May 2019 **Appendix VIII: Point Group Symmetry**

Point Groups

By finding certain key elements of symmetry, the necessary existence of others can be implied. The point group notation is a shorthand devised to express key elements. It provides a neat method of describing molecular structures.

Finding the point group:

- Is the molecule a member of a special group? Regular tetrahedron is termed T_d. A regular 1. octahedron is O_h. Special groups are those in which there is no more than one axis of rotation of order greater than 2, these axes not being coincident: eg., a regular tetrahedron has $4 C_3$ axes.
- Find the highest axis C_n and call it vertical. 2.
- 3. If n = 1:

Has molecule a centre of symmetry? If so, then C_i .

Has molecule a plane of symmetry? If so, then C_s.

Has molecule nothing except E? If so, then C_1 , and can be described as having no symmetry.

4. If $n \ge 2$:

Are there nC_2 axes perpendicular to C_n ? If so, the molecule is termed dihedral.

- 5. If dihedral:
 - Has the molecule a horizontal plane? If so, then D_{nh} . Has the molecule n vertical planes? If so, then D_{nd} . If neither of these, it is D_n .
- 6. If not dihedral:

Does it have S_{2n} coincident with C_n ? If so, the point group is S_{2n} . Has the molecule a horizontal plane? If so, C_{nh} . Has it n vertical planes? If so, C_{nv} . If 7. neither of the above, then it is C_n .

Symmetry operations

A symmetry operation of a molecule is an operation about the centre of gravity which produces a configuration indistinguishable from that of the molecule before the operation.

Using the Schönflies notation:

Identity (E) implies no alteration of atomic positions or of coordinate direction.

Axis of symmetry (C). An n-fold axis of symmetry means that the indistinguishable configurations arise after every $360/n^{\circ}$ of rotation about an axis. Note that after n rotations about C_n , the symmetry operation, E, has been achieved. A molecule may have a number of different axes (eg. a square has C_4 , 2 C_2 through the middle of the edges, and 2 more C_2 along the diagonals) and the highest order axis (largest n) is conventionally chosen as the z-axis. (z is regarded as vertical).

Plane of Symmetry (σ). A plane of symmetry reflects atoms from a given configuration to an indistinguishable one. Essentially the effect of a plane of symmetry operation will alter one of the cartesian coordinates defining an atom position into minus itself, leaving the other two unaltered, eg. x,y,z \rightarrow x,y,-z. The recognition of this is not obvious if the atom in question lies on the plane. The nature of the plane may be amplified by subscripts σ_v , σ_h and σ_d etc., where $h = horizontal_x$, doi not v = vertical (there may be more than one distinct type of vertical plane).

Rotation-Reflection Axis (S_n). This is a two stage operation involving rotation about an axis 360/n degrees followed by reflection through a plane (which need not be a plane of symmetry) through the centre of gravity perpendicular to that axis. Some of the transformations achieved by performing some members of the family S_n may have been achieved by operations listed above and hence are not uniquely described in terms of S_n , eg. S_3^3 is the same as σ_h .

An operation which changes x,y,z to -x,-y,-z will belong to a family of S_n , but is singled out for description as a centre of symmetry (*i*).

The carbonyl spectrum of *cis*-[M(CO)₂L₄]:

To deduce the number of infrared active carbonyl stretching frequencies for a molecule we must first deduce its point group. As can be seen from the figure the symmetry elements present in *cis*-[M(CO)₂L₄] are E (identity), C₂(z) (two fold rotation axis in the z direction), $\sigma(xz)$ (plane of symmetry in the xz plane) and $\sigma(yz)$ (plane of symmetry in the yz plane). You can therefore verify that *cis*-[M(CO)₂L₄] belongs to the C_{2v} point group.

The character table for the C_{2v} point group is:

C_{2v}	E	$C_2(z)$	σ(xz)	σ(yz)			
A_1	1	1	1	1		Z	xx,yy,zz
A_2	1	1	-1	-1	R _z		xy
\mathbf{B}_1	1	-1	1	-1	R _v	Х	XZ
B_2	1	-1	-1	1	R _x	У	yz

We now investigate how the carbonyl groups transform under the symmetry operations of the C_{2v} point group. (As a first approximation the carbonyl stretching vibrations (v(CO)) may be considered to be independent of other vibrations in the molecule.)

If, on carrying out a symmetry operation, the feature under consideration is totally unchanged, the effect of the symmetry operation is ± 1 . If the feature remains in the same position in space but changes orientation, the effect will be within the range ± 1 or ± 1 (for one-dimensional species, those for which the number in the identity column is ± 1 , the effect will always be either ± 1 or ± 1). If it is changed in its position in space, the effect is zero, but it must be interchanged with a similar item. Such features, interchangeable by any of the symmetry operations of the system, must be taken together.

Thus under the C_{2v} point group operations, the transformation of the carbonyl groups (taken together) are as follows:

E	(both CO's stay the same)	\Rightarrow	2
$C_2(z)$	(both CO's interconvert)	\Rightarrow	0
σ(xz)	(both CO's interconvert)	\Rightarrow	0
σ(yz)	(both CO's stay the same)	\Rightarrow	2

These characters form the reducible representation:

E	$C_2(z)$	σ(xz)	σ(yz)
2	0	0	2

which by inspection, may be reduced to $A_1 + B_2$

A_1	1	1	1	1
B_2	1	-1	-1	1

For a vibration to be infrared active its symmetry species must be identical to that of one of the dipole moment vectors (referred to as x, y or z in the character table). From the character table for the C_{2v} point group we can see that A_1 and B_2 transform as z and y respectively. Therefore both CO stretching vibrations are infrared active. Consequently *cis*-[M(CO)₂L₄] species exhibit two carbonyl stretching frequencies in the infrared spectrum.