Appendix VIII -1

May 2019

Appendix VIII: Point Group Symmetry

Point Groups

By finding certain key elements of symmetry, the necessary existence of others can be implied.
The point group notation is a shorthand devised to express key elements. It provides a neat method of describing molecular structures.

Finding the point group:

1. Is the molecule a member of a special group? Regular tetrahedron is termed T_{d}. A regular octahedron is O_{h}. Special groups are those in which there is no more than one axis of rotation of order greater than 2 , these axes not being coincident: eg., a regular tetrahedron has $4 \mathrm{C}_{3}$ axes.
2. Find the highest axis C_{n} and call it vertical.
3. If $\mathrm{n}=1$:

Has molecule a centre of symmetry? If so, then C_{i}.
Has molecule a plane of symmetry? If so, then C_{s}.
Has molecule nothing except E ? If so, then C_{1}, and can be described as having no symmetry.
4. If $n \geq 2$:

Are there nC_{2} axes perpendicular to C_{n} ? If so, the molecule is termed dihedral.
5. If dihedral:

Has the molecule a horizontal plane? If so, then $D_{\text {nh }}$.
Has the molecule n vertical planes? If so, then $D_{n d}$.
If neither of these, it is D_{n}.
6. If not dihedral:

Does it have $S_{2 n}$ coincident with C_{n} ? If so, the point group is $S_{2 n}$.
7. Has the molecule a horizontal plane? If so, C_{nh}. Has it n vertical planes? If so, C_{nv}. If neither of the above, then it is C_{n}.

Appendix VIII -2

Symmetry operations

A symmetry operation of a molecule is an operation about the centre of gravity which produces a configuration indistinguishable from that of the molecule before the operation.

Using the Schönflies notation:
Identity (E) implies no alteration of atomic positions or of coordinate direction.
Axis of symmetry (C). An n-fold axis of symmetry means that the indistinguishable configurations arise after every $360 / \mathrm{n}^{\circ}$ of rotation about an axis. Note that after n rotations about C_{n}, the symmetry operation, E , has been achieved. A molecule may have a number of different axes (eg. a square has $\mathrm{C}_{4}, 2 \mathrm{C}_{2}$ through the middle of the edges, and 2 more C_{2} along the diagonals) and the highest order axis (largest n) is conventionally chosen as the z -axis. (z is regarded as vertical).

Plane of Symmetry (σ). A plane of symmetry reflects atoms from a given configuration to an indistinguishable one. Essentially the effect of a plane of symmetry operation will alter one of the cartesian coordinates defining an atom position into minus itself, leaving the other two unaltered, eg. $\mathrm{x}, \mathrm{y}, \mathrm{z} \rightarrow \mathrm{x}, \mathrm{y},-\mathrm{z}$. The recognition of this is not obvious if the atom in question lies on the plane. The nature of the plane may be amplified by subscripts σ_{v}, σ_{h} and σ_{d} etc., where $\mathrm{h}=$ horizontal,(xy); d or v = vertical (there may be more than one distinct type of vertical plane).

Rotation-Reflection Axis $\left(\mathrm{S}_{\mathrm{n}}\right)$. This is a two stage operation involving rotation about an axis $360 / \mathrm{n}$ degrees followed by reflection through a plane (which need not be a plane of symmetry) through the centre of gravity perpendicular to that axis. Some of the transformations achieved by performing some members of the family S_{n} may have been achieved by operations listed above and hence are not uniquely described in terms of S_{n}, eg. $S_{3}{ }^{3}$ is the same as σ_{h}.

An operation which changes $\mathrm{x}, \mathrm{y}, \mathrm{z}$ to $-\mathrm{x},-\mathrm{y},-\mathrm{z}$ will belong to a family of S_{n}, but is singled out for description as a centre of symmetry (i).

Appendix VIII -3

The carbonyl spectrum of cis- $\left[\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{4}\right]$:

To deduce the number of infrared active carbonyl stretching frequencies for a molecule we must first deduce its point group. As can be seen from the figure the symmetry elements present in cis- $\left[\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{4}\right]$ are E (identity), $\mathrm{C}_{2}(\mathrm{z})$ (two fold rotation axis in the z direction), $\sigma(\mathrm{xz})$ (plane of symmetry in the xz plane) and $\sigma(\mathrm{yz})$ (plane of symmetry in the yz plane). You can therefore verify that cis- $\left[\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{4}\right]$ belongs to the $\mathrm{C}_{2 \mathrm{v}}$ point group.

The character table for the $\mathrm{C}_{2 \mathrm{v}}$ point group is:

$\mathrm{C}_{2 \mathrm{v}}$	E	$\mathrm{C}_{2}(\mathrm{z})$	$\sigma(\mathrm{xz})$	$\sigma(\mathrm{yz})$			
A_{1}	1	1	1	1		z	$\mathrm{xx}, \mathrm{yy}, \mathrm{zz}$
A_{2}	1	1	-1	-1	R_{z}		xy
B_{1}	1	-1	1	-1	R_{y}	x	xz
B_{2}	1	-1	-1	1	R_{x}	y	yz

We now investigate how the carbonyl groups transform under the symmetry operations of the $\mathrm{C}_{2 \mathrm{v}}$ point group. (As a first approximation the carbonyl stretching vibrations (v(CO)) may be considered to be independent of other vibrations in the molecule.)

If, on carrying out a symmetry operation, the feature under consideration is totally unchanged, the effect of the symmetry operation is +1 . If the feature remains in the same position in space but changes orientation, the effect will be within the range +1 or -1 (for one-dimensional species, those for which the number in the identity column is +1 , the effect will always be either +1 or -1). If it is changed in its position in space, the effect is zero, but it must be interchanged with a similar item. Such features, interchangeable by any of the symmetry operations of the system, must be taken together.

Appendix VIII -4

Thus under the $\mathrm{C}_{2 \mathrm{v}}$ point group operations, the transformation of the carbonyl groups (taken together) are as follows:
E (both CO's stay the same) $\quad \Rightarrow \quad 2$
$\mathrm{C}_{2}(\mathrm{z})$ (both CO's interconvert) $\quad \Rightarrow \quad 0$
$\sigma(\mathrm{xz})$ (both CO's interconvert) $\quad \Rightarrow \quad 0$
$\sigma(\mathrm{yz})$ (both CO's stay the same) $\quad \Rightarrow \quad 2$
These characters form the reducible representation:
E $\quad \mathrm{C}_{2}(\mathrm{z}) \quad \sigma(\mathrm{xz}) \quad \sigma(\mathrm{yz})$
2000
which by inspection, may be reduced to $\mathrm{A}_{1}+\mathrm{B}_{2}$

A_{1}	1	1	1	1
$\mathrm{~B}_{2}$	1	-1	-1	1

For a vibration to be infrared active its symmetry species must be identical to that of one of the dipole moment vectors (referred to as x, y or z in the character table). From the character table for the $\mathrm{C}_{2 \mathrm{v}}$ point group we can see that A_{1} and B_{2} transform as z and y respectively. Therefore both CO stretching vibrations are infrared active. Consequently cis- $\left[\mathrm{M}(\mathrm{CO})_{2} \mathrm{~L}_{4}\right]$ species exhibit two carbonyl stretching frequencies in the infrared spectrum.

