatus can just as easily 
be mechanical as electronic. A near-ideal application of MIDI is the 
"MIDI piano" that has appeared recently, such as the Diskclavier from 
Yamaha. In this context, it appears that it is possible both to capture and 
regenerate (or analyze) full concert performance via MIDI. Of course, this is 
really a modern version of the piano roll, but the information is easily 
edited, copied, and stored as MIDI data in a personal computer. 

Phenomenally successful, MIDI has been built into the whole digital 
sound industry. Yet it has its limitations, and these have been criticized. 

Researchers in the field of computer music initially tended to see 
MIDI as a "toy interface standard." Comparing the bandwidth of MIDI 
to, for example, DMA (Direct Memory Access) between a computer and 
dedicated peripherals is like comparing a garden hose to the Columbia 
River. But the years have shown that MIDI has a great deal of potential. 
Ultimately, the question about what we are giving up is less obvious than 
one might think. 

Stored in the MIDI format, a fifteen-minute. piece of music with 
sixteen voices will easily fit on an 800-K disk, tremendously reducing 
storage problems compared to digital audio- by around a thousand to 
one. Obviously, we have traded something here: We are limited to the 
sounds that the synthesizer or other devices we are controlling can make. 
Questions still remain as to whether MIDI is fast enough to capture every 
nuance, and whether two-way communication is possible? Though a great 
deal of thought was put into the standard initially, it was impossible to 
foresee just how far this standard would be pushed. 



Appendix H MAX 

MAX is a visual programming language designed for music composition 
and performance. The musician who learns MAX can develop control 
software for MIDI-compatible synthesizers and related equipment. This 
software can be suited to a musician's individual needs or styles of 
working. Originally developed at the I nstitut de Recherche et de 
Coordination Acoustique/ Musique (JRCAM) in Paris by Miller Puckette, 
MAX has been in use at computer music research facilities since 1988 and 
became a commercial product for the Apple Macintosh computer with the 
additional development of David Zicarelli in 1990. It is distributed by 
Opcode Systems, Inc., of Menlo Park, California. 

If you connected a MIDI controller such as a keyboard directly to a 
sound-generating device, you would normally get a single sound for each 
note you play. However, by inserting a computer between the controller 
and the sound generator, it is possible to extend your playing to produce 
"more" than you are actually doing. The computer effectively reinterprets 
the meaning of the musical gestures produced by the musician. Simple 
examples of this reinterpretation might include sounding a chord when a 
single note is played, starting or stopping a melodic sequence, or 
transposing a melody to the key which corresponds to the note most 
recently played by a performer. 

Because the possibilities of extending musical performance with a 
computer are so vast, the best approach to developing a piece that uses 
such techniques is an experimental and interactive one. Unfortunately, 
writing a computer program to send and receive MIDI commands is not a 
task which can be easily accomplished by most musicians. Even if one 
were to write such a program, it would be necessary to use a compiled 
language such as C or Pascal because the computer will be responding to 
the performer's gestures in real time and must execute rapidly. The need 
to simplify the process of developing MIDI control software motivated the 
development of MAX as a special-purpose language. MAX simplifies the 
task of MIDI software development in three ways. 

First, since it is a visual language, people with little or no programming 
experience can learn the basic principles without months of study. MAX 
programs are called patches because the user "patches together" boxes 
.(called objects) that represent input, output, arithmetic operators, or 
control functions. On the computer screen, the programs look like boxes 
connected by wires, so you can write programs just as you might configure 
a stereo system or use a modular synthesizer. Conceptually, one thinks of 
data as "flowing through" the wires from one box to another. 

Second, MAX eliminates the need to deal with MIDI codes directly. 
One does not need to worry about the exact format of a MIDI message 
or how to send it to the serial port of the computer or, a task which is 
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even more difficult, interpreting the type and nature of incoming MIDI 
messages arriving from a MIDI controller such as a keyboard. Instead, 
there are MAX objects for turning each part of a MIDI message into a 
number which is sent down a wire. For example, suppose our task is to 
write a MAX program that sends a MIDI note one octave above that 
which the computer receives. The MIDI note is received in an object called 
notein, which has three outputs, one for the pitch of the note, one for the 
velocity of the note (how hard it was played), and one for the MIDI 
channel (1 to 16). For the computer to merely repeat the note to the 
output, one just connects these outputs at the bottom of a notein object 
to the corresponding inputs at the top of a noteout object, as shown 
below. The noteout object takes care of putting the numbers back together 
into a MIDI message which is then sent out the serial port of the computer 
to a synthesizer. 

lnotein I 
Pitch Velocity MIDI Channel 

lnoteout I 

Now, to add an octave (12 steps) to the pitch value, we merely add 
12 to the pitch value, leaving the other two numbers alone. 

lnotein 
Pitch Velocity MIDI Channel 

I+ 12 I 

lnoteout I 

We could expand upon this example to modify the note's velocity or 
MIDI channel. In order to do this, we would deal with each of these 
numbers as an individual entity, because the MAX notein and noteout 
objects allow us to do so. 

Finally, MAX contains a scheduler, a special facility for delaying an 
action until a specified time. This is especially useful in MIDI applications, 
because the MIDI specification says that you are responsible for turning 
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off every note you turn on·. Without a scheduler, after you turn a note on, 
your computer program would have to tie up the computer to wait until 
the specified time occurs to turn it off. With a scheduler, the programmer 
can specify when the note is to be turned off and the computer will 
regularly check the clock and execute the note-turning-off task at the 
specified time. Meanwhile, the computer can be used for other things, 
including turning on and off other events. In MAX, there are a number of 
different objects that make use of the scheduler. One of them is called 
pipe, so named because you can send a number into the pipe and it will 
come out after a certain delay. (In MAX, time is expressed in milliseconds, 
usually accurate enough for MIDI control tasks, though not appropriate 
for the actual synthesis of sound.) 

Returning to our simple example above, we will modify the MAX 
program to delay an incoming note by one second by inserting a pipe 
between the input (notein) and the output (noteout). We need a separate 
pipe for each of the three numbers. 

r notein I 
Pitch Velocity MIDI Channel 

I+ 12 I 

lpipe 10oo1fpipe ·looolfpipe 1oool 
delayed 1 second 

r noteout I 

As an improvement, we can make two notes sound for each note 
played with a simple step. We merely reestablish the direct connection 
between the notein and noteout objects. This causes each number to go 
to two different places. The program shown at the top of page 255 will 
repeat the original note played on the keyboard, then, a second later, play 
another note an octave above the original. Note that we can make changes 
to the representation of the program on the computer screen without any 
intervening steps such as compilation. Thus, MAX lends itself to the 
experimentation that is so desirable when working with MIDI equipment. 

Finally, here is an example of using a pipe to turn a note off after a 
specified amount of time. When the user clicks on the box labeled 60 
(middle C), the number is sent immediately to three places (the order is 
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MAX 255 

Pitch Velocity MIDI Channel 

1000 pipe 1000 

original 

determined by the right-to-left position of the destination boxes on the 
screen). First, the number is sent to a pipe, which will delay it for 1000 
milliseconds (one second). Second, it is sent to trigger another number, 64, 
which is in turn sent to the velocity inlet of the noteout object. Finally, 60 
is sent directly to the pitch inlet of noteout, which sends the MIDI 
message out the serial port. A second later, the number 60 will come 
shooting out of the pipe, first sending a 0 to the velocity inlet of the 
noteout. When the piped 60 arrives at the noteout pitch inlet, the MIDI 
message to turn the note off is sent out. A MIDI note message with a 
velocity of 0 is interpreted to mean "turn the note at the specified pitch off." 

click here 

velocity of note -on 

note off 
pitch inlet velocity inlet 

It turns out that most of the complexity of the example above has been 
incorporated into a single MAX object called makenote. At the top of 
page 256 is the same example rewritten to use this object, which is quite a 
bit simpler. 
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here 

lmakenote 1000 64 I 

pitch inlet velocity inlet 

lnoteout I 

Conclusion 

Because MAX makes it possible to work with individual numbers to 
control MIDI hardware rather than requiring the MIDI protocol, it has 
been possible to use a computer running MAX to combine MIDI 
instruments with other kinds of devices that do not "speak" MIDI. If a 
MAX object is created to support a new piece of hardware, it is usually 
quite trivial to incorporate it into a program. One can envision a. situation 
in which hardware devices, as represented in MAX, are speaking a 
universal language of numbers which can be manipulated in arbitrary ways. 
The net effect can be a more musical style of control over equipment 
which might never have been considered in a musical context. For example, 
it is possible to use MAX to control the speed and direction of images on 
a video disk player from a MIDI controller . . As MAX users continue to 
add to the language in the form of support for new devices, the possibilities 
for extending musical performance into new areas should continue to 
expand over the next several years. 
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1. Compact Discs 

Ultimately, sound is to hear, not to read about. Today the most 
enlightening and convincing publications concerning sound are digitally 
generated or processed sounds recorded on compact discs. Some 
appropriate discs are recordings of compositions using generated or 
processed sounds, such as the excellent Digital Music series on Wergo and 
others. There are also a few discs of psychoacoustic sound examples. 

1-1. Examples of Recorded Music That Illustrates Various Phenomena 

RJSSET, JEAN-CLAUDE. Excellent music. Sud (1985) is a wonderful example 
of the use of naturalsounds, edited and combined with computer-generated 
sounds. In AC 1003, 1NA-GRM, Paris.., 

CHOWNING, JOHN. Each of Chowning's compositions embodies something 
distinct and different. Turenas (1972) illustrates excellently the motion of 
sound through a room. Wergo, WER 2012-50. Schallplatten GmbH, Mainz, 
Germany. 

1-2. Psychoacoustic Examples 

MATHEWS, MAX v. (ED.) Sound Examples, Current Directions in Computer 
Music, MIT Press, 1989. Compact disc. Distributed separately from the book 
Current Directions in Computer Music (Max V. Mathews and John R. Pierce, 
eds.), this compact disc contains a wide range of synthesized sounds illustrat-
ing various points. John R. Pierce wishes to apologize for the fact that one of 
the six examples he provided (75 through 81) is erroneous (number 76). 

HOUTSMA, A.]. M., ROSSING, T. D., AND WAGENAARS, W. M. (1987). Audi-
tory Demonstrations. Philips 1126-061. Compact disc. This excellent eighty-
track demonstration of various psychoacoustic phenomena comes with a 
booklet describing the demonstrations. 

2. Periodicals 

Examine journals in a library before subscribing. The following seem to 
the writer to be the most relevant journals. 

AES, JOURNAL OF THE AUDIO ENGINEERING SOCIETY. Audio Engineering 
Society, Inc., 60 East 42 Street, New York, N.Y. 10165-0075. For those 
interested in all the details of sound synthesis and reproduction. 
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MUSIC PERCEPTION. University of California Press, Department of Psychol-
ogy, University of California, San Diego, La Jolla, Calif. 92093. Covers a wide 
range of musical phenomena. 

coMPUTER MUSIC JOURNAL. MIT Press, 55 Hayward St., Cambridge, Mass. 
02142. Quite wide coverage, with a good deal of the nitty-gritty of 
synthesis. 

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA. Acoustical Society of 
America, 500 Sunnyside Boulevard, Woodbury, N.Y. 11797. This weighty 
journal covers all of acoustics. The papers on music and musical instruments, 
psychological acoustics, physiological acoustics, speech production, and 
speech perception will perhaps be of most interest. 

3. Books 

Books are cited in the hope that they can serve as a bridge to past 
publications and into ongoing activities. Some important papers published 
in various journals can be very useful. It isn't easy to select accessible and 
reliable books. Some get bogged down in details. Some cite out-of-date 
results or ideas. I advise looking at books in a library before purchasing them. 

RANDEL, DON MICHAEL, ED. The New Harvard Dictionary of Music. Cam-
bridge, Mass., The Belknar Press of Harvard University Press, 1986. A very 
useful volume. 

Bf.Kf.SY, GEORG VON. Experiments in Hearing. Huntington, N.Y.: Robert E. 
Krieger Pub. Co. 1960, reprinted 1980. The work of a wise Nobel laureate, 
described by himself. 

BREGMAN, ALBERT s. Auditory Scene Analysis. Cambridge, Mass: MIT 
Press, 1990. Our interpretation of sounds from the external world. 

DEUTSCH, DIANA (ED.) The Psychology of Music. San Diego: Academic 
Press, 1982. Excellent. Includes chapters by bright people who are deep in 
computer music. 

DODGE, CHARLES, AND THOMAS, JERSE. Computer Music, Synthesis, Com-
position, and Performance. New York: Schirmer Books, 1985. An excellent 
guide from excellent musicians. 

FLETCHER, HARVEY. Speech and Hearing in Communication. New York: 
Van Nostrand, 1953. Still an interesting and useful book by a true pioneer. 

GALILEO GALILEI. Dialogues Concerning Two New Sciences. Translated by 
Henry Crew and Alfonso de Salvio. New York: Dover, 1954. Pages 95-108 
give Galileo's ideas concerning the relation of pitch (and harmony) to rate of 
vibration, including the way in which rate varies with the length, tension, and 
mass of a string. 
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HARRIS, CYRIL. Handbook on Noise Control. 2nd edition. New York: 
McGraw-Hill, 1979. By a truly reliable expert in architectural acoustics. 

HELMHOLTZ, HERMANN L. F. On the Sensations of Tone. New York: Dover 
reprint, 1954. A must by the founder of modern psychoacoustics-and much 
more. 

HUNT, FREDERICK VINTON. Origins in Acoustics: The Science of Sound 
from Antiquity to the Age of Newton. New Haven, Conn.: Yale University 
Press, 1978. The background that some unfortunately forget. 

MATHEWS, M. v. The Technology of Computer Music. Cambridge, Mass.: 
MIT Press, 1969. Chiefly about software synthesis, but a fair amount about 
sound. 
MATHEWS, MAX V., AND PIERCE, JOHN R. (EDS). Current Directions in 
Computer Music Research. Cambridge, Mass.: MIT Press, 1990. Twenty-one 
chapters by people active in computer music research. 

MOORE, F. R. Elements of Computer Music. Englewood Cliffs, N.J.: Pren-
tice-Hall, 1990. The author has been deep into digital sound generation and 
processing from almost the beginning. 

PLOMP, R. Aspects of Tone Sensation. New York: Academic Press, 1'!76. A 
very informative book. 
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synthesis, synthesis hardware, music software, and psychoacoustics and signal 
processing. 

ROSSING, THOMAS D. The Science of Sound. 2nd edition. Reading, Mass.: 
Addison-Wesley, 1989. A compendium of all aspects of acoustics. The infor-
mation on musical instruments is particularly helpful. 

SABINE, WALLACE CLEMENT. Collected Papers. New York: Dover, 1964. 
How architectural acoustics come to be. 

SCHUBERT, E. D. (ED.). Psychological Acoustics. Stroudsburg, Pa.: Dowden, 
Hutchinson, and Ross, 1979. The original papers reprinted here, which date 
from 1876 to 1970, give a wonderful sense of how the discoveries in acous-
tics were really made, and the wise introductory comments to the six sections 
give references up to 1977. 

SUNDBERG, J. The Science of the Singing Voice. DeKalb, Ill.: Northwestern 
Illinois University Press, 1987. This careful student of singing tells a lot that is 
worth knowing. 
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Melody, and stretched tones, 98 
Mersenne, Marin, 20-22, 24, 30 
Microphone, 147-148 

and recording, 175, 176 
MIDI (Music Instrument Digital 

Interface), 248-251 
Mode, musical, 41 

Church, 74-75, 86 
Monochord, 23 
Moog, Robert, 8 
Moog synthesizer, 8 
Moorer, Andy, 9-11 
Moorman, Charlotte, 8 
Morrill, Dexter, 197 
Motion, and pitch, 17 
Mozart, Wolfgang Amadeus, 211, 

213 
Music, electronic reproduction of, 

167-179 
Music V, 239, 248 
Musique concrete, 8 

Noise 
c_ocktail-party effect, 138 
in concert halls, 154 
levels of, 116-117,119 
masking by, 134-136 
masking of, by tones, 136- B8 
and pitch, 56-60 
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Octaves 
sense of, 36 
stretched, 89- 92 

· tuning of, 64-66 
Olson, Harry F., 179 
Ondes Martenot, 8 
Orchestras 

intensity levels of, 137-138 
sound of, 2-4 
sound level of, 117, 124-125 

Organ, 35, 233 
sound of, 191 

Outdoor performances, 154 
Overtones. See Harmonics; Partials 

Partch, Harry, 8, 72-73 
Partials, 36, 37, 96-97, 100-101 

bells and gongs, 199-200, 202-205 
chimes, 200-201 
and consonance, 82-84, 87, 90 
and frequency components, 42-44, 

52 
glockenspiel, 201 
hearing of, 113 
human voice, 53 
and musical illusions, 214-217 
sound intensity level, 127 
and sound quality, 186-189 
and stretched tones, 89-92 
stringed instruments, 47 
and time variations, 196-197 
violin, 49 

Pendericki, Krzysztof, 3, 6 
Pepys, Samuel, 23 
Perception 

categorical, 220-221 
of musical illusions, 209-217 

Percussion instruments, 181. See also 
specific instruments by name 

Periodicity, 15-17, 55 
and pitch, 15, 36-37 
and resonators, 45 
of sine waves, 39-40, 42, 44 

Phase of sine waves, 39, 40 
Phase vocoder, 55 
Philadelphia Academy of Music, 168 
Philharmonic Hall, Lincoln Center, 

New York, 154-159 
Phon, 122-124 
Phonemes, 220 
Piano. 

partials of, 187-188 
pitch of, 94, 95 
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strings of, 34 
string vibration, 46, 55 
tuning of, 64-68, 94 

Pitch, 14-15, 95, 223 
of drums, 205 
and echoes, 31 - 33 
and frequency, 17-23, 34, 37 
just noticeable difference, 140-142 
and masking, 130 
and musical illusions, 212, 214 
and noise, 56-60 
perception of, 109-111,114,221 
periodicity and, 17, 19, 36-37, 115 
of piano, 94-95 
place theory of perception, 109, 111 
residue, 93-95, 201-202 
of sine waves, 36-37, 41 

Plomp, Rainier, 78, 80, 81, 98 
Precedence (Haas) effect, 143-146 
Predictive vocoder, 183 
Primitive music, 14 
Psychoacoustics, 140, 217. See also 

Hearing 
Pure tones. See Sine waves 
Pythagoras, 17 
Pythagorean tuning, 71 -73 

Quadraphonic sound, 173-174 

Radio Baton, 11-12 
Rameau, Jean Philippe, 96-100 
Ray tracing, 160-161 
Recording techniques, 167, 175. See 

also Sound, reproduction of 
Reflection of sounds. See Reverberation 
Resonance, 45-46. See also Formants 
Resonators, 45-47, 49, 51 
Reverberation, 144-146,234-238 

artificial, 176 
concert halls, 154, 160 
echoes, 146- 148 

Reverberation time, 146, 151-152, 
160-162, 165 

Rhythm, 14 
Risser, Jean-Claude, 190, 196, 212, 

214-217 
Rock music, 175 
Rodet, Xavier, 183 
Roughness of sound. See also Beats 

and consonance, 78- 79, 84 
Royal Eijshouts Bell Foundry, the 

Netherlands, 203 
Royal Festival Hall, London, 166 
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Sabine, Wallace Clement, 150-154, 
160 

Scales, 64-75 
and consonance, 88-89 
diatonic, 68-70, 72-75, 100, 101 
synthetic, 87-89 
tonal centers of, 74-75 

Schaeffer, Pierre, 8 
Schouten, Jan, 78, 92-94 
Schroeder, Manfred, 159-163, 165, 

171, 218, 219 
Schuster, K., 160 
SCORE program, 8 
Sensation level, and masking, 131-133 
Serra, Xavier, 206 
Shaw, Woody, 49 
Shepard, Roger, 69, 214-215 
Shouting, 115 
Shrillness, 36 
Siebrasse, K. F., 162-163, 165 
Sine waves, 36-46, 52, 61-63, 

216-217, 223. See also Periodicity 
and beats, 64- 66, 78-79 
and consonance, 79-81, 84 
and hearing, 109, 112-113 
just noticeable difference, 141-142 
and loudness, 122, 127 
and _masking, 134-137 
phase of, 39, 40 
and pitch, 95 

Singing. See also Voice, human 
formant, 191 
imensity level of, 137-138 

Siren, 15-17, 92-93 
Slaymaker, Frank H., 89 
Smith, Leland, 8 
Sone, 123-124 
Sonograph, 52 
Sound. See also Hearing; Sine waves; 

Synthesis of sound; Waves, sound 
absorption of, 144-145 
analysis of, 205-207 
decay of, 161, 188-189 
digital generation of, 239-247 
electronic, 3-4 
frequency analysis, 49-5 6 
illusions of, 217-219 
perception of and reverberation time, 

151 
power and loudness of, 115- 129 
reproduction of, 167- 179 
reverberant, 176-177 

Spectrum analyzer, digital, 50, 51 
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Speech. See also Voice, human; 
Vowels; Whispering 

reverberation time, 144-146, 151 
synthesizing, 196 

Sperry, Roger, 209 
Square waves, 42, 43 
Stereo systems, reproducing sound, 

167, 168, 171-177 
Stockhausen, Karlheinz, 8 
Stokowski, Leopold, 168 
Stretched intervals and tones, 98, 100 
Stretched octaves, 89-92 
String length, and musical intervals, 17 
String vibration, 26-29, 33-34 

echoes, 30 · 
frequency of, 17-22 
and resonance, 46-47 

Stringed instruments. See also specific 
instruments by name 

vibrations in, 33-35 
Studio d'Essai, 8 
Sundberg, Johann, 137, 191 
Sympathetic strings, 47 
Synthesis of sound, 195-197,205-207 

analog; 8-9 
digital, 9, 11-13, 182-187, 219-

220, 222, 239-247 

Tape music, 3 
Tension, in stringed instruments, 34 
Terhardt, Ernst, 93 
Tetrachords, 74 
Theremin, 8 
Timbre, 223 

and musical illusions, 211-212 
perception of, 111-112, 221 
physical aspects of, 196-199 
and resonance, 49 

Timpani, 205, 206 
Tom-tom, 52, 53 
Tone, 223 

and masking, 136- 138 
Trumpet, 196-197 
Tuning 

equal-tempered, 68, 70-74 
just temperament, 70, 72-74 
use of beats, 64-66 

University of California at Berkeley, 31 

Van Eyck, Jacob, 202 
Varese, Edgard, 2, 3, 5, 14, 15 
Vibraphone, 201 
Vibrations, and sine waves, 41 
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Vibrato, 60, 190, 196 
Viola bastarda, 47 
Viola d'amore, 47 
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Violin. See also Stringed instruments 
bowing, 189 
resonance of, 50 
sound of, 189-191 
timbre of, 49 

Vocal tract 
formants, 49, 52-53, 191 
resonance of, 56 
and waves, 195-196 

Voice, human, 191-196. See also 
Speech; Vocal tract 

sonograms of, 52-55 
Vowels 

and formants, 49, SO, 112 
and human voice, 191-196 
and resonance, 56 

Waetzmann, E., 160 
Waves, sound, 16, 24-30, 58-63, 

185-187, 223. See also Sine 
waves; Square waves 
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analysis of, 50, 53 
and hearing, 130 
intensity level, 116 
and mathematics, 228-233 
power of, 115-116 
reflected, 147-148, 134-238 

Wegel, R. L., 131 
Wessel, David L., 211, 212 
Whispering, 56, 191 
White noise, 56, 136 
Wind instruments. See specific 

instruments by name 
Wire. See Strong vibration 
Woodwinds, 2, 49. See also specific 

instruments by name 

Xenakis, Jannis, 3 
Xylophone, 47, 201 

Young, Lamont, 8 


